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We propose a new approach to study plethysm coefficients by 
using the Schur-Weyl duality between the symmetric group 
and the partition algebra. This provides an explanation of 
the stability properties of plethysm and Kronecker coefficients 
in a simple and uniform fashion for the first time. We 
prove the strengthened Foulkes’ conjecture for stable plethysm 
coefficients in an elementary fashion.
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Introduction

Understanding the plethysm coefficients is a fundamental problem in the represen-

tation theories of symmetric and general linear groups and was identified by Richard 

Stanley as one of the most important open problems in algebraic combinatorics [23]. 

Perhaps the oldest and most famous question concerning plethysm coefficients is a con-

jecture of Foulkes from 1950 [8]. To state Foulkes’ conjecture, we first require some 
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notation. Let m, n ∈ N and α be a partition of mn and let Sm ≀ Sn denote the wreath 

product subgroup of Smn. The plethysm coefficient p((n), (m), α) is the multiplicity 

of the irreducible CSmn-module S(α) as a composition factor of the Foulkes module 

indSmn

Sm≀Sn
C. Equivalently, these plethysm coefficients record the decomposition of the 

GLmn(C)-module Symn(Symm(Cmn)) into irreducible summands and also the decompo-

sition of the plethysm of symmetric functions s(n) ◦s(m) as an integral linear combination 

of Schur functions. Foulkes’ conjecture states that, for all m � n and for all α ⊢ mn, we 

have

p((m), (n), α) � p((n), (m), α). (1)

A stronger conjecture made in [25] states that for all m � n, p, q with mn = pq we have

p((q), (p), α) � p((n), (m), α). (2)

Plethysm is defined for arbitrary partitions of m and n, but for the purposes of this paper 

our interest lies in the ‘Foulkes case’ where both partitions have precisely one row. In 

this article, we study families of these plethysm coefficients. For an arbitrary partition 

λ = (λ1, λ2, . . . , λℓ), set λ[mn] = (mn − |λ|, λ1, λ2, . . . , λℓ). We look at the coefficient 

p((n), (m), λ[mn]) as m and n vary. We ask, for a fixed partition λ, whether for all m < n

we have that

p((m), (n), λ[mn]) � p((n), (m), λ[mn]).

Our first theorem verifies that this is indeed the case for all except possibly a finite list 

of values for m, n ∈ N. Discarding this finite list of values, both Foulkes’ conjecture and 

the strengthened Foulkes’ conjecture hold for the partition λ[mn]. Moreover, we can even 

drop the assumption in Equation (2) that mn = pq, relating plethysm coefficients for 

λ[mn] and λ[pq] outside of these values.

Theorem A. Let λ be an arbitrary partition. For any m, n, p, q � |λ|,

p((q), (p), λ[pq]) = p((n), (m), λ[mn]).

In particular, taking p = n and q = m, Foulkes’ conjecture holds for λ[mn] for all but 

finitely many values of m, n ∈ N, as does the strengthened Foulkes’ conjecture.

The proof of this result constructs a partition algebra isomorphism which “does not 

see” any difference between m and n providing they are both sufficiently large. This 

seems to provide the first conceptual explanation for why Foulkes’ conjecture “should” 

be true.

One of the key ideas in our approach is to consider the stable limit of a certain se-

quence of plethysm coefficients. Brion [3] and Carré–Thibon [5] proved that the following 

sequences of plethysm coefficients
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{p((n), (m), λ[mn])}n∈N {p((n), (m), λ[mn])}m∈N

have stable limits for n (respectively m) sufficiently large with respect to m (respectively 

n). In fact, Brion’s proof of the stability of the former sequence settled a second conjecture 

from Foulkes’ 1950 paper. In this paper we consider the stable limit of the double-

sequence

p∞,λ = lim
m,n→∞

{p((n), (m), λ[mn])}. (†)

These stable values are achieved whenever m, n � |λ|. We study these stable plethysm 

coefficients through the Schur–Weyl duality between the symmetric group, Smn, and the 

partition algebra, Pr(mn), via their actions on the tensor space (Cmn)⊗r. This duality 

results in a functor

Fr : Smn-mod → mod-Pr(mn).

The key observation is that the module Fr(indSmn

Sm≀Sn
(C)) has an elegant diagram-

matic description for m, n � r. By considering the module Fr(indSmn

Sm≀Sn
(C)) for each 

r � 0 in turn, we are able to focus solely on the “rth layer” of plethysm constituents 

p((n), (m), λ[mn]) for which |λ| = r. We hence deduce that Foulkes’ conjecture holds for 

λ[mn] whenever m, n � |λ| and obtain a simple proof of the stability (†).

Our second main result (which subsumes Theorem A) calculates the value of any 

stable plethysm coefficient in terms of plethysm coefficients labelled by much smaller 

partitions and use of the Littlewood–Richardson rule. A geometric proof of this result in 

the language of jet schemes is given in [14]. Our proof of this result is given by explicitly 

decomposing the Pr(mn)-module Fr(indSmn

Sm≀Sn
(C)) using its diagrammatic incarnation.

Theorem B. Let λ be a partition of r ∈ N. For all m, n � r we have that

p∞,λ = p((n), (m), λ[mn]) =
∑

μ∈P1(r)

pμ(λ),

where P1(r) is the set of all partitions of r whose parts are all strictly greater than 1. 

The coefficients pμ(λ) are the generalised plethysm coefficients defined in Section 1.

Our approach brings forward a general tool to study stable and non-stable plethysm 

coefficients and provides a natural framework for the study of the outstanding problems 

in the area. In particular, one should notice that our proofs are surprisingly elementary 

and treat the stabilities of Kronecker and plethysm coefficients uniformly alongside one 

another for the first time — as the parameters increase, the action of the partition alge-

bra becomes faithful and semisimple exactly as in the case of the Kronecker coefficients 

[2]. We consider Theorem B to be the natural analogous statement to that for Kronecker 
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coefficients in [2, Corollary 4.5]. Particular highlights of our approach include easy alge-

braic proofs of Foulkes’ and Weintraub’s conjectures for stable plethysm coefficients. The 

partition algebra approach has proven to be very powerful for understanding Kronecker 

coefficients: in [1] an algorithm is given for calculating stable Kronecker coefficients in 

terms of oscillating tableaux. (The partition algebra is essential in the proof and allows 

one to define a lattice permutation condition on oscillating tableaux.) We hope that the 

partition algebra is similarly useful in understanding the (stable) plethysm coefficients.

Ramifications

In this paper, we recast the Foulkes’ plethysm coefficients in the setting of the par-

tition algebra. In the sequel to this paper we will generalise this to arbitrary plethysm 

coefficients. The key to this construction will be the ramified partition algebra of [18]

which we do not discuss here. However, the reader familiar with these constructions is 

invited to observe that our stable Foulkes module for Pr(mn) is equal to the restriction 

to Pr(mn) of the cell module of the ramified partition algebra denoted by Δr(∅∅).

An example

We conclude this introduction with an example, illustrating how to calculate the 

multiplicities p∞,λ = p((n), (m), λ[mn]) for λ a partition of 4 and m, n � 4. We pass 

the question from Smn to the partition algebra P4(mn) and take the natural quotient 

P4(mn) → CS4, which dramatically reduces the rank of the problem. We hence obtain 

an CS4-module with the following basis

21 3 4
21 3 4

21 3 4
21 3 4

with the action given by permuting the diagrams in the obvious fashion. It is easy to 

see that the first three diagrams span a cyclic module which decomposes as the sum of 

Specht modules S(4) ⊕ S(2, 2). The fourth diagram provides an indecomposable module 

isomorphic to S(4). Hence, for all m, n � 4 we deduce that

p((n), (m), (mn − 4, 4)) = 2 p((n), (m), (mn − 4, 22)) = 1 p((n), (m), λ[mn]) = 0

for λ = (3, 1), (2, 12), (14).
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The structure of the paper

We present sufficient background to make our exposition accessible to a reader fa-

miliar with representation theory: Section 1 recalls the definition of the (generalised) 

plethysm coefficients, their stabilities, and the statement of Foulkes’ conjecture and the 

strengthened Foulkes’ conjecture; Section 2 recalls the definition of the partition algebra 

and the basic facts concerning its representation theory; Section 4 recalls the Schur–Weyl 

duality between the symmetric groups and partition algebras which underlies the main 

results of this paper. We apply Schur–Weyl duality to the Foulkes module to obtain a 

module for the partition algebra. Our fundamental combinatorial object, the fixed depth 

Foulkes poset, is introduced in Section 3. It is used to construct a diagrammatic module 

for the partition algebra in Section 5, which we relate to Foulkes modules in Section 6. In 

Section 7 the construction of a filtration of our diagrammatic module allows us to prove 

Theorem A, and its decomposition into its irreducible components proves Theorem B.

