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ARTICLE INFO ABSTRACT
Keywords: This paper considers a Multiple Objective variant of the Critical Disruption Path problem to extend its
Networks

suitability in a range of security operations relying on path-based network interdiction, including flight pattern
optimisation for surveillance. Given a pair of nodes s and ¢ from the network to be monitored, the problem
seeks for loopless s — ¢ paths such that, within the induced subgraph obtained via deletion of the path, the
size of the largest connected component is minimised, the number of connected components is maximised,
while concurrently reducing as much as possible the cost of such disruption path. These three objectives are
possibly in conflict with each other, and the scope of this work is to allow for an efficient and insightful
approximation of the Pareto front, looking for a trade-off between costs and effectiveness to secure the most
convenient paths for security and surveillance operations. We first introduce and formulate the Multi-Objective
Critical Disruption Path Problem (Multi-Objs-CDP) as a mixed integer programming formulation (MO-CDP),
then we propose an original evolutionary metaheuristic algorithm hybridising modified-NSGA-II and VNS for
finding an approximation of the Pareto front, as well as a procedure securing the efficient generation of a high
quality pool of initial solutions. The experimental performance of the proposed algorithm, as compared with
a variety of competing approaches, proves to be fully satisfactory in terms of time efficiency and quality of
the solutions obtained on a set of medium to large benchmark instances.

Critical disruption path

Mixed integer programming
Multiple objective optimisation
Metaheuristics

1. Introduction: the role of critical disruption paths in network
surveillance and security

Many real-world problems arising in safety and security can be
accurately represented through networks, enabling the adoption of
optimisation methods to support better decision making, also in pres-
ence of multiple and often conflicting criteria. Network modelling is
typically utilised to predict and evaluate the behaviour of a system, to
identify the most vital (also called vulnerable or critical) components
of a network, via measuring the rules governing individual nodes, arcs,
or associated substructures, whose failure will prevent the functionality
of the network as a whole. In the last decades a growing scientific
attention has been devoted towards a specific class of problem, referred
to as Network Interdiction, where one is concerned with studying
those disruption interventions which are expected to induce a resid-
ual network as damaged as possible. Work in the field of network
interdiction dates back to Harris and Ross (1955) and, over the years,
network interdiction models have been increasingly applied in many

different areas (Wollmer, 1964; Ball et al., 1989; Wood, 1993; Lim and
Smith, 2007; Smith and Song, 2020). These problems are relevant from
both a protection and an interdiction perspective. In the latter case,
the interdiction is an attack to the network that leaves the network
fragmented or disconnected and the interdictor chooses his optimal
strategy to attack a given network, or a part of it. In the former, the
defender identifies which network components are the most critical
ones for maintaining the integrity of the network, and therefore should
be protected or reinforced. Network interdiction problems, besides fo-
cusing on scenarios that cause the network to become non-operational
after the failure of some nodes or arcs, are also aimed at measuring
the network’s communication capability or level of degradation (Albert
et al., 2000; Mishkovski et al., 2011; Holme et al., 2002). The definition
of network failure varies, but it typically involves either nodes or arcs or
specific topological substructure that may fail under certain conditions
or specific attacks. It is often advisable to evaluate the number of
necessary disruptive events to experience given levels of disruption
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in the target network, in order to assess its vulnerability. This led to
studies on how to lower the overall pairwise connectivity as a measure
of the network performance (Dinh et al., 2010). Furthermore, examples
of arc removal interdiction models have been introduced in Israeli and
Wood (2002), Royset and Wood (2007), whereas interdiction models
based on node removal have been broadly studied by Ventresca (2012),
Ventresca and Aleman (2014a,b), Summa et al. (2011), Arulselvan et al.
(2007, 2009), Cohen et al. (2003), Zhou et al. (2006), Shen et al.
(2012), Lalou et al. (2018) and Walteros et al. (2019), and the shortest
path interdiction problem has been considered in Israeli and Wood
(2002). In other variants of interdiction problems, the aim of nodes
and/or arcs removal is to get minimum weight on specific structural
and topological properties in the remaining graph (Smith and Song,
2020), including cliques (Furini et al., 2019; Mahdavi et al., 2014)
and maximum matching (Zenklusen, 2010). When planning complex
security operations, an insightful analysis and assessment of network’s
vulnerability and control is sometimes best achieved by seeking those
loopless paths in the network whose removal maximally impedes net-
work operability or maximises its disruption. These are referred to as
Critical Disruption Paths (CDPs) and were firstly introduced in Granata
et al. (2013). CDP’s applications arise for instance when defining op-
timal patterns for surveillance purposes, thus including: flight patterns
for military surveillance and reconnaissance missions, realised through
remotely piloted or traditional aircraft, optimal pedestrian or cycling
paths for surveillance and control workforce.

With the aim of enhancing the outcome of the surveillance activity
for network control purposes, different measures have been adopted
and investigated as an objective for the CDP problem, including:

» minimising the size of the largest connected component in the
induced subgraph obtained via deletion of the CDP: this goal will
lead to containing the residual risk of adverse activities taking
place in the residual network after the surveillance interven-
tion (Granata et al., 2013);

maximising the number of connected components in the induced
subgraph obtained via deletion of the CDP: this goal is aimed
at decreasing the connectivity of isolated components after the
disruptive action (Granata and Sgalambro, 2016).

A preliminary bi-objective study presented in Granata and Sgalambro
(2016) showed how a combined use of both objective functions can
yield a range of non-dominated solutions to choose from, while evalu-
ating the most appropriate intervention to be implemented for practical
purposes. Those experiments also revealed how the cost allowed for
the critical path impacts on the trade-off between such different and
often conflicting goals, thus revealing the presence of a prominent
research gap: how to design an efficient algorithm to approximate the
Pareto front for multiple-objective variants of the CDP with conflicting
relevant objectives. Furthermore, the cost of the CDPs clearly reveals
a feature to be considered as a major decision making driver, as it
influences both: the capability to implement surveillance operations
within given limitations in times, budget and vehicle endurance, and
the chance of finding proper trade-off between conflicting network
disruption measures. In this work we contribute to bridge these gaps,
as follows.

First, we introduce the Multiple Objective Critical Disruption Path
problem where, given a pair of nodes s and ¢ and the network to be
monitored with weights associated to arcs, one seeks for the loopless
s—t paths such that, within the induced subgraph obtained via deletion
of the path, the size of the largest connected component is minimised,
the number of connected components is maximised, and the cost of
such a disruption path is concurrently minimised. The three considered
objectives are in conflict with each other, and the scope of this work is
to foster an efficient and insightful approximation of the Pareto front
of this optimisation problem, looking for the trade-off between costs
and effectiveness in the solutions, thus supporting the decision maker
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at identifying the most suitable paths for security and surveillance
operations.

Secondly, we propose an original evolutionary metaheuristic algo-
rithm which hybridises modified-NSGA-II and VNS for approximating
the Pareto front of the considered Multi-objective Critical Disruption
Path problem. To the best of our knowledge, this is overall the first
solution approach proposed for a multiple-objective CDP, and its per-
formance is compared to a variety of rigorous competing approaches,
again proposed and implemented in this work.

