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Abstract

Cases of laryngeal cancer are rising, with diagnosis often in-

volving invasive biopsy procedures. An alternate approach is to

identify high-risk patients by analysis of voice recordings which

can alert clinical teams to those patients that need prioritisation.

We propose a pipeline for evaluating speech classifier perfor-

mance in the presence of noise. We perform experiments using

the pipeline with several classifiers and denoising techniques.

Random forest classifier performed best with an accuracy of

81.2% on clean data dropping to 63.8% when noise was added

to recordings. The accuracy of all classifiers was reduced by

added noise, signal denoising improved classifier accuracy but

could not fully reverse the effects of noise. The effects of noise

on classification is a complex issue which must be resolved for

these detection systems to be implemented in clinical practice.

We show that the proposed pipeline allows for the evaluation of

classifier performance in the presence of noise.

Index Terms: machine learning, laryngeal cancer detection, au-

dio denoising, voice classification

1. Introduction

Laryngeal cancer is the 18th most prevalent cancer world wide

with prevalence increasing by 23.8% in the last three decades

[1]. While approximately 90% of adults with stage one laryn-

geal cancer will survive for five or more years after diagnosis,

this rate drops significantly to 30% for those with stage four

laryngeal cancer [2]. With increasing numbers of cases, it is

important that early diagnosis tools are developed to increase

oncological cure and reduce disease related mortality.

Current diagnostic techniques include nasendoscopy, laryn-

goscopy, and biopsy [3]. Nasendoscopy is performed as an out-

patient procedure where a small fibre-optic camera is used to

view the larynx via the nose. A direct laryngoscopy procedure

is performed under general anaesthetic in the operating theatre

- both techniques can yield biopsy specimens for histological

analysis necessary for formal diagnosis [3].

In order to reduce the need for potentially invasive and un-

comfortable medical tests we hope that machine learning (ML)

and artificial intelligence (AI) analysis of voice may be used as

non-invasive screening tool for the detection of laryngeal can-

cer. The use of such a tool may also be able to screen patients

with concerns regarding their voice quality, prioritise those at

highest risk of a cancer diagnosis, expediting their specific care

pathway, and increase the accessibility of diagnosis by reducing

the need for expensive medical equipment. Indeed several pa-

pers have presented ML and AI methods for detecting laryngeal

cancer from speech [4, 5, 6, 7, 8]. All of these papers use data

from a single dataset where the speech has been recorded in

controlled environments. However it is unlikely that the appli-

cation of these tools in clinical practice would be feasible in an

acoustically controlled environment. To ensure these tools are

accessible and consistently produce high quality results it is im-

portant that they are robust to different recording environments

and recording device quality. Therefore, in this work we pro-

pose a pipeline which can be used for the evaluation of classifier

performance in the presence of noise. We then use this pipeline

in experiments evaluating several classifiers and denoising al-

gorithms.

2. Methodology

Figure 1 shows the pipeline proposed in this work. The

pipeleine comprises of seven steps - splitting the data, adding

noise, denoising, preprocessing, feature extraction, classifier

creation, and evaluation as described in the following subsec-

tions.

2.1. Test train split

The first step of our pipeline is splitting the data into a test group

and a train group. Patients should be randomly allocated to ei-

ther the train or test group.

2.2. Adding noise

The next step in our pipeline is adding noise to each of the

recordings in the test set. Noise should be added to the record-

ings in the test set to simulate noisy recordings captured in the

real world.

2.3. Denoising

The noisy signals created in the previous step are considered as

proxies for real noisy data. As such, denoising algorithms are

applied to these recordings in an attempt to recover the clean

signal.

We implement three denoising algorithms: bandpass filter,

Wiener filter, and wavelet filter. A bandpass filter is a pas-

sive filter which removes frequencies outside of a given range

[9]. In this application the Butterworth filter is used from the

scipy signal library [10]. The Wiener filter assumes that the in-

put signals can be modelled as stationary stochastic processes

with known power spectral densities [11]. The scipy function

Wiener was used to implement the filter in this work [10].