This paper has been on the arXiv for quite some time, while we were preparing 

the sequel. Since then, certain plethysm coefficients have been studied by Orellana–

Saliola–Schilling–Zabrocki in the context of the party algebra, a subalgebra of the par-

tition algebra (see [20]). We do not believe there is any overlap in our results, but the 

ideas do have a similar diagrammatic flavour.

Acknowledgements

The authors would like to thank Mark Wildon for providing us with a wealth of small 

rank examples which he calculated using his plethysm coefficients software. We would 

also like to thank Rosa Orellana and Mike Zabrocki for interesting and informative 

conversations and the Oberwolfach workshop “Character Theory and Categorification” 

for providing an excellent environment for collaboration. The first author is grateful to 

financial support from EPSRC grant EP/V00090X/1.

1. Foulkes’ conjecture and plethysm coefficients

We let Sn denote the symmetric group on n letters. The combinatorics underlying 

the representation theory of the partition algebras and symmetric groups is based on 

(integer) compositions and partitions. A composition λ of n, denoted λ � n, is defined 

to be a sequence of non-negative integers which sum to n. If the sequence is weakly 

decreasing, we write λ ⊢ n and refer to λ as a partition of n. We let P(n) denote 

the set of all partitions of n and we let P1(n) denote the subset of those partitions 

whose (non-zero) parts are all strictly greater than 1. We suppress the zero parts of 

λ = (λ1, λ2, . . . , λℓ, 0, 0, . . . ) and write λ = (λ1, λ2, . . . , λℓ) where λℓ is non-zero, and we 

write ∅ for the unique partition of zero. We say that a partition λ = (λ1, λ2, λ3, . . . , λℓ)

has depth equal to |λ| − λ1 = λ2 + λ3 + · · · + λℓ.
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Associated to each partition λ of n, we have a simple right CSn-module, often referred 

to as a Specht module. An explicit construction of these modules is given in [11, §4], where 

it is shown that the Specht modules provide a complete set of irreducible CSn-modules 

indexed by the partitions of n.

Now let m, n ∈ N and consider the symmetric group Smn. A copy of the wreath 

product Sm ≀ Sn occurs as a subgroup of Smn. Following [12, Section 4.1], we define

Sm ≀ Sn = {(σ1, σ2, . . . , σn; π) : σi ∈ Sm, i = 1, . . . , n, π ∈ Sn},

which we identify with a subgroup of Smn via the embedding

(σ1, σ2, . . . , σn; π) 	→

(

(j − 1)m + i

(π(j) − 1)m + σπ(j)(i)

)

i=1,...,m,j=1...,n

, (1.1)

where on the right we have used the usual two-line notation for permutations. In ad-

dition, there are other direct products of wreath product subgroups contained in Smn

corresponding to various partitions of mn. Suppose μ = (mn1
1 , mn2

2 , . . . , mnℓ

ℓ ) ⊢ mn with 

m1 > m2 > · · · > mℓ, where, here, repeated parts of the partition are denoted by 

superscripts in the standard fashion. Associated to μ we have a subgroup

∏

i

Smi
≀ Sni

= Sm1
≀ Sn1

× · · · × Smℓ
≀ Snℓ

� Sm1n1
× · · · × Smℓnℓ

� Smn. (1.2)

For λ ⊢ mn, we define the generalised plethysm coefficient pμ(λ) to be the multiplicity 

of S(λ) as a composition factor of the permutation module indSmn
∏

i Smi
≀Sni

(C),

pμ(λ) =
[

indSmn
∏

i Smi
≀Sni

(C) : S(λ))
]

CSmn

. (1.3)

In the special case of a rectangular partition, μ = (mn), the subgroup above spe-

cialises to be Sm ≀Sn and we hence obtain the classical plethysm coefficients p(mn)(λ) =

p((n), (m), λ) defined explicitly in the introduction.

Given a fixed integer mn ∈ N, the plethysm coefficients (which are associated to a 

rectangular μ = (mn)) are the most difficult examples of the coefficients in Equation (1.3)

in terms of computation. By which we mean that all other examples of coefficients in 

Equation (1.3) can be obtained from an understanding of the smaller rank plethysm 

coefficients and applications of the Littlewood–Richardson rule (for the statement of 

which, see [11, §16]). To see this, simply note that we are inducing from a product 

(hence the Littlewood–Richardson coefficients) of wreath product subgroups (hence the 

plethysm coefficients).

Recall from the introduction that if λ is a partition then λ[mn] denotes the partition 

of mn whose Young diagram is obtained by appending an additional row above those of 

λ. Note that all partitions of mn are of the form λ[mn] for some λ. Brion [3] showed that 
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if we allow both the value of m and hence the length of the first row of λ[mn] to increase, 

then we obtain a limiting behaviour as follows. For m sufficiently large with respect to 

n, Brion proved that

p((n + k), (m), λ[m(n+k)]) = p((n), (m), λ[mn])

for all k � 1. This stability was conjectured by Foulkes in [8]. In the other direction, 

Carré–Thibon [5] showed for n sufficiently large with respect to m, we have that

p((n), (m + k), λ[(m+k)n]) = p((n), (m), λ[mn])

for all k � 1. Notice that in each case we require that m (respectively n) is sufficiently 

large with respect to n (respectively m). Therefore one cannot, a priori, consider the 

limit as n and m both tend to infinity. In this paper we shall consider the stability of 

the double-sequence

p∞(λ) = lim
m,n→∞

{p((n), (m), λ[mn])},

and we shall see that n and m are only required to be greater than |λ| (and can be 

chosen freely with respect to each other) for this stability to occur.

We now recall Foulkes’ original conjecture from [8]. This conjecture has been settled 

for m ≪ n by Brion [3]. All other results in the area concern small values of m; namely, 

m = 2 [24], m = 3 [7], m = 4 [19], m = 5 [6].

Conjecture 1.1. (Foulkes’ conjecture) Let m, n ∈ N with m � n. Then

p((m), (n), λ[mn]) � p((n), (m), λ[mn])

for all partitions λ.

A strengthened version of this conjecture was proposed in [25]. It is currently only 

known to hold for m = 2 and n = 3 (see [25]).

Conjecture 1.2. (Strengthened Foulkes’ conjecture) Let mn = pq ∈ N with m � n and 

suppose that p, q � m. Then

p((m), (n), λ[mn]) � p((q), (p), λ[pq])

for all partitions λ.

2. The partition algebra

The partition algebra was originally defined by Martin in [16]. All the results in this 

section are due to Martin and his collaborators: see [17] and references therein.
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2.1. Definitions

For r ∈ N, we consider the set {1, 2, . . . , r, ̄1, ̄2, . . . , ̄r} with the total ordering

1 < 2 < · · · < r < 1 < 2 < · · · < r.

We consider set-partitions of {1, 2, . . . , r, ̄1, ̄2, . . . , ̄r}. A subset occurring in a set-partition 

is called a block. For example,

x = {{1, 2, 4, 2̄, 5̄}, {3}, {5, 6, 7, 3̄, 4̄, 6̄, 7̄}, {8, 8̄}, {1̄}},

is a set-partition of {1, 2, . . . , 8, ̄1, ̄2, . . . , ̄8} with five blocks. By convention, we order the 

blocks in x = {X1, . . . , Xl} by increasing minima, so that

1 = min X1 < min X2 < · · · < min Xl−1 < min Xl � r.

A set-partition, x, can be represented by an (r, r)-partition diagram, consisting of r dis-

tinguished northern and southern points, which we call vertices. We number the northern 

vertices from left to right by 1, 2, . . . , r and the southern vertices similarly by 1̄, ̄2, . . . , ̄r

and connect two vertices by an edge if they belong to the same block and are adja-

cent in the total ordering given by restriction of the above ordering to the given block. 

