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Abstract— This paper proposes a linear state estimation 

method for unbalanced distribution systems using available 

synchronized/unsynchronized measurements. The paper 

demonstrates that circuit properties can readily be taken 

advantage of to linearly express power measurements in terms 

of bus voltages and line currents. This results in a linear 

distribution system state estimation (LDSSE) process, which 

involves two stages. In stage one, the three-phase voltage 

phase angles are estimated using available measurements and 

network parameters. By formulating voltage/current phasors 

based on these phase angles, linear equations are developed 

that enable the estimation of voltage phasors. The linear 

nature of the proposed method significantly reduces the 

computation time while maintaining the solution’s accuracy. 

The superiority of the proposed LDSSE method over existing 

methods is verified using extensive simulation studies 

conducted on different test feeders.  

Keywords—Hybrid measurements, linear state estimation, 

unbalanced distribution system, weighted least squares. 

I. INTRODUCTION 

State estimation (SE) is a crucial process that involves 

filtering measurement errors to obtain an accurate 

representation of the power system’s current state [1]. The 

abundance of measurements on transmission systems has 

made state estimation a normal practice at extra-high 

voltage levels, where SE is also a prerequisite for energy 

management applications such as contingency analysis and 

congestion management [1, 2]. SE does not hold much 

significance for passive distribution systems characterized 

by slow demand variations that can effectively be managed 

via load forecasting. Nevertheless, passive distribution 

systems are evolving into active systems that require real-

time monitoring [3], owing to the increasing integration of 

distributed generations, battery energy storage systems, and 

electric vehicle charging stations. In this context, 

distribution system state estimation (DSSE) becomes 

crucial for real-time monitoring and control purposes.  

Except for some pioneering research on DSSE in the 

1990s [4-6], this field has gained most of its popularity in 

recent years. DSSE is associated with a greater number of 

challenges compared to transmission SE due to factors such 

as insufficient observability, unbalanced radial 

configuration, and a high ratio of r/x [7, 8]. Extensive work 

has been carried out to alleviate these challenges [9-13]. The 

observability problem is considered as a major concern due 

to limited metering instruments compared to the large size 

of distribution systems. Distribution systems are normally 

under-determined, which means they are monitored by a 

small number of real-time measurements (which are 

typically less than the number of state variables [7]). 

However, the integration of smart meters, advanced 

metering infrastructures (AMIs), and micro phasor 

measurement units (µPMUs) hold great promise for 

implementing DSSE [8]. The usage of pseudo-

measurements and virtual measurements is primarily aimed 

at increasing measurement redundancy in distribution 

systems [9-11]. The unbalanced operation caused by single- 

or double-phase loads and untransposed lines is deemed to 

be another major issue. This is the main reason that DSSE 

is usually developed per phase based on the three-phase 

models of equipment [12]. Radial configuration and high r/x 

ratio also present complications that can lead to an ill-

conditioned gain matrix and potential algorithm divergence 

in conventional DSSE (CDSSE) [13]. 

There are other research gaps that need to be addressed 

for DSSE. Dealing with nonlinear equations developed 

based on conventional measurements is a major concern. 

Conventional measurements can provide unsynchronized 

voltage/current magnitudes and active/reactive powers in 

distribution systems. CDSSE formulations based on these 

measurements are nonlinear, which require iterative solving 

processes such as the Gauss-Newton method [5], Forward-

Backward sweep method [14], or their combination [15]. 

Iterative CDSSE methods require both initialization and 

iteration, suffering from the possibility of divergence and 

the multiplicity of solutions. Due to the three-phase 

modeling of a large number of buses in distribution systems, 

iterative solutions would be highly time-consuming. The 

radial configuration and high r/x ratios in distribution 

systems increase the possibility of an ill-conditioned gain 

matrix, thus, inaccurate results or even divergence. 

Linear DSSE (LDSSE) methods are introduced to 

address some of the challenges associated with CDSSE. A 

primitive solution for LDSSE harnesses a fast decoupled 

algorithm, where after applying some simplifications, the 

linearized problem is solved iteratively [16]. To avoid 

iteration in LDSSE, a trivial approach is to make the 

equation linear by installing a large number of µPMUs to 

cover the distribution system with enough measurement 

redundancy [17, 18]. However, the realization of 

synchrophasor redundancy in distribution systems appears 

to be quite challenging. This is why some recent works 

focus on LDSSE using small voltage drops provided by 

conventional measurements [19]. Although this approach 

can be considered more practical for employing SCADA 

data rather than synchrophasors, simplifications made in 

modeling could easily pose unreliable results.  



