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Abstract
Objective.Deep-learning auto-contouring (DL-AC) promises standardisation of organ-at-risk (OAR)
contouring, enhancing quality and improving efficiency in radiotherapy.No commercialmodels exist
forOAR contouring based on brainmagnetic resonance imaging (MRI).We trained and evaluated
computed tomography (CT) andMRIOAR autosegmentationmodels in RayStation. To ascertain
clinical usability, we investigated the geometric impact of contour editing before training onmodel
quality.Approach.Retrospective glioma cases were randomly selected for training (n= 32, 47) and
validation (n= 9, 10) forMRI andCT, respectively. Clinical contours were edited using international
consensus (gold standard) based onMRI andCT.MRImodels were trained (i) using the original
clinical contours based on planning CT and rigidly registered T1-weighted gadolinium-enhanced
MRI (MRIu), (ii) as (i), further edited based onCT anatomy, tomeet international consensus
guidelines (MRIeCT), and (iii) as (i), further edited based onMRI anatomy (MRIeMRI). CTmodels
were trained using: (iv) original clinical contours (CTu) and (v) clinical contours edited based onCT
anatomy (CTeCT). Auto-contours were geometrically compared to gold standard validation contours
(CTeCTorMRIeMRI) usingDice Similarity Coefficient, sensitivity, andmean distance to agreement.
Models’ performances were compared using paired Student’s t-testing.Main results.The edited
autosegmentationmodels successfully generatedmore segmentations than the uneditedmodels.
Paired t-testing showed editing pituitary, orbits, optic nerves, lenses, and optic chiasmonMRI before
training significantly improved at least one geometrymetric.MRI-basedDL-ACperformedworse
thanCT-based in delineating the lacrimal gland, whereas the CT-based performedworse in
delineating the optic chiasm.No significant differences were found between theCTeCT andCTu
except for optic chiasm. Significance.T1w-MRIDL-AC could segment all brainOARs except the
lacrimal glands, which cannot be easily visualized onT1w-MRI. Editing contours onMRI before
model training improved geometric performance.MRIDL-AC inRTmay improve consistency,
quality and efficiency but requires careful editing of training contours.

1. Introduction

Theworldwide incidence of brain tumours is growing (Soomro et al 2023). In young adults, brain cancer is the
thirdmost common cause of death (Brunese et al 2020). Every year, over 5000 people die frombrain cancer, and
currently, in theUK, it is anticipated that 102 000 adults and childrenwill have brain cancer (Brunese et al 2020).

Radiation therapy (RT) is commonly used to treat brain cancer, using ionizing radiation to destroy cancer
cells. However, RTmay cause damage to normal healthy tissues, called organs at risk (OARs). DamagingOARs
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in the brain can lead to hearing and visual deficits and neurocognitive alteration (Scoccianti et al 2015). The side
effects of treatment areminimized through the radiotherapy treatment planning process by targeting the dose to
the tumourwhile reducing the dose toOARs. A radiation oncologistmanually delineates the target volume of
the tumour and surroundingOARs using computed tomography (CT) and/ormagnetic resonance imaging
(MRI) simulation scans.However,manual contouring is associatedwith several challenges. Firstly, contouring is
time-consuming; previous studies have reported that each patientmay take several hours of clinician’s time to
delineate all OARs (Cardenas et al 2019,Wang et al 2019). This could affect the treatment outcomes due to the
delay in the start of the treatment. Secondly,manual contouring is subjective, as a radiation oncologist or
dosimerist performs the delineation ofOARs based on their previous experience and knowledge, which is a
source of inconsistency (Cardenas et al 2019). Several studies have shownhigh inter-operator variability in
contouring, whichmay lead to inappropriately treating normal areas (Scoccianti et al 2015, vanDijk et al 2020).
Accordingly, there is great demand in thefield of RT for autosegmentation to standardize and enhance the
quality of contours andmake the processmore efficient by streamlining the clinical workflow and reducing staff
workload.

In the last decade, computing in RThas helped addressmanual contouring challenges through the
development of autosegmentation algorithms. Deep learning based autosegmentation entered the field of RT
after it was demonstrated that the convolutional neural networks (CNNs) could considerably improve image
classification and recognition task predictions (Cardenas et al 2019, Brouwer et al 2020). Since then, there have
been a considerable number of studies published on the performance of deep-learning autosegmentation for
delineation ofOARs, which demonstrate that it is outperforming traditional autosegmentationmethods
(Scoccianti et al 2015, Cardenas et al 2019, vanDijk et al 2020). Themost popularmethod formedical images
delineation is theU-net architecture, whichwas established by Ronneberger et al (Cardenas et al 2019).
Typically, delineation of brainOARs is performed using a combination of CT andMRI images. CT is currently
standard for treatment planning dose calculations, which are based on electron density.MRI is usually co-
registered toCT and provides complimentary information for contouring, particularly forOARs that are very
difficult to visualise onCT, such as the optic chiasm. Since CT is, however, used for dose calculations, some,
moremobile, OARsmay be contoured based on this, for example lenses and extra-cranial portions of the optic
nerves. Recently, several efforts have beenmade to establishMRI-only treatment planning (Edmund and
Nyholm2017). Compared toCT,MRI offers better contrast for the soft tissue, consequently, it is a superior
imagingmodality for accurately detecting and localizing both the target volume andOARs (Schmidt and
Payne 2015, Liu et al 2019). Additionally,MRI does not use ionizing radiation, whichwill reduce total radiation
exposure to the patient. ForMR-only RT treatment planning, instead of traditional CT, the needed electron
density information is obtained through a synthetic-CT (sCT) produced from theMRI scan (Wiesinger et al
2018).

