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ABSTRACT: Given an experimental solid/solution sorption
isotherm, how can we gain insight into the underlying sorption
mechanism on a molecular basis? Classifying sorption isotherms,
for both completely and partially miscible solvent/sorbate systems,
has been useful, yet the molecular foundation of these
classifications remains speculative. Isotherm models, developed
predominantly for solid/gas sorption, have been adapted to solid/
solution isotherms, yet how their parameters should be interpreted
physically has long remained ambiguous. To overcome the
inconclusiveness, we establish in this paper a universal theory
that can be used for interpreting and modeling solid/solution sorption. This novel theory shares the same theoretical foundation
(i.e., the statistical thermodynamic fluctuation theory) not only with solid/gas sorption but also with solvation in liquid solutions and
solution nonidealities. The key is the Kirkwood-Buff χ parameter, which quantifies the net self-interaction (i.e., solvent−solvent and
sorbate−sorbate interactions minus solvent−sorbate interaction) via the Kirkwood-Buff integral in the same manner as the solvation
theory and, unlike the Flory χ, is not limited to the lattice model. We will demonstrate that the Kirkwood-Buff χ is the key not only
to isotherm classification but also to generalizing our recent statistical thermodynamic gas (vapor) isotherm, which is capable of
fitting most of the solid/solution isotherm types.

■ INTRODUCTION

Sorption of sorbates (solutes) from solution onto a solid is a
fundamental process with many applications (such as
contaminant removal), leading to a wealth of solid/solution
isotherm data reported so far.1−3 However, understanding the
underlying molecular interactions, despite its long history,1−3

has not been resolved with clarity. Such a difficulty, as will be
reviewed below in detail, is caused by the conventional, long-
standing approach of adapting vapor (gas) sorption isotherm
models for solution isotherms.4−6 Our three-fold goal in the
present paper is to resolve this historical difficulty:

A. to establish isotherm equations for analyzing sorption
from solution based directly on the principles of statistical
thermodynamics,

B. to determine the interactions underlying sorption via (A),
and

C. to reveal the difference in molecular interactions behind
the conventional classifications7−9 of solid/solution
isotherms.

Our goal, therefore, is to derive analytical isotherm equations for
sorption from solution with a clear physical meaning as an
alternative to the conventional approach of adapting vapor (gas)
isotherms. In addition, achieving these goals will establish the
common theoretical foundation that encompasses sorption from
solution, sorption of gases and vapors,10−12 and solvation in
solutions.13−15 All three classes of phenomena will then be

modeled using the universal language of particle number
correlations founded on the statistical thermodynamic fluctua-
tion theory.16−22 This universality can be achieved by extending
our recent work on the sorption of gases and vapors10−12 to
solid/solution isotherms. In the following, we will show why this
novel, universal approach is indispensable in overcoming the
conundrums of conventional approaches.
Difficulties in Modeling Isotherms. Here we summarize

the long-standing difficulties of the conventional isotherm
models,4−6 mostly being an adaptation of solid/vapor
isotherms,4−6 in modeling solid/solution systems. The conven-
tional models can be categorized as physical, semiempirical, and
empirical.2,3 The physical models are founded on an assumed
sorption mechanism, such as the adsorption sites, layers, and
binding constants. The Langmuir model, based on independent,
site-specific gas (vapor) adsorption on a uniform surface,23 is
one of the most commonly used isotherms for solid/solution
sorption,4−6 more frequently encountered than the Brunauer−
Emmett−Teller (BET)24,25 and Guggenheim−Anderson−de
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Boer (GAB),26−28 interpreted as evidence that “[m]ultilayer
formation is less common in solution than in the gas phase”.3

The semiempirical models are usually founded on connecting a
plausible physical quantity (e.g., Polanyi’s adsorption poten-
tial,29−31) to an isotherm with an empirical equation. Examples
include the Dubinin−Radushkevich32−35 model that has been
applied recently to solid/solution isotherms.36,37 The empirical
models have been proposed without an assumption on the
sorption mechanism on a molecular scale and cannot, in
principle, be used for interpreting isotherms on a molecular
scale.11,38 (Yet their physical meaning may be investigated in
later studies, such as the attempts to attribute a physical meaning
to the Freundlich model.39,40) Consequently, our focus is on the
physical models, yet adapting gas (vapor) isotherm models for
solutions has not been straightforward. Even for the simplest
Langmuir model, thermodynamic quantities for adsorption
depend on the standard states adopted, leading to widely
discrepant interpretations, as has been demonstrated re-
cently.41−45 The question, therefore, is not how the gas-phase
isotherm model should be adapted for solutions. A clarification
is indispensable at a fundamental level of how isotherms for the
sorption from solution must be formulated.
Difficulties in Interpreting Isotherms. Here we summa-

rize another long-standing problem: the lack of conclusiveness
of the conventional isotherm models in revealing the underlying
sorption mechanism. The standard experimental measure for
adsorption from solution is the reduced surface excess.9 Unlike
gas (vapor) sorption quantified by the amount of sorption, the
surface excess signifies the amount of sorbate relative to that of
solvent,2,46 necessitated by the competitive interface−sorbate
and interface−solvent interactions. This key difference has
inspired the following three major approaches to gaining an
insight into the mechanism underlying a sorption isotherm: (i)
separating an isotherm (i.e., relative surface excess) into
individual isotherms,1,2,9 (ii) evaluating surface/solution parti-
tion coefficients,1,2,9 (iii) interpreting the constants obtained by
fitting isotherm models to experimental data.1,2,9 However, the
difficulties faced by all these approaches have been recognized.
(i) and (ii) involve a number of assumptions on interfacial
layers. Our focus is approach (iii), whose problem is three-fold.
First, the highly idealized nature of the model may not reflect the
reality of the system. For example, a successful fitting of the
Langmuir model to a heterogeneous porous sorbent does not
prove the formation of a monolayer with a uniform site-specific
binding constant, as has been well recognized.11,46−48 Second,
comparatively successful fitting achieved by several models, each
assuming a different sorption mechanism, leads to a multiplicity
of interpretations.10,11,47,49−52 Currently, there is no principle
other than the goodness of fit (e.g., R2 values) to identify the
right isotherm over others.49 Third, site-specific binding models
are too simplistic to capture surface excess, which has been
recognized in the analogous question in biomolecular
solvation.13,14,53−55 Thus, a clear theoretical guideline is still
lacking for the interpretation of experimental isotherms on a
mechanistic level.
Difficulties in Classifying Isotherms. The lack of clarity,

