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Abstract
Estimatingmodel parameters is a crucial step in mathematical modelling and typically
involves minimizing the disagreement between model predictions and experimental
data. This calibration data can change throughout a study, particularly if modelling
is performed simultaneously with the calibration experiments, or during an on-going
public health crisis as in the case of the COVID-19 pandemic. Consequently, the
optimal parameter set, or maximal likelihood estimator (MLE), is a function of the
experimental data set. Here, we develop a numerical technique to predict the evolution
of the MLE as a function of the experimental data. We show that, when considering
perturbations from an initial data set, our approach is significantly more computation-
ally efficient that re-fitting model parameters while producing acceptable model fits
to the updated data. We use the continuation technique to develop an explicit func-
tional relationship between fit model parameters and experimental data that can be
used to measure the sensitivity of the MLE to experimental data. We then leverage
this technique to select between model fits with similar information criteria, a priori
determine the experimental measurements to which the MLE is most sensitive, and
suggest additional experiment measurements that can resolve parameter uncertainty.

Keywords Parameter estimation · Numerical continuation · Model calibration ·
Experimental design

1 Introduction

As quantitative modeling becomes more prevalent across biology and medicine
(Altrock et al. 2015; Perelson 2002; Sanche et al. 2020), mathematical models are
increasingly being developed during the experimental data collection that will inform
model parameters. This cooperation facilitates the use of mathematical modelling to
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inform experimental design and suggest potential intervention strategies (Zhang et al.
2022; Sanche et al. 2020; Cárdenas et al. 2022; Luo et al. 2022). The COVID-19
pandemic is a striking example of the resulting feedback loop, where mathematical
models suggest intervention strategies that influence the evolving public health crisis
before being re-calibrated to new data. (Holmdahl and Buckee 2020; Thompson 2020;
Davies et al. 2020).

Each updated data set requires re-calibration of the model typically through com-
putationally expensive optimization techniques. To reduce this computational cost of
the re-calibration step, it is common to use the existing parameters as a starting point
when performing parameter fitting to incoming experimental data sets. This approach
recycles optimization work but does not utilize leverage the relationship between the
initial and updated experimental data set. Here, we present a computational method
to incorporate information about evolving data sets during the model validation and
parameter estimation steps.

Specifically, for given model parameters and an initial experimental data set, we
develop a method to predict the best-fit parameter set to an updated experimental data
set. Our approach can be viewed as a numerical continuation technique (Dhooge et al.
2008; De Souza and Humphries 2019). However, rather than studying the dynamical
properties of the mathematical model as a function of model parameters, we consider
the evolution of best-fit model parameters as a function of the experimental data.
We use the necessary condition for a local optima to write the best-fit parameters as
an implicit function of the experimental data. We can then predict best-fit parameter
sets for evolving experimental data without performing any optimization. Avoiding
optimization leads to significant computational savings and we demonstrate these
gains via two examples. In both these examples, our prediction method produces
comparable model fits to randomly perturbed data sets as optimization techniques
without the computational cost of solving the inverse optimization problem.

While our approach does lead to increased computational efficiency, the more
immediate application of our work may be in experimental design. Specifically, we
identify an explicit relationship between individual best-fit parameter values and indi-
vidual experimental data points through our continuation approach. We can therefore
quantify which experimental measurements are the most informative for determining
best-fit parameters and measure the sensitivity of parameter estimates to perturba-
tions in data. The role of experimental design in model selection and parameterization
has been extensively studied (Silk et al. 2014; Cárdenas et al. 2022; Li and Vu 2015,
2013). In particular, Li and Vu (2015) studied how correlations between best-fit model
parameters can impact practical and structural identifiability of model parameters
while Silk et al. (2014) and Cárdenas et al. (2022) explored how experimental design
impacts model selection from a class of possible mathematical models. Conversely,
our contribution explicitly relates individual experimental measurements with individ-
ual best-fit parameter estimates. We explicitly link our continuation technique to the
Fisher information matrix commonly used in optimal experimental design (Kreutz
and Timmer 2009; Braniff et al. 2019). Taken together, our approach allows the
increased confidence in model parametrization from optimal experimental design to
be mapped directly to individual model parameters. Accordingly, we can therefore
design experiments to address specific uncertainties in parameter estimates.
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Furthermore, our work offers a distinct step towards understanding how robust
parameter estimates are to evolving data. Many existing computational methods quan-
tify confidence in parameterization; formal parameter sensitivity analyses (Marino
et al. 2008; Maiwald et al. 2016; Zi 2011), virtual population approaches (Allen et al.
2016; Cassidy and Craig 2019; Jenner et al. 2021), or parameter identifiability anal-
ysis (Castro and de Boer 2020), often via profile likelihood computation (Raue et al.
2009, 2014; Kreutz et al. 2012), quantify how robust model predictions are to param-
eter variation. In particular, these techniques view the experimental data as fixed up
to experimental noise and focus on the relationship between model parameters and
model predictions.We offer a complementary approach to existing sensitivity analysis
by explicitly studying how the best-fit parameters vary due to changes in calibration
data. As we will see, our approach encodes information from local sensitivity analysis
when calculating the functional relationship between the best-fit parameters and the
calibration data. Consequently, while classical sensitivity analysis quantifies variabil-
ity inmodel output due to change inmodel parameters, our approach considers changes
in model parameters, and thus model predictions, as a function of the calibration data.
We demonstrate this mapping of experimental data to best-fit parameter via an exam-
ple drawn from mathematical oncology (Cassidy et al. 2021). These results, when
combined with existing information criteria like the AIC or BIC (Kass and Raftery
1995), allow for modellers to quantify the robustness of best-fit parameter estimates
when comparing different model fits to experimental data.

The remainder of the article is structured as follows. We begin by defining the
optimization problem in Sect. 2.1. We develop the continuation method in Sect. 2.2,
discuss our numerical implementation in 2.3, and explore the connection between
our continuation approach and optimal experimental design in 3.1. We then turn to
two examples from mathematical biology to illustrate the utility of our technique in
Sect. 3.2 before finishing with a brief discussion.

2 Methods

2.1 Formulation of the Optimization Problem

Here, we introduce the framework of the underlying optimization problem. We focus
on ordinary differential equation (ODE) models representing biological processes, as
these models are common throughout mathematical biology. However, our approach
extends to partial differential equation or delay differential equation models directly.
We consider a generic ODE based model throughout the remainder of this work.

Let the model states be given by x(t) ∈ R
n with model parameters denoted by

θ ∈ � ⊂ R
p where� is a subset of biologically plausible parameter values. We allow

the initial condition x(0) to depend on the model parameters θ . Taken together, we
consider the differential equation model

d

dt
x(t) = f (x, θ); x(0) = x0(θ) (1)
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where f is continuously differentiable in x and θ .
We consider calibration data {φi }d×m

i=1 representing m measurements each taken at
d time points {ti }di=1. It is possible that model species are not directly comparable
against the calibration data so we define the m model observables by

yi (θ) = h(x(ti , θ), θ) ∈ R
d×m .

In what follows, we consider m = 1 for notational simplicity although the analysis
extends for m � 2.

