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Summary 
Background Precise prognosis prediction in patients with colorectal cancer (ie, forecasting survival) is pivotal for 
individualised treatment and care. Histopathological tissue slides of colorectal cancer specimens contain rich 
prognostically relevant information. However, existing studies do not have multicentre external validation with real-
world sample processing protocols, and algorithms are not yet widely used in clinical routine.

Methods In this retrospective, multicentre study, we collected tissue samples from four groups of patients with 
resected colorectal cancer from Australia, Germany, and the USA. We developed and externally validated a deep 
learning-based prognostic-stratification system for automatic prediction of overall and cancer-specific survival in 
patients with resected colorectal cancer. We used the model-predicted risk scores to stratify patients into different risk 
groups and compared survival outcomes between these groups. Additionally, we evaluated the prognostic value of 
these risk groups after adjusting for established prognostic variables.

Findings We trained and validated our model on a total of 4428 patients. We found that patients could be divided into 
high-risk and low-risk groups on the basis of the deep learning-based risk score. On the internal test set, the group 
with a high-risk score had a worse prognosis than the group with a low-risk score, as reflected by a hazard ratio (HR) 
of 4·50 (95% CI 3·33–6·09) for overall survival and 8·35 (5·06–13·78) for disease-specific survival (DSS). We found 
consistent performance across three large external test sets. In a test set of 1395 patients, the high-risk group had a 
lower DSS than the low-risk group, with an HR of 3·08 (2·44–3·89). In two additional test sets, the HRs for DSS were 
2·23 (1·23–4·04) and 3·07 (1·78–5·3). We showed that the prognostic value of the deep learning-based risk score is 
independent of established clinical risk factors.

Interpretation Our findings indicate that attention-based self-supervised deep learning can robustly offer a prognosis 
on clinical outcomes in patients with colorectal cancer, generalising across different populations and serving as a 
potentially new prognostic tool in clinical decision making for colorectal cancer management. We release all source 
codes and trained models under an open-source licence, allowing other researchers to reuse and build upon our 
work.
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Federal Ministry of Education and Research, the German Academic Exchange Service, and the EU. 
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Introduction
Prediction of individual prognostic profiles is of 
exceptional importance for patients with colorectal 
cancer.1 In particular, for patients with localised stage 2–3 
colorectal cancer, accurate prognostication is important 
to decide whether they would benefit from adjuvant 
chemotherapy2 and to establish the frequency of follow-
up examinations after tumour resection. However, the 
current prognostic system, TNM staging, does not 
consider the large heterogeneity observed in histopatho
logical tissue slides of colorectal cancer.

The histopathological phenotype of colorectal cancer 
contains a large amount of prognostically important 
information, including features such as tumour budding 
and lymphovascular infiltration, which are associated 

with prognosis.3,4 Manual quantification of these features 
by pathologists often has the drawback of inter-observer 
and intra-observer variability.4 Several studies have 
proposed machine learning systems to automate quan
tification; for example, automatic methods to count 
immune cells in pathology slides are widely used.5,6 One 
of these methods is the immunoscore, in which an image 
analysis algorithm is used to count lymphocytes in 
tumour tissue.7 The original immunoscore has been 
recreated in an open-source implementation8 and 
improved with a more general artificial intelligence 
method9 by more recent studies. 

However, the focus on a predefined set of morphological 
structures of interest, such as lymphocytes, is a limitation 
of these approaches. A more general solution is to 
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directly use deep learning to analyse histopathology 
image data, without manually predefining structures of 
interest.10,11 The main advantage of deep learning-based 
assessment of pathology slides compared with human 
experts is that the deep learning systems are not 
constrained to predefined image features a priori. They 
can assess any histopathological pattern, place it in 
context with other coexisting patterns, and derive a risk 
score. Several studies have used this approach, including 
Wulczyn and colleagues,12 who used an in-house database 
to train a survival prediction model, and the DoMore 
Diagnostics team, who have shown that deep-learning 
algorithms could outperform current risk-stratification 
systems.13,14 

Nevertheless, these studies have several important 
limitations that might affect their performance and 
applicability in clinical settings. First, the external 
validation of the algorithms used in these studies is 
limited, raising concerns about their generalisability and 
reliability. Second, the closed-source nature of the 
employed algorithms makes it challenging for other 
researchers to examine or modify them. Third, the focus 
on tumour regions as model inputs might overlook the 
crucial interactions between normal tissue and the 
tumour. Lastly, not all of these studies use the latest 
methodological advances, such as attention-based 

multiple-instance learning (attMIL) and self-supervised 
learning (SSL), which outperform standard deep-
learning pipelines in many computational pathology 
applications.15–17

To address these limitations, we developed an open-
source deep-learning survival prediction model using 
attMIL and SSL. We externally validated this model in 
three large international cohorts. Additionally, we used 
The Cancer Genome Atlas Colorectal Cancer 
(TCGA-CRC) dataset to explore the pathobiological 
mechanisms associated with the predicted risk scores, 
which aimed to provide a biological interpretability of the 
predictions. 