As a further contribution, we propose an original polynomial time
procedure aimed at generating a pool of tailored feasible solutions
by identifying in polynomial time nodes which cannot belong to any
CDP, thus at complementing and boosting the performance of the
metaheuristic scheme. The experimental performance of the proposed
algorithm proves to be fully satisfactory in terms of time efficiency
and quality of the solutions obtained on a set of medium-to-large
benchmark instances. The considered testbed is comprehensive and
large enough to check and secure the scalability of the proposed
method on any realistic size application. The remainder of our paper
is organised as follows. In Section 2 we introduce formally the Multi-
Objective Critical Disruption Path problem (Multi-Objs-CDP) providing
a mixed integer programming formulation (MO-CDP). In Section 3
we discuss algorithmic strategies to restrict the search for Pareto ef-
ficient solutions as the generation of an initial pool of solutions. In
Section 4 we present our Hybrid Multi-Objective Modified-NSGA-II
Variable Neighbourhood Search (MO-NSGA-VNS) approach to solve
efficiently the Multi-Objs-CDP problem. The experimental performance
of the proposed MO-NSGA-VNS algorithm is presented in Section 5
on a set of medium to large benchmark instances, as compared to a
variety of competing approaches, including two further NSGA-based
algorithms and a scalarisation technique implemented to calculate non-
dominated solutions by applying an off-the-shelf solver to the MO-CDP
MIP model resolution. Some final remarks and further research avenues
conclude the paper.

2. Problem statement

In this section we first introduce the Multi-Objective Critical Dis-
ruption Path Problem (Multi-Objs-CDP) and its Mixed-Integer formula-
tion (MO-CDP). The Multi-Objective Critical Disruption Path Problem
(Multi-Objs-CDP) proposed in this paper is stated as follows.

We are given a directed graph ¢ = (V, E, w, s,t) with node and arc
sets V and E of size n and m respectively and two special nodes: a
source node s € V and a destination node t € V. We assume w.l.o.g.
that if (i,j) € E then also (j,i) € E, and w;; is the weight assigned
to arc (i,j) € E. Given any path p, we refer to ¢* := (V?, E?) as the
induced subgraph obtained via deletion of p from G, V? =V \ V(p),
E? := En (V? x V?), being V(p) the subset of nodes of V' which are
included in path p.

Definition 2.1. The Multi-Objective Critical Disruption Path Problem
(Multi-Objs-CDP) is defined as the problem of finding a simple loopless
path p from s to ¢ such that the following objectives are pursued:

» minimise the size of the largest connected component in ¢;
- maximise the number of connected component in ¢?;
» minimise the cost of the path p.

The Multi-Objective Critical Disruption Path can be now formulated
through the following multiple objective Mixed Integer Programming
model. We term this model as MO-CDP.

MO-CDP : f| :=miny
f> ‘=max Z d;

ieV\{s,1}
f3 :=min z w;;X;;

i,j:(i,))eE
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xg =1 2)
ii(s,)€EE
z x; =1 3)
i:(i,H)eE
X +x; <1 Y@i,j)€E, j>i (©)]
Z x; <IS|-1  vScV, |S[=2 (5)
ijes: (i.j)eE
yva=l= Y x; VieV\{s1) ®
1:(l,)eE
Yij 2 Yin — z X
1:(l.j)eE

Vh,i,jeV \{st}: j#i, (h,j)EE (7)

v Yy VieVv\{ish) ®
JEV\ (s}, j=i
n-d; <n-y;— Z Vji VieV\ {st} 9
JeV\{st}:j<i
w >0 (10)
d; € {0,1} VieV\ {s,t} 1D
x; €{0,1} V(i,j) € E (12)
yij € {0, 1} Vi,j €V \ {s,t} (13)

Among all the s —r paths, here we are concurrently looking for the
shortest ones (as required by the third objective function f3) and the
most disruptive ones, such that the arising connected components in
the residual graph after the path removal present the largest amount of
connected components with reduced size: this is obtained by including
f> and f; as objective functions, respectively. The proposed model is
an arc-based formulation requiring the selection of one simple s — ¢
path in the network, in the following indicated as Multi-Objs-CDP. The
binary variables x;; encode the decision on the choice of the CDP,
and the binary decision variables y;; take value 1 if and only if both
nodes i € V and j € V belong to the same connected component
after path extraction and 0 otherwise; y;; has value 1 if node i € V is
not belonging to Multi-Objs-CDP path and 0 otherwise. A non negative
variable y is used to indicate the cardinality of the largest connected
component arising in the residual graph. Binary variables d; are used
to count the number of connected components: as it is necessary to
have a member of each component in the residual graph to represent
that component, we use the node with the highest index as such one
representative, hence d; equals 1 if and only if node i is the rightful
component representative, 0 otherwise. Constraints (1)-(5) ensure that
variables x;; identify a simple s — ¢ path, where each path node has
one associated arc in and out as verified by the balance constraints (1).
The complexity of sub-tour elimination constraints (5) is reduced by a
separation mechanism and by constraints (4). Constraints (6) and (7)
identify the connected components in the network: where two nodes
j €V and i € V are forced to be in the same connected component,
if j does not belong to the selected path and there exists a further
node h € V connected via an arc to node j into the same connected
component. Constraints (8) assign the largest connected component
size value to variable y, whereas constraints (9) count the number of
connected components. It is worth recalling how the CDP detection
problem was proven in Granata et al. (2013) to be N P-complete by
reduction from the Hamiltonian Path problem, thus characterising also
the class of complexity of the Multi-Objs-CDP problem proposed in this

paper.
2.1. Relevance of the MO-CDP for application purposes

The enhanced potential for application purposes unleashed by the
multiple objective model above introduced, as compared to the single

Computers and Operations Research 160 (2023) 106363

objective variant of the CDP, can be better understood by observing
the set of non-dominated solutions obtained on the small example
network presented in Fig. 1. In this toy example we are given a graph
G=V,E,w,s,t)withnodes V = {s,1,2,3,4,5,6,7,8,9} and 27 arcs, and
two special nodes: a source node s € V and a destination node t € V.
The weight w;; assigned to each arc (i, j) € E is shown along the arc in
the figure. Multi-Objs-CDP efficient solutions for the graph example (a)
are presented in the following subfigures {(b),(d)}, {(c),(e)},{(©),{},
{(g),)},{(h),M}, {@),(m)}, where each subfigure couple shows on
the left the s-t CDP path with the corresponding values of the three
objective functions (f}, f,,f;) and on the right a representation of
the remaining connected components into residual graph ¢’ after the
removal of CDP p; as depicted into subfigure (i). We recall that the
objective function f; minimises the size of the largest connected com-
ponent in G, f, maximises the number of connected component in
G” and f; minimises the cost of the path p. Let us assume that the
CDP is utilised here to define the best flight pattern for an unmanned
aerial vehicle (UAV) aimed at automated aerial surveillance. The single
objective CDP would simply suggest (h) as a flight pattern, as a way
to minimise the size of the largest component in the residual network
(D). Such a solution might require a surveillance pattern exceeding (or
not) the endurance of the adopted UAV, depending on the amount of
budget invested in purchasing the fleet for security operations. By using
the MO-CDP model it is possible to explore the progressive growth in
the surveillance quality while allowing increasing cost for surveillance
paths, thus showcasing all the trade-offs between costs and solutions
quality. Computing and comparing solutions which approximate the
Pareto front of the MO-CDP will allow to appreciate, for each given
level of intervention cost, the associated expected impact on security
and surveillance operations, thus informing accurately the decision
making process to identify the most convenient level of investment.

3. Generating an initial set of feasible solutions

With the twofold goal of generating a pool of good initial solutions
and increase the efficiency in computing high quality solutions, we are
interested in identifying quickly those nodes which result in suitable
candidates for inclusion in a CDP, and in excluding all the others from
our search process. Our approach is underpinned by the preliminary
observation that a node which cannot be included in any simple s —
¢t path, can be excluded while seeking for feasible solutions. In the
following we refer to these as unreachable nodes. In order to find
such nodes, we design a polynomial-time pair node disjoint algorithm,
denoted as Pool-Init-Gen, which draws upon a variant of the procedure
presented in Suurballe and Tarjan (1984) and is applied on a modified
network. In this section, we first briefly recall some major results from
the literature on disjoint paths, then we describe the approach adopted
in this paper for generating an initial pool of feasible solutions.