arising from the conventional approaches (i.e., adapting vapor
isotherm models to solutions), leads to ambiguity in the
mechanistic basis for classifying isotherms. In contrast to solid/
vapor systems, for which the IUPAC classification into six
isotherm types has been well established,56−59 several
approaches are concurrent for solid/solution isotherms for
each of the “completely miscible” and “partially miscible”

solution phase behaviors.4,9,60 For completely miscible systems,
IUPAC (1986) has identified the twomajor classes: the inverted
U-shape and the S-shape isotherms (Figure 1).9 The two shapes

each are divided further into three and two subshapes,
respectively, by an earlier system by Nagy and Schay.61 For
partially miscible systems, there are four main classes of
isotherms according to Giles et al.:4,8,60 S, L (“Langmuir”), H
(“high affinity”), and C (“constant partition”), which are
distinguished from one another “by their initial slope”8 (Figure
2). The meaning of the “initial slope” was later clarified as the

isotherm’s second-order derivative.60 Of these classes, the
IUPAC report (1986) has identified Classes S and L with
saturation as “the two extreme forms”9 (Figure 2). Even though
the possible molecular mechanisms behind the classifications
have been speculated,8,61 such discussions suffer from the same
set of limitations on the isotherm models and their
interpretations summarized in the previous two subsections.
Need for Statistical Thermodynamics. Here we propose

what needs to be done to overcome the conundrums over
modeling, interpreting, and classifying solid/solution isotherms,
as summarized above. First, surface excess must be understood
in terms of the interface−sorbent and interface−sorbate
distribution functions, following the state-of-the-art in statistical
thermodynamics62,63 (rather than the classical site-specific
binding approaches26,64−67) in order to overcome the difficulties
caused by the current isotherm models. Second, isotherm
equations must be expressed analytically and, at the same time,
founded on the distribution functions. To fulfill these
conditions, our recent achievements in the two adjacent areas
will be synthesized. The first is the universal theory of solid/
vapor isotherms with a clearer physical interpretation of their
parameters.10,11,47,50−52 This has been achieved by adopting the
net (integrated) molecular distributions (i.e., the Kirkwood-Buff
integrals and the excess numbers) as the measure of

Figure 1. IUPAC classification (1986)9 of the sorption isotherms from
the completely miscible systems of solvent (species 1) and sorbate
(species 2), in which the reduced surface excess, Γ2

(n), is sketched against
the mole fraction x2

II of the sorbate in the solution phase (denoted as
reference system II in the Theory section). The older classification by
Nagy and Schay61 provides three further subcategories for the U-shape
and two for the S-shape.

Figure 2. Four main classes of isotherms from partially miscible solvent
(species 1) and sorbate (species 2) proposed by Giles et al.,8 termed S,
L (“Langmuir”), H (“high affinity”), and C (“constant partition”). The
IUPAC report (1986) identifies “the two extreme forms”9 a and b
(drawn in red) as the further continuation of the initial slopes by Giles
et al.
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interactions.10,11,47,50−52 The second is the statistical thermody-
namic reformulation of the preferential solvation theory68,69

(founded also on the Kirkwood-Buff integrals13,14,70) and its
mathematical analogy to the Gibbs isotherm68,69 (whose precise
nature had been a subject of controversy53−55). In both
achievements, a direct determination of the net (integrated)
distribution functions from experimental data has been
demonstrated to be crucial for clarifying the underlying
molecular mechanism, especially when the complexity of the
system prevents us from building an accurate molecular-based
model or when several models in competition lead to
controversies.15,47

Scope. Our goal is to develop isotherm equations for
sorption from solution with a clear microscopic interpretation to
overcome the difficulties caused by the adaptation of gas (vapor)
isotherm models. The objectives of this paper are

(A) to establish a general and rigorous statistical thermody-
namic foundation for solid/solution isotherms;

(B) to derive statistical thermodynamic isotherms with a clear
microscopic interpretation via the mono-, di-, and
trisorbate interaction parameters at the interface;

(C) to clarify the statistical thermodynamic foundation for the
classifications of solid/solution isotherms.

The theory developed in (A) will provide the universal
interpretation principle of an isotherm based on the relationship
between its gradient and the interface-solution concentration
fluctuation difference. In (B), we will focus on extending one of
the two types of isotherm equations identified in our previous
work on solid/vapor sorption (i.e., the “ABC isotherm” for
IUPAC Types I−III11,47,48) to solid/solution systems. The
statistical thermodynamic general principle (A), assisted by the
ABC isotherm (B), reduces the isotherm classes into a single
parameter in (C).