The second condition is imposed to pick a unique representative from the equivalence 

class of all diagrams having the same connected components. We shall move between 

set-partitions and their diagrams without further comment. For example, the diagram 

of the set-partition x given above is as follows:

321 4 5 6 7 8

321 4 5 6 7 8
.

We will use a generalisation of the definition of (r, r)-partition diagrams. An (m, r)-

partition diagram is a diagram representing a set partition of {1, . . . , m, ̄1, . . . , ̄r} with 

the same conventions.

We now consider a parameter δ ∈ C. We define the product xy of two (r, r)-partition 

diagrams x and y using the concatenation of x above y, where we identify the south-

ern vertices of x with the northern vertices of y. If there are t connected components 

consisting only of middle vertices, then the product is set equal to δt times the (r, r)-

partition diagram equivalent to the diagram with the middle components removed. We 

let Pr(δ) denote the complex vector space with basis given by all set-partitions of 
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321 4 5

321 4 5

321 4 5

321 4 5

= δ ×

321 4 5

321 4 5

Fig. 1. An example of the multiplication in P5(δ).

321

. . .

. . . r

321 r

431 2

. . .

. . . r

431 2 r

Fig. 2. The non-Coxeter generators, p1 and p1,2, of Pr(δ), respectively.

{1, 2, . . . , r, ̄1, ̄2, . . . , ̄r} and with multiplication given by linearly extending the multi-

plication of diagrams. An example of the multiplication is given in Fig. 1.

We set

p1 = {{1}, {2, 2}, . . . {r, r}, {1}}, p1,2 = {{1, 2, 1, 2}, {3, 3}, . . . {r, r}}

and we recall that the Coxeter generators for the symmetric group si,i+1 for 1 � i < r

can be thought of as the set-partitions

si,i+1 = {{1, 1}, . . . , {i − 1, i − 1}, {i, i + 1}, {i + 1, i}, {i + 2, i + 2}, . . . , {r, r}}.

We set pk = sk,k−1 . . . s1,2p1s1,2 . . . sk,k−1. Some of these diagrams are pictured in Fig. 2.

Proposition 2.1 ([17, Proposition 1]). The algebra Pr(δ) is generated by the set-partitions 

p1, p1,2 and si,i+1 for 1 � i < r.
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321

. . .

. . . r

321 r

431 2

. . .

. . . r

431 2 r

Fig. 3. The generators, p2 and s2,3, of Pr(δ), respectively.

2.2. Filtration by propagating blocks and standard modules

A block of a set-partition of {1, 2, . . . , r, ̄1, ̄2, . . . , ̄r} is called propagating if the block 

contains both northern and southern vertices. In the example from the previous sub-

section, x has three propagating blocks. Note that the multiplication in Pr(δ) cannot 

increase the number of propagating blocks. More precisely, if x, respectively y, is a parti-

tion diagram with px, respectively py, propagating blocks then xy is equal to δtz for some 

t � 0 and some partition diagram z with pz propagating blocks, where pz � min{px, py}. 

This gives a filtration of the algebra Pr(δ) by the number of propagating blocks.

We suppose for the remainder of the paper that δ �= 0 in order that we can define 

idempotents ek = δ−kp1p2 . . . pk for 1 � k � r. Notice that the diagram p1p2 . . . pk has 

precisely r−k propagating lines (consider, for example, the product p1p2 of the diagrams 

p1 and p2 depicted in Figs. 2 and 3). In particular, the aforementioned filtration of Pr(δ)

by the number of propagating blocks can be realised as a chain of idempotent ideals as 

follows. We have

{0} ⊂ Pr(δ)erPr(δ) ⊂ Pr(δ)er−1Pr(δ) ⊂ . . . ⊂ Pr(δ)e1Pr(δ) ⊂ Pr(δ).

It is easy to see that

e1Pr(δ)e1
∼= Pr−1(δ), (2.1)

and that this generalises to Pr−k(δ) ∼= ekPr(δ)ek for 1 � k � r. Moreover, Pr(δ)e1Pr(δ)

is the span of all (r, r)-partition diagrams with at most r − 1 propagating blocks and 

hence we have

Pr(δ)/(Pr(δ)e1Pr(δ)) ∼= CSr. (2.2)

We see that any CSr-module can be inflated to a Pr(δ)-module: the underlying vector 

space is the same and the action of Pr(δ) is via the quotient map provided by Equation 

(2.2). We also obtain from Equations (2.1) and (2.2), by induction, that the simple 

Pr(δ)-modules are indexed by the set
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P(� r) =
⋃

0�i�r

P(i).

For any ν ∈ P(� r) with ν ⊢ r−k, we define the standard (right) Pr(δ)-module, Δr,δ(ν), 

by

Δr,δ(ν) = S(ν) ⊗Pr−k(δ) ekPr(δ), (2.3)

where the (right) Specht module S(ν) for CSr−k becomes a Pr−k(δ)-module by inflation, 

and we have identified Pr−k(δ) with ekPr(δ)ek using the isomorphism given in Equation 

(2.1) providing the left action on ekPr(δ). The action of Pr(δ) on the standard module 

Δr,δ(ν) is given by right multiplication. As Pr−k(δ)-modules, we have that

Δr,δ(ν)ek
∼= Δr−k,δ(ν)

if |ν| � r − k and is zero otherwise. The following is an immediate consequence of [17, 

Proposition 23] and is also recorded explicitly in [10, Theorem 2.26].

Theorem 2.2. The algebra Pr(δ) is semisimple if

δ /∈ {0, 1, . . . , 2r − 2} (2.4)

and in this case the set {Δr,δ(ν) : ν ∈ P(� r)} forms a complete set of non-isomorphic 

simple Pr(δ)-modules.

More generally, we have the following:

Theorem 2.3 ([17, Corollary 5.1]). Recall that δ �= 0 by assumption. The standard module 

Δr,δ(ν) has a unique maximal submodule. The simple module obtained as the quotient 

by this maximal submodule is denoted by Lr,δ(ν), and moreover

{Lr,δ(ν) : ν ∈ P(� r)}

forms a complete set of non-isomorphic simple Pr(δ)-modules

We now give an explicit description of the standard modules which follows directly 

from (2.3). We set V (r − k, r) to be the span of all (r − k, r)-partition diagrams (that 

is, having r − k northern and r southern vertices) having precisely (r − k) propagating 

blocks. This has the natural structure of a (Sr−k, Pr(δ))-bimodule. It is easy to see that, 

as vector spaces, we have

Δr,δ(ν) ∼= S(ν) ⊗Sr−k
V (r − k, r).

The right action of Pr(δ) is given as follows. Let v be an (r − k, r)-partition diagram 

in V (r − k, r), x ∈ S(ν) and d be an (r, r)-partition diagram. Concatenate v above d to 
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get (δ)tv′ for some (r − k, r)-partition diagram v′ and some non-negative integer t. If v′

has fewer than (r − k) propagating blocks then we set (x ⊗ v)d = 0. Otherwise we set 

(x ⊗ v)d = δtx ⊗ v′. Note that if ν ⊢ r, then we have

Δr,δ(ν) ∼= S(ν) ⊗Sr
V (r, r) = S(ν), (2.5)

viewed as a Pr(δ)-module via Equation (2.2). A special case which will be important 

later is Δr,δ(∅) which can be viewed as the span of all set-partitions of {1, 2, . . . , r} with 

the natural concatenation action.

Remark 2.4. We refer the interested reader to [2] for explicit diagrammatic calculations 

using the modules constructed in Equation (2.5).

3. The fixed depth Foulkes poset

For r ∈ N, we consider the set {1, 2, . . . , r} with the usual total ordering. Given Λ a 

set-partition of {1, 2, . . . , r} and a, b ∈ {1, . . . , r}, we write a ∼Λ b if a and b belong to 

the same block of Λ, and we denote the number of blocks of Λ by ℓ(Λ). For example, if

Λ = {{1, 2, 4}, {3}, {5, 7, 8}, {6, 9}}

then 1 ∼Λ 4, 6 ∼Λ 9 and ℓ(Λ) = 4. We represent this diagrammatically as follows.

[Λ] = 321 4 5 6 7 8 9

Remark 3.1. Continuing with the convention of Section 2, we order the subsets in Λ =

{Λ1, . . . , Λl} by increasing minima, so that

1 = min Λ1 < min Λ2 < · · · < min Λl−1 < min Λl � r.