Likelihood function and objective function

Remark 1 The methods that follow do not assume a specific objective function. How-
ever, we do assume that the objective function is twice continuously differentiable as
is commonly the case. For simplicity, we present the remainder of our results using
the common log-likelihood formulation (Stapor et al. 2018; Maiwald et al. 2016).

The likelihood describes the probability of observing experimental data φ as a
function of θ and is given by

L(y(θ), φ) =
d∏

i=1

1√
2πσ 2

i

exp

[
− (yi (θ) − φ∗

i )
2

σ 2
i

]
(2)

The experimental error at eachmeasurement point,σi , can be estimated as an additional
model parameter or fixed to a known value. Here, we follow Sharp et al. (2022) and
take σi fixed at a known constant value, although it is possible to include σi in the
vector of unknown parameters θ . The maximum likelihood estimator (MLE) θ∗, and
thus best-fit model parameters for the given experimental data φ, is defined by the
solution of the inverse problem

θ∗ = argmaxθ∈�L(θ, φ∗). (3)

As the differential equations defining y(θ) rarely have explicit solutions, the likelihood
(2) is difficult to evaluate analytically. It is therefore standard to minimize the negative
log-likelihood G(θ, φ) = − log (L(y(θ), φ∗)) given by

G(θ, φ) =
d∑

i=1

log

(√
2πσ 2

i

)
+ (yi (θ) − φ∗

i )
2

σ 2
i

. (4)

Under the assumption that σi = σ is fixed, the error term log
(√

2πσ 2
)
and denom-

inator of G(θ, φ) are constant and do not influence the solution of the optimization
problem. The maximum likelihood estimator θ∗ is the parameter set that minimizes
G(θ, φ∗). A number of computational techniques exist to minimize G(θ, φ) and thus
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calculate θ∗. These optimization techniques typically require simulating the mathe-
matical model (1) at each optimization step. Further complicating the optimization
problem, G(θ, φ∗) is often non-convex with multiple local minima.

2.2 Continuation of Maximal Likelihood Estimator

Model fitting is increasingly performed concurrently with experiments (Luo et al.
2022) or obtained from an evolving real-world scenario, as in epidemic modelling
(Sanche et al. 2020). In both of these cases, the calibration data φ evolves and should
not be considered as known and constant. In (4), we explicitly wrote the objective
function G(θ, φ) as a function of the model parameters θ and the experimental data φ.
The MLE θ∗ is an implicit function of the experimental data φ defined by the solution
of (3). We are interested in this implicit function θ∗(φ). Most existing optimization
techniques consider the calibration data fixed and omit this dependence.

Here, we develop a continuation type technique to compute the evolution of θ∗(φ)

numerically as a function of φ from an initial solution of the optimization problem.
We calculate the evolution of θ∗(φ) as the calibration data varies to generate a curve
of potential MLEs in (φ, θ∗) space by developing a numerical continuation technique.

Numerical continuation methods are specialized numerical methods to compute
branches of implicitly defined curves. A standard application of these continuation
type techniques in mathematical biology is numerical bifurcation analysis (Dhooge
et al. 2008; Sanche et al. 2022). These numerical bifurcation techniques compute equi-
librium systems of a non-linear dynamical system as a function of model parameters
but can be used to detect much richer dynamical behaviour (De Souza and Humphries
2019).

Often, continuation techniques leverage “predictor-corrector” algorithms.
Predictor-corrector algorithms predict the solution to a non-linear system of equa-
tions using the implicit function theorem (IFT). The IFT is a crucial tool in numerical
continuation as it maps a continuation condition to an implicitly defined multivariable
function. The IFT states

Theorem 1 (Implicit function theorem) Let F : Rm × R
n → R

m be a continuously
differentiable function. Assume that

F(x0, y0) = 0

where x0 ∈ R
m and y0 ∈ R

n and

det (Dx F(x0, y0)) �= 0

whereDx F(x0, y0) is them×m Jacobianmatrix obtained by taking partial derivatives
of F with respect to x at the point (x0, y0).

Then, there exists an open set S ⊂ R
n with y0 ∈ S and a curve g(y) such that

F(g(y), y) = 0 for all y ∈ S. Furthermore, g(y) is continuously differentiable with

Dyg(y) = −[Dx F]−1Dy F . (5)
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To illustrate how the IFT facilitates numerical continuation, assume that F(x0, y0)
satisfies the hypothesis of the theorem. Let y be the continuation parameter and we
search for solutions of the continuation equation, F(x, y) = 0, for y in a neighborhood
of y0. The IFT ensures that, for a small perturbation y1 = y0 + �y of the continua-
tion parameter, there exists a function g(y) such that F(g(y1), y1) = 0. Calculating
g(y1) comprises the continuation step of numerical continuation techniques (Meijer
et al. 2012). In practice, the continuation step uses the initial solution x0 = g(y0) to
predict x̂1 = g(y0) + ξ�y where ξ is tangent to the solution curve g(y), although
more complex approaches are possible (Meijer et al. 2012; Dhooge et al. 2008). The
prediction, x̂1, is then used as a starting point to calculate g(y1) using standard root
finding techniques during the correction step (Meijer et al. 2012).

Here, we develop a “prediction-correction” strategy to predict the behaviour of the
solution θ∗(φ) of the inverse problem (3) as a function of the data φ. We focus on
the “predictor” step, as the corrector step, if necessary, can utilize existing numerical
optimization techniques to calculate the MLE from the predicted MLE.

One of the major steps in developing a continuation method is properly defining the
continuation equation.We recall that we are concernedwith predicting the evolution of
theMLE,which is defined as theminimizer of the log-likelihood.As the log-likelihood
(4) is continuously differentiable, local optimal must satisfy

DθG(θ∗, φ) = 0, (6)

so we necessarily have

θ∗(φ) ∈ {θ ∈ �|DθG(θ∗, φ) = 0}.

However, the optimality condition (6) is a necessary, but not sufficient, condition
for θ∗ to be a MLE. Models that are not structurally identifiable (Raue et al. 2014)
have manifolds in parameter space on which this optimality constraint holds but are
not necessarily MLEs. We discuss the relationship between our approach and profile
likelihood classifications of structural identifiability in Appendix A.

Now, let θ∗
0 be the MLE for calibration data φ0. Further, let the Hessian D2

θG(θ, φ)

be invertible at (θ∗
0 , φ0) ∈ R

p × R
d and consider the function

DθG(θ∗, φ) : Rp × R
d → R

p.

We take (6) as the continuation equation. As θ∗
0 is the MLE corresponding to the

calibration data φ0, (6) necessarily holds at (θ∗
0 , φ0). As we have assumed that the

Hessian D2
θG(θ, φ) is invertible, we can directly apply the IFT to determine a branch

of solutions in (θ, φ) space of (6). The IFT ensures the existence of a function 	(φ)

in a neighbourhood of φ0 with 	(φ0) = θ∗(φ0) such that

DθG(	(φ), φ) = 0.