Discrete wavelet transforms allow time series to be analyzed

into wavelet coefficients. These coefficients can then be used

to denoise signals [12]. In this work the package PyWavelets

was used for denoising [13]. The Wiener and Butterworth filters

were chosen due to their use in similar works [14, 15]. While

wavelet denoising has not been applied in this field it is widely

used in audio denoising [16, 17, 18].
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Figure 1: The methodology pipeline used in this work.

2.4. Preprocessing

Each of the recordings is preprocessed before features are ex-

tracted. Common preprocessing techniques include endpoint

detection and normalization. Endpoint detection is commonly

used to remove the leading and trailing silences in the record-

ings [19, 20, 21]. Normalizing signals such that that their ampli-

tude is between -1 and 1, reduces effects caused by the distance

between the microphone and the patient [22, 23].

2.5. Feature Extraction

Before classification, features are extracted from each signal.

We extracted 22 acoustic features using Parselmouth [24].

These features include 1 pitch feature, 4 pulse features, 3 voic-

ing features, 5 jitter features, 6 shimmer features, and 3 har-

monicity features. For some patients the hoarseness of their

voice means that no features can be extracted. For these pa-

tients the prediction is set to ’cancer’.

2.6. Classifier Creation

The classifier is built using the training set. We implement

four classifiers: support vector machine (SVM), decision tree

(DT), random forest (RF), and logistic regression (LR). These

methods were chosen as they are simple, work well with small

datasets, and have been used in similar applications [4, 25, 26].

2.7. Classifier Evaluation

To evaluate classifier performance three metrics are calculated:

accuracy, precision, and recall. Each classifier is evaluated us-

ing these metrics on the clean, noisy, and denoised audio test

sets. By calculating precision and recall as well as accuracy the

specific effects of noise on false positive and false negative rates

can be investigated.

3. Experiments

In order to test this pipeline we conducted several experiments.

Experiments were conducted using python 3.9.16, all library

versions are stated in the github repository: github.com/mary-

paterson/Interspeech2023-EvaluationPipeline

3.1. Dataset

The experiments carried out in this work use the

Saarbruecken V oice Database (SVD). This is a Ger-

man dataset containing recordings of more than 2000 people

with over 60 different pathologies [27]. Each patient is

recorded producing three vowel sounds /i/, /a/, and /u/. From

this dataset six malignant and two pre-malignant conditions

were identified by an experienced clinician. The eight patholo-

gies and the number of male and female patients with each of

the pathologies can be seen in Table 1.

Table 1: The number of patients in the dataset per condition.

This is also split into the number of male and female patients

per condition.

Condition Condition Type Male Female Total

Vocal cord cancer Malignant 21 1 22

Hypopharyngeal tu-

mor

Malignant 6 0 6

Larynx tumor Malignant 4 1 5

Epiglottic cancer Malignant 0 1 1

Mesopharyngeal tu-

mor

Malignant 1 0 1

Carcinoma in situ Malignant 1 0 1

Dysplastic dyspho-

nia

Pre-malignant 1 0 1

Dysplastic larynx Pre-malignant 1 0 1

The cancer patients range in age from 38 to 75 years with

a mean of 59, while healthy patients range in age from 9 to

84 years with a mean age of 28. A t-test shows that there is a

significant difference between the ages of the cancer and healthy

patients (p=1.758e-51).

The number of male and female subjects in the cancer and

healthy groups can be seen in Table 2. A Barnard exact test

shows an association between gender and cancer (p=0.002).

Cancer statistics from Germany in the year the majority of the

recordings were taken show a similar gender and age distribu-

tion to that found in the SVD. The majority of people diagnosed

with throat cancer were between the ages of 60 and 64 with only

13% of cancer diagnoses being in women [28].

Table 2: The gender balance between the healthy and cancer

groups before and after matching takes place.

Unmatched Matched

Male Female Male Female

Healthy 437 (49.9%) 438 (50.1%) 26 (68.4%) 12 (31.6%)

Cancer 35 (92.1%) 3(7.9%) 35 (92.1%) 3 (7.9%)
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3.1.1. Matching

To mitigate the effects of the gender and age imbalance between

the cancer and healthy group, propensity score matching was

used to select patients for the healthy group. After matching the

age range of the healthy patients was 38-84 with a mean age of

60. A t-test shows that there is no significant difference of age

between the two groups after matching (p=0.859).

