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Summary 87 

• Evolutionary radiations of woody taxa within arid environments were made possible by 88 

multiple trait innovations including deep roots and embolism-resistant xylem, but little is 89 

known about how these traits have coevolved across the phylogeny of woody plants or 90 

how they jointly influence the distribution of species. 91 

• We synthesized global trait and vegetation plot datasets to examine how rooting depth 92 

and xylem vulnerability across 188 woody plant species interact with aridity, 93 

precipitation seasonality, and water table depth to influence species occurrence 94 

probabilities across all biomes. 95 

• Here we show that xylem resistance to embolism and rooting depth are independent 96 

woody plant traits that do not exhibit a trade-off. Resistant xylem and deep roots increase 97 

occurrence probabilties in arid, seasonal climates over deep water tables. Resistant xylem 98 

and shallow roots increase occurrence probabilities in arid, non-seasonal climates over 99 

deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in 100 

arid, non-seasonal climates over shallow water tables. Vulnerable xylem and shallow 101 

roots increase occurrence probabilities in humid climates. 102 

• Traits related to water uptake and transport explain biogeographic-scale species 103 

occurrences, suggesting that responses of deeply rooted vegetation may be buffered if 104 

evaporative demand changes faster than water table depth under climate change.  105 

 106 

Keywords: cavitation, drought avoider, drought resistant, embolism, species distribution 107 

modeling, water availability 108 

 109 
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‘Species that show deviations from statistical correlations (and there are always many such 110 

species) may tell us more about the adaptive value of particular characteristics than species that 111 

fit the correlation.’ (Sherwin Carlquist, 1975, p. 1) 112 

 113 

Introduction 114 

Hotter droughts are expected to become more frequent and severe under most climate change 115 

scenarios (Spinoni et al., 2018; Hammond et al., 2022) and they have already resulted in 116 

widespread tree mortality (Bauman et al., 2022; Hartmann et al., 2022; McDowell et al., 2022). 117 

Understanding which plant species are winners and losers under scenarios of decreasing water 118 

availability is critical for improving predictions of vegetation dynamics (Hammond et al., 2019) 119 

and ecosystem restoration success (Laughlin et al., 2017). Rooting depth and xylem vulnerability 120 

to drought-induced embolism are strongly linked to how woody plant species respond to 121 

moisture availability (Aubin et al., 2016; Volaire, 2018) because the physiological link between 122 

water uptake and xylem conductance is vital to maintaining photosynthesis in arid climates and 123 

during dry seasons. However, little is known about how these traits have coevolved within 124 

woody taxa, nor do we know the joint effects of these traits on species distributions and potential 125 

responses to global change. 126 

 Survival in water-limited landscapes can be achieved by resisting, avoiding, or escaping 127 

dehydration caused by low soil water potentials (May & Milthorpe, 1962; Fischer & Maurer, 128 

1978; Levitt, 1980; Volaire, 2018). First, drought resistance (also called drought tolerance) is 129 

achieved by constructing xylem that can resist embolism formation and maintain water 130 

conductance to enable CO2 uptake even under extreme negative xylem pressure. Woody plants 131 

vary widely in their vulnerability to embolism (Hacke et al., 2001; Maherali et al., 2004; Choat 132 
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et al., 2012), which can be quantified by P50, the xylem pressure (MPa) at which xylem 133 

conductance is reduced to 50% of its maximum. Species with lower P50 values (i.e., more 134 

negative values) are more resistant to embolism. Second, drought avoidance can be achieved by 135 

constructing root systems that access deeper soil water in the unsaturated vadose zone or directly 136 

from the water table in the saturated zone (Loheide et al., 2005; Ryel et al., 2008). Maximum 137 

rooting depth varies widely among woody plants (Canadell et al., 1996; Jackson et al., 1996). 138 

