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Abstract

Artificial intelligence (AI) andmachine learning (ML) approaches are increasingly being

used in dementia research. However, several methodological challenges exist that

may limit the insights we can obtain from high-dimensional data and our ability to

translate these findings into improved patient outcomes. To improve reproducibility

and replicability, researchers should make their well-documented code and modeling

pipelines openly available. Data should also be shared where appropriate. To enhance

the acceptability of models and AI-enabled systems to users, researchers should
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prioritize interpretable methods that provide insights into how decisions are gen-

erated. Models should be developed using multiple, diverse datasets to improve

robustness, generalizability, and reduce potentially harmful bias. To improve clar-

ity and reproducibility, researchers should adhere to reporting guidelines that are

co-produced with multiple stakeholders. If these methodological challenges are over-

come, AI and ML hold enormous promise for changing the landscape of dementia

research and care.

KEYWORDS

artificial intelligence, classification, clinical utility, deep learning, dementia, generalizability, inter-

pretability, machine learning, methods optimization, regression, replicability, semi-supervised

learning, supervised learning, transferability, unsupervised learning

HIGHLIGHTS

∙ Machine learning (ML) can improve diagnosis, prevention, and management of

dementia.

∙ Inadequate reporting ofML procedures affects reproduction/replication of results.

∙ MLmodels built on unrepresentative datasets do not generalize to new datasets.

∙ Obligatorymetrics for certainmodel structures anduse caseshavenotbeendefined.

∙ Interpretability and trust inML predictions are barriers to clinical translation.

1 INTRODUCTION

Dementia is an age-related condition with increasing global preva-

lence and an annual global cost estimated at ≈ US$1 trillion.1 The

timely detection of dementia is crucial in enabling effective disease

management and providing optimal health care.2 However, the com-

plexity of underlying pathologies combined with considerable clinical

heterogeneity present unique challenges to the development of effec-

tive treatments andearly diagnostic tools for dementia. In recent years,

developments in high-performance computing and machine learning

(ML) algorithms have shown promise in improving dementia detection,

monitoring, and management.3–5 ML is a subset of artificial intelli-

gence (AI) focused on the training of algorithms to perform tasks

by learning patterns from data. The use of ML methods has enabled

analysis of large volumes of high-dimensional data, integration of var-

ious data sources (i.e., clinical, imaging, genetic), and identification

of new disease associations and disease subtypes not previously dis-

covered with traditional statistical approaches.6 The application of

ML algorithms has enabled the development of more flexible and

scalable models that can advance our understanding of complex dis-

ease pathways with minimal human intervention. In this review, we

provide a summary of ML applications in dementia research, focus-

ing on Alzheimer’s disease (AD) and related dementias. Our review

focuses on the ML techniques being applied, the data they inte-

grate, and their intended use, and highlights major opportunities and

challenges in translating ML technologies from research to clinical

practice.

This review is the final article in a special issue on “Artificial Intel-

ligence for Alzheimer’s Disease and Related Dementias” published in

Alzheimer’s & Dementia. This series of eight articles provides a com-

prehensive overview of current applications of AI to dementia, and

futureopportunities for innovation to accelerate research. Each review

focuses on a different area of dementia research, including experi-

mental models,7 drug discovery and trials optimization,8 genetics and

omics,9 biomarkers,10 neuroimaging,11 prevention,12 applied models

and digital health,13 and finally, this article onmethods optimization.

2 TYPES OF ML TECHNIQUES USED IN

DEMENTIA RESEARCH

ML methods that have been applied in dementia research can be

divided broadly into two categories: (1) traditional ML and (2)

deep learning (DL). While traditional ML approaches require several

sequential steps to identify relationships in data, specifically data

pre-processing, feature extraction, and stable feature selection, DL

techniques are inspired by the way biological nervous systems process

information and hence, can learn directly from the input without the

need for human intervention. Both traditional ML and DL algorithms

can fall into one of four learning types: supervised, unsupervised,

semi-supervised, and reinforcement learning. In this section, we briefly

discuss each type of learning technique and the scope of their appli-

cability to dementia research, except the use of reinforcement learning

for dementia,which remains a relatively unexplored researcharea.14,15
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BUCHOLC ET AL. 3

2.1 Traditional machine learning

2.1.1 Supervised learning

Most ML approaches use supervised learning, which is a subcategory

of ML that uses labeled data to learn a target function that best maps

input variables to an output.16,17 Supervised learning is commonly sep-

arated into classification and regression, each suited for specific types

of problemswith distinct output types.

Classification approaches

Classification models seek to determine which of a set of predefined

groups/categories an instance belongs to, given a set of labeled exam-

ples. In the context of dementia, classification approaches have been

developed for disease detection, prognosis, and management.3,5 Many

of themhave beenderived from logistic regression,18–20 random forest

(RFclass),20,21 naïve Bayes,22,23 K-nearest neighbor (KNNclass),23,24

decision tree,20 and support vector machine (SVM)20,23–25

algorithms.

Comparing these approaches, the most appropriate model is

problem-dependent, and will be influenced by the type of data; the

data collectionprocedure and its underlyingdistribution; the classifica-

tion task itself (e.g.,multi-class dementia statusprediction); the training

andoptimizationprocedurewhich, inmost cases, involveshuman inter-

vention; and a host of other factors.24 This is further complicated by

various methods of model evaluation which, depending on the relative

importance of different evaluation metrics, can lead to differing con-

clusions onwhich approach is optimal. Such evaluationmetrics include:

accuracy (the number of correct predictions made by a model in rela-

tion to the total number of predictions made), sensitivity (the ability

to predict the condition when the condition is present), specificity (the

ability to predict the absence of the condition when the condition is

not present), and the classifier discriminative power (as estimated from

the area under the receiver operating characteristic [ROC] curve). In

fact, different studies using different data sets have failed to generate

onemodel that performed best in all applications.24 For example, while

RFclass has shown advantages with non-linearly correlated data,21,26

SVM has demonstrated additional utility when there is a small number

of samples and high number of features.20,27

Classification models in dementia have been built using many

different amounts and types of input data.28,29 Single-modality ML

frameworks have been developed using cognitive and functional

assessments (CFA),29 magnetic resonance imaging (MRI),30 positron

emission tomography (PET),31 cerebrospinal fluid (CSF) biomarkers,32

and genomic data,33 whilemore complexMLmodels use a combination

of data inputs.34 Evidence shows that classification approaches incor-

porating multiple data modalities generally lead to improvements in

model performance.24,35 However, the individual contributions of data

types to the overall performance ofmulti-modalityML frameworks are

often not assessed, raising the question about the trade-off between

performance and cost effectiveness or efficiency of the proposed

solutions.

RESEARCH INCONTEXT

1. Systematic review: The development of machine learn-

ing (ML) models for dementia diagnostics, prevention,

and monitoring is well documented, and their potential

to transform clinical practice, experimental medicine, and

clinical trial design has been highlighted in numerous

studies. However, few models have been deployed clini-

cally. While researchers search for the best ML solution,

increased attention needs to be given to methodological

challenges related to their development and adoption in

clinical practice.