Table 2 shows the distribution of male and female patients

in the healthy and cancer groups after matching. A Barnard ex-

act test shows that there is still an association between gender

and cancer after matching (p=0.010), however, the difference

in proportion between the unmatched and matched groups is

almost halved (0.422 to 0.237). This suggests a weaker associ-

ation after matching.

By using matching to select the healthy patients we have

created a set with the same number of cancer patients and

healthy patients (38 in each group). In clinical settings it is

likely that there would be many more non-cancer patients com-

pared to cancer patients, however, due to the limited data avail-

able we feel that it is most important that the two groups have a

similar demographic distribution.

3.1.2. Test Train Split

Patients were randomly allocated to either the test or train set

with 30% of the patients being used for testing and the remain-

ing 70% being used for training. This meant that 53 patients

were used for training the classifiers and the remaining 23 pa-

tients were used for testing. Since each patient was recorded

making three different vowel sounds this meant that 69 record-

ings were available for testing and 159 recordings were used for

training.

3.2. Classifiers

For these experiments four classifiers are implemented: DT, RF,

SVM, and LR. The DT classifier used the entropy function and

had a maximum depth of 7 this classifier trained in 0.004s. The

RF consisted of 45 trees and trained in 0.077s. The SVM used a

linear kernel with a C value of 100 and gamma of 1 and trained

in 8.193s. The LR used an L2 penalty and C value of 1 and

trained in 0.015s.

4. Results and Discussion

In this section we discuss the results of the experiments. First

we discuss the results of the classification on clean data and

discuss any effects that patient demographic may have on mis-

classification. Secondly we discuss the classification of noisy

data. Thirdly the effects of denoising algorithms on signal qual-

ity are discussed. Finally we discuss the effects of denoising

algorithms on the classification of noisy signals.

4.1. Classification

Table 3 shows the accuracy, precision, and recall of all four clas-

sification algorithms on clean, noisy, and denoised data. The

best performing classifier on the clean data is the RF with an

accuracy of 81.2%. This is followed by the DT classifier with

an accuracy of 75.4%.

For each classifier we investigated whether the gender of

the patients had an impact on the misclassification rate via a

Barnard exact test. Similarly we checked if the age of the pa-

tients was significantly different in the correctly and incorrectly

classified patients via a t-test. The results of these test are shown

Table 3: The results of classification on clean, noisy, and de-

noised recordings. The bold figures show the highest accuracy

found after denoising. RF - random forest, DT - decision tree,

SVM - support vector machine, LR - logistic regression.

Model Metric Clean Noisy Bandpass Wiener Wavelet

DT

Accuracy 75.4% 63.8% 66.7% 68.1% 63.8%

Precision 77.5% 63.0% 65.4% 67.3% 62.5%

Recall 79.5% 87.2% 87.2% 84.6% 89.7%

RF

Accuracy 81.2% 63.8% 71.0% 69.6% 73.9%

Precision 81.0% 62.1% 67.3% 66.1% 69.1%

Recall 87.2% 92.3% 94.9% 94.9% 97.4%

SVM

Accuracy 60.9% 53.6% 55.1% 58.0% 50.7%

Precision 71.4% 56.6% 57.4% 59.6% 54.5%

Recall 51.3% 76.9% 79.5% 79.5% 76.9%

LR

Accuracy 63.8% 47.8% 52.2% 53.6% 59.4%

Precision 75.0% 52.6% 55.4% 55.9% 59.0%

Recall 53.8% 76.9% 79.5% 84.6% 92.3%

in Table 4. The p-values calculated indicate that there is not a

significant association between the gender of the patient and the

rate of misclassification. Moreover, there is not a significant dif-

ference between the ages of the correctly and incorrectly classi-

fied patients.

Table 4: The p-values calculated in the Barnard exact test and

the t-test when investigating the misclassification of patients

based on age and gender.