Deep root systems evolved for a variety of reasons, including anchorage, support, and increasing 139 

the available soil volume, but here we explore its vital role in water uptake. Shallow-rooted 140 

species rely on rainfall directly, whereas deep-rooted species can access water from deeper and 141 

older sources of water (Miguez-Macho & Fan, 2021). Both phreatophytic species that tap into 142 

water tables and deeply-rooted xerophytic plants that access vadose zone soil water can avoid the 143 

drought-induced reductions in soil water potential near the soil surface (Ryel et al., 2008; 144 

Miguez-Macho & Fan, 2021). In arid climates, species that develop only shallow roots confront 145 

drought directly and must be able to resist embolism formation. If "roots grow only as deeply as 146 

needed" (Schenk & Jackson, 2002, p. 481), then in humid climates plants should grow shallow 147 

roots, and may even need to restrict their roots to the shallow oxygenated zone to prevent anoxia 148 

(Jackson et al., 1996; Fan et al., 2017; Tumber-Dávila et al., 2022). Third, drought escape can be 149 

achieved by completing a short life cycle during the wet growing season or by deciduous leaf 150 

senescence in the dry season. 151 

  The large carbon investment into growth and maintenance of deep roots must be offset by 152 

carbon gains made possible by having such deep roots, otherwise the strategy would be unlikely 153 

to have evolved (Seyfried et al., 2005). The construction costs of deep roots could possibly be 154 

offset by lower stem xylem construction costs, and evidence for a trade-off between rooting 155 
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depth and xylem resistance to embolism was demonstrated across 12 species in a humid tropical 156 

forest, where shallow-rooted species were more tolerant of low water potentials (Brum et al., 157 

2019). However, the relationship between rooting depth and xylem vulnerability across global-158 

scale climatic gradients has never been rigorously quantified. There are well-known examples of 159 

deep-rooted species in arid climates that also exhibit remarkably resistant stem xylem (Jackson et 160 

al., 2000; Seyfried et al., 2005), suggesting that the carbon costs of constructing both deep roots 161 

and resistant xylem are offset by the carbon gains that are achieved by simultaneously avoiding 162 

and resisting dehydration. 163 

 Rooting depth and xylem vulnerability may jointly influence species distributions along 164 

gradients of water availability in complex ways (Fig. 1A). Water limitation in plants is affected 165 

by the regional macroclimate, precipitation seasonality, and local topography and drainage 166 

gradients (Schwinning & Ehleringer, 2001; Fan et al., 2017; Grossiord et al., 2020). Climatic 167 

aridity is defined by both the total precipitation relative to potential evapotranspiration, as well as 168 

the occurrence of dry seasons during the year. From a hydrological perspective, water from 169 

‘uplands’ (defined as well-drained topographic positions independent of elevation above sea 170 

level) flows into local topographic depressions creating shallow water tables in ‘lowlands’ 171 

(defined as poorly drained topographic depressions independent of elevation above sea level) 172 

(Fig. 1A) (Nobre et al., 2011; Fan et al., 2017). Water table depth is largely independent of 173 

regional climate because it is primarily under hydrologic control (Sousa et al., 2022), and plant 174 

species responses to regional drought may depend on water table depth (Sousa et al., 2020). For 175 

example, phreatophytic plants growing in arid riparian areas experience severe atmospheric 176 

vapor pressure deficits yet have ample access to soil water. Conversely, plants growing in coarse, 177 

shallow, or excessively drained soils within humid regions will experience local soil water 178 
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deficits despite receiving high amounts of precipitation. In previous studies, species with low P50 179 

were associated with arid regional climates (Larter et al., 2017; Laughlin et al., 2020a) and 180 

upland topographical positions (Oliveira et al., 2019). Plants with shallow roots tend to occur in 181 

humid climates and waterlogged soil, whereas both shallow and deep-rooted species occur in 182 

well-drained soil in arid climates (Schenk & Jackson, 2005; Fan et al., 2017). Determining the 183 

joint response of both traits to gradients of regional aridity, seasonality, and local water table 184 

depth will improve our understanding of vegetation response to drought. 185 

 In this paper, we combined species-level trait data with two macroclimatic gradients and 186 

one local gradient in water availability and asked the following two research questions: (1) Are 187 