Methods
Ethics statement
This retrospective study adhered to the Declaration of 
Helsinki18 and we obtained ethical approval from each 
contributing centre (appendix p 4). Data collection and 
analysis were done in an anonymised manner. This study 
followed the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis 
(checklist in appendix p 29).19 Because of the retrospective 
nature of the study and the use of anonymised data, the 
ethics board at the Medical Faculty of TU Dresden waived 
the requirement for a formal ethics vote.

Research in context

Evidence before this study
Deep learning can extract prognostic markers from routine 
pathology slides of colorectal cancer tissue stained with 
haematoxylin and eosin. Previous proof-of-concept studies did 
not use the latest deep learning technology, have not been 
validated in large-scale cohorts processed at multiple centres, 
and are closed source. We searched PubMed on Jan 13, 2023, 
without language or date restrictions from database inception 
using the user query (“survival” OR “prognosis” OR 
“prognostication” OR “risk stratification” OR “prediction model” 
OR “decision support”) AND “(colorectal OR colon OR rectal)” 
AND “(cancer OR carcinoma)” AND (“deep learning” OR 
“artificial intelligence”). We systematically reviewed the 
285 search results and identified 26 original research studies 
that applied deep learning using histopathology images. Of 
these 26 studies, 17 used established histopathological features 
that are known to be prognostically relevant to indirectly predict 
patient outcomes. Only nine studies applied an end-to-end 
approach to directly predict outcomes, with two using tissue 
microarray and six requiring tumour segmentation. Only one 
study predicted the prognosis of colorectal cancer directly from 
the whole-slide image (WSI); however, the authors have not 
made their source code or model open source.

Added value of this study
In this study, we developed a survival prediction model on the 
basis of two of the latest and most robust deep-learning 

methods, which comprised self-supervised learning and 
attention-based multiple-instance learning. We built a 
computational pipeline which can directly predict the prognosis 
of colorectal cancer from WSI, without using any manual 
intermediary steps. We trained and validated the model on 
4428 patients from across the world, of whom 2157 patients 
were used for external validation. Our results show that the 
model demonstrates good generalisability and can be applied 
to diverse studies prepared and digitised by different 
institutions. The model can stratify patients into different risk 
groups with better performance than most available markers. 
Furthermore, we explored the pathobiological mechanisms 
associated with the predicted risk scores, providing biological 
interpretability of the predicted results. To promote the 
reproducibility and dissemination of our research, we have 
released all the source code and trained models under open-
source licence, allowing other researchers to reuse and build 
upon our work.

Implications of all the available evidence
The deep learning-based risk score extracted from WSIs of 
colorectal cancer can complement existing clinical prognostic 
factors and could be expected to identify patients who benefit 
from adjuvant therapy, thus aiding patient management and 
clinical decision making.

See Online for appendix
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Patient cohorts
In this retrospective, multicentre study, we used anonym
ised haematoxylin and eosin-stained colorectal adeno
carcinoma slides from four large cohorts in Australia, 
Germany, and the USA for model training and validation. 
Digitised tumour-bearing tissue slides from the Darmkrebs: 
Chancen der Verhütung durch Screening (DACHS) 
study,20,21 a large population-based case-control and patient 
cohort study on colorectal cancer from southwestern 
Germany, were used for the training of the network.