■ THEORY

Setup. We consider a solid−liquid interface of arbitrary
interfacial shape, ruggedness, and porosity.10 We denote the
“surface” by swhile themolecular component that comprises the
surface by e (e for sorbent). The solid surface faces the solution
phase consisting of solvent (species 1) and sorbate (species 2).
The only postulate that we will introduce is the finite-ranged
nature of the interface.
Strategy.Our goal is to derive analytical isotherm equations

whose parameters have a clear interpretation that can be
achieved through a connection to the net (integrated) molecular
distribution functions. The number fluctuations and molecular
distribution functions are most clearly related via the grand
canonical partition function16 to the gradient of an experimental
isotherm. In addition, our novel approach has the following
additional features: (i) the capacity to deal with arbitrary
interfacial geometries (via the generalized Gibbs isotherm in the
Theoretical Foundation subsection) and (ii) an efficient
calculation technique to handle ensemble transformations
(statistical variable transformation in the Universal Measures
of Interactions subsection).
Scope. Analytical isotherm equations derived in this paper

will be founded on the generalized Gibbs isotherm, assume the
finite-ranged nature of the interface, and adopt the expansion via
mono-, di-, and trisorbate interactions at the interface of
arbitrary geometry. Such an approach cannot be applied to (i)
sigmoidal isotherms arising from a cooperative sorption of many
sorbate molecules50 and (ii) highly heterogeneous surfaces51

that require the consideration of statistically independent
microscopic patches. Generalizing our theory to (i) and (ii),
already achieved for gas (vapor) isotherms,50,51 will be carried
out in a forthcoming paper. Note that the mono-, di-, and
trisorbate interactions will be captured via spatially integrated
distribution functions, which, on the one hand, facilitates the
derivation of an analytical isotherm equation yet, on the other
hand, demands statistical sampling of sorbate distributions when
comparing with atomistic simulation.
Theoretical Foundation. The Generalized Gibbs Iso-

therm. Following Gibbs,71 we consider an interface as the
difference between the system (denoted by *, containing the
interface) and the two reference systems, that are free of the
interfacial effect, on the solid side (denoted by I) and the
solution side (denoted by II), as illustrated schematically by
Figure 3.72 Here we take a statistical thermodynamic approach

based on ensembles and Legendre transforms,10,11,50 instead of a
thermodynamic approach based on a trio of the Gibbs−Duhem
equations.72 The thermodynamic functions for the grand
canonical ensembles (Ω) are expressed for the system that
contains an interface (denoted by the superscript *) and the
reference systems I and II, as

* = * + = =PV F PV PV, ,

I I II II
(1)

where F is the interfacial free energy, V is the volume, and the
pressures (P) of the system and the reference states are set as
identical.72 Using Legendre transform, we construct the partially
open ensembles, closed to species e but open to species 1 and 2,
whose thermodynamic potentials (Y*, YI, and YII) are expressed
as

* = * + * * = +

= +

Y N Y N

Y N

, ,

e e

I I

e

I

e

I

II II

e

II

e

II

(2)

where μ is the chemical potential and the species have been
denoted by the subscript. Under phase equilibrium (μe* = μe

I =
μe
II), eqs 1 and 2 can be combined to yield

*

= * *

F P V V V

Y Y Y N N N

( )

( )

I II

I II

e e e

I

e

II

(3)

Following Gibbs, we employ the volume conservation condition
(V* = VI + VII).72 Moreover, we impose Ne* = Ne

I + Ne
II for

sorbent, which is equivalent to introducing the Gibbs dividing
surface. (Note that the interfacial coordinate system, required to
define the concentration profile in the conventional introduc-

Figure 3. A schematic representation of the interfacial effect as the
difference between the system with an interface (left) and the
references systems I and II. The sorbent (species e), solvent (species
1), and sorbate (species 2) molecules are denoted schematically by
gray, blue, and red, respectively. (Note that there is no restrictions on
the molecular size and shape).
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tion of the dividing surface, is unnecessary; our approach,
therefore, can handle rugged and porous interfaces for which
coordinate systems are difficult to define.10) Consequently, eq 3
is simplified as

= *F Y Y Y
I II (4)

Thus, the solid-solution interfacial free energy F has been
written in terms of the partially open ensembles as a
generalization of our previous papers on solid−vapor inter-
face.10,11,47,50−52

Surface Excess for Arbitrary Interfacial Geometry. The
surface excess of sorbate (⟨N2*⟩ − ⟨N2

I⟩ − ⟨N2
II⟩) and solvent

(⟨N1*⟩ − ⟨N1
I⟩ − ⟨N1

II⟩) results from the μ2-derivative of the
interfacial free energy in the {T, V, Ne, μ1, μ2} ensemble, as

= *

+ *

i

k

jjjjj

y

{

zzzzz

i

k

jjjjj

y

{

zzzzz

F
N N N

N N N( )

T

I II

T

I II

2

2 2 2

1

2

1 1 1

(5a)

where T is the temperature and ⟨ ⟩ expresses ensemble
averaging. In deriving eq 5a, we have used the semigrand
partition function for the {T, V, Ne, μ1, μ2} ensemble (i.e., open
to species 1 and 2 but closed to species e). The ensemble-based
derivation of eq 5a is a straightforward extension of the one for
gas (vapor) sorption presented in section 2 of ref 10. Here we
introduce the following two postulates. The first is that the
interface is finite ranged; hence, the interfacial subsystem, thick
enough to contain the interface, contains all the interfacial
effects. This means that there is no difference in the distribution
of sorbent between the system and the reference systems outside
the region covered by the interfacial subsystem. From now
onward, we use lower-case symbols to denote the numbers (ni)
within the interfacial subsystem with volume (v). Using this
notation, the generalized Gibbs dividing surface condition
pertains to the number of sorbent molecules in the interfacial
subsystem (ne*) and those in the reference systems that cover the
same volume (ne

I and ne
II), which can be expressed as ne* = ne

I +ne
II.