Finding disjoint paths: variants and complexity. The term k shortest
disjoint paths is plainly interpreted as follows: given an undirected
graph G = (V,E) and k distinct pairs of nodes (s;,7;), ..., (g, ),
the objective is finding whether there exist k pairwise disjoint paths
Py, ..., P, such that P, is a path from s; to #;, for every 1 < i < k.
One may consider several variants: directed or undirected, node or
arc disjoint. The node disjoint path problem was shown to be N P-
hard by Li et al. (1975). Fortune et al. (1980) proved that the directed
version is N P-hard even if k = 2. Shiloach (1980) presented a linear
O(n - m) algorithm that, given an undirected graph G = (V, E) and
nodes sy, s,,1;, 1, determines whether or not G admits two node disjoint
paths, one connecting s, to ¢, and the other one s, to f,. Eilam-Tzoreff
(1998) proved that directed or undirected and node or arc disjoint
path problems are also N P-complete for arbitrary values of k even for
planar graphs with unit arc-costs. But the author actually provided a
polynomial algorithm for the case of k = 2 with positive arc-costs.
Furthermore, in Tragoudas and Varol (1997) the problem of finding
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b) pb:{s7t}7
fi=8fo=1fz=1

c) pe = 1{s,9,t},
fi=T7fo=1f3=4

Fig. 1. Pareto front for a toy example.

a pair of length-bounded disjoint paths between nodes s and ¢ of an
undirected graph was proven N P-complete. The problem of finding
two disjoint paths from s to ¢ such that the length of the longer path is
minimised was proven to be N P-complete on directed and undirected
graphs (Li et al., 1990). Whenever the min-sum disjoint path variant
is considered, namely where k disjoint paths with the total cost to be
minimised are to be found, the problem is known to be polynomially
solvable (Suurballe, 1974; Suurballe and Tarjan, 1984). Suurballe and
Tarjan (1984) proved that given a directed graph G = (V, E) with
m arcs and with non negative weight assigned to each arc, finding a
pair of shortest node/arc disjoint paths from s to a single sink ¢ can be
obtained in O(m - log(,,/,n) time. More results on the complexity of
finding disjoint paths can be found in Vygen (1994) and Frank (1988).
A recent heuristic for the computation of node disjoint path pair for any
set of at least two intermediate nodes has been presented in Martins
et al. (2017), which can be used on undirected and directed symmetric
graphs. The paper also succinctly describes a procedure to obtain a
min weight path visiting a specific node in undirected networks. In the
next section, we propose and detail a novel algorithm which can be
adopted on any graph. This routine is based on Suurballe’s approach
and considers one single intermediate node. Its worst-case complexity
is bounded by O(m + n - log(n)) which stems from shortest path tree
calculation.

3.1. Pool-Init-Gen algorithm construction
To generate a pool of good initial solutions and to timely identify

those unreachable nodes which cannot belong to any CDP, we de-
sign a polynomial-time algorithm, namely Pool-Init-Gen, able to find
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a min-hop s — ¢ path passing through a specific node i, by solving
via an auxiliary modified network. This algorithm draws inspiration
from Suurballe and Tarjan (1984), where finding a shortest s — 7 pair
of arc/node disjoint paths is used as a minimum-cost flow problem via
Dijkstra algorithm. Its adaptation to this particular case is similar to the
approach detailed in the introductory section of Martins et al. (2017).

The first step of Pool-Init-Gen algorithm consists in a building phase,
to produce an auxiliary graph G’ = (V/, E’, s,r) from the original input
graph G = (V, E, s,1), which contains |V'| = 2 - |V —2| + 2 nodes and
|E'| = |V — 2|+| E|. This building phase of G’ incorporates the following
finite steps:

» Each node v € V' \ {s,t} is split in a pair of nodes denoted as v
and v'.

» An arc e = (v,0') is created connecting each couple of split nodes
(v, V).

+ All the outcoming arcs of v are moved to be outcoming arcs of v'.

+ A weight w(u, v) = 1 is assigned to each arc (u,v) € G'.

The unitary weight value assigned in the last step to each arc in
the auxiliary graph is instrumental at enabling the search for a min-
hop path in the original graph. The effort of our algorithm is based on
the idea that finding path p from s to 7 passing through a node i in
the original graph G means looking for a shortest pair of node-disjoint
paths, one from s to i and one from i’ to ¢ in the auxiliary graph G’.
The Pool-Init-Gen involves these polynomial operations:

1. Find the shortest path tree .S PT(s) rooted at node s by running
the Dijkstra’s algorithm on the graph G/, and let call p, the found
shortest path (s~ i) from source s to i.
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f) pf = {5’655737t}7
Ji=4,f2=2f3=38

g) py = 1{5,6,7,8,9,t},
fi=3,fa=2,f3=12

h) Pn = {57675a27t}7
fi=3,f2=3f3=14

1) Pi = {576755 758797t}a
fi=1f=3f=15

Fig. 1.

2. Modify the weight of each arc (4, v) in the graph by replacing its
weight w(u, v) by W' (u, v) = w(u, v) — d(s,v) + d(s, u), being d(i, j)
the distance between any nodes i and ;.

3. Create a residual graph G'”! formed from G’ by reversing the
direction of the zero weight arcs along path p, and by removing
the arcs that are directed into s and, for all arcs (u,v) € |E| : v €
V(pp\ {s,i}, set the weight w(u,v) = |E|.

4. Find the shortest path p, = (i’ f) from the node i’ to the sink
t in the residual graph G’?! by running Dijkstra’s algorithm. For
each arc (u, v) € p, remove arc (v, u), if it exists, from both paths
py and p,.

5. Construct the s — ¢ path p concatenating p; and p,.

6. Modify p by shrinking any node splits previously operated during
the building phase, thus preserving only those nodes and arcs
which were originally part of the original graph G.

Computers and Operations Research 160 (2023) 106363

(continued).

An example of auxiliary graph construction is presented in Fig. 2(b)
applied to the dummy graph example represented in Fig. 2(a). So,
Figs. 2(c)-2(f) depict the algorithm’steps in finding the path between
the node s and ¢ that passes through the node 1; both steps 1-2 of Pool-
Init-Gen algorithm are depicted in Fig. 2(c), step 3 in Fig. 2(d), step 4
in Fig. 2(e) and steps 5—6 in Fig. 2(f).

Claim 1. If the cost of path p,, defined as W (p,) = Z(u’U)EE(pZ) w(u, v), is
greater than or equal to | E|, then there exist no s —t path p passing through
a given node i.

Proof. Seeking for the path p,, during the fourth step of the Pool-
Init-Gen algorithm, means seeking for a simple path from i’ to 7 in the
residual graph G'?', produced by step 3. In G'?!, all the arcs in SPT(s)
have weights equal to 0, and there are some arcs whose weight equals
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| E|, namely, those arcs entering any node v belonging to V(p)) \ {s.i}
(by algorithmic construction). If an arc (u, v) with w(u, v) > 0 is included
in p,, this arc does not belong to the shortest path tree .S PT(s), because
all the arcs in SPT(s) have weights equal to 0. Furthermore, we can
assert that the distance d(i’,v) from i’ to v is bounded from above by
d(i’,u) + w(u, v), namely, it holds d(i’,v) < d(i’',u) + w(u, v), otherwise
there would exist a shorter path to v via u, such that d(i’,u) — d(i’, v) +
w(u, v) is non negative and less than the longest path, which in turn can
be at most equal to n — 1. Suppose for absurd, that w(u,v) = |E|: this
would imply that during the construction of p, via Dijkstra’s algorithm,
one arc incident on V(p;)\ {s,i} has been included into the path p,, but
this means that the final path p is not a feasible s — ¢ path solution for
the graph G, and it is not passing through the node i, so a contradiction
follows. [

Furthermore, it is easy to show that G’ contains a pair of arc-disjoint
paths p; and p,, the former from s to i and the latter from i’ to ¢, if and
only if the original graph contains a path from s to ¢ through node i.