This paper presents a two-stage LDSSE method based 
on purely conventional or hybrid measurements. In contrast 
to the existing LDSSE methods found in the literature, the 
proposed method relies on inherently linear equations, 
eliminating the requirement for linearization. As a result, the 
estimation of three-phase voltage phasors using the 
proposed LDSSE method does not involve any iteration or 
simplification in the modeling process. 

The rest of this paper is organized as follows. Section II 

discusses pressing challenges in the context of distribution 

systems state estimation. The proposed LDSSE is detailed 

in Section III. The performance evaluation is carried out in 

Section IV. Section V provides the conclusions. 

II. BASIC CONCEPTS 

A. Distribution System State Estimation (DSSE) 

The state estimation runs in the control center to provide 

a picture of the power system’s current condition. The 

principal duty of SE is filtering out measurement errors and 

providing operators with reliable data on system variables 

[1]. Unlike transmission systems, there is insufficient 

redundancy to implement SE in distribution systems. By 

exploiting historical load data as pseudo-measurements as 

well as zero-injection buses as virtual measurements, the 

observability of distribution systems can be improved [7]. 

The penetration of real-time meters, including SCADA, 

smart meters, µPMUs, and AMIs, assesses the feasibility of 

implementing DSSE [11]. Utilizing network parameters and 

real-time measurements, SE equations may be developed 

linearly [20] or nonlinearly [2]. It goes without saying that 

with the same level of accuracy, linear formulations would 

be favored, owing to the inherent challenges associated with 

the solution of nonlinear problems. 

DSSE methods are developed based on unbalanced 

modeling of distribution systems, where a three-phase 

model of equipment is required [21]. Dealing with 

unbalanced systems and developing three-phase models 

increases the complexity of SE in distribution systems 

compared to transmission systems. Let us assume the 

reference bus’s voltage phase angle is known in a n-bus 

system. The length of the state vector in transmission 

systems is 2� − 1, while in distribution systems is  6� − 3. 

Therefore, the size of the SE problem in distribution systems 

is three times greater than that of transmission systems. 

Considering the size of the problem and the ill-conditioned 

gain matrix in DSSE (due to the radial configuration with 

high r/x), the possibility of divergence is significant. 

B. Hybrid Measurements 

Measurements in power systems can be categorized into 
two main groups: Conventional and synchrophasor 
measurements. Conventional measurements provided by 
smart meters and SCADA are unsynchronized (i.e., 
voltage/current magnitudes and active/reactive powers). 
The refresh rate of conventional measurements is within a 
few seconds (typically every 2 sec) [1]. Conventional 
measurements are appropriate for static SE,  where the rate 
of change of variables can be considered slow due to the 
steady-state condition of the power system [22]. On the 
other hand, synchrophasors can trace the dynamics of power 
systems by providing time-synchronized voltage and 

current phasors. The typical reporting rate of 
synchrophasors is 50/60 samples per second, which is 
adequate for dynamic SE purposes [23]. SE by only 
synchrophasors is not yet applicable in many existing 
distribution systems due to insufficient instrumentation or 
enough infrastructure. In this context, developing state 
estimators that can function with unsynchronized or hybrid 
measurements are considered quite advantageous [20]. 

C. Weighted Least Squared based Estimation 

In SE, a regression model is developed to predict the 

values of target variables while minimizing the adverse 

impact of measurement errors. In the case of a nonlinear 

formulation, the first-order approximation of the Taylor 

series can be employed to linearize the equations. Then, the 

linearized formulation is solved iteratively. Solving linear 

equations does not involve initialization or iteration. To find 

the best-fit for the states, various regression methods can be 

applied, such as WLS, least absolute values (LAV), or 

generalized maximum-likelihood (GM) [7]. Within the 

class of linear unbiased estimators, the least squares 

estimator provides the lowest variance based on Gauss–

Markov theorem [24]. If the measurement errors can be 

assumed to have Gaussian distribution with mean zero, then 

WLS is also the maximum likelihood estimator [24].  

WLS is one of the straightforward methods used for 

DSSE [22, 25]. The DSSE problem can be modeled as a set 

of linear equations as follows: 

�� + 
 = � (1) 

where � is the representative of the coefficient matrix and �  denotes the vector of states. Also, �  and 
  denote the 

vectors of measurements and measurement errors, 

respectively.  

