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Significance

To better understand how 
near‐surface permafrost may 
respond to future warming, we 
explore the equilibrium spatial 
extent of near‐surface permafrost 
during the mid-Pliocene warm 
period (mPWP), which shares 
characteristics of the projected 
future climate. Our simulations, 
which are constrained by proxy 
records, suggest highly restricted 
near‐surface permafrost extent 
during the mPWP, akin to future 
large-scale permafrost 
degradation projections of our 
model for the end of this century. 
Our study indicates dramatically 
smaller-than-present near‐surface 
permafrost extent in the geological 
past under climate conditions 
analogous to those expected if 
global warming continues 
unabated. This absence in 
permafrost will come with critical 
implications for the global carbon 
cycle, human livelihoods and 
infrastructures, and surface and 
subsurface hydrology.
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Accurate understanding of permafrost dynamics is critical for evaluating and mitigating 
impacts that may arise as permafrost degrades in the future; however, existing projections 
have large uncertainties. Studies of how permafrost responded historically during Earth’s 
past warm periods are helpful in exploring potential future permafrost behavior and to 
evaluate the uncertainty of future permafrost change projections. Here, we combine a 
surface frost index model with outputs from the second phase of the Pliocene Model 
Intercomparison Project to simulate the near‐surface (~3 to 4 m depth) permafrost state 
in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.264 to 
3.025 Ma). This period shares similarities with the projected future climate. Constrained by 
proxy-based surface air temperature records, our simulations demonstrate that near‐surface 
permafrost was highly spatially restricted during the mPWP and was 93 ± 3% smaller than 
the preindustrial extent. Near‐surface permafrost was present only in the eastern Siberian 
uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations 
are similar to near‐surface permafrost changes projected for the end of this century under 
the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that 
may be expected in a warmer world.

Permafrost, that is, ground with a temperature remaining at or below 0 °C for at least two 
consecutive years (1), currently underlies approximately 22% of the land surface of the 
Northern Hemisphere (2) and stores approximately 11,000 to 37,000 km3 of ground ice 
(3), 1,330 to 1,580 Pg of organic carbon (4, 5), and a large pool of the harmful substance 
mercury (6) and various potentially harmful microorganisms (7). Both observations and 
model simulations indicate that permafrost will likely degrade substantially as global tem-
perature increases (1, 8, 9). Any permafrost degradation, accompanied by melting of ground 
ice and release of organic carbon and harmful substances, will have considerable impacts on 
ecosystems (10), water resources (11), engineering infrastructure (12, 13), climate (4), and 
human health (7). However, the rate of projected future permafrost decline is subject to 
large uncertainty due to the variable climate sensitivities of climate models and differences 
in details of soil-related processes across different models (14–16). Thus, informed policy 
decisions for mitigation and adaptation are difficult.

Past Earth conditions form a useful laboratory for climate-model verification, as there is 
no model-independent source of information for future climate, yet model-based projections 
remain our only quantitative tool for research. Simulation uncertainty can be reduced through 
comparison of model output against available proxy-based records. To help verify models and 
evaluate the uncertainty of future permafrost change projections produced with these models, 
it is necessary to study permafrost during Earth’s past (17–20). Of particular interest are past 
warm periods that share similarities with future conditions.

The mid‐Pliocene warm period [mPWP: ~3.264 to 3.025 Ma (21)] is the most 
recent period of sustained (104‐y timescales) global warmth in geological history (22). 
It is characterized by land–sea distribution, topography, and greenhouse gas levels 
similar to the present day (21, 23) and arguably represents a natural experiment from 
which we can gain insights about our future climate (24). Our knowledge of the mPWP 
has been considerably improved through coordinated model simulations (Pliocene 
Model Intercomparison Project, PlioMIP) (25, 26), together with proxy-based tem-
perature reconstructions (21, 27). PlioMIP Phase 2 (PlioMIP 2) simulations predicted 
that the global annual mean surface air temperature was 3.2 °C higher in the mPWP 
than in the preindustrial period (PI) (26). In particular, the annual mean mPWP 
surface air temperature was 7.2 °C higher in arctic regions (28). However, this simu-
lated arctic warming is still weaker than that obtained through proxy-based recon-
structions (29).
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Moreover, simulated winter/summer temperature and precip-
itation–climate variables, which arguably have the strongest 
impact on permafrost stability (18, 30), have been shown to be 
similar for the Mid-Pliocene (3.3 to 3.0 Ma) and future [as pro-
jected for 2100 and 2200 based on the representative concentra-
tion pathway (RCP) 8.5 scenario] climate for many regions (e.g., 
parts of the Northern Hemisphere high latitudes) (31). Some of 
the regions coincide with extensive current presence of permafrost 
(2). The similarity of both climates suggests that mPWP perma-
frost state has direct implications for the future permafrost behav-
ior if relict permafrost is not considered. Thus, the study of mPWP 
permafrost distribution and its associated climate drivers using 
models and proxy data can improve our understanding of the 
extent, dynamics, and uncertainty of permafrost loss in a warmer 
future climate.

Little is known about the permafrost state in the entire 
Northern Hemisphere during the mPWP (5), although geolog-
ical records have been examined to infer the possible formation 
of permafrost at a few localities during periods approaching the 
mPWP (32–34). Models can help to derive more spatially 
resolved information on mPWP permafrost. Here, we use 
Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) 
climate simulations in combination with a surface frost index 
(SFI) model (see permafrost diagnosis methods) to examine the 
spatial pattern of near‐surface [~3 to 4 m depth (35)] permafrost 
over the entire Northern Hemisphere during the mPWP and 
compare its extent to that during the PI period. Independent 
proxy-based temperature data are used as a constraint to evaluate 
the model-based results.