2. Interpretation: The implementation ofMLmodels in clin-

ical settings is currently a high-risk proposition due to

their over-reliance on a single (often unrepresentative)

data source, limited external validation, and an insuf-

ficient understanding of both the mechanisms driving

model predictions and clinical utility.

3. Future directions: To overcome barriers to clinical trans-

lation, researchers need to ensure ML models are inter-

pretable, externally validated, and assessed for risk of

bias. The prediction modeling pipeline should be made

openly available to facilitate replicability.

Regression approaches

Akin to classification, regressionaims to learn the relationshipbetween

a dependent variable and several independent variables. Several

regression approaches have been applied in dementia studies.36–38

The simplest and most frequently used form is linear regression in

which a continuous dependent variable is regressed onto independent

variables, a process during which coefficients in a linear model are

estimated. Linear regression has been used nearly universally across

different topics in dementia research, including to predict disease

outcomes, estimate time todementia, and identify biomarkers and sub-

type dementia phenotypes.39,40 These studies span varied modalities

including clinical and phenotypic information,41 molecular measure-

ments in peripheral tissues,42 neuroimaging,43 aswell asmultiple types

of omic analyses in post mortem brains.44

Although linear regression is themostwidely used regressionmodel

in dementia, the construction of a linear regression incorporating

a large number of predictor variables often results in poor gener-

alization performance. To ease this problem, different penalization

functions have been proposed, each imposing different constraints.

In the dementia context, penalized approaches have been shown to

produce more stable results for correlated data and data for which

the number of predictors is much larger than the sample size.45

Ridge regression performed especially well in the presence of high

collinearity in linguistic data.46 Lasso regression has shown some suc-

cess in addressing high-dimensional AD data, especially in the context

of genetic risk detection,47 biomarker discovery,48 and analysis of
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4 BUCHOLC ET AL.

neuroimaging-based endophenotypes.49 Last, elastic net regression,

which effectively combines lasso and ridge regression, has been shown

to be a good compromise for variable selection and reduction of over-

fitting, while allowing for fast computational solutions and scaling to

even more features than typical lasso regression. Elastic net regres-

sion has been used to study functional brain connectivity networks in

the AD brain,50 derive epigenetic biomarkers of Parkinson’s disease

(PD),51 and classify AD and frontotemporal dementia (FTD) based on

anatomical and functional imaging data.52

Linear regression models are empirical models that only describe

the observed data, without a true understanding of the underlying

mechanism that generates the data. Non-linear regression approaches,

in which the function capturing the relationship between dependent

and independent variables is more complex, are typically based on the

underlyingmechanisms that generate the data and, therefore, produce

predictions that can be more reliable than linear models. In dementia

research, linear regression models have often been ineffective in cap-

turing non-linear relationships between biomarkers (e.g., neuroimag-

ing data) and cognitive measures, in particular when a small number

of observations and a large number of features were used for model

training.36 On the other hand, non-parametric kernel-based methods,

a non-linear approach, have achieved relatively robust estimates of

the regression function.38 A possible explanation is that non-linear

models are more powerful and better capture the complex relation-

ships between model input and output. As such, non-linear models

have been successfully implemented to identify potential descriptors

for the decline of cognition using both single modality andmultimodal-

ity data.38 Moreover, non-parametric methods for the development

of predictive models, including support vector regression (SVR), KNN

regression (kNNreg), and RF regression (RFreg) have been used to

differentiate between stages of dementia severity and improve risk

prediction of AD.24

Supervised ML approaches are one of the most commonly imple-

mented methods in dementia research.16,17 However, both classifi-

cation and regression often require a large amount of labeled data

(especiallywhen relationships are complex). Thismakes them challeng-

ing to apply when the number of cases is small, for example, when

investigating rare dementia subtypes.

2.1.2 Unsupervised learning

Unlike supervised algorithms, unsupervised algorithms search for pre-

viously unknown patterns within unlabeled data sets. As such, they

have particular utility in dementia studies in which the labels (e.g.,

clinical diagnoses) are either unavailable53 or uncertain.54

Unsupervised learning comprises a wide variety of approaches,

of which mixed-effects models,55 item response theory,56 Gaussian

processes,57 kernel density estimation,58 and mixture models59,60 are

a few examples. Broadly, these models have been applied to iden-

tify disease trajectories or subtypes55,60,61 or produce a progression

risk score.56 Disease progression models have been used to model

cognitive trajectories, predict decline, and provide pathophysiologi-

cal insights.62 One such model, the event-based model,59 builds upon

the hypothetical cascade model to obtain a sequence of events that

describe one or more subtypes of disease progression.60,63

The largest category of unsupervised learning methods is clus-

ter analysis, in which the aim is to find distinct groups within data,

contingent on a suitable measure of similarity. Traditional clustering

approaches, such as hierarchical clustering and density-based spatial

clustering of applications with noise (DBSCAN), have been used to

identify groups with, for example, different rates of atrophy64 or CSF

biomarker profiles.65 These methods do not, however, account for the

temporal component of dementia66 and are difficult to evaluate due to

the lack of any ground truth.67

As with supervised algorithms, the increasing richness of biologi-

cal data across multiple modalities (e.g., imaging, biomarkers, clinical,

and genetics) provides further opportunities for unsupervised learn-

ing, with the potential to uncover complex relationships and elucidate

the underlying pathophysiological mechanisms.66,68 This, and continu-

ous methodological improvements for incorporating multi-modal data

in a single model, increases the utility of unsupervised learning in

extracting patterns from data. Recent applications include identifying

a differential treatment response between data-driven subgroups61

and reducing heterogeneity in clinical trials.56,68 Nonetheless, the

increaseddifficulty ofmodel validation in unsupervised learning neces-

sitates further work before clinical adoption becomes an option.

2.1.3 Semi-supervised learning

Semi-supervised learning falls between supervised and unsupervised

ML, using both labeled and unlabeled data. It is typically used in sce-

narios inwhich there is a large amount of data available, yet only a small

proportion of samples have been labeled.

Semi-supervised algorithms use the information from the unlabeled

data points to improve the performance of amodel trained on the small

amount of labeled data.69 Therefore, these approaches are most use-

ful in applications in which labeled data are limited. Different types

of semi-supervised algorithms have been used for the classification

of AD and mild cognitive impairment (MCI) with datasets of different

modalities, including brain imaging,30,70-72 among others.73

There are many examples from dementia research that demon-

strate the superiority of semi-supervised algorithms for diagnosis or

prognosis, relative to supervised algorithms based upon more limited

data. Batmanghelich et al.71 presented a framework for dimensional-

ity reduction that showed a semi-supervised algorithm outperformed

supervised learning methods, for both classifier accuracy and area

under the receiver operating characteristic curve (AUC). Filipovych

and Davatzikos72 confirmed that in some scenarios, for example,

in the absence of long-term follow-up evaluations, semi-supervised

techniques may be preferable to identify individuals with progres-

sive disorders, such as those at risk of conversion from MCI to AD.