The closed-form solution of (1) by WLS would be [24] 

�
 = ��∗���� (2) 

� = ��∗������� (3) 

where �
 denotes the vector of estimated states, and � and � 

denote the covariance matrices of estimated states and 

measurements, respectively. 

III. THE PROPOSED LDSSE 

The proposed linear state estimation method for 

unbalanced distribution systems is described in this section. 

Linear SE methods in the literature are highly dependent on 

redundant synchrophasor data [17]. Other methods take 

advantage of slight voltage drops within distribution lines to 

develop LDSSE using simplifications [19]. The proposed 

LDSSE in this paper can be formulated with both purely 

conventional (unsynchronized) or hybrid (a mix of 

synchronized and unsynchronized) measurements with no 

simplification in modeling.  

The proposed LDSSE contains two major stages. In the 

first stage, the voltage phase angles of the whole system are 

calculated based on the available measurements. Then, 

using the voltage phase angles from the first stage, the final 

voltage phasors are estimated in the second stage. The 

mentioned topics are explained in the following subsections. 



A. Computing Unbalanced Voltage Phase Angles 

To develop linear equations using conventional 

measurements, first, the local variables are defined as 

��� = |���| (4) 

���� = |���� |����� = �!��� − "#��� � |���|⁄  (5) 

%��� = −tan�)�#��� !���⁄ � (6) 

where |���| is the measured voltage magnitude of phase * at 

the bus + , |���� |  and %���  denote the measured current 

magnitude and power factor phase angle of the same phase 

at the branch +,. Also, !���  and #���  are the representative of 

measured active and reactive powers of the same phase and 

branch. The local variables in (4)-(6) are built up by only 

conventional measurements from SCADA or smart meters.  

The three-phase voltage phase angles of the reference 

bus are considered to be known based on the proposed 

solution in [26, 27]. Hence, for the reference bus or any bus 

equipped with µPMUs, the following equation is applied 

�-�� = |���|��.� = �����.�  (7) 

where /�� denote voltage phase angle of phase * at the bus +. Further, (7) is used for only reference bus in the event of 

purely conventional measurements. 

Now, the relationship between synchronized voltage and 

current phasors can be expressed as 

0�̃��
�-�� = |���� |����� 2.� 

|���|��.� = |���� |����� 
|���| = ����

��� (8) 

where �-�� is the synchronized voltage phasor of phase * at 

the bus +, and 0�̃��  denotes the synchronized current phasor 

of the same phase at the branch +,. Consequently, (8) can be 

rewritten as the following equation 

0�̃�� = ����� ���⁄ ��-�� = 3��� �-��  (9) 

The above equation dedicates a linear relationship 

between synchronized current and voltage phasors using 

local variables gathered from conventional measurements. 

Considering the π model of a three-phase line, Kirchhoff’s 

current law yields 

4��56789:�567 − 9:�567; + <��5679:�567 = =̃��567 (10) 

where 9:�567 and 9:�567  denote the vectors of three-phase 

voltage phasors at buses + and , , respectively, =̃��567  is the 

vector of three-phase current phasors from bus + to bus ,. 
Also, 4��567  and <��567  denote series admittance and shunt 

susceptance matrices of branch +,. In the case of having 

current phasors from µPMUs, they can be directly used in 

(10). Now, applying (9) to (10) yields 

?@��567 − 84��567 + <��567;A9:�567 + 4��5679:�567 = 0 (11) 

By (11), a linear equation with respect to voltage phasors 

as state variables can be developed for those branches 

equipped with conventional measurements (at just one end 

of the line). @��567  is a diagonal 3 × 3  complex matrix 

developed based on (9), which its elements are defined as 

3��� = 8|���� |����� ; |���|D = �!��� − "#��� � |���|E⁄  (12) 

The above equation can be developed by voltage 

magnitude as well as either current magnitude or power 

measurements in distribution system lines. On the other 

hand, (11) can be extended for conventional current or 

power injection measurements as follows: 

F@�567 − G84��567 + <��567;
�H7

I 9:�567 + G 4��567
�H7

9:�567 = 0 (13) 

where J refers to those buses connected to bus +, and @�567 

is computed based on (12) for injected currents/powers to 

the relevant bus. Thus, the linear set of equations for 

conventional current/power injection meters is developed. 

To improve the observability problem in DSSE, zero-

injection buses are considered here. The linear equation for 

zero-injection buses can be defined as 

G84��567 + <��567;
�H7

9:�567 + G 4��567
�H7

9:�567 = 0 (14) 

Using (14) can improve the observability of the system 

in the DSSE problem. As can be seen, the proposed LDSSE 

can cover all types of measurements straightforwardly. 