Results

The multimodel ensemble mean of PlioMIP2 simulations shows 
that the mean annual surface air temperature is 6.5 ± 2.3 °C 
higher during the mPWP than during the PI period in present-
day permafrost regions (SI Appendix, Fig. S1). Compared to the 
PI period, the mean surface air temperature of the warmest month 
increases by 7.0 ± 3.4 °C, whereas that of the coldest month 
increases by 5.4 ± 2.5 °C. Twelve out of 17 models indicate a 
larger increase in the mean surface air temperature of the warmest 
month than of the coldest month. For the mean winter snow 
depth, 15 out of 17 models indicate the presence of more snow 
compared to the preindustrial, with an area-mean increase of 5.5 
± 4.1 cm, which is presumably due to warmer air inducing a 
greater supply of moisture for snowfall (36). Snow acts as a very 
efficient thermal insulator for the ground during winter, and con-
sequently, it reduces the potential for the presence of permafrost 
(37, 38).

Forced with the PlioMIP2 climate simulations, our permafrost 
simulations with the SFI model demonstrate that mPWP near‐
surface permafrost is substantially less extensive than during the 
PI period (Fig. 1B and SI Appendix, Fig. S2). However, the differ-
ence in simulated mPWP near‐surface permafrost extent relative 
to preindustrial shows a wide range (−15 to −96%) across the 
models, with a multimodel ensemble mean of −77% and a stand-
ard deviation (SD) of ±24% (Fig. 1A). The multimodel ensemble 
mean indicates that mPWP near‐surface permafrost is present 
only in the eastern Siberian uplands, along the Russian Arctic 
coast, in the Canadian high Arctic Archipelago, and across north-
ernmost Greenland (Fig. 1B).

The percentage difference in mPWP versus preindustrial near‐
surface permafrost area across models is significantly correlated 
with the annual mean surface air temperature increase in mPWP 

versus preindustrial (R = −0.85, P < 0.001) and even more with 
the temperature increase in the warmest month (R = −0.90, P < 
0.001) (SI Appendix, Fig. S3). The percentage difference in mPWP 
and preindustrial near‐surface permafrost extent is also closely 
correlated with the equilibrium climate sensitivity (ECS) 
(SI Appendix, Fig. S3E andTable S1) of each model (R = −0.50, 
P < 0.05). Models with higher ECS always simulate greater warm-
ing in the present‐day permafrost region (SI Appendix, Fig. S3F), 
which in turn leads to the simulated absence of mPWP permafrost 
in those regions.

To reduce the large model spread in simulating mPWP permafrost 
change, we use proxy‐based mean annual surface air temperatures 
at 35 sites (SI Appendix, Table S2) to constrain the PlioMIP2 simu-
lations. We classify PlioMIP2 simulations based on an index, the 
mean bias (MB). The MB is the bias between the simulated and 
proxy‐based surface air temperature anomalies (mPWP minus pre-
industrial) averaged over the 35 sites (SI Appendix, Table S2). It rep-
resents the level of agreement between simulations and proxy records 
in a spatially integrated manner. The MB is exclusively negative for 
all models but with a wide range from –0.9 °C (EC‐Earth3‐LR) to 
–6.6 °C (GISS‐E2‐1‐G) (Fig. 2A and SI Appendix, Table S1). The 
models with smaller MB generally have higher spatial correlation 
coefficients against proxy-based temperature (R = 0.62, P < 0.01) 
(SI Appendix, Fig. S4 and Table S1). According to the MB, the 
PlioMIP2 simulations can be divided into three groups: 1) –3 
°C<MB<0 °C, 2) –5 °C<MB<–3 °C, and (3) MB<–5 °C (Fig. 2A). 
Model group 1 has an ensemble mean MB of –1.9 °C, much smaller 
than those of group 2 (MB: –3.8 °C) and group 3 (MB: –5.7 °C). 
This finding indicates that model group 1 provides the best level of 
agreement between simulations and proxy records. Beyond the best 
fitting model group, basic patterns in the spatial structure of model‐
data mismatch (individual biases) are also reproduced in the other 
two groups: At locations of single proxy records, for all three model 
group ensembles, the bias is mainly negative and generally increases 
from low to high latitudes (Fig. 2 B–D).

The three model groups produce large differences in the ensemble 
mean extent of mPWP near‐surface permafrost relative to preindus-
trial extent (Fig. 3). Group 1 shows a 93% smaller mPWP near‐
surface permafrost extent with a very small SD of ±3% across models. 
In that group, mPWP near‐surface permafrost is present mostly in 
the eastern Siberian uplands, the Canadian high Arctic Archipelago 
and across northernmost Greenland (Fig. 3A). Group 2 exhibits a 
69% smaller mPWP near‐surface permafrost extent than preindus-
trial, with a higher SD of ±15% across models. The mPWP near‐
surface permafrost is present in the Arctic, especially in Canada and 
western Russia, with much less near‐surface permafrost being present 
in the northern Tibetan Plateau and Alaska (Fig. 3B). Group 3 dis-
plays a 40% smaller mPWP near‐surface permafrost extent than 
preindustrial, with a SD of ±15% across models. In that group, the 
absence of mPWP near‐surface permafrost relative to the PI period 
is apparent in southern Alaska and Canada, the northern Western 
Siberian Plain, and Eastern Siberia/Kamchatka, whereas near‐surface 
permafrost is present in other regions (Fig. 3C).