It is natural to consider	(φ) as the predicted MLE θ∗(φ) for φ in a neighbourhood of
φ0. However, computing 	(φ) analytically is functionally impossible. We therefore
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expand 	(φ) as a function of the calibration data φ using Taylor series

	(φ + �φ) = 	(φ) + D	(φ)�φ + O(�φ2). (7)

where φ + �φ is the updated calibration data and the IFT ensures that the function
	(φ) is continuously differentiable. We calculate D	(φ0) to predict 	 starting from
the known solution 	(φ0) = θ∗

0 .
We use the explicit expression given in (5) to calculate D	(φ0). In the notation of

the IFT, F(θ0, φ0) = DθG(θ0, φ0), so Fθ = D2
θG(θ0, φ0) and Fφ = D2

θ,φG(θ0, φ0).
Then, (5) directly implies that

D	(φ) = −
[
D2

θG(	(φ), φ)
]−1

D2
θ,φG(	(φ), φ). (8)

We then use D	 to evaluate (7) and thus perform the continuation step to approximate
	(φ + �φ).

2.3 Numerical Implementation

We now show how to calculate finite difference approximations to the derivatives
included in (8). For θn denoting the n-th parameter, we calculate

∂G(θ, φ)

∂θn
=

d∑

i=1

2 (yi (θ) − φi )
∂ yi (θ)

∂θn

and so

[
D2

θ,φG(	(φ), φ)
]

(n,i)
= −2

∂ yi (θ)

∂θn
. (9)

The derivatives ∂θn yi (θ) can be calculated through finite difference schemes (Zi 2011)

∂ yi (θ)

∂θn
= yi (θ + �θn) − yi (θ − �θn)

2�θn
+ O

(
(�θn)

2
)

,

where �θn is a small perturbation in the n-th parameter. Computing D2
θ,φG(	(φ), φ)

requires 2p model simulations for p model parameters. We note that ∂θn yi (θ) is
commonly used to perform local sensitivity analysis (Li and Vu 2013) and that more
accurate finite difference approximations, such as centered differences, can be used to
calculate D2

θ,φG(	(φ), φ).

Calculating the Hessian D2
θG(θ, φ) via finite differences is simple to implement

but computationally expensive due to the number of objective function evaluations. In
the following examples, we use a finite difference scheme to calculate D2

θG(θ, φ). We
calculate the diagonal elements of D2

θG(θ, φ) using forward second order differences
and the off-diagonal terms by
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∂G(θ, φ)

∂θi ∂θ j
=

(
1

4(�θi )(�θ j )

) [
G(θ + �θi + �θ j , φ) − G(θ + �θi − �θ j , φ)

+G(θ − �θi + �θ j , φ) + G(θ − �θi − �θ j , φ)
] + O

(
(�θi )

2, (�θ j )
2
)

.

Our computation of the Hessian requires 2p(p + 1) objective function evaluations.
We note that the Hessian, or the observed Fisher Information, is commonly used

throughout parameter optimization algorithms. The Hessian is also used in other tech-
niques such as profile likelihood calculations, estimates of the likelihood function,
and classical sensitivity anaylsis. Consequently, computationally efficient techniques
to calculate D2

θG(θ, φ) have recently been developed (Stapor et al. 2018).
In fact, many gradient-based optimization techniques approximate the Hes-

sian D2
θ,θG(θ, φ) at each iteration of solving an optimization problem (MATLAB

2017). For example, both fmincon and fminunc in MATLAB (2017) calculate
D2

θ,θG(θ, φ) at each optimization step and print the pre-computed Hessian as an out-
put of the optimizer. It is therefore possible, and efficient, to recycle this calculation
when calculating an update to θ∗

0 using (8).
In total, this numerical implementation of (8) requires 2p(p+2)model simulations.

Finally, when evaluating (8), it is computationally more appropriate to solve the linear
system of equations

D2
θG(θ, φ)D	 = −D2

θ,φG(	(φ), φ)

for the unknown D	.
Code to implement this continuation technique is available at

https://github.com/ttcassid/MLE_Continuation.

3 Results

3.1 Informing Experimental Design Through the ContinuationMethod

There are a number of existing techniques to study the relationship between model
parameters and data. While our continuation technique focuses on the relationship
between the MLE and the calibration data, it has many ties to other existing tech-
niques. Here, we focus on using the explicit relationship between data and the MLE to
suggest additional experimental measurements and thus leveraging the continuation
method for experimental design. In Appendix A, we discuss how the continuation
method relates to parameter identifiability as assessed by the profile likelihood and
local sensitivity analysis.

In our derivation of D	, we assumed that the Hessianmatrix D2
θG(θ, φ)was invert-

ible. The Hessian gives the curvature of the loglikelihood at the MLE and is known as
the observedFisher informationmatrixIobs . The observedFisher information is a local
measurement in data space. Conversely, the expected Fisher information considers the
entirety of data space for fixed model parameters θ . The expected Fisher information
is obtained by taking the expectation of D2

θG(θ, φ) over all possible experimental
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measurements φ and is defined via

I = E

[
D2

θG(θ, φ)
]
.

Many existing experimental design methods leverage the expected Fisher information
matrix to minimize the covariance in model parameter estimates via the Cramér-Rao
inequality. These experimental design techniques typically maximize some aspect,
often the determinant, of the Fisher information matrix as a function of possible data
to select the most informative calibration data set (Kreutz and Timmer 2009). From a
geometric perspective, maximizing the determinant of the Fisher information matrix
corresponds to minimizing the volume of the confidence ellipsoid engendered from
the covariance matrix (Braniff et al. 2019).

In particular, Braniff et al. (2019) considered the case of bistable gene regulatory
networks where the fold bifurcation and unstable manifold between stable equilibria
complicates experimental design and parameter estimation. Sharp et al. (2022) consid-
ered an information-geometry perspective to propose the expected Fisher information
matrix and resulting Riemannian manifold as a guide for data collection. As is often
the case, both Sharp et al. (2022) and Braniff et al. (2019) used the expected Fisher
information, which considers all possible calibration data via the expectation over
φ. Here, we show how our approach complements the classical Fisher information
approach to experimental design, albeit through a local measurement, in (θ, φ) space.
We recall that

D	�φ = − [Iobs]−1 D2
θ,φG(	(φ), φ)�φ.

Now, if D2
θ,φG(	(φ), φ)were the identity, then D	 would correspond to the observed

Fisher information approach to measuring uncertainty in MLE.
In the calculation of D	�φ, the matrix D2

θ,φG(	(φ), φ) maps perturbations in
the calibration data �φ through the curvature of the loglikelihood to changes in the
MLE. Consequently, D2

θ,φG(	(φ), φ) acts as a change of basis matrix from the space

of calibration data to parameter space. Simply, D2
θ,φG(	(φ), φ)�φ scales changes

in the calibration data to the confidence ellipsoid in parameter space obtained from
[Iobs]−1. Geometrically, if D2

θG has eigenvalues λi with corresponding eigenvectors
νi , then choosing �φ such that

νi = D2
θ,φG�φ

translates perturbations in calibration data to the corresponding eigenspace of the
covariance matrix.