Compared to other treatment sites, few deep learning autosegmentationmodels currently identify brain
OARs usingMRI orCT scans. As far aswe are aware, only one study has investigated commercial deep-learning
autosegmentation software that uses aU-Net CNN to segmentOARs in the brain usingCT scans (Wong et al
2020). Three earlier research studies used 2D and 3DU-net with variousmodifications to developMRI-based
deep learningmethods to delineate brainOARs (Chen et al 2019,Mlynarski et al 2020,Wiesinger et al 2021).
Chen et al (2019) autosegmented six brainOARs (the orbits, optical nerves, brainstem, and chiasm) using T1-
weightedMRI.Mlynarski et al (2020) used T1-weightedMRI to autosegment elevenOARs, including the orbits,
brainstem, lenses, optic nerves, pituitary gland, optic chiasm, hippocampus, and brain.Wiesinger et al (2021)
usedT2-weightedMRI to autosegmentfifteenOARs (the orbits, lenses, optical nerves, lacrimal glands, pituitary
gland, chiasm, brainstem, brain, cochleas, and patient body contour). All these prior studies used deep learning
to segment brainOARs onCTorMRI scans and produced acceptable segmentations, suitable for RT planning
(Chen et al 2019,Mlynarski et al 2020,Wiesinger et al 2021). However, none of the proposedMRI deep-learning
segmentation techniques are commercially available. Also, the previous studies focused on using only one
imagingmodality, CT orMRI. ClinicallyOARsmust exist on theCT for RTplanning, despitemany being
predominantly contoured onMRI by clinicians. Themain objective of this study is to train and evaluate separate
CT andMRIOARdeep learning segmentationmodels in RayStation (RaySearchAB, Stockholm) for brain
radiotherapy, to ascertain clinical usability. Also, we aim to establishwhichmodalities are required for the
variousOARs andwhether standardising training data by editing clinical contours (onCTorMR) prior to
training is beneficial (if themodel’s output improves the segmentation’s quality) or necessary (if themodel’s
output reduces the number of failed segmentations) formodel performance.
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2.Materials andmethods

2.1.Dataset and clinical protocol
Sixty previously treated glioma cases with bothCT andMRI available were randomly selected from a
retrospective clinical cohort from the past 5 years using a computer generated simple-random list and used to
build autosegmentationmodels for eachmodality. The total of 60was chosen to enable careful quality assurance
of the contours considering staff and time availability. The datawas divided into 80% for training (n= 48) and
20% for testing (n= 12), which is themost popular and advised split ratio (Joseph 2022).

BrainCT scanswas acquired using the following acquisition parameters: kVp: 120, FOV: 500 mm,
1 mm× 1 mm in-plane resolution, slice thickness: 2 mm, and scan type: helical scan on a Siemens Sensation.
Moreover, the following acquisition parameters were used to acquire brainMRI scans:MRI sequence: T1w spin
echo sequence, imaging plane: transverse, slice thickness: 2 mm, scanner: SiemensMagnetomSola with 1 mm
in-plane resolution andGd contrast.

2.2. BrainOARs and gold standard atlas
TheOAR selectionwas based on the four central nervous system clinical protocols at our institution:
Meningioma, Pituitary, Glioma (Radical),andGlioma (Palliative). ThirteenOARswere selected for
autosegmentation: brainstem, cochlea (left and right), orbits (left and right), lenses (left and right), optic chiasm,
optic nerves (left and right), lacrimal glands (left and right), and pituitary gland.

A brainOAR atlas was developed as a gold standard example of contourswith anatomical descriptions and
contouring guidance, in linewith international consensus guidelines (Scoccianti et al 2015, Eekers et al 2018,Ho
et al 2018, Chen et al 2019,Mir et al 2020). All OARsweremanually delineated usingCT andMRI scans in
combination, as per usual clinical practice. The atlas was reviewed and approved by the treating radiation neuro-
oncology team.

2.3. Clinical contours andquality assurance (QA)
All the original clinical contours and image sets were reviewed in terms of image quality, contour accuracy and
OAR labelling. OAR labellingwas edited to be consistent with AAPMTG-263 guidelinesMayo et al (2018). The
clinical contours were reviewed and editedwhere necessary to ensure alignment with the brainOAR atlas. The
process was as follows: the original clinical contours (unedited contours-CT andMRI-based)were copied and
then edited based onCT anatomy alone to create CT-edited contours. Thesewere then copied onto the rigidly
registered T1-weighted gadolinium-enhancedMRI and then reviewed and edited as necessary based on theMRI
anatomy, again to align to clinical guidelines (MRI-edited contours).

2.4.Deep learning autosegmentation training
A commercially available 3DU-net (Çiçek et al 2016)was used to train all the autosegmentationmodels
(RayStation 11 A, RaySearch Laboratories AB, Stockholm, Sweden).

TwoCT autosegmentationmodels were trained using 47 cases (one case was excluded due tomissing data).
Thefirst CT-based autosegmentationmodel was trained using the original clinical contours without editing,
termed theCTunedited autosegmentationmodel (CTu). The secondCT-based autosegmentationmodel was
trained on the same dataset using the cases with CT-edited clinical contour termed theCT-edited
autosegmentationmodel (CTeCT).