Group 1 models simulate the most realistic surface air temper-
ature change for the mPWP compared to the PI period if the proxy 
records are taken as a benchmark. By extension, given the close 
relationship between the simulated permafrost extent and tem-
perature, we consider that the group 1 results, particularly the 
substantially smaller mPWP near‐surface permafrost extent (93 
± 3%), are the most reliable among the PlioMIP2 model ensem-
bles if the state of permafrost is the subject of interest. The 93 ± 
3% smaller mPWP near‐surface permafrost extent found in group 
1 also has a much smaller SD, indicating that the models align 
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well. This result may be related to the uniformly smaller divergence 
of the group 1 models from proxy-based temperature. This smaller 
mPWP near‐surface permafrost extent is associated with an 
area-averaged 9.6 ± 0.6 °C increase in mean annual surface air 
temperature as well as an area-averaged 5.6 ± 4.3 cm increase in 
mean winter snow depth in present-day permafrost regions during 
the mPWP relative to the PI period (SI Appendix, Fig. S5). During 
the mPWP, near‐surface permafrost is found mostly in the eastern 
Siberian uplands, the Canadian high Arctic Archipelago, and 
across northernmost Greenland. The presence of near‐surface per-
mafrost is apparently related to the relatively cool surface air tem-
perature in these regions during the mPWP (SI Appendix, 
Fig. S6A), although the temperature has significantly increased 
compared to that during the PI period (SI Appendix, Figs. S5A 
and S6B). Notably, group 1 models still have a substantial cold 
bias with regard to proxy records in those regions, such as in the 
eastern Siberian uplands. Thus, even the substantially smaller 
mPWP near‐surface permafrost extent relative to the PI period as 
diagnosed by model group 1 may still slightly underestimate this 
difference.

Discussion

We discuss here the spatial characteristics of near‐surface perma-
frost during the mPWP based on the PlioMIP2 simulations con-
strained by proxy-based surface air temperature records, i.e., the 
results produced by model group 1. For this group of models, 
mPWP near‐surface permafrost is 93 ± 3% less extensive com-
pared to the preindustrial area. Major areas of simulated mPWP 
near‐surface permafrost are present only in the eastern Siberian 
uplands, Canadian high Arctic Archipelago, and northernmost 
Greenland.

Our simulations are compared to direct proxy data-based evi-
dence of permafrost distribution. There is proxy data-based evi-
dence for permafrost slightly before and after 3.26 to 3.0 Ma but 
none currently reported in the mPWP. The presence of ice wedge 
casts indicates that permafrost was likely present on Ellesmere 
Island in Canada’s High Arctic during 3.8 to 3.63 Ma (close to but 
earlier than the mPWP) (39). The results from some models in 
group 1 are consistent with this field observation (Fig. 3A). It is 
thought that initial permafrost may have developed in the 

Fig. 1. Difference in near‐surface permafrost bet
ween the mPWP and PI period, simulated with the SFI 
model driven by corrected climate data from each 
PlioMIP2 model and their ensemble mean (ENS). 
(A) Differences in near‐surface permafrost area 
[Left, bars, %, (mPWP–PI)/PI×100] and mean annual 
surface air temperature (Right, circles, °C, mPWP–PI) 
averaged over the present-day permafrost region 
for each model and the ENS. Error bars (blue: 
permafrost area, black: temperature) on the ENS 
bar/circle indicate one standard deviation (SD) 
across the 17 climate models. The dashed horizontal 
line represents a 100% difference in permafrost 
area. The SD is calculated across the 17 climate 
models. R represents the correlation coefficient 
between the difference in near‐surface permafrost 
area and the difference in mean annual temperature 
for each model. (B) Difference in near‐surface 
permafrost extent in ENS. Areas outlined in red 
are the simulated near‐surface permafrost extent 
during the mPWP, while areas outlined in black 
are the simulated near‐surface permafrost extent 
during the PI. Shading denotes the differentiation of 
mPWP near‐surface permafrost extents from the 17 
models. The unit on the color bar is the total number 
of models that captured near‐surface permafrost 
within the given area (red refers to more models 
and blue/purple refers to fewer models). ENS area 
difference is the percentage difference in ensemble 
mean near‐surface permafrost area during the 
mPWP relative to the PI.
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El’gygytgyn Lake region in northeastern Arctic Russia during the 
Pliocene Marine Isotope Stage (MIS) M2 cooling events (3.31 to 
3.28 Ma), inferred based on lake sediment records (33, 40). 
However, the permafrost, formed during MIS M2 cooling, may 
have thawed in response to significant warming during the mPWP, 
which followed MIS M2. This appears to be consistent with the 
simulated absence of permafrost for the respective region as pro-
duced by model group 1 (Fig. 3A). In addition, permafrost was 
likely present in the Klondike area in western Canada by approx-
imately 3 Ma (close to but slightly later than the mPWP), indicated 
by the presence of ice wedge casts (41), consistent with the results 
from some models in group 1. Moreover, our simulations refine 
the interpretation from the proxy record in that they suggest that 
permafrost in the Klondike area may have been only a regional 
phenomenon (Fig. 3A). The absence of permafrost is also inferred 
from marine fossil sediment records in northwestern Alaska during 
the Bigbendian marine transgression (slightly after 3 Ma, which is 
close to but later than the mPWP) (32), in accordance with our 
results (Fig. 3A).