P50 and maximum rooting depth correlated across the phylogeny of woody plants? and (2) Are 188 

species occurrences along regional aridity, seasonality, and local water table depth gradients 189 

jointly explained by species P50 and maximum rooting depth? We demonstrate that there is no 190 

evidence for a trade-off between drought resistance and avoidance and that each combination of 191 

xylem vulnerability and rooting depth values differentially optimizes occurrence probabilities 192 

along multiple gradients of water availability. 193 

 194 

 195 
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 196 

Figure 1. (A) Gradients of regional aridity (macroclimate), precipitation seasonality, and local 197 

water table depth drive variation of water limitation in plants. Green text reports predictions of 198 

optimal trait values along each environmental gradient. Note rooting depth is predicted to be 199 

highest at intemediate water table depth (Fan et al. 2017) (B) Biogeographic distribution of 200 

vegetation plots from the sPlot 3.0 database around the planet illustrated as density of plots per 201 

hexagonal grid cell. (C) Bioclimatic distribution of vegetation plots within Whittaker biome 202 

defined by mean annual temperature and total annual precipitation. 203 

 204 

 205 
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We combined the Xylem Functional Traits (XFT) database (Choat et al., 2012) with recently 208 

published data to quantify average P50 trait data at the species level (Table S1). We discarded 209 

vulnerability curves that were non-sigmoidal in shape or were generated using the air-injection 210 

method (Cochard et al., 2013). We merged this P50 dataset with the Root Systems of Individual 211 

Plants (RSIP) database based on species (Tumber-Dávila et al., 2022). We calculated maximum 212 

rooting depth for each species as the absolute maximum rooting depth recorded for that species 213 

in the database. This estimates the potential rooting depth of a species and is analogous to 214 

maximum height, another size-dependent trait and key indicator of plant ecological strategies 215 

(Díaz et al., 2022). Maximum rooting depth is meaningful because it captures the potential for 216 

individuals of a species to construct deep roots. This potential may be more informative than 217 

individual trait values, which are highly plastic and noisy, for explaining species occurrence 218 

across environmental gradients. Maximum rooting depth was strongly correlated with the median 219 

of individual plant rooting depths across species (r = 0.85), and models that used median rooting 220 

depth were qualitatively indistinguishable from models that used maximum rooting depth. After 221 

standardizing species names according to the World Flora Online taxonomic backbone (Miller & 222 

Ulate, 2017) and filtering out two outlying measurements of maximum rooting depth that were < 223 

0.3 m, the database contained 903 species (2458 observations) with average P50 and 1089 species 224 

(2716 observations) with maximum rooting depth. We merged the datasets based on species 225 

names and found that both traits have been measured on 207 woody species (Table S1). For 226 

these 207 species, there were 871 observations of P50 and 950 observations of rooting depth 227 

(Table S1). 228 

 We extracted vegetation plots from the sPlot 3.0 database (Bruelheide et al., 2019) that 229 

contained at least one of the 207 species with P50 and rooting depth data and had a location 230 
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uncertainty of 1 km or less (508,443 plots). Of the 207 species, 188 were present in at least one 231 

plot (1,733,795 occurrences). The selected plots were broadly distributed worldwide and 232 

throughout Whittaker's bioclimatic space (Fig. 1B-C). Vegetation plots were assigned to 233 

ecoregions using Olson’s updated ecoregion map (Olson et al., 2001; Dinerstein et al., 2017). 234 

We defined regional species pools as all of our species that were detected within an ecoregion, 235 

and we defined species absences as species that were present in the regional species pool but not 236 

detected in the plot itself (Laughlin et al., 2021). For each plot, we extracted the aridity index 237 

(the ratio of precipitation-to-potential evapotranspiration) from the Global Aridity Index and 238 

Potential Evapo-Transpiration Climate Database (Zomer et al., 2008; Trabucco & Zomer, 2018), 239 

water table depth (WTD) from the ‘wtd’ database (Döll & Fiedler, 2008; Fan et al., 2013), and 240 

precipitation seasonality (the CV of monthly precipitation) from WorldClim (Fick & Hijmans, 241 