For example, the i-th column of D	 maps perturbations of the i-th data point to
changes in the MLE. Specifically, the sum

�θ∗

�φk
=

p∑

k=1

|D	k, j |
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measures the sensitivity of the MLE θ∗ to perturbations in the k-th data point. Thus,

‖D	‖1 = max
k=1,2,...,p

�θ∗

�φk

and the most informative data point satisfies

l = argmaxk=1,2,...,p
�θ∗

�φk
,

where informative is understood as the data point inducing the largest sensitivity in
the MLE. As an extreme example, if

�θ∗

�φn
= 0,

then perturbations in φn do not impact the MLE estimate, which implies complete
insensitivity of the model fit to φn . This example corresponds to �φ belonging to the
kernel of the matrix D2

θ,φG since we have assumed that D2
θG is invertible.

We can therefore utilize our analysis to identify which additional experimental
measurements could increase confidence in model parameterization. Consider k addi-
tional measurements {φs,i = ys,i (θ∗)}ki=1 taken directly from the model simulation at
times {ts,i }ki=1 where the subscript s indicates simulated data. Including {φs,i } in the
objective function (4) does not change the MLE or objective value function as these
simulated data exactly match themodel values. However, ‖D	(φ+�φs,i )‖ quantifies
the sensitivity of theMLE to variability in the k simulatedmeasurements. Accordingly,
the measurement that maximizes ‖D	(φ + �φs,i )‖ for a fixed perturbation size � is
a good candidate for an additional experimental measurement to decrease parameter
uncertainty.

3.2 Examples

The continuation framework derived earlier is applicable to a large variety of mod-
els throughout in the mathematical biology literature. To demonstrate the utility of
the continuation method, we consider two examples from distinct fields and model
formulations. Further, we show how the continuation framework can be leveraged to
evaluate the robustness ofmodel parameterizations or identify additional experimental
measurements.

First, we consider a classical model of HIV-1 viral dynamics. This model has been
used extensively to understand viral dynamics data (Perelson 2002) and the identi-
fiability of model parameters was considered by Wu et al. (2008). In that work, Wu
et al. (2008) used simulated data to validate their identifiability results; we followWu
et al. (2008) and use simulated data to illustrate our approach to predicting theMLE to
updated calibration data. We also show how the expression for D	 developed for our
continuation method can be used to evaluate the robustness of model parameteriza-
tions. Quantifying the robustness of model parameterizations is particularly important
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for practically unidentifiable models, such as the viral dynamics model considered
here.

Next, we consider a mathematical model of phenotypic heterogeneity in non-small
cell lung cancer (NSCLC) (Cassidy et al. 2021). Thismodel is given by a system of two
non-local, structured PDEs representing the density of drug-sensitive and drug-tolerant
NSCLC cells. The PDE model is equivalent to a system of ODEs (see (Cassidy et al.
2021) and Appendix C for details). The parameters of the model were fit to in vitro
NSCLC data taken from growth experiments in treated and untreated media (Craig
et al. 2019; Cassidy et al. 2021). We use this example to demonstrate the effectiveness
and computational efficiencyof ourmethod to predict theMLE. In addition,we also use
the continuation method to suggest additional experimental measurements to increase
confidence in model parameterization.

Parameter continuation in a viral dynamics model

The standard viral dynamicsmodel has been extensively used to understand the dynam-
ics of viral infection in HIV-1 (Perelson 2002; Hill et al. 2018). The model tracks the
concentration of uninfected target cells, T (t), infected cells I (t), and free infectious
virus V (t). Here, we follow Wu et al. (2008) and consider a model of HIV-1 dynam-
ics where the target cells are CD4+ T-cells. These cells are produced at a constant
rate λ and cleared linearly at rate d. Infection occurs at a rate β following contact
between a target cell and infectious viral particle and infected cells are cleared at rate
δ. Upon lysis, infected cells release N viral particles into the circulation and free virus
is cleared at a constant rate c. The viral dynamics model is given by

d

dt
T (t) = λ − βT (t)V (t) − dT (t)

d

dt
I (t) = βT (t)V (t) − δ I (t)

d

dt
V (t) = δN I (t) − cV (t).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(10)

It is common to set p = δN so the final equation for V (t) becomes

d

dt
V (t) = pI (t) − cV (t),

and the system (10) is equipped with initial conditions T (0) = T0, I (0) = I0, and
V (0) = V0. In typical clinical studies, temporal data is only collected for circulating
free virus so the model output corresponding to the calibration measurements is

yi (θ) = log10(V (ti , θ)),

where using log10 measurements of viral load is standard in HIV studies.
During antiretroviral therapy (ART), the viral load may fall below the limit of

detection of standard assays. While there are a number of techniques to account for
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this censored data, we do not consider data collected during ART, so the objective
function is given by the sum of squares error

GH IV (θ, φ) =
√√√√

n∑

i=1

(
log10(V (ti , θ) − log10(φi )

)2
. (11)

Wu et al. (2008) characterized the identifiability of this model using a higher order
derivative method. They found that, if the initial conditions of the model T0, I0, and
V0 are known, then all six model parameters θ = {β, d, δ, c, N , λ, } are identifiable.
To illustrate their results, they fixed θ = {(2 × 10−5, 0.15, 0.55, 5.5, 900, 80} and
simulated the ODE model (10). They sampled the simulated viral load at 37 distinct
time points and added noise εi sampled from a Gaussian distribution with μ = 0 and
σ 2 = 1 (Wu et al. 2008).

Here, we illustrate how model dynamics evolve during MLE continuation. We
follow Wu et al. (2008) but consider a smaller subset of calibration data collected at
time ti = {0.4, 1, 8, 14, 20, 36, 46, 58}. We add noise ε0i sampled from a Gaussian
distribution with μ = 0 and σ 2 = 0.15 so the initial calibration data is

φ0
i = log10(V (ti , θ)) + ε0i .

We first fit the model to the simulated data φ0
i to obtain an initial MLE. We then

generate 4 additional viral load time courses {φ j
i }4j=1 by

φ
j
i = φ0

i + hstep|ε j
i |

for ε
j
i sampled from a Gaussian distribution with μ = 0 and σ 2 = 1 and

hstep = ±0.1,±0.2. This collection of 4 data sets could feasibly represent exper-
imental data measured from an increasingly large sample drawn from a population
of HIV-1 positive individuals with population viral dynamic parameters given by
θ = {2× 10−5, 0.15, 0.55, 5.5, 900, 80}. Here, we test the ability of our continuation
technique to predict reasonable viral dynamic curves without refitting the data.