Both the magnitude and spatial pattern of the near‐surface 
permafrost extent simulated during the mPWP relative to prein-
dustrial levels are somewhat similar to the large-scale permafrost 
degradation projected for the end of the 21st century under  
the Shared Socioeconomic Pathways (SSP) 5-8.5 scenario 

(SI Appendix, Fig. S7C). We selected ten models, based on their 
success in simulating surface air temperature change during the 
20th century (SI Appendix, Fig. S7A). They project a loss of near‐
surface permafrost area of 77 ± 6% in response to a surface air 
temperature rise of 7.5 ± 1.1 °C at the end of the 21st century 
under the SSP5-8.5 scenario relative to 1995 to 2014 (SI Appendix, 
Fig. S7 B and C), with near‐surface permafrost remaining only in 
the east Siberian uplands, along the Russian Arctic coast and in 
the Canadian Archipelago (SI Appendix, Fig. S7C). These findings 
are in agreement with work presented by Slater and Lawrence 
(14) and Koven et al. (15), who find similar results, with losses 
of 81 ± 12% and 65 ± 33%, respectively, at the end of the 21st 
century under the RCP8.5 scenario relative to 1986 to 2005.

Notably, all these simulations, including both the future and 
mPWP, focus on near‐surface permafrost only, which appears less 
resistant to climate warming than deep permafrost (42, 43). We 
also note that a direct comparison between mPWP permafrost 
extent and future permafrost loss has limitations, as it mixes the 
effects of greenhouse gas-related warming with those created by 
differences in topography. The mPWP simulations are based on 
a reconstructed paleotopography (21), while projections use 
present-day topography, and these topographical differences may 
contribute to the differences in both surface air temperatures and 
permafrost extent between the two periods. However, if we correct 

A

B C D

Fig. 2. Mean bias (MB, °C) of simulated mean annual temperature change during the mPWP relative to preindustrial, validated against proxy data (circles on 
maps) (simulation minus proxy data). (A) MB of the three groups of models (group 1: –3 °C<MB<0 °C, group 2: –5 °C<MB<–3 °C, and group 3: MB<–5 °C) and their 
ensemble mean (ENS). Error bars on ENS bars indicate one SD across the models in each group. (B–D) are spatial patterns of bias of the three model groups’ 
ENS, with the ENS MB (all stations) given at the Bottom of each panel.
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the simulated mPWP climate to account for present-day topog-
raphy by using the assumed mean atmospheric lapse rate (–0.65 
°C/100 m), then we obtain similar results on near‐surface perma-
frost extent with regard to both the smaller extent relative to 

preindustrial (94 ± 3%) and the spatial pattern of permafrost 
extent (SI Appendix, Fig. S8). This finding indicates that localized 
differences in topography between the mPWP and present day 
are not a major source of uncertainty in our conclusions.
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Fig. 3. Difference in near‐surface permafrost extent between the mPWP and PI period, simulated with the SFI model driven by corrected climate data from 
the three model groups. (A–C) represent group 1: –3 °C<MB<0 °C, group 2: –5 °C<MB<–3 °C, and group 3: MB<–5 °C, respectively. Areas outlined in red show 
the model ensemble mean (ENS) near‐surface permafrost extent during the mPWP, while areas outlined in gray (panel A)/black (panels B and C) illustrate the 
respective near‐surface permafrost extent during the PI. Shading denotes the differentiation of mPWP near‐surface permafrost extents derived from individual 
models in each group. The unit of each color bar is the total number of models that captured near‐surface permafrost at that location. ENS area difference is 
the percentage difference in ensemble mean near‐surface permafrost area during the mPWP relative to the PI. The standard deviation (SD) is calculated across 
all climate models within the relevant model group. In panel (A), the sites, where mPWP permafrost reconstruction records are available, are represented with 
circles and rectangles. Permafrost is assumed to be absent (present) at each site marked by a circle (rectangle). LE: Lake El’gygytgyn in northeastern Arctic Russia 
(39); OP: Ocean Point in northwestern Alaska (32); KL: Klondike area in western Canada (40); EI: Ellesmere Island area in Canada’s High Arctic (38). Note that KL 
and EI represent an area surrounding the site, not just the site location because the longitudes/latitudes of site KL, provided by the literature (40), appear to be 
regional mean coordinates, and the longitude/latitude of EI, provided by the literature (38), is only approximate.
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An additional caveat in the relationship between the mPWP 
and future permafrost is related to our comparison including the 
effects of differences in vegetation and surficial geology (e.g., grain 
size of soil). The mPWP simulations take vegetation change 
between the mPWP and PI period into account (23, 44), whereas 
most of the models employed for future projections do not con-
sider vegetation change between the future and present day (45). 
Exclusion of vegetation change in the models used for future pro-
jections could cause polar amplification (associated with greening) 
to be underestimated (46). Surficial geology has been altered since 
the mPWP by erosion and land-forming processes that resulted 
from the sequence of Quaternary glacial-interglacial cycles (47), 
and thus, it could have a different climatic effect during the future 
compared with the mPWP (48).

Besides, the comparison of permafrost must also acknowledge 
the effects of the difference between mPWP equilibrium and future 
SSP transient climate experiments. The SFI model assumes per-
mafrost in equilibrium with a stationary climate, so permafrost 
may be in an equilibrium state in the mPWP experiment. Although 
the 20-y mean of climate data is used to address the stationarity 
of climate (14), the timescale may require longer for future perma-
frost to equilibrate given the thermal resilience of permafrost. 
Previous speleothem and stratigraphic studies show that even near‐
surface permafrost persisted, although locally, through past inter-
glacials with multiple millennia of warmer-than-present climate, 
e.g., the early Holocene (49), MIS 5e (50, 51), and MIS 11 (52–55). 
However, despite these intrinsic differences, the mPWP remains 
one of the best geological analogs for the future due to both general 
features of Earth surface characteristics and carbon dioxide forcing 
being comparable to today (26, 31). Consequently, the mPWP 
provides a laboratory to study the dynamics and extent of perma-
frost in a warmer-than-present climate that may, in many aspects, 
be similar to future conditions (31).