ThreeMRI autosegmentationmodels were trained on the same dataset using 32 cases (16 cases were
excluded due to inconsistentMRI slice thickness). ThefirstMRI-basedmodel was trained using the original
clinical contours copied from theCT scanwithout editing, termed theMRI unedited autosegmentationmodel
(MRIu). The secondMRI-basedmodel was trained on the same dataset using the edited clinical contour
(CTeCT), copied from theCT scan, termed theCT editedMRI autosegmentationmodel (MRIeCT). The third
model was trained on the same dataset, using theCT-edited clinical contour, further edited based on theMRI
scan, termed theMRI editedMRI autosegmentationmodel (MRIeMRI). After training, all themodels were used
to generate automatic contours on the validation cohort.

2.5.Deep learning autosegmentation validation
The performance of themodels was geometrically evaluated on an independent dataset of 12 cases. Two cases
were excluded from theCT validation cohort as noMRI scanswere associatedwith them (n= 10 cases). Also,
oneMRI test case was excluded due to using differentMRI sequences (n= 9 cases). The evaluationwas done by
comparing the generated contour to the gold standard contours in eachmodality, where clinical contours were
edited based on eachmodality’s anatomy in this validation cohort (i.e. CTeCT andMRIeMRI).

3

Phys.Med. Biol. 68 (2023) 175035 NAlzahrani et al



2.5.1. Geometric evaluation
The following testmetrics were used for the geometric evaluation: the dice similarity coefficient (DSC) (Wong
et al 2020), sensitivity (vanRooij et al 2019) andmean distance to agreement (MDA) (Jena et al 2010). Higher
DSC and sensitivity scores indicate better agreement between the gold standard contour and autosegmentation,
however lowerMDA scores indicate that small distance errors exist between autosegmentation and gold
standard contours.

To evaluate the statistical significance of thesemetrics and determine the impact of editing before training
themodel, each geometry testmetric pair of the edited and uneditedmodels was compared in eachmodality
using the paired two-tailed Student’s t-test. For the same patient, if the autosegmentationmodel failed to
segment anyOARs, and the comparablemodel was able to segment themissingOAR, thisOARwas excluded
from the pairwise comparison.

ABonferroni correctionwas applied to factor in amultiple-comparison correction usedwhen several
dependent or independent statistical tests are being performed simultaneously. (3metrics and 3 segmentation
pairs forMRI, 3metrics and one segmentation pair for CT). Bonferroni-corrected p-value thresholds for
statistical significancewere�0.005 (0.05/9) forMRI geometric evaluations, and�0.016 (0.05/3) for CT
geometric evaluation.

3. Results

3.1. Comparison of CT versusMRI deep learning contours
CTandMRI- based deep-learning autocontouring (DL-AC) demonstrated excellent delineation quality for
large structures such as brainstem, right and left orbits, with the exception of theCTumodel which had poorer
performance: averageDSC and sensitivity scores ranged from0.85 to 0.91 and from0.85 to 0.94, respectively,
across all threeMRI-basedmodels for these large structures (supplementary information tables S1 and S2)
(figures 1 and 2). TheCTeCTmodel averageDSC and sensitivity scores ranged from0.87 to 0.90 and 0.88 to
0.93, respectively across theseOARs, while the CTumodel averageDSC and sensitivity scores ranged from0.62
to 0.64 and from0.62 to 0.63, respectively for the same set of structures (supplementary information tables S4
and S5) (figure 3).

The geometric assessments indicated that CT-basedDL-ACperformedworst in the delineation of the optic
chiasm. The lowestDSC and sensitivity average scoreswere for the optic chiasm for bothCT-basedmodels. The
average scores forDSCwere 0.18 and 0.29, and the sensitivity was 0.15 and 0.28, for CTeCT andCTu,
respectively (supplementary information tables S4 and S5).MDAevaluations showed that theCTeCTmodel
had the highest averageMDA score for theOptic chiasm (0.40 cm), whereas theCTumodels had the highest
score for the right lacrimal gland (0.43 cm) (supplementary information table S6).

In contrast, geometric evaluations showed thatMRI-basedDL-ACperformedworst for delineation of the
lacrimal gland: the lowestDSC and sensitivity average scores were obtained for the left and right lacrimal glands
delineated by allMRI-basedDL-ACmodels. ForMRI-basedDL-ACmodels, the average lacrimal glandDSC
scores ranged from0.02 to 0.15, and the sensitivity ranged from0.02 to 0.10. Furthermore, the highest average
MDA score for theMRIeMRI andMRIumodels was that for the left lacrimal gland (0.23 cm and 0.42 cm,
respectively), while for theMRIeCTmodel, the highest averageMDA scorewas for the optic chiasm (0.33 cm)
(supplementary information tables S1–S3).

3.2. The value of editing contours before training
The necessity of editing contours so that they alignwith an agreed atlas was established based on segmentation
failure rates. Edited autosegmentationmodels generatedmore successful segmentations onOARs than unedited
models in bothmodalities. TheCTeCTmodel reduced the number of failedOAR segmentations compared to
theCTumodel (4 cf. 36)while theMRIeCTmodel resulted in a similar total number of failures compared to
MRIu (21 cf. 22).MRIeMRI, however, reduced the failure rate to 13 and reduced failures to near zero for all
organs except for the lacrimal glands, wheremore failures occurredwith the editedMRI-basedmodel
(MRIeMRI) (10 of 13 failures were for the lacrimal glands). TheMRIumodel exhibited a high failure rate for the
cochlea, whichwas almost entirely resolvedwhen using theMRIeMRImodel (supplementary information
table S7).