Three cohorts were used as independent external valid
ation cohorts. First, the Molecular and Cellular Oncology 
study (MCO; Australia, n=1395),22,23 a prospective study on 
more than 1500 participants undergoing curative resection 
for colorectal cancer from 1994 to 2010, in which clinical 
and pathological data were collected for all patients. 
Overall survival was followed up once per year for up to 
5 years. Second, TCGA (USA, n=565) public repository, 
which includes colorectal cancer tissue samples of all 
stages with the primary intent of genomic characterisation. 
Third, the Marien-Hospital in Düsseldorf, Germany 
cohort (DUSSEL, n=197), a case series of colorectal cancer 
specimens resected with curative intent and collected at 
the Marien-Hospital in Düsseldorf, Germany, between 
January, 1990 and December, 1995, with the intent of 
doing research studies.24

The DACHS dataset contains the outcomes of overall 
survival, disease-free survival (DFS), and disease-specific 
survival (DSS). Overall survival and DSS were available 
for TCGA25 and MCO. The outcomes of DFS and DSS 
were available for DUSSEL. Inclusion criteria were 
patients with colorectal cancer who underwent surgical 
resection in each cohort, and those who did not have 
complete pathological examination and follow-up 
information were excluded. Detailed inclusion and 
exclusion criteria can be found in the appendix (p 12).

Experimental design and statistics
The model generated patient-level risk scores, and C 
indexes and the areas under the time-dependent receiver 
operating characteristic curves (AUC) were calculated to 
assess the ability of the model to predict risk for overall 
survival, DFS, and DSS. Overall survival represented the 
time between surgery and death from any cause or the 
date of the last follow-up. DFS indicated the interval 
between surgery and recurrence, metastasis, death from 
any cause, or last follow-up. DSS denoted the time from 
surgery to death from colorectal cancer or last follow-up.

Patients were stratified into a high-risk group (higher 
than or equal to the threshold) and a low-risk group 
(lower than the threshold) by using the median deep 
learning-based risk score of the training set as a 
threshold. We then did the following analysis on the 
MCO cohort: first, we investigated whether the deep 
learning-based risk score could provide additional 
prognostic value in patients with stage 2 colorectal 
cancer, a group in which the availability of adjuvant 

chemotherapy remains controversial. A new triple 
stratification was created by merging deep-learning risk 
stratification with T stage, classifying patients with T3 
and deep learning-predicted low risk as having a low-risk 
prognosis, those with T4 and deep learning-predicted 
high risk as having a high-risk prognosis, and the 
remaining patients as having a medium-risk prognosis. 
In addition, to make our analysis comparable with a 
study in 2022,14 we adopted the protocol used in previous 
studies, dividing patients into three groups, those who 
had low risk, those who had medium risk, and those who 
had high risk, on the basis of the 25% and 75% cutoffs of 
the risk score of the training set. A Kaplan-Meier analysis 
and log-rank test were used to compare the survival 
differences between the groups. A Cox proportional 
hazard model was used on the basis of this grouping.

Statistical analyses were done using R version 3.4.0. 
The survcomp package was used to calculate the C index 
and its 95% CI. The C index, or concordance index, 
ranges from 0 to 1, and assesses the ability of prognostic 
models to correctly rank patient survival times. The 
timeROC package was used for the time-dependent 
receiver-operating characteristic analysis. The Kaplan-
Meier method and the log-rank test were done with 
survival and survminer packages. Multivariable analyses 
were done using a Cox proportional hazard model of the 
survival package, in which the multivariable analysis was 
adjusted for confounding factors, including age, sex, and 
pathological T stage, N stage, and M stage. All statistical 
tests were two-sided and p<0·05 was considered to 
indicate a statistically significant result.

Image preprocessing and deep-learning procedures
All glass slides were scanned with Leica Aperio scanners 
at their respective institution. The digital images in this 
study were preprocessed under the Aachen deep-learning 
histopathology protocol.26 All whole-slide images (WSIs) 
were segmented into image tiles with an edge length of 
256 µm and saved with 224 × 224 pixels, yielding an 
effective magnification of 1·14 µm per pixel. During the 
process, all tiles with an average number of Canny edges 
lower than a threshold of 2 (ie, image tiles containing 
background or blur) were removed from the dataset. All 
image tiles were subsequently colour normalised using 
the Macenko method.27

We used our open-source pipeline, Marugoto, to train 
and validate deep-learning models. This pipeline employs 
a self-supervised pretrained histology-specific encoder, 
RetCCL, which translates each image tile into a 
2048-dimensional feature vector.17 All of the feature vectors 
obtained from the tiles of each slide image were then 
combined into a bag for patient-level risk-score prediction 
using attMIL.15,28 This process involves projecting the 
feature vectors onto a length-256 feature space through a 
linear encoder and applying an attention module to 
compute an attention score for each tile. The bag-level 
feature vector was calculated by weighting the feature 
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projection with attention scores, and the risk score output 
was generated by an additional fully connected layer. 