In Fig. 1A),we compute the predicted	(φ j ) and plot the predictedmodel dynamics
obtained from 	(φ j ) alongside the perturbed data φ j for comparison. In Fig. 1B), we
show the fit model predictions, corresponding to the calculated MLE, to the perturbed
data. In each case, the viral dynamics show comparable model predictions for the
fit and predicted model parameters demonstrating that our continuation method can
successfully predict reasonable model simulations. In fact, the Bayesian Information
Criteria (Kass and Raftery 1995) indicates no significant differences between the
predicted and true MLE for all 4 data sets, which, as we are comparing fits of the same
model, corresponds to no significant difference in the objective value function between
the predicted and true fits. However, Fig. 1C) shows the significant computational
improvement obtained by only calculating the continuation step rather than fitting all
model parameters at each step. The predicted model dynamics track the true viral load
trajectory.
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Fig. 1 Comparison of predicted model fits to randomly perturbed data. A and B show model trajectories

obtained using predicted and fit model parameters to the simulated experimental data perturbed by φ
j
i =

φ0
i + hstep |ε j

i |. Panel A shows the predicted model fits to the experimental data while B shows the model
fits to data resulting from the true MLE. C shows the number of objective value evaluations required to
predict the MLE using this continuation technique or fit the model parameters to the perturbed data using
the known parameters as a starting guess

It is common to find numerous local minima of (11) when fitting (10) to simulated
data as the model is practically unidentifiable without precisely knowing the initial
conditions. As measured by the value of the log-likelihood function or information
criteria, these local minima can produce comparable fits to a given data set despite
different dynamics. We perturbed the initial data set φ0 by

log(φ1
i ) = log(φ0

i ) + 0.8εi

for εi sampled from a Gaussian distribution with μ = 0 and σ 2 = 1. We fit this per-
turbed data from 10 distinct initial guesses using fmincon (MATLAB 2017). These
10 starting initial guesses converged to two local minima. We denote the correspond-
ing parameter estimates by θ̂1 and θ̂2 and plot the resulting model trajectories in Fig. 2.
These fits both accurately describe the viral load data and are indistinguishable byBIC.
As we are comparing fits of the same model, the BIC corresponds to similar objective
function values G(θ̂1, φ) and G(θ̂2, φ). Consequently, it is not obvious which of θ̂1
and θ̂2 best describe the data.

However, it is reasonable to expect that the MLE should be robust to small pertur-
bations of the calibration data. We measure the robustness of each of these minima
by calculating ‖D	(φ1)‖ at θ̂1 and θ̂2. While calculating ‖D	(φ1)‖ is not, strictly
speaking, a continuation step, we note that

D	�φ = 	(φ + �φ) − 	(φ) + O
(
�φ2

)
.

Consequently, ‖D	‖ measures how robust the potential MLEs θi are to perturbations
in the calibration data. As robustness to small perturbations in calibration data is
a desirable attribute of the MLE, the continuation framework developed here can
evaluate the robustness of potential MLEs, particularly in practically unidentifiable
models.
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Fig. 2 Comparison of two potential fits to randomly perturbed viral dynamics models. Model trajectories
obtained from two local minima from fitting 10 initial guesses to viral load data shown in black. Both
trajectories accurately describe the viral load dynamics as evidenced by a small difference in BIC. However,
the parameter estimate corresponding to the oscillatory trajectory ismuchmore robust asmeasured by ‖D	‖
and is closer to the true underlying parameter set

Specifically, a smaller value of ‖D	‖ implies less sensitivity of the MLE to per-
turbations of the calibration data. For the example shown in Fig. 2, there is a 16 fold
difference in sensitivity to calibration data. The oscillatory behavior present in Fig. 2
is somewhat surprising as there is no clear indication of oscilliations in the viral load
data. However, the sparsity of sampling does not allow for either simulation to be
excluded based on the current calibration data alone. Nevertheless, D	 can be used
to distinguish between these otherwise similar fits. We suggest that, when choosing
between multiple fits with similar BIC values, the parameter estimate with the smaller
sensitivity to the data is a more robust, and thus preferential, fit.

A PDEmodel of phenotypic switching in mathematical oncology

Non-genetic phenotypic heterogeneity has been increasingly studied as a driver of
treatment resistance in solid cancers (Goldman et al. 2015) and a number of math-
ematical models have recently been developed (Gunnarsson et al. 2020; Jolly et al.
2018; Sahoo et al. 2021; Craig et al. 2019).We consider the Cassidy et al. (2021)model
that tracks the density of NSCLC cells with a drug-sensitive (A(t, a)) or drug-tolerant
(B(t, a)) phenotype at time t and age a through an age structured PDE. As mentioned,
this PDE model can be reduced to the system of ODEs given in Appendix C. How-
ever, we present the simpler biological interpretation of the PDEmodel here. The total
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number of cells of each phenotype is given by

Ā(t) =
∫ ∞

0
A(t, a)da and B̄(t) =

∫ ∞

0
B(t, a)da. (12)

The total number of NSCLC cells is given by N (t) = Ā(t) + B̄(t). Cassidy et al.
(2021) considered logistic growth with an Allee effect, wherein cooperation between
cells of the same phenotype can lead to increased growth rates, given by

RA( Ā(t), B̄(t)) = rA

(
1 − Ā(t) + B̄(t)

K

)
and

RB( Ā(t), B̄(t)) = rB

(
1 − Ā(t) + B̄(t)

K

)
fn( Ā(t), B̄(t)). (13)

where rA and rB are phenotype specific growth rates, the carrying capacity is K , and the
strength of the Allee effect is fn( Ā(t), B̄(t)).Wegive the full details of fn( Ā(t), B̄(t))
in Appendix C. Drug-tolerant cells have a constant death rate dB while the death rate
of drug-sensitive cells depends on the presence of anti-cancer treatment via

dA =
{

dA If untreated,
dmax
A during treatment.

A(t, a) and B(t, a) satisfy the age structured PDEs

∂t A(t, a) + ∂a A(t, a) = −[dA + RA( Ā(t), B̄(t))]A(t, a)

∂t B(t, a) + ∂a B(t, a) = −[dB + RB( Ā(t), B̄(t))]B(t, a).

}
(14)

We detail the corresponding boundary and initial conditions in Appendix C.
The model (14) was fit to in vitro experimental data collected in Craig et al. (2019)

using the equivalent ODE formulation for Ā and B̄. In Craig et al. (2019), NSCLC cell
population growth was measured in untreated and treated environments. Anti-cancer
drugs are applied from day 3 onwards during the treated experiment.

The model is fit to six total calibration data points taken from both the untreated, or
control experiment, and the treated experiment. These six measurements correspond
to 4 measurements taken at time ti = 0, 2, 4, 6 days during the control experiment,
denoted by {φi }4i=1, and 2measurements taken at time ti = 4, 6 days during the treated
experiment, denoted by {φi }6i=5.We note thatφ3 andφ5 were both collected on day 4 of
the control and treated experiments, respectively, while φ4 and φ6 were both collected
on day 6 of the control and treated experiments, respectively. As anti-cancer treatment
is applied from day 3 on-wards of the treated experiment and decreases the cancer cell
population, we necessarily have φ5 � φ3 and φ6 � φ4. We denote the experimental
data used to parameterize the model by {φ0

i }6i=1. The model output corresponding to
the experimental measurements is thus

yi (θ) = N (ti , θ),
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and the objective function is the standard sum of squares error given by

Gpheno(θ, φ) =
√√√√

6∑

i=1

(
log10(N (ti , θ) − log10(φi )

)2
.

Cassidy et al. (2021) fit model parameters [rA, rB, dA = dB, dmax
A ] to treated and

untreated experimental data simultaneously for a number of cell lines. TheMLE found
by Cassidy et al. (2021) corresponds to θ∗(φ0) = [0.4827, 0.3498, 0.7025, 0.4198].