A statistically significant quality difference between theCTeCT andCTu autosegmentationmodels was
found only for the optic chiasm for all the geometrymetrics (p= 0.009, 0.008, and 0.001 and effect size= 0.260,
0.160, and 0.150 cm forDSC, sensitivity, and theMDA, respectively) (supplementary information table S8).

Regarding theMRI autosegmentationmodels, therewas no statistically significant difference between the
MRIeCT andMRIumodels for any geometric comparison, except for the right orbit as assessed by the sensitivity
metric, where the effect size was small (p= 0.001, effect size= 0.080) (table 1).
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A statistically significant difference was found betweenMRIeMRI versus both theMRIeCT andMRIu
models in the delineation of the structures shown infigure 1.With the exception of the orbits, statistically
significant differences (observed for lenses, optic nerves, pituitary, and optic chiasm)were associatedwith
moderate to large effect sizes from0.160 to 0.360 forDSC and from0.230 to 0.540 for sensitivity and from0.070
to 0.130 cm forMDA. The effect size for the orbits ranged from0.010 to 0.240 inDSC and from0.020 to
0.040 cm inMDA (table 1).

4.Discussion

This study examined the impact of editing clinical contours before training deep-learning autosegmentation
models for brainOARs based onCT andMRI anatomy. Editing is a time-consuming process and should only be
performedwhen there is evidence it will improve themodel’s performance.

The current study found that except for the lacrimal glands,MRI-basedDL-AC is preferable for all brain
OARs, particularly for delineating optic chiasm, which is known to be challenging for humans to delineate on
CTdue to lack of soft tissue contrast. CT basedDL-ACwas able to delineate optic chiasm (albeit with limited
quality) givenMRI derived clinical training contours. Conversely, lacrimal glands cannot be easily visualised on
MRIwithout fat-saturation (Simon et al 1988), and evenwithCTderived clinical training contours, the
performance of theMRI-basedmodels for thisOARwas not clinically acceptable. Accordingly, bothmodalities
are needed for complete contouring of brainOARs, with lacrimal glands either segmentedmanually onCTor,
potentially, via a separate CT-basedDL-ACmodel. Alternately, a dual-modality autosegmentationmodelmay
overcome this issue, butmay introduce inter-modality image registration issues (Mlynarski et al 2020). As there
is amotivation to useMR-only RT for the brain, to allow improved target definition (Kazemifar et al 2019,

Figure 1.The distribution of the (a)DSC, (b) sensitivity, and (c)MDA (forMRI-based deep learning segmentations from three
differentMRImodels): theMRIu segmentation (blue), theMRIeMRI segmentation (red), and theMRIeCT segmentation (green). The
green square bracket denotes the statistically significant difference (paired T-test) betweenMRIeMRI andMRIeCT, the blue square
bracket denotes the statistically significant difference betweenMRIeMRI andMRIu. Structures not segmented on one of the compared
models were excluded from this analysis.The black chevron indicates that the statistical analysis was not performed in cases where less
than 6 structures were segmented for anyOARor similar (outliers not shown for clarity).
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Lerner et al 2021, Ranta et al 2023), the T1-wMRI basedDL-ACmodel would be sufficient to produce the
segmentation , except for the lacrimal glandswhichwould requiremanual contouring.

It has been recently demonstrated that T2-wMRI has the potential for direct DL-ACof lacrimal glands
(Wiesinger et al 2021), creating the possibility for amulti-modalityMRImodel that could take advantage of the
inherent registration of simultaneously acquiredMR sequences.

The limitation of the current T1-wMRImodel for lacrimal gland segmentation could also be related to
training data quality. Lacrimal glands are typically segmented only on 2–3 slices, reducing the number of positive
examples available to themodel, exacerbating the lack of contrast available in non-fat saturated T1w imaging.
The relatively small volume of the structures is also a factor, as it was previously reported thatmulti-organDL-
ACmodels can ignore small structures (Wang et al 2019), due to unbalanced losses. In ourmodel, loss balancing
acrossOARswas performed tominimise this effect.

Regarding otherOARs, editing of clinical contours onMRI (MRIeMRI) reduced the number of failed
segmentations to near zero for cochleae, lenses, optic chiasm, and pituitary and is therefore considered necessary
(supplementary information table S7). TheRayStation implementation ofDL-ACuses an ‘initialisationU-net’
tofind bounding boxes for eachROI and a set of ‘refinementU-nets’ to segment eachROI. If the initialisation
network is unable to locate an organ; it will not be segmented at all. Hence, performance improvements in this
networkwill affect the number of ROIs segmented, rather than the final segmentation quality. The number of
ROIs thatwere segmented did increase after these structures were edited onMRI, suggesting that editing is
crucial for the success of the initializationmodel.