In each training epoch, a set of 512 tiles was randomly 
drawn from the WSI. Because the training runs for 
50 epochs, effectively all tiles from the WSI are seen by the 
network during training. For deployment, we used all of 
the tiles in the slides and set the batch size to 1 to handle 
different bag sizes. All analysis was done at the patient 
level, where the tiles from all slides of a patient were 
combined into a single bag for use in subsequent training 
or validation processes. We randomly divided the DACHS 
cohort into a training set, validation set, and test set in a 
4:4:2 ratio on the patient level. The best model checkpoint 
based on the validation set was saved and then validated 
on the test set and on three external validation sets. 
Further training details are available in the appendix (p 1).

Visualisation and explainability
To better understand the predictive patterns of the risk 
score and the model internals, we generated WSI heat
maps showing the spatial distribution of attention and 
predicted scores and the tiles with the highest 

attention-weighted predicted score (top tiles). To gain 
insights into the biological basis of the predictions of the 
model, we generated attention heatmaps, weight-score 
heatmaps, and top tiles for six representative patients 
with the highest deep learning-based risk scores in the 
MCO cohort. The attention heatmap offers a visualisation 
of the regions of the image that the model attended to 
when making the predictions, whereas the weight-score 
heatmap shows the relative importance of different 
regions within the image. The tiles with the highest 
weight scores indicate the specific areas of the image that 
had the greatest effect on the prognostication of the 
model. To explore the biological characteristics of the risk 
score, we analysed the RNA-sequence data from the 
TCGA cohort. Differentially expressed genes (DEGs) 
between the two risk groups were identified using the 
edgeR package in R. Gene Set Enrichment Analysis 
(GSEA) was done for these DEGs. To further understand 
the correlation between risk score and immune 
infiltration, the CIBERSORT algorithm and ssGSEA 
method were used to calculate the fractions of tumour-
infiltrating immune cells (appendix p 2).

Figure 1: Clinical need and outline of the study
(A) There is a clinical need to extract prognostic factors from tumour tissue to assist clinical decision making. (B) Established methods are based on manual extraction of predefined prognostic features; 
an open-source end-to-end AI-based survival score would help with clinical roll-out and validation. (C) The DACHS cohort from Germany was used for training and internal testing. The MCO cohort 
from Australia, the TCGA-CRC cohort from the USA, and the DUSSEL cohort from Germany were used for external validation. (D) All tiles from one whole-slide image were processed through a self-
supervised learning network to extract features. These features were then used by an attMIL network to generate patient-level risk scores. The median risk score of the training set was used as the 
threshold to classify patients into high-risk and low-risk groups, which were subsequently used for survival analysis. AI=artificial intelligence. attMIL=attention-based multiple-instance learning. 
AUC=area under the curve. DACHS=Darmkrebs: Chancen der Verhütung durch Screening study. DUSSEL=The Marien-Hospital in Duesseldorf, Germany. MCO=Molecular and Cellular Oncology study. 
TCGA-CRC=The Cancer Genome Atlas Colorectal Cancer study. 
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DACHS training 
set (n=908)

DACHS validation 
set (n=908)

DACHS test set 
(n=455)

MCO  (n=1395) DUSSEL (n=197) TCGA-CRC (n=565)

Number of slides per patient

One 889 (98%) 901 (99%) 450 (99%) 1324 (95%) 197 (100%) 557 (99%)

Two 9 (1%) 7 (1%) 4 (1%) 63 (5%) ·· 7 (1%)

Three ·· ·· 1 (<1%) 6 (<1%) ·· 1 (<1%)

Four ·· ·· ·· 2 (<1%) ·· ··

Age

≤65 years 300 (33%) 342 (38%) 167 (37%) 546 (39%) 65 (33%) 186 (33%)

>65 years 608 (67%) 566 (62%) 288 (63%) 849 (61%) 132 (67%) 225 (40%)

Missing ·· ·· ·· ·· ·· 154 (27%)

Sex

Male 523 (58%) 533 (59%) 276 (61%) 767 (55%) 113 (57%) 207 (37%)

Female 385 (42%) 375 (41%) 179 (39%) 628 (45%) 84 (43%) 205 (36%)

Missing ·· ·· ·· ·· ·· 153 (27%)

Location

Left 256 (28%) 253 (28%) 116 (25%) 343 (25%) 65 (33%) 164 (29%)