Given Λ, Λ′ two set-partitions of {1, 2, . . . , r}, we write Λ ⊆ Λ′ if a ∼Λ b implies 

a ∼Λ′ b for any a, b ∈ {1, . . . , r}, that is, if Λ′ is obtained from Λ by merging blocks. 

We let Fr denote the set consisting of all pairs (Λ, Λ′) of set-partitions of {1, . . . , r} such 

that Λ ⊆ Λ′.

We equip Fr with a partial ordering ⊆ as follows: given (Λ, Λ′), (Γ, Γ′) ∈ Fr, we write 

(Λ, Λ′) ⊆ (Γ, Γ′) if Λ ⊆ Γ and Λ′ ⊆ Γ′. In this case we say that (Λ, Λ′) is a refinement 

of (Γ, Γ′) or that (Γ, Γ′) is a coarsening of (Λ, Λ′). Given (Λ, Λ′) ∈ Fr we associate a 

diagram, [Λ, Λ′], in the obvious fashion, recording Λ as above then grouping together in 

a ‘bubble’ those parts of Λ which together form a part of Λ′. For example if

(Λ, Λ′) = {{1, 2, 4}, {3}, {5, 7, 8}, {6, 9}}, {{1, 2, 3, 4}, {5, 6, 7, 8, 9}}



122 C. Bowman, R. Paget / Journal of Algebra 655 (2024) 110–138

21 3

21 3 21 3 21 3

21 3 21 3 21 321 3

21 3 21 3 21 3

21 3

Fig. 4. The poset F3.

21 3 21 3

Fig. 5. Two diagrams discussed in Example 3.3 which do not belong to certain subposets of F3 (cross reference 
with Fig. 4).

then clearly Λ ⊆ Λ′ and we represent this pair diagrammatically as follows.

[Λ, Λ′] = 321 4 5 6 7 8 9

Definition 3.2. For m, n ∈ N, we let Fr
m,n ⊆ Fr denote the sub-poset consisting of the 

elements (Λ, Λ′) such that ℓ(Λ′) � n and such that the number of blocks of Λ contained 

within any single block of Λ′ is at most m.

Example 3.3. The subposet F3
2,3 ⊆ F3 contains all the elements shown in Fig. 4 except 

the leftmost diagram in Fig. 5. The subposet F3
3,2 ⊆ F3 contains all the elements shown 

in Fig. 4 except the rightmost diagram in Fig. 5.
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4. Schur–Weyl duality

Classical Schur–Weyl duality is the relationship between the (left and right) actions 

of general linear and symmetric groups over tensor space. The symmetric group acts on 

the right by permuting the factors. The general linear group acts on the left by matrix 

multiplication on each factor. These two actions commute and each generates the full 

centraliser of the other. We can restrict the action of the general linear group to the 

subgroup of permutation matrices and ask what algebra appears on the other side of the 

duality? The answer is the partition algebra. For the purposes of this paper, we shall 

be interested in how this allows us to understand certain plethysm coefficients via their 

stabilities.

The purpose of this paper is to study the decomposition of the Foulkes module 

indSmn

Sm≀Sn
C. We shall attempt to do this via Schur–Weyl duality with the partition 

algebra. In order to see the Foulkes module within the setting of Schur–Weyl duality, we 

must consider the left action of Smn and the right action of Pr(mn) on (Cmn)⊗r (defined 

below). Here we have specialised the parameter of the partition algebra to δ = mn ∈ N.

Let I(mn, r) = {1, . . . , mn}r be the set of multi-indices. For a given multi-index 

i = (i1, . . . , ir) ∈ I(mn, r), we put ei = ei1
⊗ · · · ⊗ eir

. Then {ei : i ∈ I(mn, r)} is a 

basis of tensor space (Cmn)⊗r over C. The action of the Weyl group Smn on (Cmn)⊗r

is simply the restriction of the diagonal action of GLmn(C). In particular,

σ · (ei1
⊗ · · · eir

) = eσ(i1) ⊗ · · · eσ(ir) (4.1)

for any σ ∈ Smn and i = (i1, . . . , ir) ∈ I(mn, r).

Let d ∈ Pr(mn) be a partition diagram. Let δa,b be the usual Kronecker delta symbol, 

defined to be 1 if a = b and 0 otherwise. Then the (right) action of d on the basis element 

ei of tensor space is given by the matrix Ψ(d) whose entry [Ψ(d)]i1,...,ir

i1,...,ir
in row (i1, . . . , ir)

and column (i1, . . . , ir) is given by

[Ψ(d)]i1,...,ir

i1,...,ir
=

∏

δis,it
(4.2)

where the product is taken over all pairs s, t in {1, . . . , r, 1, . . . , r} which are connected by 

an edge in d (see, for example, [10, Equation (3.8)]). It is easily checked that the linear 

extension of the rule d 	→ Ψ(d) defines a representation Ψ : Pr(mn) → EndC((Cmn)⊗r). 

To summarise, writing Φ for the map induced by the action in Equation (4.1), we have 

actions of the symmetric group and partition algebra on tensor space as follows

CSmn
Φ

−−→ EndC((Cmn)⊗r)
Ψ

←−− Pr(mn). (4.3)

Theorem 4.1 ([13,16]). In the situation outlined above, the image of each representation is 

equal to the full centraliser algebra for the other action. More precisely, we have equalities

Φ(CSmn) = EndPr(mn)((C
mn)⊗r), Ψ(Pr(mn)) = EndSmn

((Cmn)⊗r).
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As a (CSmn, Pr(mn))-bimodule, the tensor space decomposes as

(Cmn)⊗r ∼=
⊕

S(λ[mn]) ⊗ Lr,mn(λ)

where the sum is over all partitions λ[mn] of mn such that |λ| � r.

Here, if M is a left Smn-module then

Fr(M) = HomSmn
(M, (Cmn)⊗r)

carries the structure of a right Pr(mn)-module. Conversely, if N is a right Pr(mn)-

module, then

HomPr(mn)(N, (Cmn)⊗r)

carries the structure of a left Smn-module. In particular, the theorem shows that 

Fr(S(λ[mn])) ∼= Lr,mn(λ).

Now, Sm ≀ Sn is a subgroup of Smn via the embedding of Equation (1.1). The ac-

tion (4.1) of Smn on tensor space restricts to an action of Sm ≀ Sn. Having chosen our 

wreath product subgroup in the fashion above, we let this guide our choice of a new 

labelling set for the basis of tensor space as follows. For 1 � i � m and 1 � j � n, we 

set

vj
i = e(j−1)m+i,

and we note that

(σ1, σ2, . . . , σn; π)(vj1

i1
⊗ vj2

i2
⊗ · · · ⊗ vjr

ir
) = v

π(j1)
σπ(j1)(i1) ⊗ v

π(j2)
σπ(j2)(i2) ⊗ · · · ⊗ v

π(jr)
σπ(jr)(ir). (4.4)

Using Schur–Weyl duality, we now apply Fr to the Foulkes module to define a Pr(mn)-

module. This module’s decomposition into simple constituents will be governed by the 

plethysm coefficients. This will allow us to study plethysm coefficients using the tools 

from the representation theory of partition algebras.

Definition 4.2. We say that the basis vector

v = vj1

i1
⊗ vj2

i2
⊗ · · · ⊗ vjr

ir
∈ (Cmn)⊗r

has value-type (Λ, Λ′) if k ∼Λ′ l if and only if jk = jl and k ∼Λ l if and only if jk = jl and 

ik = il. We write val(v) = (Λ, Λ′). Observe that Λ, Λ′ are set-partitions of {1, 2, . . . , r}

with Λ ⊆ Λ′ and, since there are at most m possible subscripts and n possible super-

scripts, val(v) ∈ Fr
m,n. Given (Λ, Λ′) ∈ Fr

m,n, we let v(Λ,Λ′) denote the vector
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v(Λ,Λ′) =
∑

val(v)=(Λ,Λ′)

v,

where the sum runs over all basis vectors of (Cmn)⊗r with value-type (Λ, Λ′).

Example 4.3. For example, the basis vector v = v1
2 ⊗ v1

1 ⊗ v1
1 ⊗ v2

3 ⊗ v3
2 ⊗ v2

3 ⊗ v3
3 has

val(v) = ({{1}, {2, 3}, {4, 6}, {5}, {7}}, {{1, 2, 3}, {4, 6}, {5, 7}}).