Second, in evaluating( )
T

1

2

in eq 5a, we postulate that neither

species 1 nor 2 penetrate the solid surface (i.e., ⟨n2
I⟩ = ⟨n1

I⟩ = 0).
Consequently, using the Gibbs−Duhem equations for the
reference system II, we obtain

=

i

k

jjjjj

y

{

zzzzz

n

n

C

T

II

II

II1

2

2

1

2

(5b)

where C2
II = ⟨n2

II⟩/⟨n1
II⟩ represents the mole ratio in the reference

system II (solution). Under the two postulates, eq 5a can be
simplified as

= * *
i

k

jjjjj

y

{

zzzzz
F

n C n

T

II

2

2 2 1 2
(1)

(6a)

Here, the right-hand side of eq 6a, denoted by IUPAC as Γ2
(1), is

referred to as the “relative surface excess of 2 with respect to 1”.9

Experimentally, Γ2
(n) = x1Γ2

(1), the reduced surface excess, is
directly accessible.9 Note that Γ2

(1) can bemade intensive when it
is divided by the sorbent mass, which is in line with the common
practice of reporting Γ2

(n).73,74 It is useful to express Γ2
(1) in terms

of the solvent−surface and sorbate−surface Kirkwood-Buff
integrals, Gs1 and Gs2, as

=

* *

=

Ä
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Å
Å
Å
Å
Å
Å
Å
Å
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2
(1) 2 2 2

2

1 1

1

2
2 1 (6b)

For solid/gas sorption, the absence of the solvent reduces Γ2
(1) to

⟨n2*⟩ (where ⟨n2
II⟩ is negligible); hence, eq 6a is a generalization

of our previous theory.10,11,47 However, for solid/solution
isotherms, the individual solvent and sorbent contributions to
Γ2

(1), according to the IUPAC report, “can only be calculated on
the basis of some model of the interfacial region, and have no
place in the primary presentation of experimental data”.9 Thus,
we have introduced the relative surface excess via eq 6a, in a
manner valid for any interfacial geometry or porosity.
Universal Measures of Interactions. Quantifying

Sorbate Interactions from the Gradient of an Isotherm. A
sorption isotherm for the solid-solution interface describes how
the relative surface excess Γ2

(1) depends on the sorbate
concentration. Our goal is to elucidate the underlying sorption
mechanism from an isotherm. Recently, we have shown that the
gradient of a solid−vapor sorption isotherm reveals the strength
of sorbate−sorbate interaction whose quantitative measures are
the Kirkwood-Buff integral and excess number which are both
net (integrated) distribution functions.10,11,47 Here we general-
ize it to adsorption from solution. This involves differentiation of
the surface excess Γ2

(1) (eq 6a) with respect to a2. Carrying this
out directly in our semiopen ensemble (denoted as {T, v, ne, μ1,
μ2}) incurs cumbersome algebra. However, significant sim-
plification can be achieved by exploiting our new approach to
ensemble transformation.21,22 Because of the technical nature,
the detailed derivation will be presented in the Supporting
Information, while we summarize below the main points:

• Γ2
(1) is invariant under the {T, v, ne, μ1, μ2} ↔ {T, v, ne, n1,

μ2} transformation (‘Ensemble invariance of the surface
excess’ in the Supporting Information section A).

• a2-derivatives can be evaluated more easily in the {T, v, ne,
n1, μ2} ensemble (‘Calculating the gradient of surface
excess via ensemble independence’ in the Supporting
Information section B).

• An ensemble average in {T, v, ne, μ1, μ2} (denoted as ⟨

⟩{T, v, n de, μd1, μd2}) can be calculated straightforwardly from the

one in {T, v, ne, n1, μ2} (denoted as ⟨ ⟩{T, v, n de, n d1, μd2}) via

statistical variable transformation (‘Calculating the
gradient of surface excess via ensemble independence’
in the Supporting Information section B).21,22

The steps of the derivation, because of their technicality, are
presented in detail in the Supporting Information. Thus, we
derived our fundamental equation in two different representa-

tions. The first relates the gradient of an isotherm,
i
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difference in concentration fluctuation between the interface (*)
and solution reference state (II), via
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The second representation, equivalent to eq 7a, can be expressed
in terms of the number fluctuations via

= * * *

*
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Thus, we successfully established a link (via eq 7a or 7b)
between the gradient of an isotherm and the underlying
fluctuations. The solid/solution relationship (eq 7b) contains
the solid/gas counterpart as its special case when the solvent is
dilute and the reference state is negligible (Supporting
Information section B). However, the fundamental relationships
(eqs 7a and 7b) are not practical to apply. They must be
expressed in terms of the net (integrated) distribution functions
so that there is a clear link to the interactions between the
molecular species involved. This will be achieved in the next
paragraph.

The Interfacial Kirkwood-Buff χ Parameter. Our goal has
been to elucidate the sorption mechanism from the gradient of
an isotherm. The key to achieving this goal is the relationship
between the concentration fluctuations (eqs 7a and 7b) and the
Kirkwood-Buff integrals (Gij, between the species i and j, see
Supporting Information section C for derivation) via

= + +n C C n C C( 1)1
2

2 2 2 2 2 (8a)

+
n

v
G G G( 2 )1
22 11 12 (8b)

where we have introduced the Kirkwood-Buf f χ parameter via eq
8b, which will be used for * and II. Note the involvement of
sorbate−sorbate (G22), sorbate−solvent (G12), and solvent−
solvent (G11) Kirkwood-Buff integrals in eq 8b, as compared to
gas (vapor) sorption for which only G22 is present.11,48 What is
crucial for a molecular-based interpretation is the relationship
between Gij and the distribution function between the species i
and j, gij(r) with their relative configuration r, via11

= [ ]r rG gd ( ) 1ij ij (8c)

The term, i.e., “the Kirkwood-Buff χ parameter”, has been
inspired by its relationship to the activity coefficient, γ1, in dilute
binary solutions,75

= +xln
2

...
1 2

2

(9)

where x2 is the mole-fraction of species 2 and χ∞ is the limiting
value at x2 → 0; eq 9 is analogous to the role of the Flory−
Huggins χ parameter,76 χFH, present in the following equation:

= +ln ...
FH1 2

2

(10a)

=
+z w w w

RT2

2

FH

11 22 12

(10b)

where ϕ2 is the volume fraction of species 2, z is the number of
contacts, and wij is the contact energy between species i and j,
yet, in practice, the mole fraction x2 is widely used in place of
ϕ2.