Model Age p-value Gender p-value

Decision tree 0.286 0.859

Random forest 0.946 0.468

Support vector machine 0.581 0.735

Logistic regression 0.809 0.836

4.2. Effect of noise on classification

To investigate the effects of noisy signals on classification we

added Gaussian noise to each recording in the test set at 10

different signal to noise ratio (SNR) levels between 5 and 50.

We then evaluated each of the classifiers on these noisy sig-

nals. Since there is an element of randomness when generating

Gaussian noise we repeated this 10 times and recorded the accu-

racy for each attempt. Figure 2 shows how the accuracy varied

for each model with different levels of noise. The shaded area

shows the minimum and maximum accuracy found across the

10 runs. As is expected the general trend for each model is that

the lower the SNR (more noisy signal) the lower the accuracy.

It can be seen however, that in some instances the presence of

noise increases the accuracy of the classifier most notably in

the SVM. This may be because the addition of noise enhances

some frequencies in the signal which improves the classifica-

tion performance of some algorithms. It may also be caused

by overfitting in the models. It can be seen that even when the

mean accuracy is above the clean accuracy the minimum ac-

curacy is below meaning that the noise does not consistently

improve accuracy.

Since real world noisy recordings are not affected by a con-

stant noise level, for the rest of our experiments noise was added

to each recording at an SNR of either 5, 10, or 20. This means

that the noisy test set contains a mix of different noise levels.

Table 3 shows that the precision of each of the classifiers is re-

duced when noise is added meaning that it over classifies pa-

tients as having cancer. The SVM classifier was least affected
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(a) Random forest (b) Decision tree

(c) Support vector machine (d) Logistic regression

Figure 2: The classification accuracy of all four classifiers on

speech with different levels of Gaussian noise added.

by the added noise with a 11.9% percentage reduction in accu-

racy when noise is added. The LR classifier was the most af-

fected by noise with a 25.0% reduction in accuracy when noise

was added.

4.3. Denoising

We implement three denoising algorithms: bandpass filter,

Wiener filter, and wavelet filter. In order to find the best param-

eters for the filters a grid search was used. The SNR and dis-

tortion of the signals calculated for each denoised signal when

compared to the clean signal [29]. SNR is the measure of the

strength of a signal relative to background noise [30]. Distor-

tion is a measure of how much the signal is changed from the

original waveform [29]. The SNR calculated should be max-

imised while the distortion should be minimized. The bandpass

filter was found to be optimal with a lower cutoff of 10Hz, upper

cutoff of 3500Hz, and an order of 1. The Wiener filter was opti-

mized with a Wiener filter window size of 3 and noise-power of

0.1. The wavelet filter was best with a biorthogonal 3.9 wavelet,

level of 1, and hard threshold function.

Figure 3 shows the SNR and distortion calculated for the

best performing filters as well as the noisy signals before de-

noising. Since the noise was added to the test set at three differ-

ent SNR levels (5, 10, and 20) the results of the denoising can be

seen for each level. Figures 3a 3b 3d, and 3e show that all three

filtering methods improve the recording quality when the SNR

of the noisy signal is 5 or 10. The Wiener filter has the best per-

formance for both measures at both levels. However, Figures 3c

and 3f show that the bandpass filter reduces the quality of the

recordings with an SNR of 20, while the Wiener and wavelet

filters improve the quality of some of the recordings.

4.4. Effect of Denoising on Classification

The Wiener filter best improved the performance of the DT and

SVM classifiers whereas, the wavelet filter best improved the

performance of the RF and LR classifiers. This is in contrast

to the results of the denoising where the Wiener filter best in-

creased the SNR and reduced the distortion. The wavelet filter

can be seen not to improve the accuracy of the DT and to reduce

noisy bandpass weiner wavelet
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Figure 3: The performance of each of the three denoising algo-

rithms at each of the SNR levels. (a-c) - SNR measured for each

recording, (d-f) - distortion measured for each recording.

the accuracy of the SVM.

These results show that a single type of denoising algorithm

cannot be used across all classifier types. It also shows that the

use of signal quality metrics cannot be assumed to translate to

classifier performance.