2017). The aridity index estimates macroclimatic water availability, where ratios <0.65 indicate 242 

arid climates and >0.65 indicate humid climates (Fig 1A). Water table depth varies 243 

independently of climate (in this dataset, the correlation coefficient between aridity and WTD is 244 

r = 0.13) and is thought to be a major driver of rooting depth distributions (Fan et al., 2017). 245 

 Of the 207 species for which rooting depth and P50 were available, 105 were evergreen 246 

and 102 were deciduous (Table S1). We focus on drought resistance and avoidance in this paper 247 

because only a few deciduous species in our dataset were drought-deciduous escapers; the vast 248 

majority were cold-deciduous species. Nevertheless, we evaluate deciduous and evergreen 249 

species to understand their effects on the overall model results. 250 

 251 

Data Analysis 252 
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To answer question 1, we extracted a fully resolved phylogeny based on the PhytoPhylo 253 

megaphylogeny (Qian & Jin, 2016) using the R package V.PhyloMaker version 0.1.0 (Jin & 254 

Qian, 2019). We calculated Pagel’s λ under a Brownian motion model of evolution to quantify 255 

the phylogenetic signal for each trait (Pagel, 1999) using the phylosig function in the R package 256 

phytools version 1.2.0 (Revell 2012). We quantified the phylogenetic covariance between the 257 

two traits by fitting phylogenetic generalized least squares (PGLS) regression and a phylogenetic 258 

correlation structure to account for the non-independence of species across the phylogeny 259 

(Revell & Harmon, 2022). Ancestral state reconstruction used maximum likelihood estimates 260 

under a Brownian motion model of evolution. The phylogeny was plotted using the R package 261 

phytools (Revell, 2012). 262 

 To answer question 2, we compared two generalized linear mixed effects models of 263 

species presence–absence data using the binomial family and logit link. Both models included 264 

species random intercepts to account for the fact that trait data were species-level averages and 265 

not measured at the intraspecific level at each location, and ecoregion random intercepts to 266 

account for the different numbers of observations in each ecoregion. Model 1 was an 267 

environment-only model that included linear and quadratic fixed effects terms for aridity, 268 

seasonality, and WTD, and interactions among their linear terms. Model 2 included both the 269 

environment and traits, where P50, rooting depth, aridity, seasonality, and WTD, their squared 270 

terms, and interactions among linear terms up to a five-way interaction, were included as fixed 271 

effects. Aridity index and the absolute value of P50 were square root transformed, seasonality, 272 

WTD and rooting depth were log transformed, and all predictors were mean-centered and scaled 273 

to a standard deviation of 1 prior to fitting the models. 274 

 For example, in Model 1: 275 
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𝑦! 	~	Bernoulli(𝑝!) 276 

𝑝! 	= 	 logit"#2𝛽$ + 𝛽#arid! + 𝛽%arid!
% + 𝛽&WTD! + 𝛽'WTD!

% + 𝛽(seas! 	+ 𝛽)seas!% 	277 

+ 𝛽*arid!WTD! +	+𝛽+arid!seas! 	+ 𝛽,WTD!seas! 	+ 𝛽#$arid!WTD!seas! 	278 

+	𝜂-[!] + 𝛾0[!]= 279 

where yi is the ith presence-absence record, pi is the expected occurrence probability, the β’s are 280 

regression coefficients, ηj is a random intercept for species j drawn from a normal distribution, 281 

N(0, ση), and γk is a random intercept for ecoregion k drawn from a normal distribution, N(0, σγ). 282 

This models a two-dimensional surface of P50 and rooting depth and its interaction with a three-283 

dimensional surface of aridity, seasonality, and WTD. The shape of the trait surface changes in 284 

relation to aridity, seasonality, and WTD, accounting for trait-by-environment interactions that 285 

cause different trait combinations to be selected in different environments. We compared models 286 