3.2. Generating an initial population

Instead of simply using any preliminary random population genera-
tor as it often happens for genetic algorithms, we adopt iteratively the
procedure presented above, with the scope of generating tailored initial
solutions, taking into account the main features of the Multi-Objs-
CDP, thus also securing increased chances to include non-dominated
solutions in the starting population P,. Here we explain how the Pool-
Init-Gen algorithm utilised the Algorithm (Section 3.1) to generate the
initial population P,. The algorithm Init_phase is fed with a weighted
directed graph ¢ = (V,E,w,s,t) with source s and destination ¢
and returns as an output two sets: UN C V and ND, filled with
unreachable nodes and with a first pool of non-dominated solutions,
respectively, with respect to the set of feasible solutions currently
considered. Init_phase works by initially exploiting an implementation
of the Dijkstra’s algorithm for generating as its first solution a path
which becomes in turn the first solution to be included in the set of
non-dominated solutions N D (lines 1-2). The procedure Pool-Init-Gen
is repeatedly executed upon each node i other than s and 7 (as detailed
in Algorithm 1, lines 3-13). If a feasible solution is identified, the path
p is included in the set N D, whereas if a feasible solution cannot be
identified, the node i is labelled as unreachable and added to UN, as
it is not possible to find any simple path from s to ¢ through i.

Algorithm 1 Init_phase(G(V,E, w,s, t), ND, UN)
1: p < Dijkstra(G(V,E,w,s,t))
2: ND « p {set of non-dominated solutions }
3: forallieV\ {s,t} do
4: if degree[i] =2 and arcs (i, k), (k, i) exist then

5 ADD(UN, i)
6: end if
7. Use Pool-Init-Gen algorithm for finding a path p passing through
node i
8: if pis not a feasible solution then
9: ADD(U N, i)
10: else
11: ADD(N D, p)
12:  end if
13: end for

14: return ND, UN

4. Hybrid Multi-Objective Modified-NSGA-II Variable Neighbour-
hood Search (MO-NSGA-VNS)

In this section we present the original algorithmic procedure we
designed ad-hoc to approximate the Pareto front for large size in-
stances of the Multi-Objs-CDP problem. The adoption of bio-inspired
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search paradigms has proved to be effective in solving many multi-
objective optimisation problems (Emmerich and Deutz, 2018; Zitzler
et al., 2004), as they are able to find multiple solutions simultane-
ously in a single execution. Methods such as Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) (Deb et al., 2002), Non-dominated Sort-
ing Genetic Algorithm-III (NSGA-III) (Deb and Jain, 2014), Strength
Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001), S-Metric
Selection Evolutionary Multiobjective Optimisation Algorithm (SMS-
EMOA) (Emmerich et al., 2005), and Multiobjective Evolutionary Algo-
rithm based on Decomposition (MOEA/D) (Zhang and Li, 2007) have
become extremely popular when it comes to solving multi-objective
optimisation problems. NSGA-II (Deb et al., 2002) can be taken as a
representative of Pareto-based approaches, the advantage to use this
kind of method is the necessity to have few configuration parameters
and the possibility to work well with a lot of objective functions
meanwhile it is difficult to guarantee and measure the convergence of
the solutions. SMS-EMOA (Emmerich et al., 2005) is a representative
of the hypervolume indicator-based approaches: for these methods, it
is possible to assess convergence at a high computational cost, since
a set’s hypervolume is measured in relation to a reference point and
it equals the total size of the space dominated by the solutions in
the set. MOEA/D (Zhang and Li, 2007) is a good representative of
the decomposition-based approaches, for these methods is possible to
incorporate various scalarisation methods but this requires some prior
knowledge of the position of the Pareto front. Though, at a certain point
it has become evident that a single metaheuristic is not sufficient to deal
with the real world and large scale problems, so hybridised metaheuris-
tics started to be presented in literature as reported by Gandibleux
and Ehrgott (2005). The interaction among metaheuristics can take
place at different levels, at low-level using specific functions from
each metaheuristics or at high-level using a portfolio of metaheuris-
tics for automated hybridisation (Talbi et al., 2012). Indeed, it has
become popular the hybridisation between genetic algorithms and local
search, that is also referred to as genetic local search, or memetic
algorithms (Ishibuchi and Murata, 1996, 1998). Hybrid metaheuris-
tics provide a more efficient behaviour and a higher flexibility. For
instance, a two-phased approach based on the combination of a multi-
objective evolutionary algorithms and single-objective techniques to
solve Vehicle Routing Problems has been proposed by Jozefowiez et al.
(2008) and two methods hybridised with the path relinking procedure,
a Pareto ant colony optimisation algorithm and a variable neighbour-
hood search method by Schilde et al. (2009). A first hybrid NSGA-II
and VNS for solving a bi-objective no-wait flexible workshop scheduling
problem has been introduced in Asefi et al. (2014). Extended surveys
have been provided in Emmerich and Deutz (2018), Zitzler et al.
(2004), Talbi et al. (2012), Basseur et al. (2006) and Zavala et al.
(2014). Our procedure is based on a hybridisation of NSGA-II and
Variable Neighbourhood search (VNS), and we refer to this as the Hy-
brid Multi-Objective Modified-NSGA-II Variable Neighbourhood Search
(MO-NSGA-VNS). Similarly to other population-based algorithms, the
Pareto fronts (PFs) are formed and re-elaborated throughout the whole
search process. At each step, solutions in the fronts are either kept or
discarded according to a set of criteria and a new offspring population is
generated. While many variants of NSGA algorithms generate prelim-
inary random populations, we utilise the Pool-Init-Gen algorithm (see
Algorithm Section 3.1) to create the initial population P,. Furthermore,
instead of using basic operators such as mutation and crossover in order
to generate new populations, in our algorithmic approach we adopt
a modified Variable Neighbourhood Search scheme (see Section 4.1),
which combines a variety of neighbouring structures and intensifica-
tion procedures. A previous example of hybridisation between NSGA
and VNS had been presented in the literature (Asefi et al., 2014): in
this work, the algorithm was applied to a bi-objective problem, the
initial input solution to VNS was a random offspring obtained by a
mutation operator, the neighbours were applied to random jobs into
layers and no intensification features were exploited. Before presenting
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Fig. 2. Example of construction of shortest pair of node-disjoint paths s to 1 and from 1’ to .

the complete pseudocode description of MO-NSGA-VNS as applied to
our problem in Algorithm 2, we describe some of the used support
structures, parameters and useful recalling functions, to allow for a
thorough understanding of the procedure scheme, as follows:

U N: set of unreachable nodes.

N D: set where all found non-dominated solutions are stored.

a: parameter related to neighbourhood N,(p) (as presented in Sec-
tion 4.1), increased at each iteration i.

p: parameter related to neighbourhood N 2’“’"(1)) (as presented in Sec-
tion 4.1), increased at each iteration i.

O: population size limit.

T: time limit in seconds.

L: intensification iterations limit.

ADD(N D, p): handler function defined to update the set N D. Given
any solution p this function adds p to the current set of the non-
dominated N D if and only if p is non-dominated by any other
solution belonging to the set N D.

An initial population P, of size at most Q is generated using Al-
gorithm 1, then a generational loop is repeated until time limit T is
reached. At any i,, population generation, an offspring population Q;
of size Q is created using the MOV N S Algorithm (see Algorithm 3).

The new Pareto front population is obtained as PQ; = P; | O; of size
20, this is divided into different non-dominated classes, or fronts, using
the procedure Fast_non_dominated_sort presented by Deb et al. (2002).
The domination counter is used to count how many solutions dominate
the solution p, and it is adopted to determine whether a solution p
belongs to a different non-dominated class, or front. The domination
counter starts from zero for the first non-dominated front and reaches
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Next Population |
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Fig. 3. Graphical sketch of the MO-NSGA-VNS procedure.

|V|—1 for the last non-dominated front. Only the first O individuals are
kept to form the next generation, even if some of them can be members
of the same last front. Note that no sub-procedures have been included
to select and rank the last front. A graphical description of the whole
evolutionary metaheuristic procedure is provided in Fig. 3.