76 (Note that we have not incorporated the factor 1/2, that
are present in both the Kirkwood-Buff and Flory−Huggins
theories, into the definition of χ in eq 8b simply to keep our

subsequent equations simpler.) According to the Kirkwood-Buff
theory, the more positive Gij is, the more attractive the
interaction is between species i and j. In the Flory−Huggins
theory, attractive interaction comes with a negative contact
energy, wij, which justifies the negative sign in eq 10b. Both χ
parameters are a measure of self-interaction compared to the
mutual. Consequently, adopting the Kirkwood-Buff χ parameter
as the measure of interaction, we can express the isotherm
gradient (Supporting Information section C), as
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where K = C2*/C2
II signifies the sorbate−solvent exchange

constant between the interface and solution phase. Equation 11
involves the Kirkwood-Buff χ parameters for the interface (∗)
and solution (II). Equation 11 will be converted into a simple,
usable form in the next subsection.
Modeling and Classifying Isotherms. The Activity-Based

ABC Isotherm. Even though we were able to express the gradient
of an isotherm in terms of the interfacial and solution χ
parameters, eq 11 is still too complicated for interpretation. The
goal of this subsection is two-fold: (i) to identify a simpler
measure determinable from an isotherm and (ii) to derive an
isotherm equation to analyze experimental data. To achieve our
two-fold goal, here we generalize our general ABC isotherm for
gases and vapors to the adsorption from solution. After some
algebra (‘The ABC isotherm for solutions’ in the Supporting
Information section D), eq 11 can be rewritten concisely as

=
* + +
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Following our recent work,11,47 we introduce the following
activity expansion

* + +
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= + +
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and integrating eq 12 together with eq 13 yields the following
isotherm equation (Supporting Information section D):
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signifies the sorbate−surface preferential interaction over
solvent−surface (Figure 4), and B, via
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signifies the surface-solution χ difference (Figure 4). Note that
c1

o is the bulk molar concentration of the solvent. Here, K2

multiplied to χ* + 1 signifies the two sorbate molecules sorbed at
the interface in exchange with two solvent molecules; K can also
be related to Gs2 − Gs1 (see Supporting Information section D).
Note that 1 is present in χ + 1 for both the interface * and the
reference solution system II. Its significance can be elucidated by
considering the case in which species 2 interacts weakly with
itself as well as with species 1, such that G22 ≃ 0 and G12 ≃ 0. In
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this case, χ ≃ −1 because G11 ≃ −v/⟨n1⟩ for a pure solvent.14

Consequently, a noninteracting sorbate gives χ + 1 ≃ 0 which
serves as the baseline. The parameter C is more complicated,
involving triplet interactions, yet it will be shown to play a minor
role in elucidating the difference in molecular interactions
between different classes of isotherms. Our solid/solution
theory can be shown to be a generalization of our previous solid/
gas theory10,11 (Supporting Information section D). Just like its
solid/gas counterpart, the solid/solution ABC isotherm (eq
14a) is based on the sorbate activity expansion (eq 13), which
will be unsuitable when multiple sorbate molecules sorb
cooperatively.50,51 Moreover, for heterogeneous surfaces, multi-
ple isotherm terms may become necessary for accurately
capturing the isotherm.48,51

The Mole-Fraction-Based ABC Isotherm. We derived our
theory, including the ABC isotherm for solutions, using sorbate
activity as the concentration scale. However, it is common to use
mole fraction as the measure of sorbate concentration in
reporting isotherms.9 Consequently, we need to present our
ABC isotherm using the mole fraction in the solution, x2

II. The
derivation (whose details are found in ‘The ABC isotherm in
mole-fraction scale’ in the Supporting Information section E) is
facilitated by the fact that the isotherm parameters (A, B, C) are
evaluated at the dilute concentration limit, which leaves the
parameters A and B unchanged from the activity-based isotherm
(eq 14a), as

=

x

A Bx x
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II C II
2
(1) 2

2 2 2

2
x

(15)

where Cx is different from C in eq 14a due to the contributions
from the activity coefficient involved in the first-order term in a2,
yet is unimportant when elucidating the isotherm types. Thus,
the ABC isotherm, through its application to isotherm fitting,
enables the quantification of interactions underlying an isotherm
via A and B.

The Cubic Isotherm.Unlike sorption from the gas phase, Γ2
(1)

from solution may become negative, for which the ABC
isotherm is not suitable (because its denominator diverges at
Γ2

(1) = 0). To circumvent this problem, we can derive the cubic
isotherm as an alternative isotherm equation (‘The cubic
isotherm’ in the Supporting Information section F), as
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Since the cubic isotherm (eq 16) has been derived from the same
fundamental relationship (i.e., eq 12 = eq D2, rewritten as eq F1
in Supporting Information section F) as the ABC, the same set of
parameters (A, B, Cx) as the ABC isotherm is determinable by
analyzing the cubic isotherm. It should be noted that a negative
Γ2

(1) signifies the repulsion of species 2 (sorbate) from the
interface, when measured relative to species 1 (solvent). More
simply, Γ2

(1) is negative when the interface is more favorable to
the solvent than to the sorbate.