The high performance of semi-supervised algorithms in predicting

MCI to AD conversion was also demonstrated in Moradi et al.30 An

et al.70 developed a semi-supervised feature selection framework for
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BUCHOLC ET AL. 5

diagnostic purposes using both imaging and genetic data, achieving

superior performance (as defined by AUC) in different dementia pre-

diction classification tasks compared to an SVM model using only

labeled data. Furthermore, experimental results of semi-supervised

distancemetric learningwith label propagation (SRF-LP) showed supe-

rior accuracy compared to standard supervised learning algorithms,

including RF, SVM, and AdaBoost, with an increase in the performance

gapwhen the number of training samples was small.73

Given the increasing amount of data available and the inherent

uncertainty around labels (i.e., clinical diagnosis) in dementia research,

semi-supervised learning provides the opportunity to combine pre-

diction of clinically relevant features with the utility of unsupervised

learning, making the most of the available data. New techniques

for semi-supervised learning are being developed, primarily centered

around extending deep neural networks.69 These methods remain

underused in dementia research, though with researchers showing

an increasing interest in DL algorithms, this is likely to change in the

future.

2.2 Deep learning

Deep learning is a subset of ML inspired by the structure and informa-

tion processing of biological neurons, which are organized into stacked

layers to form a deep neural network. DL does not require any human-

designed rules to operate; the main advantage of DL over traditional

ML approaches is that the time-consuming steps of pre-processing and

feature engineering of datasets are minimal and less critical because

DL models are able to obtain new representations of data (e.g., com-

binations of biomarkers, DNA sequencemotifs) via multiple non-linear

transformations.74 DL, unlike traditional ML algorithms, can produce

extremely high-level data representations from enormous amounts of

rawdata. Success ofDL in domains such as computer vision and natural

language processing (NLP), an increasing availability of large datasets,

and improvements in computational power have resulted in DL algo-

rithms becoming more popular with dementia researchers in recent

years.

2.2.1 Supervised learning

Supervised DL applications in dementia research have involved convo-

lutional neural networks (CNNs),75,76 deep belief networks (DBNs),77

graph convolutional networks (GCNs),78 and recurrent neural net-

works (RNNs).79,80

CNNs are typically applied to medical imaging data because they

can capture multi-scale spatial information.81 However, recent studies

extended the use of CNNs by integrating multi-modal data.76 Spasov

et al.76 built a CNN model combining MRI, neuropsychological, demo-

graphic, and apolipoprotein E data that achieved an AUC of 0.93

when identifying subjects with MCI that converted to AD (vs. stable

MCI) over 3 years and an AUC of 1 when differentiating between AD

patients and control subjects. These results demonstrate that DLmod-

els incorporating multiple data modalities may become vital to fully

use thewealth of information available for dementia research. Further-

more, CNN-related models have recently found increasing application

in NLP tasks for AD detection, including sentence classification, search

query retrieval, and semantic parsing.82

RNNs are typically used on data that is sequential or time depen-

dent in nature because their hidden state component (i.e., “memory

cell”) allows previous inputs to influence a given output. For example,

Alam et al.79 applied a long short-termmemory (LSTM)–based RNN to

predict onset of physical agitation episodes in patients with dementia,

usingmotion sequences obtained fromsmartwatches. The LSTM–RNN

model achieved a higher F1-score (0.85) than traditional ML methods,

such as KNNclass (0.69), SVM (0.67), and AdaBoost (0.71), highlighting

the potential of using suchmodels in sensing-basedbehavior inference.

In speech-based AD detection, DLmodel architectures including RNN,

LSTM, gated recurrent unit, and bidirectional LSTM, have been used to

extract timing information from audio data.82

DBNs have been used to explore dementia-related factors using

genetic data77 while GCNs have been applied primarily to neu-

roimaging data to capture brain network information for dementia

classification.78

2.2.2 Unsupervised learning

Unsupervised DL algorithms, such as autoencoders and variational

autoencoders, allow for the automatic learning of data representa-

tions without the need for labeled samples. In dementia research,

these methods have been effectively used for tasks such as anomaly

detection, feature extraction, and patient clustering.83 Bertini et al.84

used a special type of autoencoder, auDeep, that allowed for unsuper-

vised feature extraction from audio data to classify AD patients using

their spontaneous spoken English. In Ithapu et al.,85 an autoencoder

was developed to take, as input, multi-modal imaging markers (fluo-

rodeoxyglucose PET [FDG PET], florbetapir PET, and structural MRI),

for predicting future decline to AD. The output of the model was a

novel trial enrichment criterion, known as the random denoising AE

marker (rDAm), for identifying patients that aremost likely to progress

from MCI to AD. The authors suggested that the use of the rDAm

model could significantly improve our ability to design cost-effective

AD trials, with smaller sample sizes and sufficient statistical power.

2.2.3 Semi-supervised learning

Semi-supervised DL is less frequently used in dementia research com-

pared to supervised or unsupervised DL techniques. So far, it has been

applied to distinguish dementia from non-dementia patients using

clock drawing data86 and to determine the AD severity based on

neuropsychological assessments.87

There are several key challenges that limit the translation of DL

methods into clinical practice. DL algorithms require a large amount of

data. Data processing can be time consuming and costly, and there is
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6 BUCHOLC ET AL.

also a lack of sufficient high-quality data, especially in multi-modality

studies.88 DL models are often referred to as “black-box” models due

to non-linear feature transformations that emerge from multiple hid-

den layers, thereby reducing their interpretability compared to other

ML approaches. This lack of interpretability can lead to a lack of trust

in themodels, which can act as a barrier to implementation (see Section

4.2 for more detail).

3 GOALS OF THE STUDIES IMPLEMENTING

MACHINE LEARNING APPROACHES FOR

DEMENTIA RESEARCH

In dementia research, the goal of using ML approaches is typically to

enhance clinical practice; identify new drugs and genetic targets; and

aid the design of, and recruitment to, clinical trials. Due to the complex

nature of dementia and the increasing size and complexity of datasets

available traditional statistical methods are often insufficient. We dis-

cuss here areas of dementia research inwhichML approaches have the

potential to be transformative.

3.1 Machine learning in clinical practice

In the context of clinical practice, ML has been applied to assessment

of dementia risk, clinical diagnosis, prognosis, and care.3 Of these,

diagnostic studies have primarily focused on differentiating between

stages of cognitive impairment or dementia subtypes.24,89 Many have

usedneuroimagingdataas input,mainlyT1-weightedMRIand/orFDG-

PET. These data have been used to develop ML models for identifying

the severity of cognitive impairment (e.g., classify normal controls vs.

MCI vs. dementia/AD) and differentiating between dementia subtypes

(e.g., AD vs. FTD).90 More recently, studies have emerged that use a

multi-modal framework to integrate heterogeneous data types such

as demographic, neuropsychological, clinical, genetic, CSF, or other

omics data.24 Novel ML approaches, such as a kernel-based SVM clas-

sifier with a truncated singular value decomposition dimensionality

reduction technique, have emerged tomore effectively handle the het-

erogeneity of suchdata types and the additional complexity introduced

by considering their multi-scale interactions.91 Multi-modal data inte-

gration can be a very useful strategy for early detection of dementia

status or susceptibility, more robustly identifying disease targets, and

identifying causal links among different biomarkers, symptoms, and

clinical subtypes.