Algorithm 2 NSGAII-MOVNS(G(V,E, w,s,t),Q, T, L)

: UN « §§ {Set of unreachable nodes of any path from s to 7}

: ND « @ {Set of the non-dominated Pareto solutions}

t =0 {Time counter}

i =0 {Iteration counter}

P; < Init_phase(G(V,E,w,s,t),ND, UN)

F < Fast_non_dominated_sort(P;)

: Q; « MOVNS(G,P;,Q,a,,t, T,ND, L)

: while t has not reached the time limit 7 do

PQ; < P,UJO;

F « Fast_non_dominated_sort(PQ;) (Deb et al., 2002)

ADD(N D, F) {update the set of non-dominated solutions with
those ones coming from frontiers stored in F}

P, « F[I : O] {Take the first frontiers until to fill the next
population P, with at most O solutions }

13:  Q,,; < MOVNS(G(V,E,w,s,t),P;,;,Q,a,4,t, T,ND, L)

14: i< i+1

15:  if a > (|V|/2) then

©® NI A wN

-
= o

-
»

16: a = 1 {re-initialise « to 1 }

17:  else

18: a++ {Increase a until to reach half size of node number }
19: end if

20: if g > (|V]/2) then

21: p =1 {re-initialise g to 1 }

22: else

23: p++ {Increase g until to reach half size of node number }
24: end if

25: end while

4.1. Using a modified multi-objective variable neighbourhood search to
generate the offsprings

Variable neighbourhood search, introduced by Mladenovi¢ and
Hansen (1997), is a metaheuristic method whose search process draws

upon systematic changes of neighbourhood. The effectiveness of this
procedure for solving single-objective optimisation problems has been
broadly proved (Mladenovi¢ and Hansen, 1997; Hansen and Mladen-
ovi¢, 1997; Polacek et al.,, 2004). The first multi-objective VNS
(MOVNS) was applied to a machine scheduling problem and proposed
in Geiger (2008), differing from single-objective VNSs for having intro-
duced two main arbitrary choices: the base unvisited non-dominated
solution (starting point of the next neighbourhood search) and the
used neighbourhood, both chosen at random from those available. This
procedure has been further developed by Arroyo et al. (2011), where
some non-dominated solutions have been constructed from partial
results found by the inner procedures.

In our algorithm, we propose and adopt three parametric neigh-
bourhoods N,(x'), Nguax(x"), NEROSS and, at each iteration of the
algorithm, all of the defined neighbourhoods are applied to a non-
dominated solution p as randomly selected from the set P,. Such neigh-
bourhoods are:

N, (p): obtained by removing up to « nodes from p and adding up to
a nodes, completely at random.

N'I;“‘X (p) : obtained by removing up to f nodes from p and adding up to
p nodes, where such nodes are chosen from those belonging to the
maximum connected component. This choice is aimed at reaching
better solutions by creating paths passing through nodes belonging
to larger connected components.

N:}ROSS(p): is obtained from p and a random non negative index y,
with 1 <y < |p| — 1 by concatenation of the subpaths p, and
p;» where p, = {v,...,v,}, (that is the subpath of p truncate at
position y) and p; = {vp,...,v,} C p € ND with v, = v, (that is the
subpath of a solution p € N D having v, as inner node).

A pseudo-code describing the complete modified Multi-Objective Vari-
able Search (MOVNS) including the intensification phase is provided in
Algorithm 3, which is also depicted in Fig. 4.

The aim of the intensification procedures is to add some new nodes
to the current solution in order to shake the search procedure and
escape from any local minima.This is realised by a recursive function,
that is calling itself until no improvement can be performed on the best
current solution (base case) or until one of the following terminating
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Fig. 4. Graphical sketch of the Algorithm 3.

Algorithm 3 MOVNS(G(V.E, w.s,t),P;. Q.. p.t. T,ND. L)

1: Q; < @ {set of offspring solutions}
2: while t < T AND 1Q;l < Q {Until time or Offspring size limits are
reached} do
Select randomly a solution p from the population set P,
and mark p as visited
pd, < Intensification(G(V,E, w,s, t),p, L TYPE < 1)
pd, — Intensification(G(V, E,w,s,t),p, L, TYPE « 2)
ADD(Q;, pd|) AND ADD(Q;, pd,)
Determine randomly a solution p’ from N, (p)
for all p” e N,(p’) do
10: Evaluate the solution p”
11: ADD(Q;, p"") {p” is non-dominated by any solution of offspring
set O;}
12: end for
13:  Determine randomly a solution p’ from N;“‘"
14: forall p” € Nﬁ“‘a"(p’ ) do
15: Evaluate the solution p”
16: ADD(Q;,p")
17:  end for
18: Determine randomly a non negative index y, with 1 <y < |p| -1

© ® NI Aw

19:  Determine randomly a solution p’ from NfROSS(p)
20: forall p’ e NYCROSS(p/ ) do

21: Evaluate the solution p”
22: ADD(Q,, ")
23:  end for

24: end while

25: for all p € Q; do
26: ADD(ND,p)
27: end for

28: return Q;

conditions is met: time limit 7 and depth of the recursion tree 7. We
present two different procedures, both of them aimed at cutting a path
p, which can be depicted by a sequence of nodes, in a specific position
i, thus obtaining two subpaths p; = s,...,i and p, = j, ...,t, and filling
the gap between nodes i and j with a new shortest path passing through
a specific node u. The two procedures differ from how the node u € V'
is chosen (see Algorithm 4, and refer to lines 6 and 9). Hence a node u
is selected at random from two sets, V'~ and V™, for Intensification
TY PE 1 and Intensification TY PE 2 respectively. The set V'~ includes
all reachable nodes except those belonging to the path p, whereas V"¢

is the set of all nodes belonging to the maximum size connected com-
ponent. At each offspring generation, both intensification procedures
are applied on a random solution chosen from the parent population,
differently from Arroyo et al. (2011) where intensification is aimed at
improving a partial ¥ NS solution.

Algorithm 4 Intensification(G(V,E, w,s, t), p, LT TYPE)

1: p < p
2: while L and 7 limits are not satisfied do

3: for i=0to |V(p)—2| do
4: for j=i+1to |V(p)—1| do
5: if TYPE =1 then
6: pick a random node u from V',
7: Vo<V \ (s, V(g0 V()5 .. p), UN}
8: else
9: pick a random node u from V"X,
10: {
ymax  CC\{U N } where |CC| is the maximum connected
component obtained removing p }
11: end if
12:
13: ¥« Dijkstra(G(V \ V(p), E\ E(p), w, s, 1)i,u,j) {
that is a shortest i-j path passing through node u, where i is
the source and j is the sink }
14: if ¥/ # ¢ then
rl
15: P =0oDls s Dy = Tisee sty P = D), Py)
16: end if
17: if p <p then
18: L ++ // increment to handle the recursion tree depth
19: Intensification(G(V,E, w,s, t), p’, i, ’i‘, TYPE) //recursive
case
20: ADD(N D, p")
21: else
22: return p’ //case base
23: end if
24: end for
25: end for

26: end while
27: return p’

5. Testbed and computational experiments

In this section, we present and analyse the results of the articulated
computational experience that has been developed in this work. The
scope of the experiments is assessing the efficiency of the MO-NSGA-
VNS algorithm and its efficacy at approximating the Pareto front of the
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Table 1

Performance comparisons between MO-CDP and MO-NSGA-VNS. Column 1 describes
the instance triplet (1, m, o). Columns 2 and 4 present the number of non-dominated
solutions N Ds for both algorithms: MO-CDP and MO-NSGA-VNS. Running times are
reported into columns 3, 5 and 6.