■ RESULTS AND DISCUSSION

Modeling Isotherms.Given an experimental isotherm, how
can we elucidate the underlying mechanism of adsorption from
solution? The first step is to fit the isotherm and determine the
interaction parameters. In the Theory section, we have provided
the following two isotherms (eqs 15 and 16):
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The Γ2
(1)-based expressions have been converted to the reduced

surface excess, Γ2
(n), via Γ2

(n) = x1Γ2
(1), which is the quantity

directly accessible to experimental measurements.9 The ABC
isotherm (eq 17) is a model-free generalization of the Langmuir,
BET, and GABmodels. Note that the same set of parameters (A,
B, Cx) results from the two isotherm equations (eqs 17 and 18).
While the cubic equation can fit the isotherm when Γ2

(n) changes
its sign to become negative, the ABC isotherm, which cannot
handle the change in sign, is more suitable for reproducing the
isotherm functional shape at low x2. For the completely miscible
solvent−sorbate systems, the ABC isotherm (eq 17) was
successful to fit the literature sorption data on SBA-16 silica73

(Figure 5) and the cubic isotherm (eq 18) could reproduce the
overall shape of the literature sorption data on carbonaceous
Ambersorb adsorbents (Figure 6).74 The ABC isotherm has

Figure 4.A schematic representation of the isotherm parameters, A and
B. A−1 (purple) signifies the preferential sorbate−surface (over
solvent−surface). B (green) signifies the surface−bulk difference of
self-interaction (sorbate−sorbate and solvent−solvent over sorbate−
solvent. The parameterC, which will not be themain focus of this paper,
involves triplet correlations.

Figure 5. Modeling the sorption isotherm (surface excess Γ2
(n) against

the mole fraction x2
II of sorbates) on SBA-16 silica sample of the

following (solvent(1)/sorbate(2)) combinations: n-octane/ethanol
(red), octanol/ethanol (black), and n-octane/octanol (green). The
ABC isotherm (eq 17) was used to fit the experimental data, measured
by Rockmann and Kalies,73 with the resultant parameters summarized
in Table 1.
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been applied also to the partially miscible systems, fitting
successfully the literature sorption data on the adsorption of
thiophenes on a metal−organic framework (Figure 7).77 The

parameters determined from fitting are summarized in Table 1.
Our approach is advantageous because the same set of
parameters (A, B, and Cx) can be determined from the different
isotherm equations (eqs 17 and 18).
Interpreting Isotherms. The second step toward a

mechanistic elucidation of an isotherm is the physical
interpretation of the isotherm parameters determined from

fitting. Our statistical thermodynamic isotherms (eqs 17 and 18)
have the following advantages. (i) Despite the use of two
different isotherm equations (eqs 17 and 18) to fit three different
classes of isotherms (Figures 5−7), the resulting set of
parameters (A,B,Cx) are the same, which facilitates comparison
between different isotherms. (ii) These parameters (A, B, Cx)
have a direct statistical thermodynamic interpretation; they can
be expressed in terms of the Kirkwood-Buff integrals and
number correlations. Especially important are A and B; A−1 is
the preferential sorbate−surface interaction at x2

II → 0 (eq 14b),
and B is the difference in the Kirkwood-Buff χ parameter
between the interface and solution (eq 14c). (iii) The solid/
solution ABC isotherm is analogous to the gas (vapor) ABC
isotherm, and the relationship between the two has been made
clear (Supporting Information section D). The gas(vapor) ABC
isotherms were demonstrated to be capable of modeling IUPAC
Types I, II, and III11,48 and were shown to be capable of
capturing the so-called monolayer-multilayer mechanism used
in surface area determination.47,48

In our isotherm modeling via eqs 17 and 18, note that B in
Table 1, except for the one for benzothiophene on Cu-BTC, is
negative. A negative B is inevitably driven by χ* + 1 at the
interface, which is weaker than χII + 1 in the solution phase (eq
14c). Since χ* + 1 signifies net self-association at the interface
(eq 8b), sorbates are less self-associated at the interface than in
the bulk. While self-association is weaker at the interface, the
positive A in Table 1 signifies, via eq 14b, that the sorbate−

interface interaction is stronger than that of the sorbate−solvent.
The accumulation of sorbate molecules at the interface does not
make them closer together than in the bulk solution but keeps
them away from one another, more so than in the solution phase.
The possible mechanism for χ* < χII could be a strong, specific
sorbate−surface interaction with the interface, which could
contribute to keeping the sorbates separated at the site−site
distance. Sorbate−sorbate separation contributes negatively to
G22* and hence to χ*. Such a mechanism has been observed for
the solid/vapor isotherms yet was not captured by the previous
models.11,47 (To examine the validity of our consideration
above, molecular simulations would be helpful). However, we
emphasize that sorbate−sorbate separation, caused by the
specific interaction between sorbate and surface, has been
implicit in the Langmuir model (which is a restricted case of the
ABC isotherm11,47),

=
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n K x x

K x1

n m L

L

2
( ) 1 2

2 (19a)

Figure 6. Modeling the sorption isotherm (surface excess Γ2
(n) against

the mole fraction x2
II of sorbates) of ethanol/n-octane on the

carbonaceous Ambersorb adsorbents XEN563 and XEN572. The
cubic isotherm (eq 18) was used to fit the experimental data, measured
by Kalies et al.,74 with the resultant parameters summarized in Table 1.

Figure 7. Modeling the sorption isotherm (surface excess Γ2
(n) against

the mole fraction x2
II of sorbates) of thiophene (black circles),

benzothiophene (red squares), and dibenzothiophene (green dia-
monds) in water on the Cu-BTC metal−organic framework measured
by Liu et al.77 The ABC isotherm (eq 17) was used to fit the
experimental data with the resultant parameters summarized in Table 1.