In the absence of established disease-modifying treatments for AD

and other neurodegenerative diseases, the bulk ofML prognostic stud-

ies have focused on predicting the conversion from MCI to dementia

using MRI,92 electroencephalography (EEG),93 magnetoencephalog-

raphy (MEG),93 neuropsychological measures,94 genetic data,95 or

combinations of modality types.96 A recent systematic review of stud-

ies predicting MCI conversion to dementia included results of 234

experiments from111 articles.97 The authors found that, despite some

methodological issues, incorporating domain-targeted cognitive mea-

sures and 18F-FDG PET data into the model results in its superior

predictive performance over models built without these data types.

Furthermore, the addition of other feature types does not significantly

improve performance of ML models compared to using cognitive or

FDG-PET features alone. Similar observations have been made by

Bucholc et al.24 They found that classifiers built using CFA were the

ones that performed consistently better than models based on other

types of data, and that incorporatingmulti-modality features (e.g., cog-

nitive and MRI or CSF data) into the predictive model provided only a

small performance increase. In fact, considering all studies, it appears

that the improvement one gains by including other data types along

with cognitive measures is often not significant.24,98 This is somehow

encouraging given the fact that cognitive measures can be easily col-

lected as part of clinical routine, at a low cost. However, if specialist

data such as neuroimaging and genetics becomes less expensive and

more practical to collect in the future, classification approaches incor-

porating multiple data modalities, which can improve predictions even

by a small margin, may become clinically advantageous.

Combining NLP andML techniques also has the potential to greatly

enhance research in the dementia field. The input generated from large

language models has demonstrated impressive performance on many

NLP tasks.99 Numerous studies have suggested that analysis of acous-

tic features extracted fromspeechaudio and linguistic features derived

from written texts or speech transcripts may lead to the discovery

of novel, non-invasive biomarkers of cognitive impairment given that

subtle changes in language can be observed long before clinical diag-

nosis of dementia.100 In particular, the detection of dementia from

spontaneous speech has become a prominent topic in recent years

due to the fact that it constitutes a time-effective, cost-effective, and

non-invasive procedure.99

Given the literature on ML approaches in dementia research, it is

fair to say that a number of different algorithms have been shown to

detect dementia and its prodromal phase with relatively high predic-

tive accuracy, but their performance significantly varies when other

performance metrics are considered.24 In some cases, the high accu-

racy might have been arbitrarily increased by using a dataset with

a large proportion of people without dementia.101 From the clinical

point of view, no single metric captures all the desirable properties of

a model and therefore, it is important to have thorough understanding

of, distinctions between, and uses and misuses of each of these met-

rics, especially in the context of clinical utility. For instance, Model 1

(e.g., used for automatic dementia screening) could identify ≈10% of

the population with probable dementia, generating a very high case

load for clinicians to screen, review, and test. This would have high sen-

sitivity (i.e., proportion of patients with actual dementia identified) but

a low positive predictive value (PPV; i.e., a proportion of those identi-

fied as having dementia in routinely collected data sets that are true

dementia cases). Conversely,Model 2 could identifyonly1%of thepop-

ulation as probable dementia, requiring clinical review. Even though

this has lower sensitivity, it would be more efficient in having a higher

PPV. Hence, it is essential to provide all the necessary information
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BUCHOLC ET AL. 7

about aMLmodel, as well as the reference standard and the data used

to develop it, to characterize a diagnostic process adequately.

Apart from distinctive differences in ML metrics for performance

comparison, other issues need to be addressed before diagnostic,

prognostic, and risk prediction algorithms can be routinely applied in

settings such as memory clinics. These include reproducibility, model

validation, data leakage, generalizability of themodel to other settings,

and model interpretability. Recently, a framework using a transfer

learning paradigm with ensemble learning algorithms (using multi-

ple methods in tandem to make a consensus prediction) has been

proposed for risk prediction of dementia at both population and indi-

vidual levels.102 Compared to a baseline model, the target model,

using a parameter-transfer learning approach (training on larger, less

task-specific datasets and then fine-tuning on smaller, more specific

datasets) to update the decision boundaries of the baseline model,

achieved better performance across all the performance metrics,

including an increase in sensitivity of 19.1%, specificity of 2.7%, accu-

racy of 16.9%, and AUC of 11%. This shows the potential for transfer

learning to overcome some of the big challenges of dementia research,

such as regulatory challenges associated with data aggregation, man-

agement, privacy, and informed consent for the collection, use, and

sharing of data. In the future, some of the larger datasets used for

dementia research could serve as source data for the development of

ML models that smaller studies could use transfer learning to build

upon.

Finally, the limitations of ML systems need to be clearly communi-

cated to clinical end users before a new generation of clinical decision

support systems (CDSSs) designed to exploit the potentials of data-

driven decision making are adopted and routinely used in clinical

practice. Although a few studies have reported on the implementation

of ML methodologies for determining the severity of dementia24,103

and differential diagnosis of dementia in memory clinics,104 CDSSs for

dementia diagnosis, prognosis, and management at the point of care

are still not routinely used.

3.2 Machine learning in experimental medicine

The theoretical number of unique small molecules is more than an

orderofmagnitudegreater than thenumberof atoms in theobservable

universe.105 Therefore, optimizing the design of synthetic molecules

for a desired therapeutic outcome is a computationally intractable task

to perform by exhaustive brute force calculations. ML has the poten-

tial to muchmore efficiently search this complex space to design drugs

that best approximate viable candidate molecules.106 DL in particu-

lar has proven to be adept at these tasks as it is able to learn new

representations ofmulti-modal data (e.g., neuroimaging, genomics, and

clinical records) using non-linearmappings.107 Asa consequence, there

has been an explosion of applications to pharmacology and its related

fields, chemoinformatics, and structural biology.108 Example use cases

include: predicting 3D structure and function of small molecules from

chemical formulas,109 protein–protein or protein–drug interaction

modeling, clinical outcome or biomarker prediction,110,111 and person-

alized genome–drug interactions (i.e., pharmacogenomics). In addition

to the design of new drugs, ML has also been applied to the repur-

posing of existing therapies developed for other kinds of treatment.

Of particular relevance to dementia, a recent study by Dias et al.112

used the IBMWatson for Drug Discovery online tool, incorporating an

NLP algorithm, to extract lists of gene–disease and drug–disease rela-

tionships from millions of published research articles related to the

medical sciences. They then combined these relationships with gene

co-expressiondata fromhumanbrain samples and created anextended

knowledge network that revealed previously unknown relationships

betweendifferent psychiatric andneurological disorders andhundreds

of drugs. As a result, several drug candidates were identified to repo-

sition as therapies for AD (n = 25), PD (n = 1), and dementia (n = 1;

see Table S4 of original publication for details).112 Furthermore, poten-

tial associations between the pathological stage of AD and genes using

a ML-based Drug Repurposing In AD (DRIAD) framework were evalu-

ated in Rodriguez et a.l113 Here, DRIAD was applied to lists of genes

that were differentially expressed after exposing neuronal cells to a

test panel of 80 clinically approveddrugs, generating a ranking of possi-

ble repurposing candidates that, after additional validation in relevant

in vitro and in vivo AD model systems, could be evaluated in a clinical

trial.