Now, the LDSSE can be formulated using conventional 

measurements in (7), (11), (13), and (14) for unbalanced 

voltages of reference bus, current/power flows, 

current/power injections, and zero injections, respectively. 

Also, (7) and (10) are utilized for voltage and current 

phasors measured by µPMUs, respectively. Then, the initial 

three-phase voltage phasors are determined in the first stage 

by utilizing ordinary least-squares (i.e. (2) with identity 

measurements covariances). The presence of measurement 

data in the coefficient matrix degrades the effectiveness of 

least-squares estimation. The reason behind this issue is the 

sensitivity of the least-squares method to errors in the 

coefficient matrix. In addition, deriving the covariance of 

each equation for WLS is not straightforward. Therefore, 

only estimated voltage phase angles in the first stage are 

exploited to estimate the final states by the second stage. 

B. Estimating Three-Phase Voltage Phasors 

Having the three-phase voltage phase angles from the 

first stage, the current and voltage phasors can be rewritten 

based on these. This helps to move the measurements from 

the coefficient matrix to the measurement vector. This 

enables us to take advantage of WLS estimation, as will be 

described in Subsection C. The voltage and current phasors 

expressed in terms of the voltage phase angles derived in the 

first stage and the magnitude measurements are referred to 

as pseudo-synchronized phasors. This is to signify the 

difference in reporting times of conventional measurements 

and the fact that these measurements can be combined with 

synchrophasors since the power system is assumed to be in 

a steady-state condition. 

 To develop pseudo-synchronized voltage phasors 

similar to (7), the following equation is used 

�-�� = �K�� = �����.L�  (15) 

where �K�� denotes the estimated voltage phasor of phase * 

at bus +  formed by ���  and /M��  as the relevant locally 

measured voltage magnitude and estimated phase angle. In 



the case of the availability of synchrophasors, the measured 

voltage phasor is directly used in (15). Combining local 

measurements (such as SCADA or smart meters) and 

computed phase angles gives pseudo-synchronized phasors.  

Similar to voltage phasors, pseudo-synchronized current 

phasors are defined as 

0̂��� = ���� ��.L�  (16) 

Depending on the availability of either current 

magnitude or active/reactive power, ����  is formed by (5). 

Taking synchrophasor data into account, the current phasor 

measured is directly applied to (16). Using (16) in (10) 

84��567 + <��567;9:�567 − 4��5679:�567 = =̂��567  (17) 

This equation can be extended for current injection 

measurement based on (13). Now, by employing (14) for 

virtual measurements, and  (15) and (17) for built phasors, 

the linear set of equations is developed as follows: 

F�)�E�O
I P9:Q = F9
=̂R
I (18) 

where 9:� denotes the vector of three-phase voltage phasors 

with 3� states for a �-bus distribution system. �) is a S ×3�  identity matrix corresponding to the vector 9
  with S 

voltage phasor measurements. �E  is a T × 3�  matrix 

consisting of network parameters related to the vector =̂ with T current phasor measurements. The elements of vectors 9
 

and =̂  can contain either measured synchrophasors or 

computed pseudo-synchronized phasors. Also �O  is a , ×3� matrix containing network parameters respected to the 

null vector R
 for zero injection buses. Here, contrary to the 

first stage, the coefficient matrix P�) �E �OQU is error-

free and contains only network parameters. 

C. Defining Weights for WLS  

To solve (18) by WLS in (2), the proper covariance 

should be defined for equations in this stage. Taking the 

complex form of a phasor into account 

V = VW + � = XW��YZ + � = X��Y  (19) 

where VW and � are the representative of the true value and 

error of phasor V . XW  and [W  denote true values of 

magnitude and phase angle of the phasor VW. X and [ denote 

the measured values of magnitude and phase angle of the 

phasor V. The errors in both magnitude and phase angle of � are assumed to be independent (provided using µPMUs), 

with each following a Gaussian distribution. Specifically, X~]�XW , _ È�  and [~]�[W , _YE� , with _ È  and _YE 

representing the variance of the magnitude and phase angle 

errors, respectively. For those phase angles gathered from 

the first stage, _YE would be negligible and is assumed to be 

zero. The covariance of � associated with its magnitude and 

phase angle errors is then defined as [28] 

_VE = XE a1 − ��bcde + _ È a2 − ��bcde (20) 

Using (20), a real-valued variance can be extracted for 

the error in a polar phasor. This equation applies to 

equations developed by (15) and (17). The variance of the 

virtual measurements is considered to be 10�f here.  