Based on the success in simulating the present-day permafrost 
distribution (see evaluation of permafrost diagnosis methods), this study 
used the indirect SFI model diagnostic method to investigate the 
permafrost state during the mPWP, leading to the results discussed 
above. To assess whether our results depend on the type of permafrost 
diagnosis method employed, we also consider a direct soil tempera-
ture diagnosis. We compare the results derived from the two methods 
based on climate data and soil temperature data from the same four 
climate models (CESM2, CESM1.2, CESM1.0.5, and CCSM-UoT) 
in group 1. These climate models provide reasonable performance 
in capturing the present-day permafrost distribution (SI Appendix, 
Fig. S9). When using the direct method, we find that mPWP near‐
surface permafrost is 86 to 99% less extensive than during the PI 
period (SI Appendix, Fig. S10A) due to significantly higher mPWP 
soil temperature, particularly from June to August (SI Appendix, 
Fig. S10C). The extent of deeper mPWP permafrost is slightly greater 
than that of near‐surface mPWP permafrost (SI Appendix, Fig. S10B). 
The relative difference between mPWP and preindustrial is similar 
in magnitude to that found when employing the indirect SFI model 
diagnostic method (mPWP near‐surface permafrost extent is 87 to 
96% smaller than preindustrial for models of group 1) (SI Appendix, 
Table S1), indicating that our results are not highly dependent on 
the permafrost diagnostic method.

Uncertainties in our SFI simulations are mostly caused by 
uncertainties in model boundary conditions (21) and uncertainties 
in model physics (26). Furthermore, the coarse resolution of some 
of the climate models used (e.g., NorESM1-L, 3.75° × 3.75°) 
provides less regional detail and limits particularly the ability to 
produce realistic and detailed climatic conditions at the edges of 
permafrost regions. An additional source of uncertainty is related 

to the poor proxy data coverage in some high latitude regions and 
uncertainty ranges of proxy data-based temperature estimates. 
However, as the majority (n = 21) of our selected paleosites are 
located north of 50°N and the overall uncertainty ranges of tem-
perature estimates are below ±2 °C (SI Appendix, Table S2), it is 
unlikely that proxy data uncertainties have a major impact on the 
ranking order of our three model groups (Fig. 2) (see proxy 
data-based surface air temperature data).

The indirect SFI model diagnostic method does not consider 
vegetation, organic matter, and excess ground ice in surface/sub-
surface characteristics. Increases in vegetation cover and height 
generally warm soil by increasing snow depth in winter, and cool 
soil by increasing evapotranspiration and surface shading in sum-
mer (37, 56, 57). Soil organic matter can reduce the annual mean 
soil temperature and decrease the active layer thickness (42, 58). 
Excess ground ice can retard the thawing of near‐surface perma-
frost due to latent heat effects (16, 38, 59). However, given the 
lack of sufficiently detailed information on the surface and soil 
characteristics of the mPWP, it is not yet possible to robustly 
examine these impacts. More work needs to quantify the distri-
bution of mPWP vegetation and other permafrost-relevant land 
surface conditions, further exploring their impact on the simula-
tion of near‐surface permafrost during the mPWP.

Despite these uncertainties, our work provides an important step 
in characterizing the extent of mPWP permafrost and relating its 
spatial distribution to climatic and permafrost changes that are 
expected for the coming decades to centuries based on projections 
of future climate. Beyond providing a quantitative and self-consistent 
analysis of mPWP permafrost in comparison to today based on 
recent PlioMIP2 model output, our work also allows verification of 
permafrost simulations by means of model-independent proxy 
records. We illustrate links between mPWP and potential future 
climate based on similarities of both climate states, indicating that 
mPWP permafrost has direct implications for the state and stability 
of future permafrost. Based on our findings, the future of Northern 
Hemisphere near‐surface permafrost appears bleak. Continued cli-
mate warming and related near‐surface permafrost degradation may 
cause changes in ambient and environmental conditions (7, 11, 13, 
60, 61) that humans have not yet experienced, implying an imper-
ative to further highlight the importance of permafrost degradation. 
Our study also shows that the response of permafrost to past sus-
tained warmth is valuable for understanding of permafrost degrada-
tion and associated climate, ecological, and societal impacts in our 
warming world.

Methods

mPWP and Preindustrial Climate Simulation Data for Permafrost 
Simulation. mPWP and preindustrial climate data were obtained from 16 
coupled atmosphere-ocean climate models (AOGCM) in the PlioMIP2 (26) and 
an atmosphere-only climate model (AGCM) from Yan et al. (62). Key details of 
these models are shown in SI Appendix, Table S1. All 17 models provide monthly 
surface air temperature (2 m) and precipitation (used to calculate snow depth). 
These data are employed to drive the SFI model, with a snow density assumption 
of 250 kg m–3 according to Slater and Lawrence (14). For 8 of the 17 models 
(CESM2, CESM1.2, CESM1.0.5, CCSM4, CCSM-UoT, EC-Earth3-LR, GISS-E2-1-G, 
and IPSLCM6A-LR), monthly soil temperatures were available and used to directly 
diagnose permafrost distribution (the SFI model was not used in this case). In 
addition, monthly snow depth and snow mass (used to calculate snow density) 
were also available for CESM2 and were used to drive the SFI model in combina-
tion with monthly surface air temperature. Compared to PlioMIP1, PlioMIP2 sim-
ulations are underpinned by state-of-the-art boundary conditions (e.g., updated 
paleogeographic reconstructions detailing ocean bathymetry, land ice surface 
topography, and updated Pliocene soil and lake distribution datasets) from the 
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latest Pliocene Research-Interpretation and Synoptic Mapping version 4 (21). Sea 
ice is predicted dynamically by the climate models. The Arctic is nearly sea ice 
free in summer but covered by substantial amounts of sea ice in winter during 
the mPWP as indicated by the majority of the models (28). Additional details 
regarding the mPWP simulation setup can be found in Haywood et al. (23). All 
but two of the AOGCMs have produced simulations with a length in excess of 
1,000 model years for both mPWP and preindustrial experiments (26). The final 
100 y of each simulation are analyzed in this study. In the case of the AGCM, the 
simulation ran for a length of 10 (7) y for mPWP (preindustrial), respectively (62), 
and the final 5 y of results are analyzed. Data for the models CESM2, EC-Earth3-LR, 
GISS-E2-1-G, IPSL-CM6A-LR, and NorESM1-F are archived at the Earth System Grid 
Federation (ESGF) gateway (https://esgf-node.llnl.gov/). Data from other models 
have been provided by the corresponding modeling groups (26, 62).