We perturbed the experimental data collected by Craig et al. (2019) with increasing
amounts of Gaussian noise.We created 10 perturbed data sets {φ j

i }6i=1 where the index
j = 1, 2, ..., 10, denotes the j-th perturbed data set and the normally distributed noise
with μ = 0, σ 2 = 1, and scaled such that

‖ log10(φ j
i ) − log10(φ

∗
i )‖ = (

0.05 + jhstep
) ‖ log10(φ0

i )‖

where hstep = 0.65/55 was chosen such that ‖ log10(φ10
i ) − log10(φ

0
i )‖ =

0.75‖ log10(φ0
i )‖.

We enforce that this randomly perturbed data satisfies φ5 � φ3 and φ6 � φ4. For
each perturbed data set {φ j

i }, we use the continuation method to calculate

	(φ j ) = θ∗(φ j−1) + D	(φ j−1)�φ + O(�φ2). (15)

The naive approach to calculate the MLE θ∗(φ j ) for updated data φ j would be
to use the MLE from the previous data, θ∗(φ j−1), as an initial starting guess for the
parameter fitting step. Hence, to illustrate the utility of our continuation technique,
we calculated 	(φ j ) using (15) and then calculated Gpheno(	(φ j ), φ j ). We also
calculated the true MLE θ∗(φ j ) using the Matlab algorithm fmincon from both
starting guesses 	(φ j ) and θ∗(φ j−1). In Fig. 3A), we show the objective function
value evaluated at the updated data φ j and three parameter sets: the naive starting
point, θ∗(φ j−1); the predicted MLE, 	(φ j ); and the true MLE, θ∗(φ j ).

The non-monotonic profile of the objective function Gpheno in Fig. 3A) is to be
expected as we are adding noise to experimental data. This noise may perturb the
existing data away from dynamics that can be well-described by the mathematical
model. Accordingly, the important information from Fig.3A) is the comparison

Gpheno(θ
∗(φi ), φi ) � Gpheno(	(φi ), φi ) < Gpheno(θ

∗(φi−1), φi ),

which demonstrates the accuracy of the continuation step (7) in driving a relative
decrease in Gpheno.

Further, in Fig. 3B), we show the cumulative number of objective function evalua-
tions when calculating θ∗(φ j ) for j = 1, 2, ..., 10 when starting the optimization from
θ∗(φ j−1) and 	(φ j ). The total number of function evaluations used is lower when
starting the optimization from the predicted MLE 	(φ j ) than when starting from
θ∗(φ j−1). More strikingly, the predicted MLE G(	(φ j ), φ j ) is comparable against

123



A Continuation Technique for Maximum Likelihood… Page 17 of 27    90 

Fig. 3 Comparison between MLE estimates obtained using the naive and continuation approaches. A
shows a comparison of the objective function value for the naive and continuation guesses as well as the
true minimal objective function value as a function of the perturbation of the experimental data from the
initial data. Here, the naive approach is shown in dashed orange, the predicted approach is shown in dashed
blue, and the true minimal objective is in solid blue. B shows a comparison of the number of objective value
evaluations required to obtain the minimal value when starting from the naive or predicted MLE with the
number of function evaluations required to calculate 	(θ i )

G(θ∗(φ j , φ j )) in Fig. 3A) and there is notable computational benefit to only calculat-
ing the predictedMLE	(φ j ) rather than re-fitting the parameters. Taken together, the
results shown in Fig. 3 demonstrate the accuracy and computation efficiency gained
by calculating 	(φ j ).

We next utilize the continuation framework to identify additional time points to
increase confidence in model parameters. We focus on the treated environment and
consider additional time points ts,i = 3.1, 3.2, 3.3, 3.4, 3.5, 5, 7 days with corre-
sponding simulated measurements {φi,s}7i=1 = N (ts,i ). We perturb each of these
simulated measurements by a fixed amount, �φ = ±0.3N (3.1), to give 14 addi-
tional, perturbed measurements. We appended each of these 14 measurements to the
experimental data and predicted the MLE to these appended data sets.

We calculated the relative change in the MLE for each model parameter and each
of the 14 appended data sets. Each of the simulated data point occurs following the
beginning of therapy, although it would be simple to test other additional experimental
measurements. The immediate decrease observed in N (t) following the beginning of
treatment is due to the death of sensitive cells following treatment administration and
controlled by the parameter dmax

A . From the biological interpretation of the parameters,
we expect dmax

A to be highly sensitive to perturbations in these data points.
As expected, dmax

A was the most sensitive model parameter to perturbations of the
simulated data. We show the percent relative change in dmax

a from the unperturbed
data in Fig. 4B. We plot the relative change of the other model parameters for the
same perturbations in Appendix C. As expected, the maximal death rate of sensitive
cells increased when the simulated data point was decreased from the true value and
decreased when the simulated data point was increased.
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Fig. 4 Evaluating additional time points to identify dmax
A in an in vitro model of NSCLC. A shows the a

selection of predicted model dynamics when fit to experimental data with a single additional time point
φ∗
i,s that is perturbed by a �φ from the true simulated value. For figure clarity, the model trajectories

corresponding to the perturbation of {φ4,s } are shown. Here, the solid line corresponds to the control
experiment while the results of the treated experiment are plotted with a dashed line. B shows a tornado
plot of the predicted relative change in the best-fit parameter dmax

A for each additional simulated data point

{φi,s }7i=1 where the perturbation�φ > 0. The left side of the tornado plot, in red, shows the relative change
when the perturbed value φi,s = φ∗

i,s + �φ is larger than the simulated value φ∗
i,s . The right-hand side, in

green, shows the relative change in dmax
a when φi,s = φ∗

i,s − �φ is smaller than the simulated value φ∗
i,s

The treatment sensitive population rapidly shrinks during therapy. The stabiliza-
tion and rebound of the population during therapy is due to the expansion of the drug
resistant population. This stabilization occurs once the drug sensitive population has
been maximally suppressed which due to the drug effect. The most informative simu-
lated data point, as measured by the magnitude of the relative change in the parameter
dmax
A , was at time ti,s = 3.4. At t = 3.4, drug sensitive cells are no longer dominant

due to drug pressure. The depth of the population response to treatment, as measured
by N (3.4), is thus highly sensitive to death rate of these drug sensitive cells under
treatment. However, expecting an additional experimental measurement to be made
at precisely 3.4 days is unrealistic due to experimental constraints. However, Fig. 4B
shows that measurements at ts,3 = 3.3 and ts,3 = 3.5 would also strongly inform
dmax
A . Consequently, our conclusion that ts,4 = 3.4 is the most informative time for an

additional experimental measurement is robust to the fact that an experimental mea-
surement cannot be made at precisely 3.4 days. Our results indicate that including an
additional experimental measurement in the 4.8h window between 3.3−3.5 days will
strongly inform dmax

A , which is experimentally feasible.
In Fig. 4A, we show the simulated experimental measurements and predictedmodel

dynamics for themost informative time point. The predictedmodel simulations capture
the perturbed data point while retaining good fits to the true experimental data.
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4 Discussion

Parameter fitting is crucial stepwhen usingmathematicalmodels to predict novel treat-
ment strategies, extrapolate from clinical trials, identify new drug targets or schedules,
or propose non-pharmaceutical interventions (Brady and Enderling 2019; Cassidy
et al. 2020; Cassidy and Craig 2019). However, parameter fitting can be difficult and
computationally expensive. A large variety of fitting techniques have therefore been
developed to calibrate model predictions against data (Toni et al. 2009; Horbelt et al.
2002; Kreutz et al. 2013; Lauß et al. 2018). Moreover, mathematical modeling is
increasingly applied to understand emerging data and make real-time predictions. In
this case, as new data emerges, the model parameters must be refit with potential com-
putational cost. Here, we developed a continuation type technique to quantify how
updates to experimental data will impact the MLE and predict the evolution of the
MLE as a function of the experimental data used to calibrate the model.