Furthermore, significant differences (p< 0.005 after Bonferroni correction) betweenmodels were observed
for at least one geometricmeasure for the following structures: optic nerves, orbits, lenses, optic chiasm, and
pituitary (table 1). This indicates that editing these structures onMRI enhanced segmentation quality, even
where theMRIumodel successfully segmented the structure. For all structures showing statistically significant
model-to-model performance variation, excluding orbits, effect sizes forDSC, sensitivity andMDAwere often
potentially clinically significant (ΔDSC> 0.2,ΔMDA> 0.1 cm andΔ sensitivity> 0.3). However, even
though therewas a significant difference betweenMRIeMRI versusMRIeCT andMRIumodels in the

Figure 2.T1-weighted gadolinium-enhancedMRI showing examples of the predictedMRI deep learning segmentations compared to
the gold standard segmentation of the orbits (a), (b), lenses (a), optic nerves (a), brainstem (a), (b), optic chiasm (b), cochlea (c), and
pituitary (a). Red represents the gold standard segmentation.MRIeMRI is depicted in yellow,MRIeCT in green, andMRIu in blue.
Lens L, cochlea L andR failed to be segmented by theMRIeCTmodel, while optic chiasm, pituitary, and cochlea L failed to be
segmented by theMRIumodel.
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delineation of orbits (p< 0.001), the effect size was generally small (table 1). This was because the distribution of
theDSC scores and theMDA for the orbits was narrow, due to their regular shape, so even a small effect was
highly significant. The averageDSC of the orbits was 0.91 (SD= 0.02) in theMRIeMRI, 0.86 (SD= 0.02) for
MRIeCT and 0.87 (SD= 0.02) forMRIumodel (supplementary information tables S1 and S3). These results
imply that editing onMRI is beneficial for the above structures due to improved soft tissue contrast. The lack of
soft tissue contrast and potential registration errorsmake editing onCT an inferior approach, whereMRdata are
available.

For cochlea, insufficient cases were delineated by theMRIeCT andMRIumodels to compare their
performancewithMRIeMRI.However,MRIeMRIwas able to generate cochlea segmentations with high
quality, averageMDA= 0.84 mm (SD= 0.4 mm) (supplementary information table S3).

We have demonstrated aDL-ACmodel using aCEmarked algorithm approved for clinical use, based on
routine clinical T1-wMR imaging, for all clinically relevant brainOARs for RT.We demonstrated clinically
acceptable geometric performance, followingMRI based editing of training contours, comparable to previously
published non-clinical algorithms for orbits brainstem and lenses, paving theway to the routine use ofMRbased
DL-AC in brain RT (Chen et al 2019,Mlynarski et al 2020,Wiesinger et al 2021). Ourmodel performed slightly
worse for optic nerves and chiasm than the state-of-the-art non-clinicalmodel (Wiesinger et al 2021)
[DSC= 0.61 versus 0.66], but still achieved clinically useable performance despite a limited dataset. This is an
important conclusion, given the need to train institution specificMRI-basedmodels on small datasets due to
sequence and scanner variability.

This work has important implications for developing a robustMRI autosegmentationmodel for brain
OARs, by identifying how the training data should be defined and edited to enable segmentation for all brain
OARswith acceptable quality, despite the lack of visibility of certain organs on specific imagemodalities.We
found that editing directly on the T1w-MRI is necessary or beneficial in all cases, except lacrimal glands, which
would require delineation onCTor the use of fat-saturated or T2-wMRI.

This study has certain limitations. The number of training cases was lowdue to the limited amount of
availableMRI data.However, editing the clinical contours before training themodel enabled theDL-ACmodel
to attain acceptable performance evenwith a small cohort. Thismodel was also trained and tested using a single
sequence, T1-w spin echo (SE)with gadolinium, as used locally. Thus, thismodelmay notworkwell with similar

Figure 3.CT axial scans showing examples of the predictedCTdeep learning segmentations compared to the gold standard
segmentation of the orbits (a), (b), lenses (a), optic nerves (a), brainstem(a), (b), (c), optic chiasm (b), cochlea (c), lacrimal glands (a),
(b), and pituitary (a). Red represents the gold standard segmentation. CTeCT is shown in yellow,while CTu in blue.
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Table 1.Paired Student’s t-test results comparing changes inDSC,MDAand sensitivity for all three pairs ofMRImodels. Bold values indicate statistically significant differences (p� 0.005). Insufficient successful segmentations were
achieved by one of themodels, this is noted ($$, **, or##), indicating the superiormodel.

Brainstem Cochlea L Cochlea R Lacrimal L Lacrimal R Lens L Lens R Optic Chiasm OpticNrv L OpticNrv R Orbit L Orbit R Pituitary

DSC

MRIeMRI versusMRIeCT (−meansMRIeMRI performed better)
p (Threshold:� 0.005) 0.074 ** ** $$ $$ ** 0.000 0.003 0.000 0.000 0.000 0.000 0.001

Effect size:Δmedian −0.010 −0.325 −0.200 −0.160 −0.240 −0.040 −0.060 −0.360

N* 9 5 4 4 2 2 8 8 9 9 9 9 7

MRIeMRI versusMRIu (−meansMRIeMRI performed better)
p (Threshold:� 0.005) 0.397 ** ** ## ## 0.001 ** 0.068 0.001 0.002 0.000 0.000 0.009

Effect size:Δmedian 0.010 −0.260 −0.185 −0.190 −0.260 −0.010 −0.050 −0.335

N* 9 1 5 5 2 9 5 6 9 9 9 9 6

MRIeCT versusMRIu (−meansMRIeCTperformed better)
p (Threshold:� 0.005) 0.430 $$ ## 0.179 0.234 ## 0.008 $$ 0.321 0.638 0.035 0.622 $$

Effect size:Δmedian 0.020 0.000 0.000 −0.115 −0.030 −0.020 0.030 0.010

N* 9 1 2 7 8 2 6 5 9 9 9 9 4

MDA

MRIeMRI versusMRIeCT (+meansMRIeMRI performed better)
p (Threshold:� 0.005) 0.042 ** ** $$ $$ ** 0.173 0.031 0.001 0.006 0.000 0.000 0.004