1 and 2 using a likelihood ratio test to determine the importance of traits for explaining species 287 

occurrences when environmental variables were already in the model. The R syntax of Model 2 288 

using the bam function in the R package mgcv 1.8.41 (Wood, 2011) was as follows: pres ~ arid * 289 

wtd * ps * p50 * rd + arid2 + wtd2 + ps2 + p502 + rd2 + s(spp, bs = "re") + s(eco, bs = "re"). We 290 

plotted 90% confidence intervals using posterior simulations from the fitted model. 291 

 We plotted model predictions of occurrence probabilities at different combinations of 292 

environment and trait values. We plotted conditional effects of each trait by illustrating the 293 

effects of one trait, while holding the other trait at its mean value, at different combinations of 294 

high (95th percentile) or low (5th percentile) aridity, seasonality, and water table depth. To 295 

illustrate trait-by-trait interactions, we plotted landscapes of occurrence probabilities across a 296 

two-dimensional surface of P50 and rooting depth at different combinations of aridity, 297 

seasonality, and water table depth. To test the four hypotheses directly, we fixed the two traits at 298 
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their 5th and 95th percentiles to represent four plant strategies and plotted landscapes of 299 

occurrence probabilities along a two-dimensional surface of aridity and WTD at two levels of 300 

seasonality. The average occurrence probability across this large dataset is approximately 5%, so 301 

predicted probabilities vary above and below this mean value. All analyses used R version 4.2.2. 302 

 303 

Results 304 

Phylogenetic correlation 305 

Mean P50 and maximum rooting depth exhibited significant phylogenetic signal (Fig. 2), 306 

although the signal was weaker for rooting depth (P50: Pagel's 𝜆 = 0.91, P < 0.001; rooting depth: 307 

Pagel's 𝜆 = 0.58, P < 0.01). These two traits were uncorrelated (Fig. 3) across the phylogeny of 308 

woody plants (PGLS slope = 0.06, SE = 0.07, t = 0.95, P = 0.35), and inspection of intraspecific 309 

trait ranges provided no indication that these traits were correlated (Figure S1). Deciduous and 310 

evergreen species were well distributed throughout this two-dimensional trait space, but 311 

deciduous species had on average more vulnerable xylem than evergreen species (Fig. 3).  312 

 313 
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 314 

Figure 2. Xylem vulnerability to embolism (P50) mapped onto the phylogeny of woody plants, 315 

where the color of the internal tree branches show vulnerability based on maximum likelihood-316 

based ancestral state reconstruction. Dark colors indicate more resistant xylem and light colors 317 

indicate more vulnerable xylem (see legend in the center). The outer bars represent maximum 318 

rooting depth (log-scale) for each species, where longer bars represent deeper roots (see lower 319 

left for rooting depth scale legend). Pictures of representative species of major clades are 320 

illustrated around the phylogeny. 321 



 16 

 322 

Figure 3. Distribution of species in the bivariate trait space defined by maximum observed 323 

rooting depth and mean P50. Deciduous species are red and evergreen species are blue. Vertical 324 

and horizontal lines denote the 50th percentiles of the traits. Species names associated with bold 325 

symbols were selected by an algorithm to represent as much as the occupied trait space as 326 

possible because not all names could easily fit. The four grey points represent the 5th and 95th 327 

percentiles of the trait distributions (-7.0 and -1.5 MPa for P50; 12.9 and 0.6 m for rooting depth) 328 

to represent each of the four plant strategies described in Figure 1B (see Methods). The curves 329 

depict the distribution of values across each of the two trait axes for each leaf type. 330 

 331 
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 332 

Models of occurrence probabilities 333 

The generalized linear mixed effects model that included traits (see Model 2 results in Table S2) 334 

explained 16.7% of the deviance (marginal R2 = 0.24; conditional R2 = 0.70). A likelihood ratio 335 

test (LRT) determined that traits were a significant improvement to the model that only included 336 

environmental data as predictors (LRT 𝜒%#% 	= 188,143; P < 0.0001) (see Model 1 results in Table 337 