To obtain Λ′ = {{1, 2, 3}, {4, 6}, {5, 7}} note that the superscripts match in positions 

1,2,3 and they match in positions 4 and 6 and they also match in positions 5 and 7. 

Although the subscripts match in positions 1 and 5, the superscripts do not match and 

so 1 ≁Λ 5.

Example 4.4. Let m = n = r = 2 and (Λ, Λ′) = ({{1}, {2}}, {{1, 2}}) then

v(Λ,Λ′) = v1
2 ⊗ v1

1 + v1
1 ⊗ v1

2 + v2
2 ⊗ v2

1 + v2
1 ⊗ v2

2 .

Example 4.5. Let m = 4 and n = r = 5 and

(Λ, Λ′) = ({{1, 2, 4}, {3}, {5}}, {{1, 2, 3, 4}, {5}}).

Then

v(Λ,Λ′) =
∑

1�i1,i2,i3�4
1�j1,j2�5

i1 �=i2,j1 �=j2

vj1

i1
⊗ vj1

i1
⊗ vj1

i2
⊗ vj1

i1
⊗ vj2

i3
.

Consider the action of the group Sm ≀ Sn on (Cmn)⊗r. The following lemma is im-

mediate from Equation (4.4):

Lemma 4.6. The Sm ≀Sn-orbit of a basis vector v of (Cmn)⊗r consists of precisely those 

basis vectors having value-type equal to val(v).

The following statement follows by Frobenius reciprocity and Lemma 4.6:

Corollary 4.7. For each (Λ, Λ′) ∈ Fr
m,n, define an element

ϕ(Λ,Λ′) ∈ HomSmn
(Smn ⊗Sm≀Sn

C, (Cmn)⊗r)

by setting

ϕ(Λ,Λ′)(σ ⊗ 1) = σv(Λ,Λ′)

for any σ ∈ Smn. The set
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{ϕ(Λ,Λ′) | (Λ, Λ′) ∈ Fr
m,n}

is a basis for the right Pr(mn)-module HomSmn
(Smn ⊗Sm≀Sn

C, (Cmn)⊗r).

Definition 4.8. We refer to the (right) Pr(mn)-module

Fr(Smn ⊗Sm≀Sn
C) = HomSmn

(Smn ⊗Sm≀Sn
C, (Cmn)⊗r)

as the Foulkes module for Pr(mn).

We give a second basis of the Foulkes module for Pr(mn), {ϕ(Λ,Λ′) : (Λ, Λ′) ∈ Fr
m,n}, 

by setting

ϕ(Λ,Λ′) =
∑

(Γ,Γ′):(Λ,Λ′)⊆(Γ,Γ′)

ϕ(Γ,Γ′).

That this is also a basis is clear, as we have simply applied a uni-triangular summation 

over the order ⊆.

The element ϕ(Λ,Λ′) can be defined for any (Λ, Λ′) ∈ Fr, sending the generator 1Smn
⊗1

to

∑

1�iS�m,∀S∈Λ,
1�jΣ�n,∀Σ∈Λ′,

ia=iS ,ja=jΣ,∀a∈S⊆Σ

vj1

i1
⊗ vj2

i2
⊗ · · · vjr

ir
. (4.5)

For example, if (Λ, Λ′) is as in Example 4.5 then

ϕ(Λ,Λ′)(1Smn
⊗ 1) =

∑

1�i,i′,i′′�4
1�j,j′�5

vj
i ⊗ vj

i ⊗ vj
i′ ⊗ vj

i ⊗ vj′

i′′ .

5. The stable Foulkes module

In this section we factorise the partition algebra parameter δ = δ1δ2. In practice, we 

will often specialise δ1 = m and δ2 = n ∈ Z�1, however it will be useful to be able to 

specialise from generic parameters.

Recall from Section 2 that the Pr(δ)-module Δr,δ(∅) has diagrammatic basis given 

by all set-partitions of {1, 2, . . . , r} with the natural concatenation action. With this in 

mind, we make the following definition:

Definition 5.1. We define the stable Foulkes module to be the complex vector space

F
r(δ1, δ2) = SpanC{[Λ, Λ′] | (Λ, Λ′) ∈ Fr},

equipped with the following right action of Pr(δ1δ2). For d an (r, r)-partition diagram,
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[Λ, Λ′]d = δt1
1 δt2

2 [Γ, Γ′],

if [Λ]d = δt1
1 [Γ] in the Pr(δ1)-module Δr,δ1

(∅), and [Λ′]d = δt2
2 [Γ′] in the Pr(δ2)-module 

Δr,δ2
(∅).

Example 5.2. Let r = 2. The stable Foulkes module F2(δ1, δ2) is 3-dimensional with basis 

given by the following three diagrams:

21 21 21

The generators of P2(δ1δ2) act as follows:

p1 	→

⎛

⎜

⎝

0 0 0

1 δ1δ2 δ1

0 0 0

⎞

⎟

⎠
, p1,2 	→

⎛

⎜

⎝

1 1 1

0 0 0

0 0 0

⎞

⎟

⎠
, s1,2 	→

⎛

⎜

⎝

1 0 0

0 1 0

0 0 1

⎞

⎟

⎠
.

From this, one observes that the first two diagrams span a 2-dimensional P2(δ1δ2)-

submodule. In fact, we note that this 2-dimensional submodule is isomorphic, as a 

P2(δ1δ2)-module, to Δ2,δ1δ2
(∅) simply by identifying the diagrammatic bases in the 

obvious manner. The resulting quotient module is 1-dimensional and is isomorphic to 

Δ2,δ1δ2
((2)) (as there is a unique 1-dimensional simple P2(δ1δ2)-module that is killed by 

p1 and upon which s1,2 acts as the scalar 1).

We now describe the action of the generators of the partition algebra Pr(δ1δ2)

on the basis of the stable Foulkes module. We let Λ = {S1, S2, . . . , Sp} and Λ′ =

{Σ1, Σ2, . . . , Σq} for 1 � q � p � r. Recall the notational convention of Remark 3.1. 

Observe that

[Λ, Λ′]p1,2 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[{S1, S2, S3, . . . Sp}, {Σ1, Σ2, . . . , Σq}] if 1, 2 ∈ S1 ⊆ Σ1

[{S1 ∪ S2, S3, . . . Sp}, {Σ1 ∪ Σ2, . . . , Σq}] if 1 ∈ S1 ⊆ Σ1, 2 ∈ S2 ⊆ Σ2

[{S1 ∪ S2, S3, . . . Sp}, {Σ1, Σ2, . . . , Σq}] if 1 ∈ S1 ⊆ Σ1, 2 ∈ S2 ⊆ Σ1

(5.1)

and also

[Λ, Λ′]p1

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δ1δ2 × [Λ, Λ′] if {1} = S1 = Σ1

[{{1}, S1 − {1}, S2, S3, . . . Sp}, {{1}, Σ1 − {1}, Σ2, . . . , Σq}] if {1} ⊂ S1 ⊆ Σ1

δ1 × [{{1}, S2, S3, . . . Sp}, {{1}, Σ1 − {1}, Σ2, . . . , Σq}] if {1} = S1 ⊂ Σ1.

(5.2)
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The generators si,i+1 for 1 � i < r act in the usual fashion by permuting {1, 2, . . . , r}. 

For ease of notation, we do not write these actions out explicitly.

6. Relating the Foulkes and stable Foulkes modules for the partition algebra

We again specialise the parameters δ1 = m and δ2 = n to relate the two right Pr(mn)-

modules we introduced in the previous sections: the stable Foulkes module Fr(m, n) and 

the Foulkes module HomSmn
(Smn ⊗Sm≀Sn

C, (Cmn)⊗r). We shall do this using the 

elements ϕ(Λ,Λ′), which were defined in (4.5).

Theorem 6.1. Let m, n, r ∈ N. There is a surjective homomorphism of Pr(mn)-modules

Θ : F
r(m, n) ։ HomSmn

(Smn ⊗Sm≀Sn
C, (Cmn)⊗r),

mapping [Λ, Λ′] to ϕ(Λ,Λ′). The map Θ is injective if and only if m, n � r.