(n, m, 0) MO-CDP MO-NSGA-VNS

NDs Time (s) NDs M in(Time(s)) AV G(Time(s))
(40, 156, 0) 16 25816.76 33 1133 3024.15
(40, 156, 1) 11 19098.29 21 0 2947.00
(40, 780, 0) 9 153529.76 29 0 2461.55
(40, 780, 1) 13 189728.45 26 0 2093.81
(40, 1404, 0) 17 246153.33 29 2 2333.97
(40, 1404, 1) 14 260671.31 27 126 1578.22
(50, 245, 0) 20 39137.43 39 0 2705.69
(50, 245, 1) 17 27888.02 16 7 2826.88
(50, 1225, 0) 9 123010.44 27 1 2792.30
(50, 1225, 1) 6 139596.33 26 1822 3147.50
(50, 2205, 0) - - 22 1365 3126.77
(50, 2205, 1) - - 28 315 2052.75
(60, 354, 0) 23 81649.94 48 196 1470.44
(60, 354, 1) 10 63908.25 54 182 2120.20
(60, 1770, 0) - - 40 449 2462.05
(60, 1770, 1) - - 48 336 1868.25
(60, 3186, 0) - - 31 409 2767.23
(60, 3186, 1) - - 25 0 2744.80
(70, 483, 0) 16 184657.06 53 49 1765.02
(70, 483, 1) 28 153343.14 68 119 1602.93
(70, 2415, 0) - - 32 5 2288.56
(70, 2415, 1) - - 44 693 2602.36
(70, 4347, 0) - - 22 0 3018.64
(70, 4347, 1) - - 27 748 2596.74
(80, 632, 0) 5 48229.90 21 0 2412.76
(80, 632, 1) 12 169140.29 18 20 1533.89
(80, 3160, 0) - - 46 82 1673.41
(80, 3160, 1) - - 50 0 2306.84
(80, 5688, 0) - - 14 1457 2325.43
(80, 5688, 1) - - 22 3 2603.00
(90, 801, 0) 1 63118.42 26 19 2628.27
(90, 801, 1) 1 52530.52 19 0 3055.53
(90, 4005, 0) - - 26 961 2793.58
(90, 4005, 1) - - 26 0 2903.46
(90, 7209, 0) - - 21 1745 2753.76
(90, 7209, 1) - - 30 0 2899.10

Multi-Objective Critical Disruption Path Problem. We first provide here
a description of the adopted testbed and of the range of different meth-
ods we considered in order to assess the performance of our algorithm.
Then in Section 5.1 the results of the computational experiments are
presented and discussed.

Computational testbed. A large set of increasing size random instances
has been generated uniformly distributed as a test bed, overall made
up of two different classes of instances:

+ six groups of medium size, with a number of nodes n = 40+10xx,
Kk €[0,1,...,5]

+ ten groups of large size instances, with a number of nodes n =
100+ 100 x ¢, 0 € [0, 1,...,9].

For both classes, the number of arcs is m = n X (n — 1) X p where p €
{0.1,0.5,0.9} and, for each pair (n, m), two distinct randomly generated
instances are created and referred to by using the notation (n,m, o),
with o = {0,1}, to denote the instance occurrence. The algorithm for
instance generation primarily consists of two phases: the connecting
phase, with at most n — 1 steps, where arcs are iteratively generated at
pseudo-random connecting one node already inserted in the building
graph and the other one not yet connected, until none of the nodes
are left out; the building phase, where all other arcs are generated
at pseudo-random, by iteratively selecting origin and destination in V'
with uniform probabilities, until the required target number of arcs m is
reached. Furthermore, for each arc e a weight /, is generated at random
with a uniform distribution in the interval [1,n]. The MO-NSGA-VNS
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was coded in ANSI C++-14. All the computations have been performed
on an Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80 GHz with 16 GB of
RAM. The following parameters were adopted:

T =3600s, as a computational time limit.

L =100 % |E|, with a maximum value of 10000, (i.e., the recursion
tree depth cannot exceed the value of 10000) as an intensifi-
cation depth parameter, used in the Intensification procedures
(see Algorithm 4).

0 =20, as an offspring set size.

Note that the parameters L. and O have been set by following the
results of a preliminary calibration phase based on the execution of the
algorithm on a sample of instances.

Benchmarking against scalarisation technique. In order to assess quality
and exhaustiveness of the MO-NSGA-VNS at generating the Pareto
front, a comparison with the results of a multi-objective scalarisation
technique, implemented by using a state-of-art off-the-shelf solver, is
also provided in this paper for the class of medium size instances. To
this aim, several convex combinations of the three objective functions
were considered and experiments conducted at varying weight coeffi-
cients 4;, i = 1,2, 3, in the range [0,1] with such interval divided in 100
steps for each dimension, such that ) 4, = 1 for each triple of weight
coefficients considered. As the goal of this specific comparison is con-
cerned with challenging the capability of the MO-NSGA-VNS to produce
a comprehensive Pareto front, rather than its computational efficiency,
each experiment was executed by using IBM ILOG CPLEX 12.9 on the
same machine without any time limitation in order to get the largest
possible number of solutions, although clearly not exhaustive. The
proposed model has been implemented using ANSI C++ and Concert
Technologies libraries, using Cplex callbacks to cope with subtour
elimination contraints (5). Thus, the set of non-dominated solutions
NDMO-CDP) = |J, ND, (MO-CDP) found through implementing and
solving the (MO-CﬁP) model by CPLEX consists in the union of all
non-dominated solutions found whilst varying the convex weight 4;
combinations through the above described scalarisation technique.

Benchmarking against evolutionary algorithms. In order to test also time-
efficiency and effectiveness of the MO-NSGA-VNS algorithm, two fur-
ther comparisons against standard evolutionary algorithms were de-
veloped, through the implementation of the standard Multi-objective
Evolutionary algorithms: basic-NSGA and subpaths-NSGA. The basic-
NSGA is based on the classic implementation of NSGA-II where the
mutation operator is obtained by replacing a node with a new one,
as follows: given a solution path p = {s,....i — 1L,i,i + 1,...,¢}, a
random node i is substituted by another random node ; as it is expected
within the basic-NSGA algorithmic framework. As this simple mutation
operator often does not guarantee the existence of another valid path,
we also introduced subpaths-NSGA algorithm, whose main idea is to
replace a node i by a simple sub-path {i-1,...,i+1}, created between
the adjacent nodes i-1 and i+1 whose nodes are not belonging to the
original path p. We use the Intensification procedure of TY PE 1 (see
Algorithm 4) as operator to find the best fitting subpath.

Adopted benchmarking metrics. non-dominated

NDsbyR(ND,R) =|nd € ND|3re R : r < nd 14)

N DsbyR(N D, R)
|ND|
The reference set R is defined as a collection of candidate solutions
with respect to which we can compare two algorithms. In other words,
these metrics estimate, respectively, the amount of solutions in the set
N D which are dominated by any solution belonging to the reference
set R, expressed as absolute number and percentage, respectively.