S3). Traits exhibited no significant main effects (i.e., the trait effects depended on the 338 

environment), and the quadratic term for rooting depth was not significant. Nearly all trait-by-339 

environment interactions were significant (Table S2). 340 

P50 interacted with aridity, seasonality, and water table depth (Fig. 4, Table S2). The 341 

effect of P50 on probability of occurrence switched from negative to positive from arid to humid 342 

climates, where the probability of occurrence of species resistant to embolism increased in more 343 

arid climates (Fig 4A,B). In arid climates with shallow water tables, low P50 values increased 344 

occurrence probability in seasonal environments, whereas high P50 values increased occurrence 345 

probabilities in non-seasonal environments (Fig 4C). 346 

Rooting depth interacted weakly with aridity, seasonality, and water table depth (Fig. 4, 347 

Table S2). The effect of rooting depth on probability of occurrence switched from positive to 348 

negative in arid to humid climates, where the probability of occurrence of species that avoid 349 

drought by constructing deep roots increased in more arid climates (Fig. 4E,F). The interaction 350 

was weak because the importance of shallow roots in humid climates increased slightly in sites 351 

with shallower water tables (Fig 4F,H). 352 

 353 

 354 
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  355 

Figure 4. (A-D) Effects of P50 on occurrence probability (with rooting depth held at its average 356 

value, 2.6 m) at the 5th and 95th percentiles of the aridity index, seasonality, and water table depth 357 

(WTD). (E-H) Effects of rooting depth on occurrence probability (with P50 held at its average 358 

value, -3.6 MPa) at the 5th and 95th percentiles of the aridity index, seasonality, and water table 359 

depth (WTD). Note that the 5th percentile of WTD was close to zero meters. 360 

 361 
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Trait-by-environment interactions generated highly contingent occurrence landscapes. 362 

Landscapes of probabilities illustrate the trait values and environments that optimize species 363 

occurrence probabilities and can be viewed through two perspectives: first, as functions of 364 

aridity, seasonality, and water table depth for each of the four plant strategies (Figure 5); and 365 

second, as functions of P50 and rooting depth in different combinations of aridity, seasonality, 366 

and water table depth (Figure 6).  367 

Each strategy was most likely to occur in different environments. First, resistant avoiders 368 

(low P50 and deep roots) were most likely to occur in arid and seasonal climates in sites with 369 

deep water tables (Figures 5A, 6A). Second, vulnerable confronters (high P50 and shallow roots) 370 

were most likely to occur in humid climates at any water table depth (Figures 5D, 6B, 6D). 371 

Third, resistant confronters (low P50 and shallow roots) were most likely to occur in arid and 372 

non-seasonal environments in sites with deep water tables (Figure 5C). Fourth, vulnerable 373 

avoiders (high P50 and deep roots) were most likely to occur in arid and non-seasonal climates in 374 

sites with shallow water tables (Figure 5B, 6C).  375 

Trends in occurrence probabilities for deciduous species were qualitatively similar to full 376 

model results (Figure S2). However, resistant confronters and vulnerable avoiders with 377 

evergreen leaves exhibited relatively flat occurrence landscapes, suggesting that the full model 378 

results for these two strategies were driven by deciduous species. 379 

 380 
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  381 

Figure 5. Occurrence probability landscapes illustrating changes in the probability of woody 382 

species occurrence for each of the four plant strategies (i.e., set as the 5th and 95th percentiles of 383 

P50 and maximum rooting depth) along continuous gradients of the aridity index and water table 384 

depth at the 5th and 95th percentiles of precipitation seasonality. Warm colors indicate higher 385 

probability of occurrence and cool colors indicate lower probability of occurrence. The 386 

environmental space is masked to emphasize the 99th percentile of observed environmental 387 

variation. Contour interval = 0.01. 388 
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  389 

Figure 6. Occurrence probability landscapes illustrating changes in the probability of woody 390 

species occurrence in different environments (i.e., set as the 5th and 95th percentiles of the aridity 391 

index and water table depth (WTD) at the 5th and 95th percentiles of precipitation seasonality 392 

along continuous gradients of P50 and maximum rooting depth. Warm colors indicate higher 393 

probability of occurrence and cool colors indicate lower probability of occurrence. The trait 394 

space is masked to illustrate the convex hull of observed trait values. Contour interval = 0.01. 395 
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Discussion 397 