Proof. We have that {ϕ(Λ,Λ′) : (Λ, Λ′) ∈ Fr
m,n} is a basis of the Foulkes module by 

Corollary 4.7 and therefore {ϕ(Λ,Λ′) : (Λ, Λ′) ∈ Fr
m,n} is a basis by unitriangularity. 

Thus, surjectivity of Θ is clear. Injectivity follows if and only if Fr
m,n = Fr, that is 

m, n � r. It remains to check that Θ is a Pr(mn)-modules homomorphism, which is 

simply an exercise in matching-up the action of the partition algebra generators on the 

two modules. We write v(Λ,Λ′) for the image of the generator 1Smn
⊗ 1 of the Foulkes 

module under ϕ(Λ,Λ′) from Equation (4.5).

In v(Λ,Λ′)p1,2, the term vj1

i1
⊗ vj2

i2
⊗ · · · vjr

ir
is killed if i1 �= i2 or j1 �= j2. The effect is 

therefore to merge the blocks of Λ (respectively Λ′) containing 1 and 2. Compare this 

with Equation (5.1).

Now consider p1. Each term vj1

i1
⊗ vj2

i2
⊗ · · · vjr

ir
in v(Λ,Λ′) is sent to 

∑

1�i�m,1�j�n vj
i ⊗

vj2

i2
⊗ · · · vjr

ir
in v(Λ,Λ′)p1. The effect is to split off a singleton block {1} from the blocks 

of Λ and Λ′ containing 1, but there is a multiplicity. If the singleton part {1} ∈ Λ and 

{1} ∈ Λ′, then there are mn terms in v(Λ,Λ′) making this contribution. If {1} ∈ Λ but is 

not a singleton part of Λ′ then there are m terms making this contribution. Finally, if 

{1} is not a singleton part of either Λ or Λ′ then the single term contributes. Compare 

this with Equation (5.2).

The symmetric group generators act in the usual way and thus Θ is a Pr(mn)-

homomorphism. �

By Theorems 4.1 and 6.1 we deduce the following:

Corollary 6.2. Let m, n, r ∈ N. We have the following equality of composition multiplic-

ities:

[

Smn ⊗Sm≀Sn
C : S(λ[mn])

]

CSmn
= [Fr(m, n)/ ker(Θ) : Lr,mn(λ)]

Pr(mn) ,



C. Bowman, R. Paget / Journal of Algebra 655 (2024) 110–138 129

for λ[mn] a partition of mn such that |λ| � r. In particular, if m, n � r then

[

Smn ⊗Sm≀Sn
C : S(λ[mn])

]

CSmn
= [Fr(m, n) : Lr,mn(λ)]

Pr(mn) .

We will demonstrate the power of this corollary in the next two sections, where we 

use the partition algebra to give elementary algebraic proofs of results about plethysm 

coefficients.

7. The structure of the stable Foulkes module

We begin this section by giving an elementary filtration on the stable Foulkes module. 

We show that the layers of this filtration are preserved under swapping the parameters; 

this gives a simple proof of Theorem A. We then examine these layers of the filtration in 

more detail; we provide an explicit direct sum decomposition of these layers and hence 

prove Theorem B.

7.1. A filtration of the stable Foulkes module

In this section we construct a filtration of the stable Foulkes module Fr(δ1, δ2) as a 

Pr(δ1δ2)-module (with arbitrary parameters δ1, δ2). This will allow us to deduce that its 

composition factors depend only on the product δ1δ2 ∈ C and do not depend on the 

distinct parameters δ1, δ2. Given Λ a set-partition, recall that ℓ(Λ) denotes the number 

of blocks in Λ.

Definition 7.1. Given a pair (Λ, Λ′), we set ℓ([Λ, Λ′]) = ℓ(Λ) − ℓ(Λ′). For 0 � k < r, we 

let Fr
k (δ1, δ2) denote the subspace of Fr(δ1, δ2) with basis {[Λ, Λ′] | ℓ([Λ, Λ′]) � k}.

For example for r = 9 we see that

(Λ, Λ′) = {{1, 2, 4}, {3}, {5, 7, 8}, {6, 9}}, {{1, 2, 3, 4}, {5, 6, 7, 8, 9}} ∈ F
9
2 (δ1, δ2).

Theorem 7.2. Let r ∈ N. Then, as a Pr(δ1δ2)-module, Fr(δ1, δ2) has a filtration

0 ⊂ F
r
0 (δ1, δ2) ⊂ F

r
1 (δ1, δ2) ⊂ · · · ⊂ F

r
r−1(δ1, δ2) = F

r(δ1, δ2).

Moreover, all entries in the representing matrices of the generators of Pr(δ1δ2) on the 

quotient module Fr
k (δ1, δ2)/F

r
k−1(δ1, δ2) for 1 � k � r − 1 consist only of zeroes, ones, 

and the parameter δ1δ2. In particular, the entries depend only on the product δ1δ2 and 

are independent of the factors δ1, δ2.

Proof. We shall consider the actions of the elements p1,2, p1 and si,i+1 for 1 � i < r in 

turn. In the three cases of Equation (5.1), we have that
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ℓ([Λ, Λ′]) − ℓ([Λ, Λ′]p1,2) = 0, 0, 1

respectively. Each entry in the representing matrix is 0 or 1. Now consider the action of 

p1 from Equation (5.2): [Λ, Λ′]p1 is a scalar times a diagram [Γ, Γ′] and

ℓ([Λ, Λ′]) − ℓ([Γ, Γ′]) = 0, 0, 1

respectively. Furthermore, note that the parameter δ1 appears only in the third case 

of Equation (5.2), which is precisely the case in which [Λ, Λ′]p1 is zero in the quo-

tient module F
r
k (δ1, δ2)/F

r
k−1(δ1, δ2). Finally, the elements si,i+1 simply permute the 

numbers {1, 2, . . . , r} within the blocks of the set-partition and so, firstly, ℓ([Λ, Λ′]) −

ℓ([Λ, Λ′]si,i+1) = 0 for all for 1 � i < r and, secondly, the representing matrices of si,i+1

consist only of entries 0 and 1. The result follows. �

Example 7.3. This filtration is constructed explicitly in Example 5.2 for r = 2 and δ1, δ2

arbitrary.

Corollary 7.4. Let r ∈ N. There exists an isomorphism of Pr(δ1δ2)-modules

F
r
k (δ1, δ2)/F

r
k−1(δ1, δ2) ∼= F

r
k (δ2, δ1)/F

r
k−1(δ2, δ1)

for 1 � k � r − 1. In particular, we have the following equality of composition multiplic-

ities:

[Fr(δ1, δ2) : Lr,δ1δ2
(λ)]

Pr(δ1δ2) = [Fr(δ2, δ1) : Lr,δ1δ2
(λ)]

Pr(δ1δ2) ,

for |λ| � r.

In particular, specialising the parameters δ1δ2 = mn ∈ Z�1, we obtain Theorem A of 

the introduction.

7.2. An explicit decomposition of the stable Foulkes module

In this section we decompose the stable Foulkes module in the case where Pr(δ1δ2) is 

semisimple.

Definition 7.5. Let r ∈ N. We define the depth-radical of Fr(δ1, δ2) to be the subspace 

spanned by the pairs [Λ, Λ′] satisfying either of the following two conditions:

(i) The set-partition Λ contains a non-singleton block;

(ii) the set-partition Λ′ contains a singleton block.

We let DR(Fr(δ1, δ2)) denote the depth-radical of Fr(δ1, δ2).
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Example 7.6. For r = 4 the module F4(δ1, δ2) is 60-dimensional and DR(F4(δ1, δ2)) is 

56-dimensional. Rather than list the basis elements of DR(F4(δ1, δ2)), we instead list the 

four pairs (Λ, Λ′) which do not belong to the depth-radical. These are pictured below.

21 3 4
21 3 4

21 3 4
21 3 4

Proposition 7.7. Given r ∈ N, the depth radical DR(Fr(δ1, δ2)) is a Pr(δ1δ2)-submodule 

of Fr(δ1, δ2).