We used the IFT to calculate the trajectory of theMLE through parameter space. As
the IFT only guarantees the existence of a differentiable trajectory 	 through calibra-
tion data–parameter space, we utilized the first order Taylor expansion	 to extrapolate
the evolution of the MLE due to changes in experimental data. We showed how this
calculation is intrinsically linked to local sensitivity analysis and the curvature of the
objective function. In two examples drawn from mathematical biology, we showed
how this continuation technique can predict acceptable model fits to experimental
data while significantly reducing computational overhead. In fact, in most applica-
tions, our continuation technique requires no dedicated computational overhead as
the Hessian of the objective function is calculated at each step when using common
optimization algorithms, such as fmincon (MATLAB 2017), and local sensitivity
analysis is a standard step in model fitting.

Perhaps more importantly that gains in computational efficiency, our approach
explicitly identifies relationships between individual experimental measurements and
parameter estimates. Our approach addresses similar questions to local sensitivity
analysis from a distinct perspective. Rather than using simulations to understand how
small perturbations in model parameters from the best-fit parameters change model
outputs as in standard sensitivity analysis, we quantify how changes in the training data
impact the best-fit parameters and measure the sensitivity of the best-fit parameters
to variations in this calibration data. As we showed in Sect. 2, this perspective can be
used to suggest additional experimentalmeasurements to increase confidence inmodel
parameterization. Further, we showed how to use D	 to understand which experi-
mental measurements are most informative for model parameterizations and identify
redundant measurements that do not provide additional information for parameter
estimation.

Our technique is a type of local analysis that explores the functional dependence
of the MLE on experimental data starting from a pre-identified MLE. Specifically,
we assume that the Hessian of the objective function is invertible at the MLE and
our results are necessarily local in parameter space as we are extrapolating from a
pre-identified MLE. Nevertheless, our examples show the utility of our continuation
approach for even large perturbations of the experimental data.
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Despite these limitations, we developed a continuation-type technique to predict the
functional dependence of aMLE on the experimental data used to train amathematical
model. While we have focused on applications in mathematical biology, our approach
is immediately portable to other domains. As our method is independent of the number
of data points, our approach could be particularly useful in big-data applications.
Ultimately, our results offer a unified approach to quantify the relationship between
training data and best-fit model parameters and to leverage this understanding to
suggest additional experiments to increase confidence in model parameterization.

Data access statement The code and data underlying the results in this manuscript are available at
https://github.com/ttcassid/MLE_Continuation.
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Appendix A: Relationships Between MLE Continuation and Exisiting
Techniques

A.1 Parameter Identifiability

In the main text, we have explicitly written the MLE estimator as a function of
the experimental data used to fit a model. This approach is intrinsically related to
parameter identifability analysis. Identifiability analysis attempts to determine if avail-
able experimental observations are capable to uniquely determine model parameters.
Accordingly, the practical identifiability of amathematicalmodel depends on available
experimental data. The profile likelihood, given by

PLEθi (c) = min
θi=c,θ∈Rp

G(θ, φ),

and introduced by Raue et al. (2009), is a projection of the likelihood function onto
the model parameter θi = c. The profile likelihood illustrates the behaviour of the
likelihood function as the parameter θi is fixed away from the optimal value θ∗

i . The
shape of PLEθi (c) illustrates the confidence interval of the parameter estimate θ∗

i for
given experimental data. Formally, Raue et al. (2009) define these confidence intervals
by

C.I.(θi , α) = {c|PLEθi (c) − PLEθi (θ
∗
i ) < �α}

where�α = χ2(α, d f ) is the χ2 distribution at significance level α and d f degrees of
freedom (Raue et al. 2009). A parameter is practically identifiable in the sense of Raue
et al. (2009) with confidence level 1 − α if C.I.(θi , α) is bounded in parameter space
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for given experimental data. Conversely, a non-identifiable parameter has a profile
likelihood that does not increase past the threshold �α .

The profile likelihood is intrinsically linked to the available experimental data φi .
We view the PLE as a function of both the parameter θi and the experimental data φ

PLEθi (c, φ) = min
θi=c,θ∈Rp

G(θ, φ).

For practically unidentifiable models, it is natural to ask what perturbations to the
experimental data could render the model practically identifiable. Raue et al. (2009)
use the profile likelihood of a model parameter to suggest additional experiments to
resolve practical non-identifiability. They simulate the model for parameter values
along PLEθi to suggest additional experimental measurements at times ts,i , where
ts,i represents the i-th simulated measurement time. In our framework, we define

θ∗|θi=c(φ) = argminθi=c,θ∈RpG(θ, φ),

so that

PLEθi (c, φ) = G(θ∗|θi=c(φ), φ).

We note that the definition of θ∗|θi=c(φ) is precisely that of θ∗(φ) with the added
constraint that θi = c. We can calculate Dφθ∗|θi=c as a function of the experimental
data φ in precisely the same manner as described previously. Consequently, our con-
tinuation approach can complement the experimental design approach suggested by
Raue et al. (2009) by incorporating the sensitivity of the MLE to perturbations in the
(simulated or experimental) calibration data.

A.2 Sensitivity analysis

Local sensitivity analysis quantifies how small perturbations of the best-fit parameters
impact model output (Zi 2011). A standard approach to local sensitivity analysis is
using the finite difference approximation of

Sn(ti ) = ∂ y(θ)

∂θn
= h(ti , θ + �θn) − h(ti , θ − �θn)

2�θn
+ O (�θn)

to identify which parameter values strongly impact model projections. When |Sn|
is small, the model output is considered to be insensitive to θn . The n-th row of
D2

θ,φG(	(φ), φ) is precisely Sn(ti ) for ti corresponding to calibration data measure-
ments. When implementing (7), the magnitude of the continuation step D	(φ)�φ in
the direction of θn is scaled by Sn . This scaling encodes the local sensitivity of model
predictions to variations in parameters in the prediction of 	(φ). Consequently, our
continuation method naturally includes the information gained from local sensitivity
analysis.
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Fig. 5 Absolute error between the predicted model parameter obtained using the continuation method and
best fit parameter obtained by fitting the data for the viral dynamics shown example in Fig. 1. Each panel
shows the absolute error for each model parameter plotted against the iteration number

Appendix B: Viral Dynamics Model

In Fig. 5, we plot the absolute error between the model parameters obtained by our
continuation method alongside the best fit parameters represented in Fig. 5. Here, we
fit the natural log of the viral dynamics parameters. The predicted parameter value is
identical to the MLE for some, although not all, iterations.