CRU Climate Data. Observed monthly surface air temperature and precipitation 
(used to calculate snow depth) are obtained from CRU TS 4.04 data at a spatial 
resolution of 0.5° × 0.5° available at https://crudata.uea.ac.uk/cru/data/hrg/
cru_ts_4.04/. These data are used to drive the SFI model to diagnose preindus-
trial permafrost and to correct simulated climate data from PlioMIP2. The dataset 
covers the time period of 1901 to 2019. In the absence of CRU TS 4.04 data for 
1850, we used the years 1901 to 1930 to represent the PI period. This choice 
is justified because the state of the climate does not substantially change over 
these periods (63). CRU TS 4.04 is a gridded dataset that is produced from station 
observations. Station anomalies are first interpolated to a high-resolution grid and 
then added to an existing climatology to yield absolute values. More details can 
be found in Harris et al. (64). CRU is an established dataset and has been used 
worldwide for research on climate change detection (65–67).

International Permafrost Association (IPA) Map. The IPA map (68) is used as 
a source of observations to validate our permafrost simulations for the PI period. 
Because the map is produced using data from 1960 to 1993 (68) while the PI 
period refers to 1850, there is an unavoidable period mismatch in this validation. 
However, at least in Eastern Siberia, the time range from 1901 to 1960 does not 
appear to be an example of continuous permafrost degradation but rather was 
characterized by intermittent periods of increases and reductions in active layer 
thickness (69). This finding provides some confidence that the IPA map may be 
suitable to provide estimates of large-scale patterns of permafrost as present 
during the earlier part of the 20th century and, by extension, during the PI period. 
The map discriminates permafrost into continuous, discontinuous, sporadic, and 
isolated types. Given that the simulation at a resolution of 0.5° × 0.5° may identify 
only continuous and discontinuous permafrost (16), we limited the validation of 
our simulations to areas of continuous and discontinuous permafrost. The per-
mafrost data are available at https://nsidc.org/data/GGD318/versions/2 and are 
considered to be one of the best available sources on permafrost distribution (14).

Proxy Data-Based Surface Air Temperature Data. We used quantitative cli-
mate estimates from the late Pliocene (~3.6 to 2.6 Ma) paleobotanical dataset 
(44), which has been updated for assessing model experiments of the PlioMIP2 
(29). Updates refer to additional quantitative climate estimates and uncertainty 
assessments, including confidence levels for each site. To reduce the risk of a 
potential methodological bias, we used Late Pliocene temperature estimates that 
were derived from the paleobotanical record (i.e., fossil pollen, leaves, and wood) 
using a range of different quantitative and semiquantitative methods, including 
bioclimatic ranges of nearest living relatives, oxygen isotopes of fossil wood, or the 
physiognomy of fossil leaves. The uncertainty is provided for each mean annual 
temperature estimate (SI Appendix, Table S2). Temperature estimates based on 
nearest living relative approaches generally include a bioclimatic range in which 
all taxa of the reconstructed paleovegetation can coexist. In addition, we also 
provide, where available, the temporal variability, which indicates the variability 
in the reconstructed temperature over the time period covered by the fossil record 
(e.g. orbitally controlled cold and warm cycles). Qualitative confidence (very high, 
high, medium, and low) of temperature estimates at each site is assessed based 
on (a) age control, (b) resolution, (c) fossil preservation, and (d) the estimation 
method, whereby age control and estimation method were treated as the most 
important criteria (SI Appendix, Table S2) (29). Although estimates with a high 
confidence level might be more reliable than those with lower confidence, differ-
ences in confidence level appear to have a rather low impact on our data-model 

comparison. There is good consistency between temperature estimates derived 
from high- versus lower-confidence sites, particularly in high-latitude Northeast 
Asia and North America (29).

Proxy-based mean annual surface air temperature data from 35 sites were 
selected for this study to constrain the PlioMIP2 simulations. Key details of these 
sites are shown in SI Appendix, Table S2. Site choices exclude 1) sites with modern 
altitudes above 1,000 m due to large uncertainties in estimating Pliocene pale-
oaltitudes, 2) marine sites, and 3) tropical terrestrial sites with latitudes below 
20°N (near the southern limit of Northern Hemisphere permafrost) due to their 
small representation within the permafrost region in the Northern Hemisphere. 
The selected sites show good spatial coverage across latitudes (Fig. 2), allowing 
a comprehensive data-model comparison. Data coverage is poor in the high lat-
itudes of western Siberia, eastern Scandinavia, and the boreal zone of central 
North America. However, the majority (n = 21) of our selected sites are located 
north of 50°N, providing a good benchmark for evaluating the ability of climate 
models to simulate high-latitude climates in the permafrost zone.