Proof. Clearly the generators si,i+1 for 1 � i < r preserve the space DR(Fr(δ1, δ2))

as both conditions of Definition 7.5 are invariant under the permutation action. By 

Equation (5.2), the generator p1 acts on a given [Λ, Λ′] either by scalar multiplication, or 

by removing an edge from Λ at the expense of introducing a singleton into Λ′. Therefore 

the generator p1 preserves the submodule by (ii) of Definition 7.5. By Equation (5.1)

the generator p1,2 acts on a given [Λ, Λ′] either trivially or by introducing an edge in Λ. 

Therefore the generator p1,2 preserves the submodule by (i) of Definition 7.5. �

Definition 7.8. Define the depth quotient DQ(Fr(δ1, δ2)) of Fr(δ1, δ2) to be the quotient

DQ(Fr(δ1, δ2)) = F
r(δ1, δ2)/DR(Fr(δ1, δ2))

spanned by the diagrams [{{1}, {2}, . . . , {r}}, Λ′] where Λ′ contains no singleton blocks.

Recall that for δ1δ2 �= 0 the idempotent e1 = 1
δ1δ2

p1 ∈ Pr(δ1δ2). By the general theory 

of idempotent truncation (see for example [9, Section 6.2]) and Equations (2.1), (2.2) we 

obtain the following.

Proposition 7.9. For r � 2,

DR(Fr(δ1, δ2))e1Pr(δ1δ2) = DR(Fr(δ1, δ2)), DQ(Fr(δ1, δ2))e1 = 0,

and

DR(Fr(δ1, δ2))e1
∼= F

r−1(δ1, δ2)

as an e1Pr(δ1δ2)e1
∼= Pr−1(δ1δ2)-module. When r = 1, F1(δ1, δ2) ∼= Δ1,δ1δ2

(∅).
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Proof. We consider the first statement. We let [Λ, Λ′] be an arbitrary basis element of 

DR(Fr(δ1, δ2)). We shall write [Λ, Λ′] in the form

[Λ, Λ′] = [Λ, Λ′]e1d

for some [Λ, Λ′] ∈ DR(Fr(δ1, δ2)) and some partition diagram d ∈ Pr(δ1δ2) and hence 

deduce the result. First, suppose that Λ′ contains a singleton block {i} for 1 � i � r. In 

this case we set

[Λ, Λ′] = [Λ, Λ′]s1,i,

where s1,i = si−1,i · · · s2,3s1,2s2,3 · · · si−1,i. We find

[Λ, Λ′] = [Λ, Λ′]e1s1,i

as required. Now suppose that Λ′ contains no singleton block; by Definition 7.5 we 

deduce that Λ contains a non-singleton block. In other words, we suppose that there 

exist distinct j, k ∈ {1, . . . , r} with j ∼Λ k. In this case we set

[Λ, Λ′] = [Λ, Λ′]s1,js2,k,

where s2,k = s1,2s1,ks1,2. We observe that

[Λ, Λ′] = [Λ, Λ′]e1(p1,2s1,js2,k)

as required. The first statement follows.

We now consider the second and third statements. Let [Λ, Λ′] be a basis element of 

F
r(δ1, δ2) and consider [Λ, Λ′]e1 using Equation (5.2). In all three cases the resulting outer 

partition contains a singleton block and therefore [Λ, Λ′]e1 ∈ DR(Fr(δ1, δ2)). Therefore 

the second statement holds. Considering only [Λ, Λ′] ∈ DR(Fr(δ1, δ2)), we see that all 

possible [Γ, Γ′] with a singleton part {1} in both Γ and Γ′ can occur as [Λ, Λ′]e1, thus 

the third statement holds.

Finally, it is clear that F1(δ1, δ2) is 1-dimensional and p1 acts by scalar multiplication 

by δ1δ2 as in Δ1,δ1δ2
(∅). �

By Proposition 7.9 and the construction of simple modules of the partition algebra in 

Subsection 2.2we deduce the following:

Corollary 7.10. In the case where Pr(δ1δ2) is semisimple, we have the following equality 

of composition multiplicities:

[Fr(δ1, δ2) : Lr,δ1δ2
(λ)]

Pr(δ1δ2) =

⎧

⎨

⎩

[DQ(Fr(δ1, δ2)) : Lr,δ1δ2
(λ)]

Pr(δ1δ2) if |λ| = r,
[

F
r−1(δ1, δ2) : Lr−1,δ1δ2

(λ)
]

Pr−1(δ1δ2)
if |λ| < r.



C. Bowman, R. Paget / Journal of Algebra 655 (2024) 110–138 133

We now describe these composition multiplicities in the semisimple case. If λ is a 

partition of r then, by Equation (2.5), the simple Pr(δ1δ2)-module Lr,δ1δ2
(λ) is the 

(inflation of the) Specht module S(λ). Therefore, for |λ| = r,

[DQ(Fr(δ1, δ2)) : Lr,δ1δ2
(λ)]

Pr(δ1δ2) = [DQ(Fr(δ1, δ2)) : S(λ)]
CSr

. (7.1)

Now, as a CSr-module, DQ(Fr(δ1, δ2)) is a permutation module and its decomposition 

into transitive permutation modules is readily seen (from Definition 7.8) to be

DQ(Fr(δ1, δ2)) =
⊕

μ∈P1(r)

[Λ(1r), Λμ]CSr,

where, recall, P1(r) denotes the set of partitions of r which have no part equal to 1, and, 

for μ a partition of r we define a corresponding set-partition Λμ = {{1, 2, . . . , μ1}, {μ1 +

1, . . . , μ2}, . . .}. Therefore, the CSr-module

DQ(Fr(δ1, δ2)) =
⊕

μ∈P1(r)

indSr

Stab(Λμ) C. (7.2)

The groups Stab(Λμ) appearing here are direct products of wreath products of symmetric 

groups as in Equation (1.2).

Theorem 7.11. Suppose that Pr(δ1δ2) is semisimple and λ is a partition of r. Then

[DQ(Fr(δ1, δ2)) : Lr,δ1δ2
(λ)]

Pr(δ1δ2) =
∑

μ∈P1(r)

[

indSr

Stab(Λμ) C : S(λ)
]

CSr

.

Proof. This follows from Equation (7.2) and Equation (7.1). �

Example 7.12. We continue the example of F4(δ1, δ2) from Example 7.6 in the case where 

Pr(δ1δ2) is semisimple. The first three diagrams shown in that example belong to the 

same orbit; the first is Λ(2,2), and the stabiliser of any one of these diagrams is isomorphic 

to Stab(Λ(2,2)) = S2 ≀ S2. The final diagram is Λ(4) and its stabiliser is Stab(Λ(4)) =

S4. If δ1δ2 /∈ {0, 1, 2, 3, 4, 5, 6} then Pr(δ1δ2) is semisimple by Equation (2.4). Since 

indS4

S2≀S2
(C) ∼= S(4) ⊕ S(22),

DQ(F4(δ1, δ2)) ∼= L4,δ1δ2
(4) ⊕ L4,δ1δ2

(4) ⊕ L4,δ1δ2
(22).

The rest of the decomposition of F
4(δ1, δ2), the decomposition of its depth radical, 

is obtained by Corollary 7.10. Accordingly, we must decompose the P3(δ1δ2)-module 

F
3(δ1, δ2). As DQ(F3(δ1, δ2) is 1-dimensional, with basis vector

21 3
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it follows that DQ(F3(δ1, δ2)) is isomorphic to L3,δ1δ2
(3) and so it contributes a summand 

L4,δ1δ2
(3) to F4(δ1, δ2). To decompose DR(F3(δ1, δ2)), we must decompose the P2(δ1δ2)-

module F2(δ1, δ2). By the previous argument, DQ(F2(δ1, δ2) is isomorphic to L2,δ1δ2
(2), 

and the decomposition of DR(F2(δ1, δ2)) is governed by that of F1(δ1, δ2) ∼= L1,δ1δ2
(∅). 

Putting all this together shows

DR(F4(δ1, δ2)) ∼= L4,δ1δ2
(3) ⊕ L4,δ1δ2

(2) ⊕ L4,δ1δ2
(∅).

Combining the decompositions of DR(F4(δ1, δ2)) and DQR(F4(δ1, δ2)) obtained above 

shows that

F
4(δ1, δ2) ∼= 2L4,δ1δ2

(4) ⊕ L4,δ1δ2
(22) ⊕ L4,δ1δ2

(3) ⊕ L4,δ1δ2
(2) ⊕ L4,δ1δ2

(∅).