Outside the domain of drug discovery, ML has been applied

in disease genomics, for example, to predict the functional conse-

quences of mutations in both protein-coding and non-coding genomic

sequences.114,115 These kinds of sequence-informed ML approaches

hold several considerable advantages over explicit rule-based models,

including the ability to then conduct in silico mutagenesis to probe

the effects of all possible mutations.116 These are powerful tools for

functional impact prediction (e.g., gene expression, chromatin modi-

fication). However, when it comes to predicting disease status from

genomic data, ML-based approaches have yet to show substantial per-

formance increases over simpler additive methods like polygenic risk

scores in autoimmunedisease orAD.33 This could bedue to several fac-

tors including lack of sufficient sample sizes, the use of genotype arrays

insteadofwhole-genome sequencing, the use of highly processed input

data (e.g., disease-associated variants identified through simple linear

models), or the use of suboptimalML architectures for this problem.

Another challenge is that sequence prediction models have not

typically addressed the tissue- and cell-type–specific nature of muta-

tional effects. Recent advances in single-cell transcriptomics, epige-

nomics, and proteomics have permitted the accumulation of single-cell

atlases in model organisms of dementia-related diseases, primary

cells from living patients (e.g., blood),117 post mortem samples (e.g.,

brain tissue),118 and patient-derived induced pluripotent stem cells

(iPSCs).119 Some dedicated databases have emerged for integrating

andhostingAD-related single-cell datasets.120 Thesedatasets can sub-

sequently be used to train DL models to learn latent representation

of cell-type–specific responses to various genetic and chemical per-

turbations, as has been done in cancer cell lines previously,121 as well

as natural genomic variation.122,123 Therefore, the evaluation of cell-

type–specific effects of dementia-associated mutations is becoming

increasingly feasible at scale.
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8 BUCHOLC ET AL.

3.3 Machine learning in clinical trials

A focal point of research using ML for clinical trials is the develop-

ment of algorithms that possess the capability to identify patients who

will develop dementia in the future. This can enhance the precision of

patient selection for clinical trials and aid in the monitoring of disease

progression. Additionally, ML techniques can be used to analyze vast

amounts of data derived from clinical trials, such as electronic med-

ical records and imaging data, to discern patterns and potential new

treatment options.124

Several studies have investigated the role of ML in clinical trial

design.124,125 Ezzati and Lipton126 developed a ML framework incor-

porating the KNNclass algorithm, to identify individuals who were

more likely to showcognitivedeclineduring the follow-upandused this

subgroup of participants for analysis of treatment effects. Their results

indicated theMLmodel couldprovide≈17%and≈25% improvement in

predictions of cognitive decline at 12months and 24months follow-up

respectively, and hence, could be used to improve the power of clinical

trials. Reith et al.127 used baseline clinical information and CNN-

extracted PET features to predict changes in quantitative biomarkers

of brain pathologywith gradient-boosted decision trees. The use ofML

helped them identify a cohort with the fastest amyloid deposition, at a

two to four times higher rate than random selection or other common

selectionmethods used for patient recruitment. Thepotential of differ-

ent ML approaches to assist in recruiting patients at risk of dementia

has also been shown in other studies.85,128 Hane et al.128 showed that

the incorporation of clinical notes into ML frameworks can aid model

accuracy and can therefore be routinely used to identify individuals for

interventions, such as disease management programs and screening

for clinical trials. Another study applied a new ML approach, Subtype

and Stage Inference (SuStaIn), to routinely acquired MRI scans from

patientswith dementia to identify different subtypes of dementia early

in the disease process.63 The algorithm was able to determine three

different subtypes of AD, which broadly matched those found in post

mortems of brain tissue.

It is increasingly recognized that dementias are preceded by a pre-

symptomatic or prodromal period of varying duration, during which

the underlying disease process unfolds. This highlights opportunities

to slow disease progression during different pre-symptomatic phases

of the disease, when it is more likely that pathological changes can be

slowed, arrested, or even reversed. Selecting study participants at high

risk for dementia orMCI is therefore essential to design cost-effective

prevention trials. The use of ML in clinical trials for dementia has the

potential to increase the success, generalizability, and efficiency of

these trials. These technologies can assist with patient recruitment

and cohort composition, improvepatient retention andprotocol adher-

ence, help process and manage large quantities of data from sources

such as wearables and other smart devices, identify drug targets and

candidate molecule generation, and discover subgroup effects. Ulti-

mately, this can lead to the offering of new treatments to the right

population at a faster pace.124,125

Despite the increasing number of ML models that have been devel-

oped for dementia research, notmany have been used for patient–trial

matching and recruitment before the start of a clinical trial or patient

monitoring during the trial. There are still challenges to be addressed,

including ensuring the safety and privacy of patient data, and address-

ing concerns regarding the interpretability of ML-generated results.

Further research is necessary to develop robust and validatedMLmod-

els that can be widely adopted within the clinical trial process for

dementia.

4 REPRODUCIBILITY, REPLICABILITY,

INTERPRETABILITY, AND CLINICAL APPLICABILITY

ISSUES IN DEMENTIA RESEARCH

4.1 Reproducibility and replicability

As we develop novel computational models to understand dementia,

issues of reproducibility and replicability become increasingly impor-

tant.While reproducibility involvesobtaining the same results fromthe

samemodel and data, replicability is based on applying the samemodel

to independent datasets and observing generalizability of the findings.

Reproducibility is a long-standing issue in scientific research, par-

ticularly experimental medicine, as results can vary due to both

controllable (e.g., following identical protocols) and uncontrollable

(e.g., system stochasticity) factors. The use of computational models

therefore significantly improves reproducibility: an algorithm trained

to perform a task will always give the same results when applied to the

same data. However, for research to be fully reproducible, both data

and code need to be made available. A recent review of the use of ML

for modeling progression to AD found that, while 75% of studies used

publicly available data, only 7%shared their implementation code.129 If

guidelines such as the Turing Way and Findability, Accessibility, Inter-

operability, and Reuse (FAIR) principles are routinely followed, the

increasing use ofML in dementia researchwill allow results to be easily

reproduced.130

In contrast to reproducibility, replicability ismuchharder to achieve:

an algorithm optimized to, for example, predict incident dementia in

one cohort is not guaranteed to perform well in a completely different

cohort. This is particularly true for algorithms, such as neural net-

works, that are susceptible tooverfitting during training.Oneapproach

to improving replicability is to use data from multiple sources. There

exist many large-scale studies that are easily accessible to dementia

researchers, for example, Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI)131, Longitudinal Aging Study in India (LASI),132 National

Alzheimer’s Coordinating Center (NACC),133 and UK Biobank.134 In

combination, these studies provide an opportunity to improve model

generalization; however, simply combining the data would be an enor-

mous task due to differences in, for example, the reporting of variables

or diagnostic criteria.