We use the temperature midpoints of our proxy estimates as a benchmark to 
test the PlioMIP2 model performance and then rank the model according to the 
MB, assuming that the distribution of possible temperature values is concentrated 
near the center of the temporal and bioclimatic ranges (e.g., assuming a normal 
distribution) (29). All the models consistently show a cold MB, with the least cold 
MB being –0.9 °C for EC-Earth3-LR (Fig. 2 and SI Appendix, Table S1). Moreover, 
most of the data uncertainty ranges are below ±2.0 °C (SI Appendix, Table S2). 
Therefore, it appears unlikely that the uncertainty ranges profoundly affect the 
ranking order of our 3 model groups (Fig. 2). However, the uncertainty could alter 
the thresholds of the classification (i.e., 0 °C, –3 °C, and –5 °C for the midpoints of 
our proxy estimates). Proxy-based temperature anomalies are calculated as indi-
vidual site records minus the nearest grid cell-mean CRU surface air temperature 
during 1901 to 1930, while the simulated temperature anomaly is calculated as 
mPWP minus preindustrial temperature at any model grid cell.

Our proxy data-model comparison is based on comparing simulated grid 
cell-mean surface air temperature anomalies with individual site proxy-based 
surface air temperature anomalies; thus, it includes a scale mismatch. This mis-
match may cause uncertainties, especially in areas of complex relief. However, 
such uncertainties are considered to be small in this study. Most of our paleobo-
tanical sites have elevations below 350 m, and sites that today are located above 
1,000 m are explicitly excluded from the data-model comparison. In addition, 
the majority of our temperature estimates have been derived from palynolog-
ical records that reflect pollen influx from the regional dominant vegetation 
communities. Consequently, the respective temperature estimates relate to a 
wider catchment area than the specific proxy location. Therefore, reconstructed 
temperatures are representative of a high proportion of the simulated grid cell 
(29). Beyond our study, these proxy temperature records have already been 
used to evaluate the ability of models from the PlioMIP1 to simulate climate 
during the mPWP (29).

Permafrost Diagnosis Methods. Two methods were used to diagnose per-
mafrost: 1) the indirect permafrost model method, and 2) the direct AOGCM-
modeled soil temperature method.

For the indirect permafrost model diagnostic method, the SFI model was used 
to estimate the near‐surface permafrost extent (70):

	
[1]SFI =

√

DDF
∗

√

DDF
∗ +

√

DDT

,

where DDF is the sum of freezing degree days. The label “*” denotes an incorpo-
ration of snow insulation effects that results in a decrease in the DDF (70). DDT  
is the sum of thawing degree days. For specific equations, see supplementary 
information (Equation set for the SFI model). The SFI values vary from 0 to 1. If SFI 
> 0.6, then either discontinuous or continuous permafrost was assumed. Model 
input requires four climate elements: surface air temperature in the warmest 
and coldest months as well as mean winter snow depth and snow density (the 
latter two to incorporate snow insulation effects). Surface air temperatures in 
the warmest and coldest months were derived from simulated monthly surface 
air temperature data. The mean winter snow depth is calculated using monthly 
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precipitation (see below), and the mean winter snow density is fixed at 250 kg 
m–3 (14).

The mean winter snow depth was calculated as (70)

	 [2]Zs = sin2�
{

∑k

i=1

[

(Pi∕�r )
(

k− (i−1)
)]

∕k
}

,

where Zs is the mean winter snow depth, and Pi is the precipitation in the i th 
month ( i  = 1, 2, …, k) when the mean surface air temperature is ≤0 °C. �r is 
snow density [250 kg m−3 (14)]. ∅ is the latitude. This method weights snowfall 
by the time of its occurrence (earlier winter snowfall has greater weighting than 
later spring snowfall) and considers the fact that the magnitude and duration of 
snow thaw varies with solar forcing (which is dependent on latitude).

The SFI model represents the importance of temperature in permafrost for-
mation and considers any snow insulation effect but does not use information 
about the surface state (topography, vegetation, etc.). It indicates sustainability of 
the upper [near‐surface, ~3 to 4 m depth (35)] permafrost layer under stationary 
climate conditions. While climate stationarity is implicitly assumed, it is appro-
priate for this study to examine the permafrost state in two stabilized scenarios: 
the mPWP and the preindustrial. The SFI model requires readily available input 
climate data and is characterized by ease of application and rapid computation, 
allowing us to explore permafrost change at various temporal and spatial scales. 
Slater and Lawrence (14) indicated that more information regarding permafrost 
change can be provided by the SFI model than is available via raw diagnostics 
using soil temperature from climate models (14).

For the direct AOGCM-modeled soil temperature diagnostic method, the 
following assumption is made: If there is at least one soil layer in the upper 
3.5 m soil in which the monthly soil temperature remains below 0 °C for 24 
consecutive months, then the respective grid cell is identified as containing 
near‐surface permafrost (71–74). This method is used for CESM2, CESM1.2, 
CESM1.0.5, CCSM4, CCSM-UoT, and IPSLCM6A-LR because soil temperatures 
are available for these models. Although soil temperatures for EC-Earth3-LR 
and GISS-E2-1-G are also available, we excluded them from our analyses due 
to a shallow soil column (<3.0 m). All soil temperature data were interpolated 
to a common horizontal resolution of 0.9° × 1.25° and to a vertical resolution 
of 0.1 m for comparison.