Right 314 (35%) 303 (33%) 172 (38%) 521 (37%) 64 (32%) 189 (33%)

Rectum 337 (37%) 350 (39%) 167 (37%) 527 (38%) 68 (35%) 57 (10%)

Missing 1 (<1%) 2 (<1%) ·· 4 (<1%) ·· 155 (27%)

Stage

1 172 (19%) 160 (18%) 82 (18%) 269 (19%) 46 (23%) 69 (12%)

2 322 (35%) 303 (33%) 150 (33%) 499 (36%) 78 (40%) 142 (25%)

3 294 (32%) 309 (34%) 157 (35%) 451 (32%) 70 (36%) 133 (24%)

4 120 (13%) 135 (15%) 66 (15%) 176 (13%) 3 (2%) 56 (10%)

Missing ·· 1 (<1%) ·· ·· ·· 165 (29%)

Pathological T stage

T1 57 (6%) 43 (5%) 27 (6%) 110 (8%) 20 (10%) 13 (2%)

T2 150 (17%) 160 (18%) 77 (13%) 232 (17%) 34 (17%) 72 (13%)

T3 569 (63%) 570 (63%) 279 (47%) 726 (52%) 125 (63%) 282 (50%)

T4 109 (12%) 116 (13%) 62 (10%) 327 (23%) 18 (9%) 43 (8%)

Missing 23 (3%) 19 (2%) 10 (2%) ·· ·· 155 (27%)

Pathological N stage

N0 499 (55%) 473 (52%) 229 (50%) 796 (57%) 126 (64%) 224 (40%)

N+ 386 (43%) 419 (46%) 210 (46%) 599 (43%) 71 (36%) 185 (33%)

Missing 23 (3%) 16 (2%) 16 (4%) ·· ·· 156 (28%)

Metastasis

M0 788 (87%) 772 (85%) 389 (85%) 1219 (87%) 194 (98%) 344 (61%)

M+ 120 (13%) 135 (15%) 66 (15%) 176 (13%) 3 (2%) 56 (10%)

Missing ·· 1 (<1%) ·· ·· ·· 165 (29%)

Microsatellite status

Microsatellite instability 81 (9%) 80 (9%) 46 (10%) 205 (15%) 30 (15%) 58 (10%)

Microsatellite stability 723 (80%) 733 (81%) 351 (77%) 1183 (85%) 166 (84%) 352 (62%)

Missing 104 (11%) 95 (10%) 58 (13%) 7 (1%) 1 (1%) 155 (27%)

Data are n (%). DACHS=Darmkrebs: Chancen der Verhütung durch Screening study. DUSSEL=The Marien-Hospital in Duesseldorf, Germany. MCO=Molecular and Cellular 
Oncology study. TCGA-CRC=The Cancer Genome Atlas Colorectal Cancer study. 

Table: Patient characteristics in the training, validation, internal test, and external test sets
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Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. 

Results 
We developed an end-to-end attMIL deep-learning model 
for pathology-based survival prediction (figure 1). We 

trained and validated our model on 4428  patients, of 
whom 2157 were used for external validation. The 
clinicopathological characteristics of the patients in each 
dataset have been summarised (table). We reported the 
differences in the distribution of clinical features between 
each dataset (appendix p 5). Median overall follow-up 
time was 6·3 years in the DACHS cohort (IQR 3·7; 
follow-up time, 10·1 years), 4·9 years in the MCO cohort 