Table 1. Fitting Parameters for the ABC and Cubic Isotherms for Experimental Adsorption Data from Solutions

sorbent solvent sorbate A B C

SBA-16a n-octane ethanol 5.59 × 10−4 −1.52 × 10−1 8.60 × 10−3

SBA-16a octanol ethanol 1.89 × 10−2 −4.41 × 10−1 4.41 × 10−1

SBA-16a n-octane octanol 8.96 × 10−4 −4.54 × 10−1 −5.56 × 10−1

XEN563b ethanol n-octane 6.26 × 10−2 −1.21 × 10−1 −5.38 × 10−1

XEN572b ethanol n-octane 2.93 × 10−2 −6.50 × 10−2 −2.57 × 10−1

Cu-BTCc Water thiophene 2.44 × 10−5 −1.40 × 10° 3.30 × 103

Cu-BTCc water benzothiophene 2.93 × 10−4 6.07 × 10−1 −8.86 × 103

Cu-BTCc water dibenzothiophene 2.64 × 10−5 −9.77 × 10−1 −2.09 × 102

aData from Rockmann and Kalies,73 using eq 17, with the units in g/mmol. bData from Kalies et al.74 using eq 18, with the units in g/mmol. cData
from Liu et al.77 measured between x2

II = 0 and 1.8 × 10−4, using eq 17, with the units in g/mmol.
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where nm is the monolayer capacity and KL is the Langmuir
constant. A comparison of eq 19a with the ABC model (eq 17
with C = 0) yields the following correspondence:

= =n
B

K
B

A

1
,

m L (19b)

A positive Langmuir constant (and a positive monolayer
capacity) leads to a negative B. A negative B, via eq 14c,
shows amuch smaller interfacial χ* than that of the bulk solution
χII.

We have encountered B/A when we have shown that
sorbate−sorbate exclusion is caused by a site-specific interaction
between sorbate and surface.11,47 Indeed, B/A will be
demonstrated below to play a central role in classifying sorption
isotherms from solutions. For this purpose, we provide its
statistical thermodynamic interpretation (Supporting Informa-
tion, eq D9 section D) as
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to which Kirkwood-Buff χ difference between the interface and
solution plays a crucial role. (Note that K2 multiplied to χ
accounts for the sorption of two sorbates at the interface, coming
from the significance of B as representing sorbate pairwise
interaction; K can also be related to Gs2 − Gs1 (Supporting
Information, eq D10 section D).). Thus, our approach has
linked isotherm analysis to χ, which is a universal quantity of
interaction in the solution phase instead of relying on overly
idealized assumptions to construct multiple isothermmodels for
separate applications.
Classifying Isotherms. IUPAC (1986) Classification for

Completely Miscible Systems. Two major classes have been
identified for completely miscible solvent−sorbate systems: the
inverted U-shape and the S-shape isotherms (Figure 1).9 Even
though we have used the ABC isotherm (eq 17) to fit the U-
shape data (Figure 5) and the cubic isotherm (eq 18) for the S-
shape data (Figure 6), the same set of parameters (A, B, and Cx)
has been determined from the two isotherms. Here we show that
B/A (eq 20) plays a key role in distinguishing the two isotherm
shapes. To do so, let us first note that the position at which Γ2

(n)

crosses zero does not deviate significantly by neglecting the

cubic term in eq 18 (Figure 8(a)). (Note that + ( )C

A

B

A2

2
x is

relatively small.) Consequently, x2
II, at which Γ2

(n) crosses zero,
can be evaluated approximately by solving
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whose solution is
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2 (21b)

For an isotherm to take an S-shape, < <0 1
A

B
, leading to

< 1
B

A
for the S-shape, 1

B

A
for the U-shape (Table 2).

This comparison, when viewed in conjunction with eq 20, has
shown that the S-shape reflects a weaker interfacial self-
association (relative to the bulk solution) than the U-shape.

Classification for Partially Miscible Systems. When solvent
and sorbates are only partially miscible, there are four main
classes of isotherms according to Giles et al.,4,8 S, L
(“Langmuir”), H (“high affinity”), and C (“constant partition”),

that are distinguished from one another “by their initial slope”8

(Figure 2), wherein the IUPAC report (1986) identifies Classes
S and L with saturation as “the two extreme forms”9 (Figure 2).
The “initial slope” was later clarified to signify the second-order
derivative.60 The statistical thermodynamic foundation for this
classification can be found by a Maclaurin expansion of eq 17,
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wherein the classification is reduced to the sign of the second-

order derivative, namely, that of 1
B

A
. Consequently, Class C, a

linear Γ2
(n) = x2

II/A, is realized when = 1
B

A
. Class S is

characterized by a steeper initial slope than linearity, i.e.,

> 1
B

A
. Classes L and H exhibit the initial slope less steep than

the linearity, hence < 1
B

A
. These observations are summarized

in Table 3. However, the classification can be simplified
further60 when we plot ln Γ2

(1) against ln a2, as

Figure 8. (a) A comparison between the cubic (eq 18, solid lines) and
quadratic (dropping the x2

II3 term of eq 18, dotted lines) for the fittings
of the sorption on carbonaceous adsorbent (Figure 6), showing that the
positions, at which the isotherm crosses zero, are determined
approximately by the first two terms of the cubic isotherm. (b) The
transition from U-shape to S-shape modeled by the normalized
quadratic isotherm (eq 18) with the parameters B/A = −1 (black), −1.5
(red), and −2 (green), showing that B/A is the key parameter
governing the difference between the two shapes.

Table 2. IUPAC S-Shaped and U-Shaped Isotherm
Classifications via the Cubic Isotherm Parameters (eq 20)

IUPAC (1986) classification U-shaped S-shaped
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Table 3. Classification by Giles et al. via the ABC Isotherm
Parameters (eq 17)a

Giles et al. classification S L H C

IUPAC (1986) classification (b) (a) (a)
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aSee Figure 2 for the definitions of classifications.
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where the key parameter, B/A, appears as the gradient (i.e., first-
order derivative) of this plot, making the second-order
differentiation redundant. To summarize, B/A, reflecting the
interface−solution χ difference, has been demonstrated to play a
central role in classifying partially miscible isotherms, as well.