Xylem vulnerability to drought-induced embolism and maximum rooting depth have each been 398 

separately investigated as drivers of drought resistance and avoidance in woody species 399 

(Canadell et al., 1996; Choat et al., 2012), yet their phylogenetic correlation and the joint effect 400 

of these traits on species distributions were unknown until now. Here we have shown that 1) 401 

drought resistance and avoidance are orthogonal woody plant strategies, and 2) P50 and rooting 402 

depth jointly improve predictions of species occurrence probabilities along gradients of aridity, 403 

seasonality, and water table depth. 404 

First, it has been suggested that drought resistance trades-off with drought avoidance 405 

because species in a tropical forest were either shallow-rooted trees that built resistant xylem or 406 

were deep-rooted trees that built vulnerable xylem (Brum et al., 2019). This proposed trade-off 407 

assumed that investment in deep root systems comes at a cost of constructing vulnerable xylem. 408 

However, our large sample across the phylogeny of woody plants provides strong evidence that 409 

P50 and rooting depth are phylogenetically uncorrelated. The many species that "show deviations 410 

from statistical correlations" (Carlquist, 1975, p. 1) provide insight into the adaptive value of 411 

these traits. The large carbon investment into growth and maintenance of deep roots and resistant 412 

xylem must be offset by the large carbon gains that are made possible by deep roots and resistant 413 

xylem in dry environments, otherwise these phenotypes could not persist in these environments. 414 

Moreover, many plant species construct shallow root systems and vulnerable xylem to maximize 415 

carbon gain in wetter environments. Drought resistance and avoidance do not exhibit a trade-off 416 

and species representing most major clades of woody seed plants have been able to explore the 417 

full range of combinations of these two traits to occupy a broad range of environments. 418 
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Second, P50 and rooting depth jointly explain species occurrence probabilities, thereby 419 

advancing our conceptual understanding of how species may respond to changing water 420 

availability under climate change. Our modeling results suggest that forecasting woody species 421 

range shifts in response to changing climate must also consider topographically mediated 422 

hydrologic regimes. While both xylem vulnerability and rooting depth were more strongly 423 

related to aridity, they interacted with water table depth to determine species occurrence 424 

probabilities. Given that water table depth is relatively independent of regional climate (Fan et 425 

al., 2017), if evaporative demand changes faster than water table depth under climate change, 426 

then deeply-rooted vegetation responses may be buffered in the near-term by stable water table 427 

depths.  428 

To facilitate the interpretation of model results based on a complex five-way interaction 429 

of continuous traits and environments, we discuss each of the four strategies that represent low 430 

and high values of each trait in turn (Fig. 1B, Fig. 3, Fig. 5). First, resistant avoiders (low P50 and 431 

deep roots) exhibit, in theory, the most drought-tolerant strategy because they can withstand 432 

substantial negative pressures in their xylem and at the same time are also able to avoid these 433 

strongly negative pressures when accessing deep soil water reservoirs (Hammond et al., 2019; 434 

Tumber-Dávila et al., 2022). This strategy is most likely to occur in arid, seasonal climates with 435 

deep water tables (Figs. 5E and 6E). This result was consistent for deciduous and evergreen 436 

species, but most resistant avoiders were evergreen. For example, the evergreen angiosperm 437 

Arbutus unedo, a small tree that grows in Mediterranean chaparral on dry slopes and ridges, and 438 

the evergreen gymnosperm Juniperus monosperma, a small tree that grows in arid deserts, 439 

illustrate how resistant xylem and deep roots optimize growth and survival in arid uplands. In 440 
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order to survive in some of the driest environments on earth, constructing deep roots and 441 

resistant xylem is the optimal strategy for maintaining a positive carbon balance. 442 