Figure 2: Kaplan-Meier analysis by deep learning-based risk score in the DACHS cohort
Patients were stratified by deep-learning model-based score as high risk (red line) or low risk (blue line). The median deep learning-based risk score of the training set was used as the cutoff (–0·135). 
Kaplan-Meier curves for overall survival are presented in the training set (A), validation set (B), and test set (C). Kaplan-Meier curves for disease-free survival are presented in the training set (D), 
validation set (E), and test set (F). (G-I) Kaplan-Meier curves for disease-specific survival are presented in the training set (G), validation set (H), and test set (I). DACHS=Darmkrebs: Chancen der 
Verhütung durch Screening study. DSS=disease-specific survival. HR=hazard ratio. 
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(IQR 2·8; follow-up time, 4·9 years), 1·8 years in the 
TCGA cohort (IQR 1·1; follow-up time, 3·0 years), and 
3·9 years in the DUSSEL cohort (IQR 2·0; follow-up 
time, 6·2 years). The model accurately predicted survival 
from unannotated histology slides with high perfor
mance, with C-indexes of 0·76 (95% CI 0·69–0·82) for 
predicting overall survival, 0·82 (0·73–0·88) for 
predicting DFS, and 0·78 (0·70–0·84) for predicting DSS 
in the internal test set. For non-metastatic cases, the deep 
learning-based risk score exhibited consistent C-indexes 
of 0·74 (95% CI 0·65–0·81) for overall survival, 0·80 
(0·68–0·88) for DFS, and 0·77 (0·67–0·84) for DSS in 
the internal test set (appendix p 6). The AUCs for the 
internal test set were 0·79 (95% CI 0·71–0·86) for 1 year 
overall survival, 0·84 (0·80–0·88) for 3 year overall 
survival, and 0·83 (0·79–0·87) for 5 year overall survival 
(appendix p 13; the detailed performance of other metrics 
is in appendix p 7). Patients were divided into high-risk 
and low-risk groups by median deep learning-based risk 
score (–0·135) of the training cohort. Patients in the 
high-risk DACHS group had worse outcomes than 
patients in the low-risk group in the internal test set 
(figure 2). In summary, these data suggest that deep 
learning can be helpful to predict the outcome of patients 
with colorectal cancer from pathology slides.

We validated the prognostication performance in three 
large external validation cohorts. For the MCO cohort 
consisting of 1395 patients from Australia, the C-index 
for overall survival reached 0·65 (95% CI 0·60–0·70), 
and for DSS was 0·70 (0·64–0·75). Similarly, the C-index 
for overall survival was 0·64 (0·52–0·74) and for DSS 
was 0·69 (0·54–0·81) in the public TCGA-CRC cohort. 
Even in DUSSEL, a relatively small cohort, the model 
maintained a fair performance with a C-index of 0·62 
(0·47–0·75; appendix p 6) for DSS. AUCs for each dataset 
at different survival times are shown (appendix p 13). In 
the Kaplan-Meier analysis, the deep-learning risk score 
demonstrated significant risk stratification in all external 
validation cohorts (figure 3). Together, these results show 
that the model reaches stable performance even with a 
relatively shorter follow-up and a smaller sample size in 
external validation sets.

We further did a multivariable Cox regression analysis 
to evaluate the prognostic value of the deep learning-
based risk group with adjustment of established 
prognostic variables. The adjusted hazard ratios of the 

Figure 3: Kaplan-Meier analysis by deep learning-based risk score in the 
external validation cohort

Patients were stratified by deep learning model-based score as high risk 
(red line) or low risk (blue line). The median deep learning-based risk score of the 

training set was used as the cutoff (–0·135). (A) Kaplan-Meier curves for DSS in 
the MCO cohort. (B) Kaplan-Meier curves for DSS in the DUSSEL cohort. 

(C) Kaplan-Meier curves for DSS in the TCGA-CRC cohort. DSS=disease-specific 
survival. DUSSEL=the Marien-Hospital in Duesseldorf, Germany. HR=hazard 
ratio. MCO=Molecular and Cellular Oncology study. TCGA-CRC=The Cancer 

Genome Atlas Colorectal Cancer study. 
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deep learning-based risk group for DSS were 1·40 
(95% CI 1·09–1·81; p=0·0091) in the MCO cohort and 
2·30 (1·21–4·35; p=0·011) in the DUSSEL cohort, and 
were significantly higher or similar to those of the 
pathological T stage or N stage (appendix p 14). The deep 
learning-based risk score remained robust in all cohorts, 
except in the TCGA-CRC cohort, in which the results of 
the multivariable analysis were not significant for either 
in the overall survival or DSS.

In the MCO dataset, we further validated whether the 
deep learning-based risk score was able to identify 
patients with an unfavourable prognosis and with 
stage 2–3 colorectal cancer. Kaplan-Meier analysis 
showed that the restratified high-risk group had a worse 
prognosis than the restratified low-risk group (figure 4B). 
The performance of the new triple stratification 
compared with the deep-learning risk stratification and T 

stage and corresponding Kaplan-Meier curves are shown 
in the appendix (p 15). Multivariable Cox analysis showed 
that the new stratification was a predictor of prognosis 
independent of adjuvant chemotherapy (figure 4C). The 
same analysis was applied to patients with stage 3 
colorectal cancer, with a focus on N stage (figure 4D). 
Similar results were observed, with patients reclassified 
as being in the high-risk group exhibiting poorer 
prognosis (figure 4E), and the new stratification being an 
independent predictor of prognosis (figure 4F). The 
Kaplan-Meier curves demonstrated superior performance 
of the three-group classification across all cohorts, except 
for the DUSSEL cohort (appendix pp 16–17). However, in 
the multivariable Cox analysis results, which incorporated 
other clinical factors, the deep-learning risk stratification 
exhibited more consistent and reliable performance 
across both grouping approaches (appendix p 8). 