Effect size:Δmedian 0.020 0.080 0.100 0.080 0.080 0.040 0.040 0.130

N* 9 5 4 4 2 2 8 8 9 9 9 9 7

MRIeMRI versusMRIu (+meansMRIeMRI performed better)
p (Threshold:� 0.005) 0.179 ** ** ## ## 0.006 ** 0.074 0.002 0.017 0.000 0.000 0.011

Effect size:Δmedian 0.010 0.080 0.080 0.070 0.150 0.020 0.040 0.100

N* 9 1 5 5 2 9 5 6 9 9 9 9 6

MRIeCT versusMRIu (+meansMRIeCTperformed better)
p (Threshold:� 0.005) 0.325 $$ ## # 0.205 ## 0.006 $$ 0.222 0.686 0.086 0.282 $$

Effect size:Δmedian −0.010 0.140 0.060 0.055 −0.010 0.070 −0.020 0.000

N* 9 1 2 7 8 2 6 5 9 9 9 9 4

Sensitivity

MRIeMRI versusMRIeCT (−meansMRIeMRI performed better)
p (Threshold:� 0.005) 0.096 ** ** $$ $$ ** 0.001 0.010 0.000 0.000 0.272 0.007 0.001

Effect size:Δmedian −0.010 −0.295 −0.145 −0.230 −0.320 −0.020 −0.060 −0.540

N* 9 5 4 4 2 2 8 8 9 9 9 9 7

MRIeMRI versusMRIu (−meansMRIeMRI performed better)
p (Threshold:� 0.005) 0.133 ** ** ## ## 0.001 ** 0.005 0.000 0.000 0.040 0.011 0.007

Effect size:Δmedian −0.020 −0.270 −0.340 −0.240 −0.350 0.000 0.020 −0.545

N* 9 1 5 5 2 9 5 6 9 9 9 9 6
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Table 1. (Continued.)

Brainstem Cochlea L Cochlea R Lacrimal L Lacrimal R Lens L Lens R Optic Chiasm OpticNrv L OpticNrv R Orbit L Orbit R Pituitary

MRIeCT versusMRIu (−meansMRIeCTperformed better)
p (Threshold:� 0.005) 0.609 $$ ## 0.190 0.288 ## 0.006 $$ 0.462 0.520 0.010 0.001 $$

Effect size:Δmedian −0.010 0.000 0.000 −0.115 −0.010 −0.030 0.020 0.080

N* 9 1 2 7 8 2 6 5 9 9 9 9 4

*Number of compared segmentations (successfully segmented by bothmodels considered)
**MRIeMRI is better based on producing the segmentation formore cases.

$$MRIeCT is better based on producing the segmentation formore cases.

##MRIu is better based on producing the segmentation formore cases.

#MDAunreliable due to insufficient overlap ofOARs.
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data fromother institutions, due to lack of harmonisation between scanners. This study, on the other hand, is
focussed on assessing the impact of standardising the clinical contours before training themodel on its
performance rather than in developing a general DL-ACmodel that canworkwith data fromdifferent
institutions.We have shown the feasibility of training and using aCE-markedMR-basedmodel clinically, with
the limitations of deep-learning architecture and training dataset this implies.

Further research is needed to identify the impact of training data editing on radiotherapy dosimetry. The
correlation between the geometric and dosimetric evaluation of contour quality is known to be complex andwe
intend to investigate this in future, to establishwhich geometric and dosimetric tests are necessary to determine
the clinical usability ofDL-ACmodels in brainOAR contouring.

5. Conclusion

The clinical delineation of brainOARs is typically performedmanually and requires bothCT andMRI scans.
However,manual delineation is time-consuming and variable between operators. Developing a robust deep
learning-based segmentationmodel is therefore essential. In this work, separate deep learning-based
segmentationmodels for CT andMRIwere developed and assessed. TheT1-weighted gadolinium-enhanced
MRI deep learning segmentationmodel was able to segment all brainOARs except for the lacrimal glands, which
are difficult to see onT1w-MRI. CT scans are needed for the complete contouring of brainOARs if it is necessary
to delineate lacrimal glands. These could bemanually segmented on theCT scan or via a separate CT-basedDL-
ACmodel. A dual-modality autosegmentationmodel could also be developed to solve this problem. Editing
MRI contours to be consistent with gold standard, before trainingmodels enhanced the geometric performance
and reduced the number of failed segmentations, except for lacrimal glands.MRI-based deep-learning
autosegmentation in RTmay improve consistency, quality, and efficiency but requires careful editing of training
contours onMRI.

Acknowledgments

Weacknowledge the cooperation and support of RaySearch Laboratories AB. Also, we acknowledgeN
Alzahrani’s sponsor, KingAbdulazizUniversity, Jeddah, Saudi Arabia.

Dr LMurray is anAssociate Professor funded by Yorkshire Cancer Research (award number L389LM).
DrMNix is funded byCancer ResearchUK for the Leeds Radiotherapy ResearchCentre of Excellence

(RadNet; C19942/A28832).

Data availability statement

All data that support thefindings of this study are includedwithin the article (and any supplementary
information files).

Ethical statement

Ethical approval for retrospective use of de-identified patient data was given by Leeds East REC, reference: 19/
YH/0300, IRAS project ID: 255 585.