IV. SIMULATION RESULTS 

In order to evaluate the accuracy and effectiveness of the 

proposed LDSSE, extensive simulation studies are carried 

out. For each simulation, different measurement types and 

variances are investigated. Measurement errors are assumed 

to be independent and have normal distributions with 

standard deviation σ. The three-sigma criterion is used to 

report the error range [29]. All codes are developed in 

MATLAB R2021b and run on a Core i7 CPU with 32-GB 

RAM. To be able to draw solid conclusions from each case 

study, Monte Carlo simulations are run and the obtained 

results are compared with the true values. It is noteworthy 

that load flow results for each case study are acquired from 

OpenDSS [30]. For all test systems, the minimum number 

of measurements with their location is determined by a 

linear programming method, as described in [31]. 

In Subsection A, the efficiency of the proposed LDSSE 

method using various levels of measurement errors is 

analyzed. Afterward, the performances of the proposed 

LDSSE and CDSSE are compared on various test feeders in 

Subsection B. In different simulations, the ratio between 

synchronized and unsynchronized measurements is varied 

to study its impact. 

A. Evaluating the Accuracy of Proposed LDSSE 

The performance of the proposed LDSSE is evaluated 

here using Monte Carlo simulations considering different 

measurement error levels. The IEEE 13-bus test feeder [32], 

as a well-known unbalanced distribution system, is used for 

this purpose. Taking advantage of zero injection at 632, 633, 

680, and 684 buses, 645, 650 (reference), 684, and 692 

buses are considered to be equipped with SCADA 

measurements. In fact, only 4 buses provide real-time 

measurements out of 13 buses. Here, conventional 

measurements are considered to show the effectiveness of 

the proposed method. 10,000 simulations are run for the test 

system considering three different measurement error 

levels. Results for voltage magnitude and phase angle errors 

(i.e., mismatches between estimated and true values) of the 

system are shown in Fig. 1. The results in Fig. 1 (a) and (b) 

are linked to three different levels of measurement errors. 

The errors in real-time conventional measurements and 

pseudo-measurements are assumed to be 1% and 10%, 3% 

and 30%, and 5% and 50%, respectively. Also, about one-

third of the measurements are assumed to be coming from 

pseudo-measurements. Both figures are representative of 

the accumulative mismatch between the estimated values 

and true values in all phases. As can be seen, the proposed 

LDSSE is unbiased regarding estimated voltage magnitudes 

and phase angles.  

Figure 2 demonstrates the root mean square error 

(RMSE) of phase b voltage phasors. Using RMSE, a real-

valued index for examining the accuracy of estimated 

voltage phasors is obtained by 

ghij = kG l�-mW`n − �-mopWlEq
mr) �D  (21) 

where �-mW`n and �-mopW  denote the true and estimated voltage 

phasors, and � is the number of states. 



 
(a) 

 
(b) 

Fig. 1. Estimation errors of proposed LDSSE using various measurement 
errors for (a): Voltage phase angles and (b): Voltage magnitudes. 

Due to the close behavior of three phases, only the results of 

one phase (phase b) is shown here. Utilizing the proposed 

LDSSE, accurate and reliable results may be achieved for 

each phase of unbalanced distribution systems. 

The quality of estimates is also reported using [9] 

sopW = ln�1 tr���⁄ � (22) 

where sopW is a statistical measure denoting the quality of 

the estimator and  tr��� is the trace of the states covariance 

matrix. This quality index expresses, in principle, the 

sensitivity of the estimator to the level of measurement 

errors [9]. Several error levels are studied and the average 

quality index for 10,000 simulations on the IEEE 13-bus test 

feeder is presented in Fig. 3. This figure represents the 

results for each phase separately. In this simulation, the 

variation range of measurement errors is altered from 0.01% 

to 5%. The first case runs LDSSE with hybrid 

measurements (those that are provided by µPMUs and 

SCADA along with pseudo-measurements). Other cases use 

unsynchronized data provided by SCADA and pseudo-

measurements. In all cases, pseudo-measurements 

constitute 20% of all measurements. As shown in Fig. 3, 

increasing the level of errors degrades the quality of 

estimation by the proposed LDSSE as expected. 