Second, resistant confronters (low P50 and shallow roots) are most likely to occur in arid, 443 

non-seasonal climates over deep water tables. This agrees with previous empirical work that arid 444 

environments contain both deep and shallow-rooted species (Fan et al., 2017) yet clarifies that 445 

shallow roots are more adaptive in non-seasonal arid climates where more consistent 446 

precipitation (albeit still modest amounts) wets the top soil layers throughout the year. This result 447 

appeared to be driven by deciduous species, such as Amelanchier ovalis, which grows in open 448 

sites in dry climates, but evergreen species, such as Encelia farinosa and Juniperus scopulorum, 449 

also grow in dry habitats with well-drained soil (Ehleringer, 1993). 450 

Third, vulnerable avoiders (high P50 and deep roots) are most likely to occur in arid, non-451 

seasonal climates over shallow water tables. This result was also most evident in deciduous 452 

species. For example, the deciduous Populus euphratica grows in central Asian river flood plains 453 

in arid regions (Bruelheide et al., 2010). This strategy may be emblematic of deep-rooted, 454 

phraetophytic species that occur in desert riparian zones (Loheide et al., 2005).  455 

Fourth, vulnerable confronters (high P50 and shallow roots) present, in theory, the least 456 

drought-tolerant strategy because root-to-shoot conductance can decline under even weak 457 

negative xylem pressure that cannot be overcome by access to deep soil water (Hammond et al., 458 

2019; Tumber-Dávila et al., 2022). This strategy is most likely to occur in humid climates, 459 

regardless of water table depth. This result was consistent for deciduous and evergreen species. 460 

For example, the deciduous angiosperm Salix cinerea is a medium-sized shrub that grows in 461 

wetlands in humid climates. Juglans cinerea, on the other hand, is a deciduous angiosperm tree 462 

that grows in humid climates ranging from streambanks to well-drained slopes. Other drought-463 
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related traits that were not measured here, such as leaf turgor loss point, could further explain 464 

how species that are vulnerable confronters such as Juglans cinerea can survive in well-drained 465 

dry soil, yet turgor loss point was not available for most of the 188 species in this dataset. 466 

Our work represents the first systematic analysis of the combined effect of drought 467 

resistance and avoidance on the global distribution of woody species. Yet, some limitations of 468 

the study deserve attention. First, maximum rooting depth data is underestimated due to the 469 

logisitical difficulty of measuring this trait, and rooting depth within species responds plastically 470 

to variation in soil water depth (Schenk & Jackson, 2005; Fan et al., 2017). Given the low 471 

number of replicated trait observations within species (Table S1, Figure S1), our analysis was 472 

unable to evaluate the phenotypic plasticity of each trait and whether individual species could 473 

acclimate to changing vapor pressure deficits and soil water availability. We urge researchers to 474 

develop methods to simultaneously measure xylem vulnerability and rooting depth on individual 475 

plants in their environments. Second, our analysis does not predict the growth, survival, and 476 

reproduction of different ontogenetic stages of trees, and these are the fitness components that 477 

are important to population dynamics that lead to range shifts (Merow et al., 2017). Our analysis 478 

is an important first step to determine the joint effect of these critical traits on species responses 479 

to changing aridity, seasonality, and water table depth, but future work should link these trait-by-480 

environment interactions to demographic rates and population growth rates to improve 481 

forecasting generality (Laughlin et al., 2020b). Third, the limited data availability for drought-482 

deciduous species prevented us from understanding how the drought escape strategy relates to 483 

drought resistance and avoidance. Future work should address these limitations. 484 

The earliest plants to colonize the land emerged in humid tropical environments and 485 

likely did not stray too far from shorelines and streambanks where evaporative demand was 486 
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moderated by humid atmospheres and shallow water tables (Willis & McElwain, 2014; Bouda et 487 

al., 2022). The evolution of increasing resistance to embolism and extension of roots deep into 488 

the soil profile permitted species to occupy increasingly drier environments, and these traits have 489 

retained their adaptive advantages to this day. Simultaneous understanding of drought resistance 490 

and avoidance strategies that have evolved across the phylogeny of woody plants will enhance 491 

our predictions of vegetation response to changing water availability and guide species selection 492 

in ecological restoration projects (Laughlin et al., 2017; McDowell et al., 2022). 493 
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