ORCID iDs

AnnHenry https://orcid.org/0000-0002-5379-6618
AnnaClark https://orcid.org/0000-0003-4359-3697
LouiseMurray https://orcid.org/0000-0003-0658-6455
MichaelNix https://orcid.org/0000-0001-7228-7344

References

BrouwerC L, Boukerroui D,Oliveira J, Looney P, Steenbakkers R, Langendijk J A, Both S andGoodingM J 2020Assessment ofmanual
adjustment performed in clinical practice following deep learning contouring for head and neck organs at risk in radiotherapy Phys.
Imaging Radiat. Oncol. 16 54–60

Brunese l,Mercaldo F, Reginelli A and Santone A 2020An ensemble learning approach for brain cancer detection exploiting radiomic
featuresComput.Methods Programs Biomed. 185 105134

10

Phys.Med. Biol. 68 (2023) 175035 NAlzahrani et al

https://orcid.org/0000-0002-5379-6618
https://orcid.org/0000-0002-5379-6618
https://orcid.org/0000-0002-5379-6618
https://orcid.org/0000-0002-5379-6618
https://orcid.org/0000-0003-4359-3697
https://orcid.org/0000-0003-4359-3697
https://orcid.org/0000-0003-4359-3697
https://orcid.org/0000-0003-4359-3697
https://orcid.org/0000-0003-0658-6455
https://orcid.org/0000-0003-0658-6455
https://orcid.org/0000-0003-0658-6455
https://orcid.org/0000-0003-0658-6455
https://orcid.org/0000-0001-7228-7344
https://orcid.org/0000-0001-7228-7344
https://orcid.org/0000-0001-7228-7344
https://orcid.org/0000-0001-7228-7344
https://doi.org/10.1016/j.phro.2020.10.001
https://doi.org/10.1016/j.phro.2020.10.001
https://doi.org/10.1016/j.phro.2020.10.001
https://doi.org/10.1016/j.cmpb.2019.105134


Cardenas CE, Yang J, AndersonBM,Court L E andBrockKB2019Advances in auto-segmentation Semin. Radiat. Oncol. 29 185–97
ChenH et al 2019A recursive ensemble organ segmentation (REOS) framework: application in brain radiotherapy Phys.Med. Biol. 64

025015
ChenW,ZhangH, ZhangW, SuM,Xie R, Li K, Xia X andZouC2019Development of a contouring guide for three different types of optic

chiasm: a practical approach J.Med. Imaging Radiat. Oncol. 63 657–64
ÇiçekÖ, Abdulkadir A, Lienkamp S S, BroxT andRonnebergerO 2016 3DU-Net: learning dense volumetric segmentation from sparse

annotation LectureNotes in Computer Science 9901 pp 424–32 Int. Conf. onMedical Image Computing andComputer-assisted
Intervention -Medical Image Computing andComputer-Assisted Intervention (MICCAI 2016) Springer

EekersDB et al 2018The EPTNconsensus-based atlas for CT andMR-based contouring in neuro-oncology.Radiother. Oncol. 128 37–43
HoF, Tey J, ChiaD, SoonYY, TanCW,Bahiah S, CheoT andTham IWK2018 Implementation of temporal lobe contouring protocol in

head and neck cancer radiotherapy planning: a quality improvement projectMedicine (Baltimore) 97 e12381
JenaR, KirkbyNF, BurtonKE,Hoole AC, Tan LT andBurnetNG2010Anovel algorithm for themorphometric assessment of

radiotherapy treatment planning volumesBr. J. Radiol. 83 44–51
JosephVR2022Optimal ratio for data splitting Stat. Analy. DataMin.: ASAData Sci. J. 15 531–8
Kazemifar s,Mcguire S, TimmermanR,Wardak Z,NguyenD, Park Y, Jiang S andOwrangi A 2019MRI-only brain radiotherapy: assessing

the dosimetric accuracy of synthetic CT images generated using a deep learning approachRadiother. Oncol. 136 56–63
LernerM,Medin J, JamtheimGustafssonC, Alkner S andOlsson L E 2021 Prospective clinical feasibility study forMRI-only brain

radiotherapy FrontOncol. 11 812643
Liu F, Yadav P, baschnagel AMandMcmillanAB 2019MR-based treatment planning in radiation therapy using a deep learning approach

J. Appl. Clin.Med. Phys. 20 105–14
MayoC S et al 2018American association of physicists inmedicine task group 263: standardizing nomenclatures in radiation oncology Int. J.

Radiat. Oncol. Biol. Phys. 100 1057–66
Mir R, Kelly SM,Xiao Y,MooreA, ClarkCH,Clementel E, Corning C, EbertM,Hoskin P andHurkmansCW2020Organ at risk

delineation for radiation therapy clinical trials: global harmonization group consensus guidelinesRadiother. Oncol. 150 30–9
Mlynarski P, DelingetteH, Alghamdi h, boNDIAUPY andAyacheN 2020Anatomically consistent CNN-based segmentation of organs-at-

risk in cranial radiotherapy J.Med. Imaging (Bellingham) 7 014502
Ranta I,Wright P, Suilamo S, Kemppainen R, Schubert G, KapanenMandKeyriläinen J 2023Clinical feasibility of a commercially available

MRI-onlymethod for radiotherapy treatment planning of the brain J. Appl. Clin.Med. Phys. e14044
vanRooijW,DaheleM, BrandaoHR,DelaneyAR, SlotmanB J andVerbakelWF 2019Deep learning-based delineation of head and neck

organs at risk: geometric and dosimetric evaluation Int. J. Radiat. Oncol. Biol. Phys. 104 677–84
SchmidtMA and PayneG S 2015Radiotherapy planning usingMRIPhys.Med. Biol. 60R323–61
Scoccianti S et al 2015Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for

delineation in everyday practiceRadiother. Oncol. 114 230–8
Simon J, Szumowski J, Totterman S, Kido d, Ekholm S,Wicks A and PlewesD1988 Fat-suppressionMR imaging of the orbitAJNRAm. J.