A Statistical Thermodynamic Classification. We have
shown that the interface−solution χ difference is the key to
the classifications for both the completely miscible and partially
miscible systems. For both classifications, B/A, or the Kirkwood-
Buff χ difference (eq 20) plays the key role. However, the B/A
boundaries for the two classifications are at 1 and −1 for partially
and completely miscible systems, respectively (Tables 2 and 3).
Both classifications are based on Γ2

(n) as the isotherm measure.
However, if Γ2

(1) were to be used as a basis for isotherm
classification,
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then the second-order derivative of Γ2
(1) (eq 23a) and the ln-ln

gradient
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(eq 23b) directly reflect B/A, namely, the

interface−solution χ difference via eq 20. Although B/A = 1 as
the classification boundary for partially miscible systems (Table
3) comes from adopting Γ2

(n) (eq 22a) instead of Γ2
(1) (eq 23a),

B/A = −1 as the classification boundary for completely miscible
systems (Table 2) is common to Γ2

(n) and Γ2
(1) = Γ2

(n) = 0 between
x2
II = 0 and 1. Thus, we have clarified the central role of the

interface−solution χ difference in the isotherm classification
schemes. More detailed classifications (such as by Nagy and
Schay61 and the subclasses of Giles et al.8) will be discussed in a
later publication.
Across Sorption and Solvation. Here we show that our

new solution isotherms are valid, even when the solid surface
component dissolves into the solution phase. This powerful
result stems from the following analogy between the fluctuation
solution and the sorption theories. The first is between the
surface energy−surface excess relationship (eq 6a) and the
preferential solvation theory,
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which relates the μ2-dependence on the solvation free energy of
a solute (μu*) to the preferential solvation ⟨n2⟩u − C2⟨n1⟩u, where
⟨ ⟩u signifies the ensemble average in the inhomogeneous
ensemble in the presence of a solute molecule and C2 is the mole
ratio in the bulk solution.68,78 The second parallel is on the
second-order derivatives between the interfacial derivative (eq
B5 in Supporting Information),
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and the solvation derivative (eq 46 of ref 21 with the indexes 1
and 2 swapped)

*

=

i

k

jjjjjj

y

{

zzzzzz
kT n C n

n

n
n C n

( )

( )

u

T P

u

u

2

2
2

,

2 2 1
2

1

1
2 2 1

2

(26)

These parallel relationships demonstrate the solvation-sorption
analogy. Indeed, from eqs 24 and 26, it follows that
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which is analogous to the fundamental relationship for
adsorption from solution (eq 7b). This analogy has a practical
significance. When a part of the solid component dissolves into
the solution, the surface excess (⟨n2*⟩ − C2

II⟨n1*⟩) becomes
preferential solvation (⟨n2⟩u − C2⟨n1⟩u) (whereC2

II =C2) and the
interface-solution fluctuation difference
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becomes the solvation-bulk difference
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while retaining the mathematical form. This analogy implies the
validity of our solution-phase sorption theory even when some
of the solid components dissolve into solution, which will be
discussed in a forthcoming paper.

■ CONCLUSIONS

It has long been customary to analyze solid/solution sorption
isotherms using the adapted solid/gas isotherm models, such as
Langmuir, Freundlich, or BET. Such an adaptation, however,
suffers from a lack of clarity when it comes to interpreting the
model parameters derived originally for gas adsorption. We
aimed to bring clarity by showing that the underlying sorption
mechanism can indeed be obtained by fitting solid/solution
isotherms.

The first step toward achieving this aim was to establish a
general and rigorous statistical thermodynamic foundation for
solid/solution isotherms, starting from the generalized Gibbs
isotherm, applicable to any interfacial geometry. On this
foundation, we have introduced the Kirkwood-Buff χ parameter
as the measure of net self-interaction at the interface and in the
solution. Unlike the Flory χ based on the lattice model, the
Kirkwood-Buff χ is assumption-free and appears widely in the
solution theory, such as in the activity coefficient75 and
cooperative solubilization by hydrotropes and surfactants.68,78,79
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Hence the use of Kirkwood-Buff χ establishes a common
language between sorption and solution.

On this theoretical foundation, we have derived the two
isotherm equations (i.e., ABC and cubic). Both isotherms share
the same set of parameters, with a clear microscopic
interpretation. The key is the interface−solution difference of
the Kirkwood-Buff χ parameter, which can be evaluated by
fitting experimental isotherms using the ABC and cubic. The
ABC and cubic isotherms share their parameters, yet they exhibit
suitability for different classes of isotherms in partially and fully
miscible systems. The ABC isotherm, a model-free general-
ization of Langmuir, BET, and GAB, is useful for the partially
miscible systems and the U-shaped isotherms in the fully
miscible systems. The cubic isotherm is suitable for S-shaped
isotherms in fully miscible systems. The Kirkwood-Buff χ
parameter not only provides the key insight into the underlying
sorption mechanism but also is the defining signature of
isotherm classifications. Moreover, due to its relationship to the
molecular distribution functions, Kirkwood-Buff χ can be used
to compare an experimental isotherm to a simulation.

Thus, we have established a tractable sorption theory for
solid-solution and solid−gas systems, formulated in the
universal language of the Kirkwood-Buff χ parameter. At the
present stage, our theory cannot be applied to (i) cooperative
sorption isotherms50 that may not be captured by themono-, di-,
and trisorbate expansions adopted in this paper and (ii) complex
isotherms for highly heterogeneous surfaces51 that require the
consideration of statistically independent microscopic patches
that have not been considered in this paper. However, these
problems have been resolved for gas (vapor) isotherms.50,51

Their generalization to solid/solution isotherms will be carried
out in a forthcoming paper.
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