Sample size has been known to play an important role in the gen-

eralizability of ML models.135 Larger datasets often provide a more

comprehensive representation of the target population, encompass-

ing a wider range of variations and diversity. This helps the model

identify the patterns and relationships that are highly relevant to
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BUCHOLC ET AL. 9

unseen data, ultimately improving the model’s ability to generalize

effectively. In dementia research, studies using ML techniques have

been shown to exhibit substantial variability in sample size. In the

systematic review of 92 studies integrating interpretable ML meth-

ods for dementia prediction, Martin et al.136 showed that sample size

across all included studies ranged from 11 ≤ n ≤ 95,202, with larger

datasets providing increased confidence and better estimations of the

model performance on unseen data. This is consistent with findings

by Javeed et al.137 They assessed the performance of ML-based diag-

nostic systems for dementia across various dataset sizes and showed

that ML models using imaging data exhibit improved accuracy when

applied to larger datasets. Although there are studies with relatively

small samples in which ML techniques, like SVM (n = 137), deep poly-

nomial network combined with SVM (n= 103), and linear discriminant

analysis (n = 223) have been used with high accuracy in classifica-

tion problems (i.e., 88%, 96.3%, and 89%, respectively),138–140 there is

ongoing controversy surrounding the impact of different combinations

of data types, data validation techniques, and the type of classifi-

cation tasks (e.g., healthy vs. AD, MCI vs. AD) on the performance

of these models. For instance, although Zheng et al.139 obtained a

classification accuracyof 96.3% indiscriminating betweenhealthy con-

trols and AD patients using a small neuroimaging dataset (n = 103),

their algorithm was not tested against unseen data, and the size of

their training/validation sets used in 10-fold cross-validation was rel-

atively small (n = ≈90 for the training sets, and n = 10 for validation

sets). Furthermore, ML models used to discriminate between AD and

healthy controls have, on average, shown higher accuracy compared to

those designed for differentiating MCI versus healthy control or AD,

or MCI converters versus MCI non-converters to AD, with the same

problems of the sample size and repeated use of the same data.141

Small datasets provide less reliable estimates of the underlying data

distribution and do not capture more subtle patterns present in the

data. Consequently, ML models built using small datasets demon-

strate reduced stability, leading to a less precise indication of the

model’s performance in real-world scenarios. Larger datasets provide

a broader context, reducing the likelihood of overfitting and improving

the model’s ability to generalize to new data. It is, however, impor-

tant to note that simply increasing the dataset size does not guarantee

perfect generalizability. Other factors such as data quality, appropri-

ate model architecture, and representation bias also play important

roles.

In particular, the heavy reliance on studies using data from a single

source, such as clinic-based cohorts (ADNI, NACC), although promot-

ing cross-comparisons of results, may inflate the estimates of accuracy

and impose limitations on the generalizability of themethods used. For

instance, the original design of ADNI aimed to characterize a clinical

trial population that primarily consisted of older age groups, withmore

advanced pathology.142 These characteristics deviate fromwhat is typ-

ically observed in the broader population. Similarly, those enrolled in

the NACC Alzheimer’s Disease Research Centers’ (ADRC) cohorts are

not randomvolunteers and therefore, are not representative of awider

population. Their educational attainment and income levels are higher

than the national average, and≈50% of ADRC participants have a fam-

ily history of dementia.143 The community-based cohort study of the

UKBiobank, widely used for dementia research, also lacks natural data

representations, limiting our ability to develop ML models that can

be used effectively and fairly in clinical practice.144 Despite the fact

that datasets from memory clinics or hospitals provide the advantage

of tailoring the research protocols to meet specific research needs,

ensure balanced group sizes, and maintain consistency across multi-

ple timepoints, these studies often encounter limitations in participant

recruitment, which can consequently result in smaller sample sizes.145

This in turn may lead to the inability of the ML model to capture more

fine-grained patterns and discriminative features present in the wider

population.

State-of-the-art ML methods such as transfer learning and multi-

task learning, have the potential to improve replicability and general-

izability of results. For example, transfer learning could be used to train

an algorithm on data from more than one study, providing some vari-

ables in both data sets are the same, by finding a mapping between

the data domains. Such an approach could help improve generalizabil-

ity of the results and reduce overfitting to the cohort used for training,

thus increasing the chanceof replicability in further cohorts. Successful

applications of transfer learning in dementia have been demonstrated

by Danso et al.102

While transfer learning implies a sequentially shared representa-

tion, multi-task learning is related to a shared representation that

is developed concurrently across different tasks. So far, few studies

implemented the multi-task ML approach in dementia research.146

One example is the use of a deep feedforward neural network (DFNN)

approach based on multi-task learning (i.e., using multiple loss func-

tions) to simultaneously detect AD and determine its progression

stage.146 Khoei et al.146 showed that the proposed model can accu-

rately classify and predict AD and its stages using both binary and

multi-class classification of AD (three and four different class labels),

over 5 and 10 years.

4.2 Interpretability of machine learning models

Alongside reproducibility and replicability, the interpretability of ML

algorithms is an important consideration for many applications, partic-

ularly in cases in which the algorithm is making life-changing decisions.

This is clearly the case for dementia research, and health-care appli-

cations in general. For a clinical decision maker or patient to trust an

algorithm, an understanding of how it makes its predictions is per-

tinent; lack of transparency represents a barrier to translation from

research to clinical practice.147,148

The interpretability of an algorithm can be divided into two classes:

global interpretability and local interpretability. Global interpretability

refers to how the components of an algorithm, such as features and

weights, combine to make decisions. In contrast, local interpretability

is associated with individual decisions; how did the algorithm make its

decision about a specific sample or patient.149 Global interpretability

is hard to achieve due to the often-complex nature of ML algorithms.

However, it is possible to interrogate algorithms at a modular level to
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understand how varying one feature or weight impacts the decisions

beingmade.

One of the most common methods used in dementia research to

interpret algorithmic decisions is (permutation) feature importance,

which does exactly this: it informs the user how much each feature

contributes to the decisions being made.150 One benefit of feature

importance is that it is model agnostic and so can be used in com-

bination with many ML algorithms. Model-specific approaches to

interpretability are more often used alongside DL algorithms.151,152

For example, Qiu et al.153 constructed “disease probability maps” to

visualize howa fully convolutional networkdeterminedADstatus from

MRI images.

CommonMLalgorithms used in dementia research, such as decision

trees, SVM, and Bayesian networks, are inherently interpretable; they

learn a set of rules or relationships between variables with a known

structure that can be interrogated by the user. In contrast, “black-box”

models, including anything involving a neural network, are harder to

interpret because the mathematical relationships between variables

are learned from thedata and are inaccessible to theuser. State-of-the-

art methods, such as local interpretable model-agnostic explanations

(LIME)154 and Shapley values,155 can be used to assess how a “black-

box” model came to a certain decision. However, while methods such

as these exist and produce encouraging results, they are currently not

routinely used in dementia research.

It may be questioned whether methods for interrogating “black-

box” models are necessary for dementia research. There are many

examples in the literature in which the performance of different ML

algorithms has been compared. For the task of dementia diagno-

sis, interpretable algorithms often perform as well as, if not better

than, “black-box” models.156,157 However, which algorithm performs

best depends on the data, the application, and how performance is

measured4,158; interpretable algorithms can perform better in terms

of predictive power159 while “black-box” models often achieve higher

discriminative accuracy.158

This boost in accuracy may make “black-box” models seem attrac-

tive, but this is at the cost of interpretability. Recent reviewshave found

that while “black-box” models are being used in dementia research,

researchers still favor interpretable models.3,17 In the future, if meth-

ods to interpret “black-box”models are routinely implemented, and the

use of ML becomes more common in clinical practice, this pattern may

shift.