Remark 7.13. Alternatively, one can note that we have an injective C-linear map ϕ :

F
r−1(δ1, δ2) → F

r(δ1, δ2) given by ϕ({S1, S2, . . . , Sp}, {Σ1, Σ2, . . . Σq}) = ({S1, S2, . . . ,

Sp, {r}}, {Σ1, Σ2, . . . Σq, {r}}). The image of this map generates the submodule DR(Fr(δ1,

δ2)). The form of the map ϕ is how we first arrived at condition (ii) of Definition 7.5; 

condition (i) was then deduced by considering the submodule generated by the image.

8. Consequences for plethysm coefficients

For the final section we specialise δ1 and δ2 to be m and n respectively. Combining 

Corollary 7.10 and Theorem 7.11 with Corollary 6.2, we obtain a formula for certain 

plethysm coefficients in terms of smaller generalised plethysm coefficients (as defined in 

Equation (1.3)).

Theorem 8.1. Let m, n ∈ N and let λ[mn] be a partition of mn with m, n � |λ|. Then

p((n), (m), λ[mn]) =
∑

μ∈P1(|λ|)

pμ(λ).

Proof. Let r = |λ|. Under the hypotheses, mn � r2 > 2r−2 and so Pr(mn) is semisimple. 

Schur–Weyl duality and Theorem 6.1 show that

p((n), (m), λ[mn]) = [Fr(m, n) : Lr,mn(λ))]
Pr(mn) .

Applying Theorem 7.11 then gives

p((n), (m), λ[mn]) =
∑

μ∈P1(|λ|)

[

ind
S|λ|

Stab(Λμ)
C : S(λ)

]

CS|λ|

=
∑

μ∈P1(|λ|)

pμ(λ). �

Example 8.2. Continuing Example 7.6 and Example 7.12, when r = 4 and m, n � 4 we 

obtain the following plethysm coefficients:
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p((n), (m), (mn − 4, 4)) = 2

p((n), (m), (mn − 4, 22)) = 1

p((n), (m), (mn − 3, 3)) = 1

p((n), (m), (mn − 2, 2)) = 1

p((n), (m), (mn)) = 1

and the coefficients p((n), (m), α) = 0 for all other partitions α of depth at most 4.

The following result is immediate from Theorem 8.1.

Corollary 8.3. Let λ be an arbitrary partition. The double sequence

{p((n), (m), λ[mn])}m,n∈N

stabilises for all m, n � |λ|; we denote the stable values by p∞,λ. In other words

p∞,λ = p((n), (m), λ[mn])

for all m, n � |λ|.

Theorem 8.1 also allows us to deduce the following result, with a little more work.

Proposition 8.4. For n, m � r, we have that

p∞,(r) = p((n), (m), (mn − r, r)) = p((r), (r), (r2 − r, r)) = |P1(r)|.

Moreover, for r > 2,

p((r − 1), (r), (r2 − 2r, r)) = p((r), (r − 1), (r2 − 2r, r)) = |P1(r)| − 1.

In particular, the bound on stability in Corollary 8.3 is sharp for λ an arbitrary partition 

of r.

Proof. The two statements together prove that the bounds on n, m for stability in Corol-

lary 8.3 are sharp using partition λ = (r). The first statement follows immediately from 

Theorem 8.1 and the fact that S((r)) occurs as a summand once in each transitive CSr-

permutation module indSr

Stab(Λμ) C. For the second part, recall that the Cayley–Sylvester 

formula (see, for example [15]) provides the plethysm coefficients for two-part partitions:

p((n), (m), (mn − r, r)) = |Pm×n(r)| − |Pm×n(r − 1)|,
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where Pm×n(r) equals the set of all those partitions of r whose Young diagrams fit 

inside the m × n rectangle. Taking m = r and n = r − 1 (and the calculation is identical 

for m = r − 1, n = r),

p((r − 1), (r), (r2 − 2r, r)) = |Pr×(r−1)(r)| − |Pr×(r−1)(r − 1)|

= |P(r)| − 1 − |P(r − 1)|

= |P1(r)| − 1,

since adding a part of size 1 provides a bijection P(r − 1) → P(r) \ P1(r). �

Example 8.5. The non-zero stable plethysm coefficients p∞,λ for λ ⊢ 8 are as follows:

p∞,(8) = 7, p∞,(7,1) = 4, p∞,(6,2) = 8, p∞,(5,3) = 3, p∞,(5,2,1) = 2,

p∞,(42) = 4, p∞,(4,3,1) = 1, p∞,(4,22) = 3, p∞,(24) = 1.

To see this, we note that the elements of P1(8) are (8), (6, 2), (5, 3), (4, 4), (4, 22), 

(32, 2) and (24). The required products of (smaller) plethysm and Littlewood-Richardson 

coefficients can be calculated by hand or using SAGE [22] (whereas the coefficients 

p((8), (8), λ) seem to be beyond SAGE). The decompositions of the relevant transitive 

permutation modules are as follows:

indS8

S8
(C) = S(8), indS8

S6×S2
(C) = S(6, 2) ⊕ S(7, 1) ⊕ S(8),

indS8

S5×S3
(C) = S(5, 3)⊕S(6, 2)⊕S(7, 1)⊕S(8), indS8

S4≀S2
(C) = S(42)⊕S(6, 2)⊕S(8),

indS8

S4×S2≀S2
(C) = S(4, 22) ⊕ S(42) ⊕ S(5, 2, 1) ⊕ S(5, 3) ⊕ 2S(6, 2) ⊕ S(7, 1) ⊕ S(8),

indS8

S3≀S2×S2
(C) = S(4, 22)⊕S(4, 3, 1)⊕S(42)⊕S(5, 2, 1)⊕S(5, 3)⊕2S(6, 2)⊕S(7, 1)⊕S(8),

indS8

S2≀S4
(C) = S(24) ⊕ S(4, 22) ⊕ S(42) ⊕ S(6, 2) ⊕ S(8).

One can deduce that Foulkes’ conjecture is satisfied at the partition λ[mn] for all pairs 

m, n of integers which are both greater than or equal to 8. For example,

p∞,(6,2) = p((8), (8), (56, 6, 2)) = p((9), (8), (64, 6, 2)) = p((8), (9), (64, 6, 2)) = 8.

We also deduce the strengthened Foulkes’ conjecture is satisfied for all quadruples of 

integers which are each greater than or equal to 8. For example,

p((240), (8), (1912, 6, 2)) = p((40), (48), (1912, 6, 2)) = p((16), (120), (1912, 6, 2)) = 8.

Example 8.6. We find p((10), (10), (90, 42, 2)) = 6. This can be calculated as follows:

[indS10

S4≀S2×S2
(C) : S(42, 2)] = 1, [indS10

S4×S3≀S2
(C) : S(42, 2)] = 1,

[indS10

S4×S2≀S3
(C) : S(42, 2)] = 1,
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[indS10

S3≀S2×S2≀S2
(C) : S(42, 2)] = 2, [indS10

S2≀S5
(C) : S(42, 2)] = 1

with

[indS10

Stab(Λμ)(C) : S(42, 2)] = 0

for all other μ ∈ P1(10).

Our results provide an elementary new proof of Weintraub’s conjecture [26] for stable 

plethysm coefficients. Recall that the conjecture, recently proven in [4], states that if m

is even and λ = (λ1, λ2, . . . , λℓ) is an even partition (that is λ1, λ2, . . . , λℓ ∈ 2Z�1) then 

the plethysm coefficient p((n), (m), λ) is non-zero.

Corollary 8.7 (Stable Weintraub’s conjecture). For λ an even partition, we have that

p∞,λ > 0.

Proof. Let λ = (ab1
1 , ab2

2 , . . . , abℓ

ℓ ) be an even partition, and pick m, n � |λ|. We use 

the formula for p((n), (m), λ[mn]) in Theorem 8.1. Since λ is even, λ ∈ P1(|λ|). The 

contribution to the sum from taking μ = λ is 1 since p((bi), (ai), (ai
bi)) = 1 for even 

ai by [21, Theorem 2.6] and, by the Littlewood–Richardson rule, pμ(λ) = 1 for μ =

(ab1
1 , . . . , abℓ

ℓ ) = λ. Therefore the stable plethysm coefficient p∞,λ = p((n), (m), λ[mn]) is 

strictly positive. �

Data availability
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