Evaluation of Permafrost Diagnosis Methods. To decrease uncertainties in 
permafrost simulations, the two aforementioned permafrost diagnosis methods 
were evaluated based on the IPA map to select the optimal method for the present 
study. Based on the direct soil temperature method (raw AOGCM), CESM2, CESM1.2, 
CESM1.0.5, CCSM4, and CCSM-UoT show similar absolute biases, apparently smaller 
than that of IPSLCM6A-LR (SI Appendix, Fig. S9). Since only CESM2 provides snow 
depth and snow mass data, it is used to further evaluate the diagnosis methods. The 
absolute bias of CESM2 using soil temperatures (SI Appendix, Fig. S11A) is larger than 
that using the indirect SFI diagnostic method driven by 1) CESM2 surface air tem-
perature and direct snow depth/mass (SI Appendix, Fig. S11B), 2) CESM2 surface air 
temperature and precipitation-calculated snow depth (SI Appendix, Fig. S11C), and 3)  
coarse resolution CRU surface air temperature and precipitation-calculated snow 
depth (resampled to CESM grid cells, 0.9° × 1.25°) (SI Appendix, Fig. S11D). This 
finding indicates that the indirect SFI model can capture the present-day permafrost 
distribution more reasonably than direct soil temperatures. The coarse-resolution 
CRU surface air temperature and precipitation-calculated snow depth yield the least 
absolute bias (SI Appendix, Fig. S11 B–D). In addition, high-resolution (0.5° × 0.5°) 
CRU surface air temperature and precipitation-calculated snow depth-based results 
provide more regional details (SI Appendix, Fig. S12), although the derived perma-
frost area has a somewhat larger absolute bias (5.2 × 106 km2) (SI Appendix, Fig. S12) 
than that based on the coarse-resolution (CESM grid cell) method (4.6 × 106 km2) 
(SI Appendix, Fig. S11D).

As shown in SI Appendix, Fig. S12, the permafrost extent computed based 
on the high-resolution CRU surface air temperature and precipitation-calculated 
snow depth broadly resembles the IPA map, despite an overestimation in the 
Labradorean region in northeastern Canada and on the eastern Tibetan Plateau 
and a slight underestimation in southern Alaska and in the northern part of the 
Western Siberian Plain. Based on this sensitivity analysis, our study employs the 
indirect SFI model method driven by high-resolution CRU surface air temperature 

and precipitation-calculated snow depth to obtain near‐surface permafrost dis-
tribution during the PI period.

Simulation of near‐surface Permafrost during the mPWP. For the mPWP 
permafrost simulation, we first correct systematic biases in the simulated mPWP 
climate data using the anomaly method. Specifically, the simulated mPWP climate 
anomaly is added to the present-day observed climatology, i.e., high-resolution CRU 
climatology (1901 to 1930). The anomaly of surface air temperature denotes the 
absolute temperature change between the mPWP and PI period, while the anomaly 
of snow depth denotes a percentage change in snow depth. Then, the corrected 
climate data are used to drive the SFI model to obtain the permafrost distribution 
during the mPWP. For comparison, we also analyze the mPWP permafrost distribution 
obtained with the SFI model driven by raw climate data (i.e., without correcting any 
systematic biases) from the three model groups (SI Appendix, Fig. S13). The perma-
frost distributions based on raw climate data are similar overall to those based on 
corrected climate data (SI Appendix, Fig. S13 and Fig. 3). Simulations based on raw 
climate data illustrate slightly smaller permafrost extent during the mPWP than those 
based on corrected climate data. In addition, raw climate data appear to simulate 
a larger mPWP permafrost extent in Canada and the Tibetan Plateau but a smaller 
extent in Russia (SI Appendix, Fig. S13). This finding corresponds to cooler tempera-
tures in Canada and the Tibetan Plateau and warmer temperatures in Russia (eastern 
Siberian uplands) in raw climate data (SI Appendix, Fig. S14) relative to corrected 
data (SI Appendix, Fig. S6).

Permafrost Projection Method. We use simulated historical (1901 to 2014) 
and future (2015 to 2100, SSP5-8.5 scenario) climate data from 22 models 
participating in the sixth phase of the Coupled Model Intercomparison Project 
(CMIP6). The climate datasets provided by all models include monthly surface 
air temperature and precipitation (used to calculate snow depth). The character-
istics of the CMIP6 models considered here are shown in SI Appendix, Table S3 
together with basic model-derived temperature and permafrost statistics. Details 
regarding the design of the CMIP6 simulations can be found in Eyring et al. (45). 
The climate model datasets employed here have been retrieved from the ESGF 
(https://esgf-node.llnl.gov/).

Similar to the mPWP permafrost simulation, we use the anomaly method 
to correct systematic biases in simulated historical and future climate data. The 
anomaly of each simulated climate variable is first calculated relative to the 
period of 1995 to 2014 and then added to the present-day (1995 to 2014) 
high-resolution CRU climatology to derive the climate forcing for the perma-
frost simulation. Given the implicit assumption of climatic stationarity in the SFI 
model, corrected climate data are averaged using a 20-y sliding window (14). 
Near‐surface permafrost distributions for both the end of the 21st century and 
the present-day are simulated using the SFI model, which is driven by the 20-y 
averages of corrected climate data over the periods of 2080 to 2099 and 1995 
to 2014, respectively. The difference between the two simulated permafrost dis-
tributions indicates future change in near‐surface permafrost during the end of 
the 21st century relative to the present day.

In addition, we constrain the 22 CMIP6 models for the present day using the 
MB between the simulated and CRU surface air temperature anomalies (1995 
to 2014 minus 1901 to 1930) averaged over the present-day permafrost region. 
As a result, 10 preferred models are chosen due to their small MBs (–0.3 °C < 
MB < 0.3 °C) (SI Appendix, Fig. S7A and Table S3). The permafrost projections 
produced by these 10 preferred models are the focus of most of the analyses of 
present-day/future permafrost changes (SI Appendix, Fig. S7).

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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