Figure 4: Integrating deep-learning risk score with T stage and N stage for stages 2–3 risk stratification in the MCO cohort
(A) Patients with stage 2 colorectal cancer were stratified into low-risk, medium-risk, and high-risk groups on the basis of a combination of deep learning predicted risk and T stage for risk assessment. 
(B) Kaplan-Meier curves in patients stratified into low-risk, medium-risk, and high-risk groups on the basis of a combination of deep learning-predicted risk and T stage. (C) Multivariate Cox regression 
analysis between deep learning-predicted risk and T stage regrouping and adjuvant chemotherapy. (D) Patients with stage 3 colorectal cancer were stratified into low-risk, medium-risk, and high-risk 
groups on the basis of a combination of deep learning-predicted risk and N stage for risk assessment. (E) Kaplan-Meier curves in patients stratified into low-risk, medium-risk, and high-risk groups on 
the basis of a combination of deep learning-predicted risk and N stage. (F) Multivariate Cox regression analysis between deep learning-predicted risk and N stage regrouping and adjuvant therapy. 
DSS=disease-specific survival. HR=hazard ratio. MCO=Molecular and Cellular Oncology study. 
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Analyses based on other clinical subgroups are shown in 
the appendix (pp 18–24). In conclusion, our deep-
learning risk stratification reached a high performance 
across several clinical subgroups and in combination 
with existing clinical stratification provides a more 
accurate prognostic stratification.

These heatmaps were generated from WSIs that were 
not annotated with tumour regions. For the high-risk 
group (appendix p 25), the heatmaps showed that the 
model was able to focus on tumour regions, with the top 
tiles comprising mainly poorly differentiated tumours 
and fat-infiltrated tumour regions. 

By performing a bioinformatics analysis on the TCGA-
CRC cohort, we identified 113 DEGs between the high-
risk and low-risk groups (appendix p 26; the details of the 
DEGs are listed in the appendix p 9). GSEA revealed that 
the DEGs were significantly enriched in seven pathways, 
including hallmark oxidative phosphorylation, hallmark 
E2F targets, hallmark myogenesis, and hallmark 
epithelial mesenchymal transition (appendix p 26). 
Immune cell type-specific analysis revealed a higher 
proportion of CD8 T cells (p=0·022), CD4 memory 
T cells (p=0·025), and M1 macrophages (p=0·027), and a 
lower proportion of M0 macrophages in the low-risk 
group (p=0·0057; appendix p 26). The calculated scores 
of immune cells based on ssGSEA, shown as a heatmap, 
demonstrate a similar trend of immune infiltration 
(appendix p 26). The correlation between the deep 
learning-based risk score and the tumour immune-
infiltrating cells is shown in the appendix (p 27). Despite 
differences in immune infiltration between high-risk 
and low-risk groups, there is no significant correlation 
between the risk score and immune cells. No statistically 
significant differences in other immune-related cells 
were observed between the low-risk and high-risk groups. 
These findings demonstrate a correlation between the 
predicted groups of the model and the previous 
prognostic cellular information and tissue information, 
providing model interpretability.

Discussion
In this study, we developed a deep learning-based 
prognostic-stratification system for automatic prediction 
of overall and tumour-specific survival in patients with 
resected colorectal cancer. Our SSL-based attMIL open-
source analysis pipeline reached promising predictive 
performance on a large cohort from Germany and was 
consistently validated in other cross-international 
cohorts, as measured by the hazard ratio in Cox-
proportional hazard models. In addition, deep learning-
based risk score was a predictor independent of clinical 
features such as TNM staging and MSI.

In the development of the model, we used RetCCL,17 an 
SSL pretrained model in histopathology, to extract feature 
vectors from image tiles. Compared with previous studies 
that used ImageNet-based pretraining models, the SSL 
weights within the domain help to extract intrinsic tissue 

features in greater depth. Previous studies have shown 
that SSL with attMIL achieves a good performance on 
classification tasks and the present study extends this 
evidence to survival prediction.15–17 Our approach could 
therefore potentially provide a new paradigm for 
processing time-to-event data in computational pathology 
and potentially in other medical image modalities. 