NDsRbyR(ND,R) = (15)
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5.1. Discussion of the results

The results of the computational experiments are now presented and
discussed, focusing on the performance of MO-NSGA-VNS algorithm as
measured against the Pareto front in terms of quality of the obtained
solutions by adopting a variety of convergence-diversity criteria. Ex-
periments are presented as follows. Firstly we present the comparison
between the results obtained by MO-NSGA-VNS and those provided by
the scalarisation technique approach on the (MO-CDP) model. Table 1
is aimed at comparing the overall number of non-dominated solutions
provided (N Ds) and the required CPU times, against each distinct
instance. Recall for each pair (n, m) a couple of instance occurrences are
generated, denoted with two triplets (n, m,0), with o = {0, 1}. Compu-
tational times for the MO-CDP scalarisation technique express the sum
of all computational times needed to solve each convex combination
obtained at varying 4; into the objective function, where no time limit
was applied. As regards MO-NSGA-VNS, Min(Time) and AV G(Time)
report respectively the time when the first solution was found and
the average time when non-dominated solutions N D were identified,
recalling how a time limit of 3600 seconds was set for this case. A
value of the Min(Time) column equal to 0 suggests therefore how at
least one solution among the final set of non-dominated solutions was
found during the initialisation phase by the Pool-Init-Gen algorithm (see
Section Algorithm Section 3.1). From the results, it is apparent how
the MO-NSGA-VNS provided clear advantages in terms of computing
times and number of identified solutions. It is also worth clarifying
that the measured CPU time needed for executing the whole Init_phase
iterative algorithm on instances of any size was negligible as regu-
larly less than one second. This evidence matches with the worst-case
analysis already provided for the proposed Pool-Init-Gen algorithm, and
corroborates experimentally its high performance, as it requires very
limited computational resources but in some cases even produces non-
dominated solutions. In order to explore and compare the quality of the
solutions obtained by the two approaches, the results in Table 2 adopt
the metrics (14) and (15) above described to appreciate how only a few
solutions provided by MO-NSGA-VNS (around 1.25 on the average) are
dominated by other solutions in the reference set, which includes the
solutions found by the MO-CDP algorithm, whereas the MO-NSGA-VNS
outperformed the MO-CDP approach by 25 solutions on the average.
Results in Table 3 report the range of values for the three objective
functions: if the Pareto front solutions span on a broader interval, then
a better approximation of the reference set is reflected. These results are
therefore devoted to evaluate diversity and inclusiveness of the set of
obtained non-dominated solutions for each algorithm, and assess how
broadly these are spread over the Pareto front. The two approaches
show a quite different behaviour in this respect, as functions f; and
/> span a quite wider range on most of the solved instances, with
exception for the larger ones, while the range for f; is consistently
wider for the metaheuristic approach.

Also, it is worth noticing how the lowest values in terms of cost of
the CDP are regularly identified by the evolutionary metaheuristic, thus
hitting one of the underlying goals of this multi-objective extension of
the CDP approach: containing as much as possible the transportation
costs for surveillance operations while securing the highest possible
effectiveness in terms of quality of the surveillance.

The results of the experiments aimed at benchmarking MO-NSGA-
VNS against standard evolutionary algorithms are provided in Table 4
by reporting, for each instance, the number N Ds of solutions pro-
vided as an output by each algorithm, and the percentage N DsRbyR
of such solutions which result to be dominated by using the metric
(15) presented above. Note such a metric is applied with a one-vs-
all method, where each non-dominated solution set N D produced by
a given algorithm is compared to a reference solution set R, being
the latter equal to the union of all the solutions produced by the
remaining algorithms. Clearly, such a reference set R differs from
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Table 2

Results of the capacity performance measure for MO-NSGA-VNS algorithm, where the
reference set R contains the solutions found by the MO-CDP algorithm. Column 1
describes the instance triplet (n, m, 0). Columns 2-3 report the N Ds for algorithms MO-
CDP and MO-NSGA-VNS. Columns 4-5, report N DsbyR and N DsRbyR metric values
(Metrics (14), (15)). Last column 6 reports the solutions in common with the reference
set R.

(n, m, 0) MO-CDP MO-NSGA-VNS

NDs NDs NDsbyR NDsRbyR n
(40, 156, 0) 16 33 5 0.16 6
(40, 156, 1) 11 21 3 0.15 6
(40, 780, 0) 9 29 2 0.07 4
(40, 780, 1) 13 26 6 0.24 1
(40, 1404, 0) 17 29 9 0.32 2
(40, 1404, 1) 14 27 8 0.30 1
(50, 245, 0) 20 39 5 0.13 1
(50, 245, 1) 17 16 2 0.13 2
(50, 1225, 0) 27 1 0.04 2
(50, 1225, 1) 6 26 1 0.04 1
(50, 2205, 0) - 22 - - -
(50, 2205, 1) - 28 - - -
(60, 354, 0) 23 48 9 0.19 4
(60, 354, 1) 10 54 3 0.06 4
(60, 1770, 0) - 40 - - -
(60, 1770, 1) - 48 - - -
(60, 3186, 0) - 31 - - -
(60, 3186, 1) - 25 - - -
(70, 483, 0) 16 53 4 0.08 2
(70, 483, 1) 28 68 8 0.12 4
(70, 2415, 0) - 32 - - -
(70, 2415, 1) - 44 _ _ _
(70, 4347, 0) - 22 - - -
(70, 4347, 1) 27 - - -
(80, 632, 0) 21 1 0.05 2
(80, 632, 1) 12 18 3 0.17 1
(80, 3160, 0) - 46 _ _ B
(80, 3160, 1) - 50 - - -
(80, 5688, 0) - 14 - - -
(80, 5688, 1) - 22 - - -
(90, 801, 0) 1 26 0 0.00 1
(90, 801, 1) 1 19 0 0.00 1
(90, 4005, 0) - 26 - - -
(90, 4005, 1) - 26 _ _ _
(90, 7209, 0) - 21 - - -
(90, 7209, 1) - 30 - - -

the one adopted in Table 2. It can be observed how the MO-NSGA-
VNS outperforms both the competing approaches, providing somewhat
regularly the highest number of solutions, and presenting at the same
time the lowest values for the dominance metric. Indeed, although at
a first glance on some instances the number of solutions returned by
the subpaths-NSGA may appear higher than those provided by the MO-
NSGA-VNS, N DsRbyR scores are effective at showing how most of such
produced solutions are dominated and thus do not represent suitable
candidates to approximate the Pareto front. Figs. 5-6 are instrumental
at visualising the prevailing profile of the MO-NSGA-VNS algorithm
solutions as compared to the competing approaches.

6. Conclusions

In this paper we proposed a multiple objective approach to extend
the Critical Disruption Path problem, a path-based network interdiction
problem aimed at optimising surveillance operations. While coupling
the size of the maximal connected component and the number of such
components in the effort to maximise the surveillance effectiveness, our
variant of the CDP problem concurrently seeks for the minimisation
of the critical path cost, thus increasing the impact of adopting a
CDP approach for practical purposes, supporting surveillance planning
for a variety of application fields and different transportation means.
Motivated by the provably high level of complexity of the consid-
ered problem, we developed an original evolutionary metaheuristic
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Table 3
Performance comparisons between MO-CDP and MO-NSGA-VNS algorithms, column 1 describes the instance triplet (n, m, o). Columns 2-5 report the range of the
three objective functions f;, f, f; and the cost as a number of hops for the MO-CDP problem. Columns 6-9 report these ranges for the MO-NSGA-VNS problem.