4.3 Clinical applicability issues

There are currently limited examples of ML models for dementia diag-

nosis, prognosis, and care being successfully deployed into clinical

practice. Issues associated with dataset collection, such as dataset

shift (i.e., the scenario in which the joint distribution of inputs and

outputs differs between the training and test sets), omitted vari-

able bias, unintended discriminatory bias, and repeated use of limited

datasets, result in impairing the ML model’s ability to generalize to

new populations. Furthermore, technical issues related to difficulties

in extracting patient data in a harmonized, machine-readable format;

the lack of understanding of the mechanistic basis of model predic-

tions; differences between clinical settings (e.g., including differences

in equipment, coding definitions, and computer systems, such as elec-

tronic health records); and variations in local clinical practices further

complicate the clinical adoption of ML solutions in dementia. Upon

deployment, differences in the distribution of true patients and healthy

individuals compared to that seen during training can also impact

model performance. For example, a well-calibrated model will identify

healthy individuals at a rate equal to that seen in the training data.

If this is artificially high because proportionally fewer true patients

volunteer for research, the model will predict a lower prevalence of

disease.160

The impact of these issues is demonstrated in the neuroimaging

field, in which the mean squared error of a CNN trained to predict

regional brain atrophy using ADNI data increased from 0.31 to 0.41

when tested on memory clinic data.161 Performance improved when

the training set included a wider range of scanner images and proto-

col types, suggesting a route to improved clinical application through

increasing heterogeneity of training data.161 Similar approaches, train-

ing on heterogeneous memory clinic data,162 or using a transfer learn-

ing approach,102 have demonstrated improvements in generalizability.

Better understanding of the genetic architecture of dementia has also

been increased through transethnic genome-wide association studies

(GWAS), enhancing research previously limited to European-centric

populations withmore diverse populations.163

Studies that trained models on cognitive data face similar issues.

Promisingly, an ML-based iPad application to assess global cognition

has demonstrated good performance detecting MCI and mild AD,

with AUCs of 0.81 and 0.88 respectively, using two linguistically and

culturally distinct datasets.164 Detecting dementia through speech

using ML and NLP is a growing field; however, studies have largely

focused on English-speaking participants, limiting generalizability to

other languages.165 Recent studies have found that training on multi-

lingual datasets improves performance (F-score = 0.85) compared to

training on an English corpus alone (F-score= 0.80).166

Parallel issues that may limit clinical applicability are cost and avail-

ability of resources, for example, relying on expensive imaging data.

Multiomics approaches may increase this problem, and so the use of

complementary and unique methods to find the most informative fea-

tures will be key.167 Models based on widely available and accessible

data, such as wearable devices, may aid clinical translatability.168 Col-

laboration between researchers and stakeholders will also improve

clinical translation, such as working with clinicians to developML solu-

tions for “real-world settings.”169 A lack of trust in algorithmic decision

makingmay also limit translation, compounded by opaquemodels with

low interpretability; trust can be improved with transparent, explain-

able approaches,169 and reporting an algorithm’s confidence in its

decision.170 In addition, performance metrics should aim to capture

real clinical applicability and be easily understandable to clinicians.

Given a lack of data on outcomes, it is challenging to predict the

impact of ML methods for dementia, but models should be rigorously

tested prior to being deployed.161 Clinical trials for ML interventions
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F IGURE 1 Applications of machine learning in dementia research and barriers to clinical translation. ML, machine learning

in dementia (similar to those designed for cancer research171) could

evaluate the clinical utility of ML models given their inherent opacity

and “black-box” nature, as well as address the challenges related to

generalizability and interpretability ofMLmodels.

5 DISCUSSION

5.1 Summary of existing methods and their

limitations

It is clear that the use of ML in dementia research is becoming

increasingly common (Figure 1). Supervised learning algorithms are

most frequently implemented: classification is commonly applied to

predicting the risk of progression to dementia and differential diag-

nosis of dementia, while regression is used for detecting cognitive

changes, evaluating dementia severity, estimating time to dementia,

and identifying risk factors.172 In situations in which labeled data

are not available or insufficient, unsupervised and semi-supervised

approaches are being used with promising results.61,73 Furthermore,

the application of DL models for early detection and classification of

dementia has gained considerable attention in recent years, mostly

due to their improved performance over traditional ML approaches.76

However, the successful implementation of ML models in clinical set-

tings is currently a high-risk proposition due to their over-reliance on

one data source; limited external validation; insufficient understand-

ing of the mechanistic basis of model predictions and clinical utility

of different performance metrics; and potential bias caused by miss-

ing data or inappropriate use of methods for missing data imputations.

Other sources of bias, including measurement bias, evaluation bias,

sampling bias, and algorithm bias also impair the ability of ML mod-

els to generalize to new populations, and can lead to bias against

specific groups or individuals. Sampling bias occurs when the sample

used to build a ML model is not representative of the target pop-

ulation from which it is drawn. In other words, the individuals or

elements in the sample are not randomly selected and do not accu-

rately reflect the characteristics of the entire population. This can

affect themodel’s ability to adapt accurately to new, previously unseen

data.173 For example, the lack of generalizability of the findings of

large datasets (e.g., ADNI and similar highly selected clinical cohorts)

to other populations, such as community-based samples, may critically

limit their ability to produce ML models readily transferable to other

settings.174 Measurement bias refers to the systematic error or inac-

curacy in the measurement of certain variables or outcomes related

to dementia. For example, while NACC ARDCs use standard criteria

and procedures, there might still be some variation in selection and

diagnosis factors across different centers.175,176 Evaluation bias, on

the other hand, occurs during the analysis and interpretation of data.

It refers to the bias introduced by the researcher’s judgment, or the

analytical methods used, leading to distorted or misleading conclu-

sions. Evaluation bias can arise due to subjective choices made during

data analysis, selective reporting of results, or the influence of prior

expectations on the interpretation of findings. In dementia research,

evaluation bias occurs when researchers selectively report only the

results that support their hypothesis, for example, by assessing the

model’s performance solely based on its accuracy, without specify-

ing other performance metrics.177 Finally, algorithm bias refers to the

presence of systematic and unfair inaccuracies or limitations in ML

algorithms used to analyze the data. It may occur when researchers

unknowingly include certain features in the dataset during the devel-

opment of the ML model (e.g., dementia diagnosis) that are correlated

with other features (e.g., ethnicity or socioeconomic status). As a result,

the ML model may inadvertently learn and reinforce existing biases

present in the data. For instance, if the dataset is biased toward higher

income individuals from a particular ethnic group, the model might

disproportionately associate higher incomewith a lower risk of demen-

tia. As a consequence of algorithm bias, the model’s predictions could

be less accurate and potentially discriminatory when applied to indi-

viduals from underrepresented or different ethnic and socioeconomic

backgrounds. As noted in Gianattasio et al.178 bias rooted in unrepre-

sentativedatasetsused for trainingandpoormodel calibration can lead

to racial bias in model application.

The “black-box” nature of many ML models, in particular DL mod-

els in which input data can undergo complex transformations over
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many layers, means that they have no explicit declarative knowledge

representation and hence, provide predictions without any accompa-

nying justification. OtherMLmethodsmay be able to list dependencies

between the target prediction output and the input features but those

relationships are too complex to understand or verify.