Our model has been validated to quantify several 
datasets and has exhibited consistent performance. 
However, in the multivariable Cox analysis, the binary 
risk stratification was not independent of TNM staging 
in the TCGA dataset. On the one hand, the short follow-
up period of TCGA compared with other cohorts might 
not reveal the predictive efficacy of the model for long-
term prognosis. In the TCGA cohort, the highest time-
dependent AUCs were found within 2 years and then 
decreased over time, which is also consistent with its 
median follow-up time distribution. On the other hand, 
this finding might be related to the heterogeneity of 
sample preparation across centres; the challenges 
associated with standardisation still require attention.

Currently, there is controversy over whether adjuvant 
chemotherapy is necessary for patients with stage 2 
colorectal cancer, and accurate outcome predictions 
might help inform clinical decision making. In this 
study, by combining deep learning-predicted risk with 
clinical staging, we were able to provide more precise 
stratification for this patient subgroup. For patients with 
stage 2 colorectal cancer classified as low risk, higher 
DSS rates suggest that follow-up could replace adjuvant 
therapy. By contrast, adjuvant therapy is already the 
standard treatment for patients with stage 3 colorectal 
cancer and for those identified as having high-risk 
colorectal cancer, more aggressive treatment strategies 
and closer monitoring could be beneficial.

Despite achieving excellent performance, the inter
pretability of deep-learning models still poses a 
challenge for their clinical application. To address this 
issue, we did a visualisation analysis of the regions of 
interest in our model. Our findings suggest that for 
patients with high-risk colorectal cancer, the model is 
more attentive to the adipose tissue surrounding the 
tumour, which is in line with previous research.12 
Furthermore, we did an in-depth exploration of the 
biological associations of our model by using bio
molecular information from the TCGA dataset. We 
observed significant differences in immune infiltration 
between the high-risk and low-risk groups. Specifically, 
the low-risk group exhibited a significantly higher 
degree of anti-tumour immune infiltration, particularly 
in CD8 T cells, CD4 memory T cells, and M1 
macrophages. This enhanced anti-tumour immunity 
has been shown to resist tumour progression and 
improve prognosis.29 Moreover, anti-tumour immunity 
suggests that patients in the low-risk group might be 
more responsive to immunotherapy.30 In addition, the 
GSEA analysis revealed that DEGs between two groups 
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were enriched in pathways related to metabolism, 
immune dysregulation, and epithelial mesenchymal 
transition. This finding suggests that tumours in the 
high-risk group were more proliferative and aggressive. 
Furthermore, the enrichment results indicate that the 
cell cycle might have a crucial role in the prognosis of 
colon cancer, as demonstrated by the enriched gene sets 
for E2F targets, MYC targets, and G2M checkpoints. 
These results highlight the potential of targeting the cell 
cycle as a therapeutic strategy for the treatment of 
colorectal cancer.

Our study has several limitations. Although we 
validated the model in a cross-national cohort, all cases 
were collected retrospectively, which might introduce 
inherent bias and hidden confounders into the study. 
Specifically, compared with the DACHS cohort, the 
TCGA cohort had a shorter follow-up period and younger 
patients, which limits the assessment of disease 
progression and introduces age bias, affecting the 
evaluation of model performance. Additionally, because 
of the scarcity of the data, important factors such as 
tumour margins and postoperative complications, which  
substantially reduce survival time, were not included in 
the analysis, potentially resulting in an overestimation of 
the efficacy of the model. Therefore, a larger prospective 
cohort is needed to validate our results.

In conclusion, we developed and validated a deep 
learning-based model that uses attMIL and SSL to directly 
predict survival from WSIs in patients with colorectal 
cancer. The output risk score of the model is an 
independent prognostic factor that can serve as a tool for 
surgeons and oncologists for postoperative risk 
stratification of localised and advanced colorectal cancer. 
We have open-sourced our model, making it easy for other 
research groups to reuse, reproduce, or extend our 
approach. Like any biomarker, our proposed digital 
biomarker should be further evaluated in prospective 
clinical trials. Particularly, the predictive value as a decision 
aid for whether an individual patient should receive 
adjuvant chemotherapy on the basis of output of the 
model requires additional prospective clinical evidence.
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