B. Comparison Under Various Test Feeders 

The performance of the proposed LDSSE is compared 

with that of the CDSSE method in this subsection. To this 

end, several test feeders are chosen to conduct the 

simulations, namely, the IEEE 13-bus, 37-bus, 123-bus, 

906-bus (European low voltage test feeder), and 8500-bus 

test feeders [32]. With conventional measurements, the 

CDSSE becomes nonlinear and is solved iteratively by the 

Gauss-Newton algorithm [5]. Regardless of the ratio 

between the numbers of synchronized and unsynchronized 

measurements, the proposed LDSSE remains fast and 

reliable. Both CDSSE and LDSSE methods take advantage 

of WLS to estimate the system state. 

 
Fig. 2. RMSE of proposed LDSSE using various measurement errors. 

 
Fig. 3. Quality of estimates using the proposed LDSSE. 

Table I summarizes obtained results (RMSE and 
computation time) on different test feeders using CDSSE 
and LDSSE. In this case study, the level of errors for 
µPMUs, SCADA, and pseudo-measurements are set to 
0.01%, 5%, and 30%. It is assumed that 20% of 
measurements are provided by µPMUs. This is 30% and 
50% for SCADA and pseudo-measurements, respectively. 
All zero-injection buses are considered virtual 
measurements with a variance of 10�f. The results obtained 
from Monte Carlo simulations with 10,000 runs for small 
test feeders (i.e., 13-bus, 37-bus, and 123-bus systems) as 
well as 1,000 runs for large-scale test feeders (i.e., 906-bus 
and 8500-bus systems).  

As can be seen in Table I, the RMSE by CDSSE is less 

than this by LDSSE for the 13-bus test feeder as the smallest 

case study. For rest test feeders, LDSSE presents more 

accuracy with less RMSE compared to the results of the 

conventional method. On the other hand, the LDSSE highly 

outperforms the CDSSE regarding computation time. As 

such, the computation burden of the proposed LDSSE is far 

less than the conventional method. Increasing the scale of 

the test system yields less efficiency in the performance of 

the CDSSE. In other words, the inaccuracy and computation 

burden of CDSSE regarding problem size (system scale) are 

increasing compared to the proposed LDSSE. The 

difference between the LDSSE and CDSSE is more tangible 

regarding computation burden. As such, for a large-scale 

system like the 8500-bus test feeder, LDSSE is 

approximately 20 times faster than CDSSE. Relying on 

inherently linear equations is the main attribute of the 

proposed LDSSE, by which accurate results can be achieved 

with no need for iteration. While, CDSSE methods are 

based on approximately linearized equations solved 

iteratively. Due to the considerable scale of real-world 

distribution systems, conventional iterative DSSE methods 

are prone to divergence possibility and large computation 

time. However, the proposed two-stage LDSSE reliably 

yields accurate results in a fast and straightforward way, 

applicable to unbalanced distribution systems of any 

realistic size. 
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TABLE I.  COMPARING THE PERFORMANCE OF CDSSE AND LDSSE  

Test 

Feeders 

RMSE 

(pu) × �v�w 
Computation Time 

(s) × �v�w 

CDSSE LDSSE CDSSE LDSSE 

13-bus 7.6398 10.4577 2.4230 0.5509 

37-bus 4.2776 3.6095 10.9941 1.8823 

123-bus 5.7661 4.8005 165.6935 11.6004 

906-bus 16.1939 10.8291 44683.96 2636.51 

8500-bus 17.9107 10.9819 175789.82 8897.23 

V. CONCLUSION 

This paper puts forward a linear state estimation method 
for unbalanced distribution systems using hybrid 
synchronized/unsynchronized measurements. The proposed 
method estimates the system states through a two-stage 
process. It first computes the voltage phase angles and then 
estimates the three-phase voltage phasors. This linear 
distribution system state estimation (LDSSE) method 
outperforms conventional distribution system state 
estimation (CDSSE) in terms of both speed and accuracy. 
As per simulation results, the differences are more 
significant for large-scale distribution systems, where 
CDSSE requires a significant amount of time to converge 
(if successful at all). This is while the LDSSE method offers 
a much faster solution with higher accuracy (e.g., about 20 
times faster on the 8500-bus test feeder). These 
improvements along with the guaranteed convergence 
emanate from formulating the problem linearly, even with 
purely SCADA measurements. This eliminates the need for 
iteration or simplification (in modeling). Extensive 
simulations conducted on various test feeders validate the 
accuracy and computational efficiency of the proposed 
LDSSE method. 
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