Neuroradiol. 9 961–8
SoomroTA, Zheng L, AfifiA J, Ali A, Soomro S, YinMandGao J 2023 Image segmentation forMRbrain tumor detection usingmachine

learning: a review IEEERev. Biomed. Eng. 16 70–90
vanDijk LV, VanDenBosch L, Aljabar P, Peressutti D, Both S, Steenbakkers R JHM, Langendijk J A,GoodingM J andBrouwerC L 2020

Improving automatic delineation for head and neck organs at risk by deep learning contouringRadiother Oncol, 142 115–23
WangY, Zhao L,WangMand SongZ 2019Organ at risk segmentation in head and neck ct images using a two-stage segmentation

framework based on 3DU-Net IEEEAccess 7 144591–602
Wiesinger F et al 2018 Zero TE-based pseudo-CT image conversion in the head and its application in PET/MRattenuation correction and

MR-guided radiation therapy planningMagn. Reson.Med. 80 1440–51
Rusko L et al 2021Deep-learning-based segmentation of organs-at-risk in the head forMR-assisted radiation therapy planning Proc. of the

14th Int. Joint Conf. on Biomedical Engineering Systems and Technologies (BIOIMAGING) 2 31–43
Wong J, Fong A,McvicarN, Smith S, Giambattista J,Wells D, Kolbeck C,Giambattista J, GONDara l and alexander A 2020Comparing deep

learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy
planningRadiother. Oncol. 144 152–8

11

Phys.Med. Biol. 68 (2023) 175035 NAlzahrani et al

https://doi.org/10.1016/j.semradonc.2019.02.001
https://doi.org/10.1016/j.semradonc.2019.02.001
https://doi.org/10.1016/j.semradonc.2019.02.001
https://doi.org/10.1088/1361-6560/aaf83c
https://doi.org/10.1088/1361-6560/aaf83c
https://doi.org/10.1111/1754-9485.12903
https://doi.org/10.1111/1754-9485.12903
https://doi.org/10.1111/1754-9485.12903
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1016/j.radonc.2017.12.013
https://doi.org/10.1016/j.radonc.2017.12.013
https://doi.org/10.1016/j.radonc.2017.12.013
https://doi.org/10.1097/MD.0000000000012381
https://doi.org/10.1259/bjr/27674581
https://doi.org/10.1259/bjr/27674581
https://doi.org/10.1259/bjr/27674581
https://doi.org/10.1002/sam.11583
https://doi.org/10.1002/sam.11583
https://doi.org/10.1002/sam.11583
https://doi.org/10.1016/j.radonc.2019.03.026
https://doi.org/10.1016/j.radonc.2019.03.026
https://doi.org/10.1016/j.radonc.2019.03.026
https://doi.org/10.1002/acm2.12554
https://doi.org/10.1002/acm2.12554
https://doi.org/10.1002/acm2.12554
https://doi.org/10.1016/j.ijrobp.2017.12.013
https://doi.org/10.1016/j.ijrobp.2017.12.013
https://doi.org/10.1016/j.ijrobp.2017.12.013
https://doi.org/10.1016/j.radonc.2020.05.038
https://doi.org/10.1016/j.radonc.2020.05.038
https://doi.org/10.1016/j.radonc.2020.05.038
https://doi.org/10.1016/j.ijrobp.2019.02.040
https://doi.org/10.1016/j.ijrobp.2019.02.040
https://doi.org/10.1016/j.ijrobp.2019.02.040
https://doi.org/10.1088/0031-9155/60/22/R323
https://doi.org/10.1088/0031-9155/60/22/R323
https://doi.org/10.1088/0031-9155/60/22/R323
https://doi.org/10.1016/j.radonc.2015.01.016
https://doi.org/10.1016/j.radonc.2015.01.016
https://doi.org/10.1016/j.radonc.2015.01.016
https://doi.org/10.1109/RBME.2022.3185292
https://doi.org/10.1109/RBME.2022.3185292
https://doi.org/10.1109/RBME.2022.3185292
https://doi.org/10.1016/j.radonc.2019.09.022
https://doi.org/10.1016/j.radonc.2019.09.022
https://doi.org/10.1016/j.radonc.2019.09.022
https://doi.org/10.1002/mrm.27134
https://doi.org/10.1002/mrm.27134
https://doi.org/10.1002/mrm.27134
https://doi.org/10.5220/0010235000310043
https://doi.org/10.5220/0010235000310043
https://doi.org/10.5220/0010235000310043
https://doi.org/10.1016/j.radonc.2019.10.019
https://doi.org/10.1016/j.radonc.2019.10.019
https://doi.org/10.1016/j.radonc.2019.10.019

	1. Introduction
	2. Materials and methods
	2.1. Dataset and clinical protocol
	2.2. Brain OARs and gold standard atlas
	2.3. Clinical contours and quality assurance (QA)
	2.4. Deep learning autosegmentation training
	2.5. Deep learning autosegmentation validation
	2.5.1. Geometric evaluation


	3. Results
	3.1. Comparison of CT versus MRI deep learning contours
	3.2. The value of editing contours before training

	4. Discussion
	5. Conclusion
	Acknowledgments
	Data availability statement
	Ethical statement
	References