The availability of data for ML algorithm development and vali-

dation in dementia is also a significant barrier to their adoption and

routine use in clinical practice. The majority of ML models require

large amounts of data for training and testing to ensure generalizabil-

ity beyond the training set. In addition, different data modalities, such

as cognitive scores, behavioral measures, neuroimaging, or genetic

data, provide distinct information about the underlying mechanisms

of the disease and the patient’s condition. Understanding the unique

characteristics and challenges associated with each data modality is

therefore essential for building effective and accurate models for

dementia research. For example, each data modality requires a spe-

cific representation for analysis. Cognitive scores may be numerical

or categorical, while neuroimages consist of spatial data with complex

patterns. The ML model’s ability to handle and effectively represent

the input data can influence its performance. Furthermore, different

data types require specific feature extraction techniques. Cognitive

scoresmay require simple statistical features, while neuroimaging data

often necessitates more complex methods like CNNs to capture rel-

evant patterns. Different data modalities may also capture different

aspects of the disease and its progression. For example, neuroimages

can reveal structural changes in the brain associated with AD and

cognitive abnormalities, while genetic data may highlight underlying

genetic risk factors. The complexity and non-linearity of relationships

between data modalities can substantially impact the performance of

a ML model. Incorporating multiple data modalities into a ML model

can lead to a more comprehensive and accurate understanding of

dementia. However, challenges may arise due to data heterogeneity,

missing data, and the need for sophisticated data integration tech-

niques. Successful use of these diverse data types requires careful data

preprocessing, feature selection, and model architecture design, con-

sidering theunique characteristics and challenges associatedwith each

modality.

Finally, the objective comparison of models across dementia stud-

ies is challenging as obligatory performance metrics for certain model

structures and use cases have not been defined. All these barriers to

ML adoption require attention at each stage of model development,

validation, and use, to enhance stakeholder trust (including regulatory

agencies, researchers, clinicians, and industry partners) in the process

and results (Figure 1).

5.2 Recommendations for future research

While the use of ML in dementia research presents many oppor-

tunities for the future, for algorithms to be translated to clinical

practice, issues surrounding reproducibility, replicability, generalizabil-

ity, interpretability, comparability, and trust in decisions need to be

addressed.

5.2.1 Reproducibility and replicability

Issue

Inadequate or selective reporting of the modeling pipeline affects

replication and reproduction of research results.

Recommendation

The code and all other relevant parts of the prediction modeling

pipeline should be made available to others to facilitate replica-

bility. This includes details, such as (1) the nature of the applied

algorithms; (2) the seeds used for selecting the partitions of the

dataset for training, validation, and testing; (3) the process of

handling missing data (if applicable); and (4) descriptions of data

pre-processing and validation procedures including class imbalance

handling (if applicable), hyperparameter selection, optimization, and

thresholding.

Issue

Themajorityof dementia studies implementingMLapproachesassume

that once the model performs well on the data for the specific domain

or problem it is tasked with, the model can be successfully applied

to new data. However, this assumption does not hold in many cases.

Because themodel is constructed for a specific problem/dataset, it has

to be retrained and tuned for any new problem/dataset. This not only

affects the time- and cost-effectiveness of the proposed solution but

also may lead to the changes in model performance, often caused by

discrepancies in data distribution or feature space.

Recommendation

Transfer learning, which allows re-using pre-trained models for

domain-specific tasks, represents a time-saving alternative. The appli-

cation of transfer learning frameworks in dementia research already

shows some promising results, including the improved accuracy

and prevention of overfitting when dealing with relatively small

datasets.179

5.2.2 Generalizability

Issue

Certain disease stages and patient characteristics are less likely to be

well represented in datasets produced for clinical research. The lack

of generalizability of clinical cohorts to other populations limits their

ability to produce ML models that can adapt to other datasets. Fur-

thermore, developingMLmodels using retrospective datasets does not

always translate well to prospective applications.

Recommendation

To ensure generalizability of ML models beyond the training data

set, developers should use multiple datasets to test the stability

of model performance. In addition, the assessment of model bias

should be undertaken to identify risks of bias in model develop-

ment that might result in inequitable outcomes. This should include a
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transparent, easily accessible mechanism to monitor the impact of

algorithmic bias on users subgroups post-deployment.

Issue

The overwhelming majority of ML models used in dementia are purely

associative, that is, they focus on predicting outcomes based on a

predefined set of variables. Neither their parameters nor their pre-

dictions have a causal interpretation and hence, they should not be

used to identify causal relationships. Because they are not constructed

to understand causality between input data and output predictions,

they cannot generalize well when changes in input data occur or when

there are multiple possible causes of patient symptoms (e.g., differen-

tial diagnosis of dementia). The associative nature of ML algorithms

for dementia places constraints on their performance and can lead to

suboptimal diagnoses.

Recommendation

Causal inference, that is, understanding how diagnosis is obtained

and clearly defining the desired output, can be used to produce more

robust and generalizable ML models.180 In particular, meta-modeling

and meta-learning can be used to overcome the current limitation of

ML in performing causal discovery.181

5.2.3 Interpretability

Issue

Interpretability and trust in algorithmic decisions are barriers for

research being translated to a clinical setting. The “black-box” nature

of many ML algorithms means the connection between features and

predictions is obscured, and it is unclear how theymake decisions.

Recommendation

Methods such as LIME and Shapley values can be used to improve

interpretability and trust in models. These methods allow clinicians to

interrogate the decision-making process of ML models, thus increas-

ing transparency. Furthermore, clinical trials for ML interventions in

dementia should be conducted to evaluate the clinical utility and user

acceptance of ML models, including potential pitfalls in their practical

deployment.

5.2.4 Comparability

Issue

Depending on the intended use case of a ML model, different metrics

give different interpretations of themodel performance.

Recommendation

Obligatory performancemetrics for certain model types and use cases

can be introduced to ensure thatmodelswith similar intended uses can

be compared.182 These metrics should be regularly re-assessed to test

for potential model drift.

6 CONCLUSIONS

Overcoming the barriers that exist between applications of ML in

dementia research and the translation of models to clinical practice

will require a paradigm shift in the way researchers design, implement,

and evaluate ML models. To address the challenges of reproducibility

and replicability, any code integral to themodeling pipeline needs to be

openly available and well documented, to enable the external validity

of research results to be assessed. Data should also be made available

where possible. To ensure models are interpretable, which in turn will

assist with clinical acceptability, researchers need to routinely imple-

ment methods that enable clinical users to interrogate MLmodels and

understand how they make their decisions. To improve the general-

izability of research findings, during model development researchers

should not rely on a single source of data. Instead, models should

be developed using multiple, heterogeneous datasets to reduce the

risk of bias in model predictions. The comparability of ML models will

be improved when researchers adhere to reporting guidelines. There

exists a clear opportunity for researchers, clinicians, and other stake-

holders to work together to develop guidelines for ML models that

are: reproducible, replicable, interpretable, comparable, generalizable,

trustworthy, and transferable to clinical practice. If these challenges

are overcome, then ML holds promise to change the future landscape

of dementia research and care.
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