Appendix C: Structured PDEModel of Tumour Dynamics

Here, we give additional details regarding the phenotype PDE in (14). The proofs of
these results and more information can be found in Cassidy et al. (2021).

C.1 Model Description

In Sect. 2, we considered a structured PDE model of cancer phenotypic plasticity
developed in Cassidy et al. (2021). The PDE model tracks the age density of drug
sensitive and drug tolerant cells through (14) where the variable a in (14) corresponds
to chronological cellular age. The left-hand side of (14) is strictly negative, as is typical
in age-structured populations models that distinguish between the loss of mother cells
due to mitosis and the appearance of daughter cells with age a = 0 Perthame (2007);
Cassidy et al. (2019). Specifically, cellular reproduction is included in the Cassidy
et al. (2021) model via the boundary condition for A(t, 0) and B(t, 0). Cassidy et al.
(2021) assumed that cells can change phenotype at birth and that older mother cells
are more likely to produce daughter cells that change phenotype Arora et al. (2017);
Uetake and Sluder (2010). Then, the boundary condition of (14) is given by

A(t, 0) = 2
∫ ∞

0

[
RA( Ā(t), B̄(t))βAA(a)A(t, a)

+ RB( Ā(t), B̄(t))βBA(a)B(t, a)
]
da

B(t, 0) = 2
∫ ∞

0

[
RA( Ā(t), B̄(t))βAB(a)A(t, a)

+RB( Ā(t), B̄(t))βBB(a)B(t, a)
]
da.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
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where

βi i (a) = P∗
i i + (Pmax

ii − P∗
i i ) exp [−σi a]

and βi j (a) = 1−βi i (a). These terms give the probability of a parent cell of phenotype
i and age a will produce a daughter cell with phenotype j . We refer to Cassidy et al.
(2021) for a discussion of the functional forms and parameterization of βi j .

As mentioned in the Main Text, Cassidy et al. (2021) considered an Allee effect in
the growth rate of drug tolerant cells. The function fn( Ā(t), B̄(t)) is given by

fn( Ā(t), B̄(t)) = 1 +
(
rA − rB

rB

) (
B̄(t)n

Ā(t)n + B̄(t)n

)

= 1 +
(
rA − rB

rB

) (
θ(t)n

1 + θ(t)n

)
= fn(θ(t)) for θ(t) = B̄(t)/ Ā(t).

When fitting (14) to data, we are primarily interested in the total number of cells,
rather than their age density. Consequently, we focus on Ā(t) and B̄(t). Cassidy et al.
(2021) derived the following system of ODEs for these quantities

d

dt
Ā(t) = −[RA( Ā(t), B̄(t)) + dA] Ā(t)

+ 2RA( Ā(t), B̄(t))NAA(t) + 2RB( Ā(t), B̄(t))
[
B̄(t) − NBB(t)

]

d

dt
B̄(t) = −[RB( Ā(t), B̄(t) + dB ]B̄(t) + 2RA( Ā(t), B̄(t))

(
Ā(t) − NAA(t)

)

+ 2RB( Ā(t), B̄(t))NBB(t)

d

dt
NAA(t) = Pmax

AA

[
2RA( Ā(t), B̄(t))NAA(t) + 2RB( Ā(t), B̄(t))

(
B̄(t) − NBB(t)

)]

− (
RA( Ā(t), B̄(t)) + dA

)
NAA(t) + σA

(
P∗
A Ā(t) − NAA(t)

)

d

dt
NBB(t) = Pmax

BB

[
2RA( Ā(t), B̄(t))

(
Ā(t) − NAA(t)

) + 2RB( Ā(t), B̄(t))NBB(t)
]

− (
RB( Ā(t), B̄(t)) + dB

)
NBB(t) − σB NBB(t) + σB P

∗
B B̄(t).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

We use the system ODEs in (16) to simulate the model when performing MLE con-
tinuation. We use the initial conditions derived by Cassidy et al. (2021) to equip the
initial value problem. For a population in stable exponential growth with growth rate
λp, we have

Ā(0) = A0

rA + dA + λp
and B̄(0) = B0

rB + dB + λp
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Fig. 6 Absolute error between the predicted model parameter obtained using the continuation method and
best fit parameter obtained by fitting the data for the phenotype model example shown in Fig. 3. Each panel
shows the absolute error for each model parameter plotted against the iteration number

where A0 and B0 are linked to the initial age distribution of drug-sensitive and drug-
tolerant cells. It follows that

NAA(0) =
∫ ∞

0

(
P∗
AA + (Pmax

AA − P∗
AA)e−σAa

)
A0 exp(−(rA + dA + λp)a)da

= A0

(
P∗
AA

rA + dA + λp
+ Pmax

AA − P∗
AA

rA + dA + λp + σA

)
,

and

NBB(0) = B0

(
P∗
BB

rB + dB + λp
+ Pmax

BB − P∗
BB

rB + dB + λp + σB

)
.

C.2 Comparison Between Predicted and TrueMLE

In Fig. 3, we compared the objective value function corresponding to the naive, pre-
dicted, and fit MLE. Those results demonstrate that the predicted MLE produces
similar model trajectories to the fit MLE. Here, we show a comparison between
parameter estimates of the true and predicted MLE in Fig. 6. We note that, for some
iterations, the predicted parameter value was identical to the parameter value found
through optimization.

C.3 Experimental Design Effects on Other Model Parameters

As mentioned in the main text, the death rate of drug sensitive cells was the most sen-
sitive parameter to perturbations of the simulated data. However, the other parameters
were also predicted to change in response to perturbations of the simulated data. We
show the relative changes for the other model parameters at each of the 7 simulated
data points {φ}7i=1 in Fig. 7. Unsurprisingly from the biological interpretation of the
parameters, dmax

A is the most sensitive to the perturbed simulated data. However, there
is a small increase in the growth rate of drug-tolerant cells, rB , when the simulated
data is perturbed by a negative amount. This can be understood by a fitness-increase
of the drug-tolerant cells and thus stronger competition between the drug-tolerant and
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Fig. 7 Tornado plots of the predicted relative change in the best-fit parameters for each additional simulated
data point. Each panel shows the predicted change to the model parameters ra , rb, da and dmax

a for the
perturbed data points {φi,s }7i=1 where the perturbation �φi,s > 0.In each tornado plot, the red bar shows
the relative change in each model parameter when the perturbed value φi,s = φ∗

i,s + �φ is larger than

the simulated value φ∗
i,s . The green bar shows the relative change in each model parameter when φi,s =

φ∗
i,s − �φ is smaller than the simulated value φ∗

i,s

drug-sensitive cells. This competition decreases the population size prior to treatment
which allows for a better fit to the perturbed data point post-treatment despite a larger
resistant population.
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