(n, m, 0) MO-CDP MO-NSGA-VNS
Ji fa /3 Hops i fa /3 Hops
(40, 156, 0) [1-36] [2-19] [24-711] [2-22] [4-36] [2-17] [24-417] [2-15]
(40, 156, 1) [1-30] [3-15] [203-827] [7-25] [4-30] [3-15] [203-587] [7-19]
(40, 780, 0) [1-32] [2-7] [122-1241] [6-32] [10-32] [2-3] [122-2313] [6-27]
(40, 780, 1) [1-37] [2-7] [134-1327] [1-33] [12-37] [2-3] [134-2825] [1-26]
(40, 1404, 0) [0-35] [0-3] [84-2440] [4-39] [10-35] [1-2] [84-9237] [4-29]
(40, 1404, 1) [0-36] [0-3] [130-2302] [3-39] [11-36] [1-2] [130-8301] [3-27]
(50, 245, 0) [1-36] [11-32] [93-970] [3-20] [5-36] [11-26] [93-944] [3-17]
(50, 245, 1) [1-30] [14-32] [73-986] [6-21] [10-30] [14-22] [73-486] [6-17]
(50, 1225, 0) [1-45] [1-7] [83-3269] [4-45] [21-45] [1-2] [83-3822] [4-27]
(50, 1225, 1) [1-45] [1-7] [166-3103] [4-45] [18-45] [1-2] [166-9588] [4-31]
(50, 2205, 0) [-] [-] [-] [-] [19-46] [1-1] [117-10107] [3-30]
(50, 2205, 1) [-] [-] [-] [-] [18-46] [1-2] [129-15299] [3-30]
(60, 354, 0) [1-52] [5-30] [88-1969] [3-31] [8-52] [5-26] [88-1897] [3-21]
(60, 354, 1) [1-52] [4-27] [135-2080] [4-32] [9-52] [4-25] [135-2638] [4-25]
(60, 1770, 0) [-] [-] [-] [-] [24-53] [1-9] [247-10659] [6-30]
(60, 1770, 1) [-] [-] [-] [-1 [27-57] [1-4] [135-8213] [2-30]
(60, 3186, 0) [-] [-] [-] [-] [28-56] [1-3] [458-17497] [3-29]
(60, 3186, 1) [-] [-] [-] [-] [25-57] [1-3] [188-17405] [2-32]
(70, 483, 0) [1-57] [9-34] [239-3346] [4-36] [6-57] [9-30] [239-2533] [4-21]
(70, 483, 1) [1-59] [8-33] [219-3039] [3-37]1 [10-59] [8-29] [219-2436] [3-21]
(70, 2415, 0) [-] [-] [-] [-] [35-64] [2-6] [119-12206] [4-28]
(70, 2415, 1) [-] [-] [-] [-] [33-68] [1-7] [122-12359] [1-30]
(70, 4347, 0) [-] [-1 [-] [-] [36-63] [1-2] [123-21697] [6-32]
(70, 4347, 1) [-] [-] [-] [-] [38-63] [1-2] [249-27361] [5-30]
(80, 632, 0) [3-67] [6-35] [402-2371] [5-36] [37-67]1 [6-21] [402-1537] [5-20]
(80, 632, 1) [1-73] [4-47] [64-3133] [3-36] [39-73] [4-23] [64-359] [3-14]
(80, 3160, 0) [-] [-] [-] [-] [48-76] [1-11] [312-18037] [3-22]
(80, 3160, 1) [-] [-] [-] [-] [40-75] [1-11] [165-15957] [4-32]
(80, 5688, 0) [-] [-1 [-] [-1 [51-71] [1-1] [280-12378] [8-28]
(80, 5688, 1) [-] [-] [-] [-] [48-70] [1-2] [210-18573] [9-30]
(90, 801, 0) [86-86] [1-1] [170-170] [3-3] [54-86] [1-1] [170-4218] [3-35]
(90, 801, 1) [88-88] [1-1] [60-60] [1-1] [61-88] [1-1] [60-2008] [1-28]
(90, 4005, 0) [-] -] [-] [-1 [63-84] [1-2] [451-21072] [5-25]
(90, 4005, 1) [-] [-] -1 [-] [57-83] [3-7] [159-18480] [4-27]
(90, 7209, 0) [-] [-] [-] [-] [61-83] [1-2] [261-44696] [5-28]
(90, 7209, 1) [-] [-1 [-] [-] [62-87] [1-2] [288-45496] [2-26]
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Fig. 5. Comparisons among the different evolutionary algorithms reporting N Ds — N DsbyR values for each pair (n, m).



D. Granata and A. Sgalambro

Computers and Operations Research 160 (2023) 106363

—— MO-NSGA-VNS = Subpaths-NSGA Basic-NSGA
3500
3000
2500
.
g
=
£
= 2000
3]
[=7
=
o
T
@ 1500
o
()
(=9
=
N
T 1000
E
H
=)
O
> 500
) A
0 AL —
P PP PP PP PP PO P PP PSP D PP P PP PP PP DD D
W A S A L NS O F S o
Q/ 0‘ Q@@gq’g Q(b/\N@\NQN%\?QQWO/’]?/§~'\(?@Q?’]9%&)QP W
Q? (? P (P S E S S c§> <§> O E S F S <§>‘ &
N4 & ¢ N S\ FE T TS &S
(n,m)
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Table 4

Results of the capacity performance measure for all the created algorithms, where the
reference set R is the union of all the N D sets found by the other algorithms. Column
1 describes the instance triplet (n, m, o). Columns 2-3, 4-5 and 6-7 report the N Ds
value and the N DsRbyR metric value (see Metric (15)) for each genetic algorithm.

(n, m, 0) MO-NSGA-VNS Subpaths-NSGA Basic-NSGA

NDs NDsRbyR NDs NDsRbyR NDs NDsRbyR
(40, 156, 0) 33 0.15 35 0.29 3 0.33
(40, 156, 1) 21 0.14 20 0.35 4 0.50
(40, 780, 0) 29 0.07 30 0.70 1 1.00
(40, 780, 1) 26 0.23 23 0.83 4 0.25
(40, 1404, 0) 29 0.31 26 0.77 2 0.50
(40, 1404, 1) 27 0.30 35 0.66 2 1.00
(50, 245, 0) 39 0.21 37 0.35 7 0.71
(50, 245, 1) 16 0.19 38 0.29 5 0.40
(50, 1225, 0) 27 0.04 44 0.64 3 0.33
(50, 1225, 1) 26 0.04 32 0.66 3 0.67
(50, 2205, 0) 22 0.00 30 0.60 2 0.50
(50, 2205, 1) 28 0.21 27 0.48 2 1.00
(60, 354, 0) 48 0.31 50 0.32 5 0.80
(60, 354, 1) 54 0.17 44 0.41 4 1.00
(60, 1770, 0) 40 0.02 58 0.36 4 0.50
(60, 1770, 1) 48 0.04 50 0.48 6 0.50
(60, 3186, 0) 31 0.00 39 0.56 4 0.50
(60, 3186, 1) 25 0.00 36 0.47 4 0.75
(70, 483, 0) 53 0.15 53 0.45 6 0.50
(70, 483, 1) 68 0.25 48 0.38 6 0.67
(70, 2415, 0) 32 0.03 50 0.40 6 0.33
(70, 2415, 1) 44 0.00 43 0.56 5 0.20
(70, 4347, 0) 22 0.00 23 0.61 3 0.67
(70, 4347, 1) 27 0.00 23 0.74 2 1.00
(80, 632, 0) 21 0.19 37 0.19 7 0.86
(80, 632, 1) 18 0.17 51 0.24 4 1.00
(80, 3160, 0) 46 0.04 36 0.22 6 0.67
(80, 3160, 1) 50 0.06 47 0.19 6 0.50
(80, 5688, 0) 14 0.00 35 0.31 3 0.67
(80, 5688, 1) 22 0.00 31 0.32 3 0.67
(90, 801, 0) 26 0.00 25 0.80 3 1.00
(90, 801, 1) 19 0.00 26 0.58 4 0.25
(90, 4005, 0) 26 0.00 34 0.59 4 0.75
(90, 4005, 1) 26 0.00 24 0.25 6 0.50
(90, 7209, 0) 21 0.00 23 0.43 2 0.50
(90, 7209, 1) 30 0.03 27 0.56 3 0.67

algorithmic approach, which hybridises modified-NSGA-II and VNS for
finding efficiently an approximation of the Pareto front on increasing
size networks. We also complemented this algorithm with a tailored
preliminary procedure, based on a minisum variant of the shortest dis-
joint path pair problem, and aimed at allowing a preliminary efficient
calculation of high quality initial solutions to feed the evolutionary al-
gorithm, concurrently decreasing its computational effort requirements
by reducing the set of candidates.

Data availability
Data will be made available on request.
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