5. Conclusions and Further Work

In this work we have developed a pipeline for the evaluation

of laryngeal cancer classifiers in the presence of noise, using

machine learning methods. We show how to use this pipeline

to investigate the effects of Gaussian noise on laryngeal can-

cer detection. We also investigate the effectiveness of simple

denoising solutions in restoring classifier performances.

Our experiments showed that Gaussian noise can render

classifiers unusable. Added noise caused a decrease in preci-

sion of the tested classifiers, with an increase in healthy patients

being classified as having cancer. We show that using simple

denoising algorithms reduces misclassification rates, however

the performance of the classification models can not be fully re-

stored using these denoising algorithms. We found that differ-

ent types of classifiers are best paired with different denoising

algorithms, meaning that there is no one-size fits all solution.

We show that our proposed pipeline allows for the evalua-

tion of speech classifier performance in the presence of noise.

Since this is early work, we have only investigated the effects

of Gaussian noise. The effects of other more complex types of

noise, such as reverberation or other real world noise, can be

easily investigated using our pipeline in future work. In future

work we would also like also to classify patients with benign

voice pathologies rather than healthy controls in order to better

mirror real world clinical settings.

Our results indicate that it is essential to consider the im-

pact of noisy recordings when implementing ML classifiers for

detecting laryngeal cancer from speech. Our experiments sug-

gest that simple denoising methods alone can mitigate but can-

not fully reverse the effects of noisy recording environments on

classification. In order for laryngeal cancer classifiers to be im-

plemented in clinical practice these effects must be considered,

and mitigating steps must be implemented.
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[11] E. Hänsler and G. Schmidt, “Wiener Filter,” in Acoustic Echo and

Noise Control: A Practical Approach, 2004, pp. 53–60.

[12] D. B. Percival and A. T. Walden, “Wavelet-Based Signal Esti-
mation,” in Wavelet Methods for Time Series Analysis, ser. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, 2000, pp. 393–456.

[13] G. R. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt, and
A. O’Leary, “PyWavelets: A Python package for wavelet
analysis,” Journal of Open Source Software, vol. 4, no. 36,
p. 1237, Apr. 2019. [Online]. Available: https://joss.theoj.org/
papers/10.21105/joss.01237

[14] L. Gavidia-Ceballos and J. H. Hansen, “Direct speech feature es-
timation using an iterative EM algorithm for vocal fold pathol-
ogy detection,” IEEE transactions on bio-medical engineering,
vol. 43, no. 4, pp. 373–383, Apr. 1996.

[15] T. Grzywalski, A. Maciaszek, A. Biniakowski, J. Orwat, S. Drgas,
M. Piecuch, R. Belluzzo, K. Joachimiak, D. Niemiec, J. Ptaszyn-
ski, and K. Szarzynski, “Parameterization of Sequence of MFCCs
for DNN-based voice disorder detection,” in 2018 IEEE Interna-

tional Conference on Big Data (Big Data), Dec. 2018, pp. 5247–
5251.

[16] M. A. Ali and P. M. Shemi, “An improved method of audio denois-
ing based on wavelet transform,” in 2015 International Confer-

ence on Power, Instrumentation, Control and Computing (PICC),
Dec. 2015, pp. 1–6.

[17] H. Hammam, A. A. Elazm, M. E. Elhalawany, and F. E. Abd El-
Samie, “Blind separation of audio signals using trigonometric
transforms and wavelet denoising,” International Journal of

Speech Technology, vol. 13, no. 1, pp. 1–12, Mar. 2010. [Online].
Available: https://doi.org/10.1007/s10772-010-9066-0

[18] M. Saric, L. Bilicic, and H. Dujmic, “White Noise Reduction of
Audio Signal using Wavelets Transform with Modified Universal
Threshold,” Feb. 2005.

[19] M. Ju, Z. Jiang, Y. Chen, and S. Ray, “A Multi-Representation
Ensemble Approach to Classifying Vocal Diseases,” in 2018 IEEE

International Conference on Big Data (Big Data), Dec. 2018, pp.
5258–5262.

[20] M. Pham, J. Lin, and Y. Zhang, “Diagnosing Voice Disorder with
Machine Learning,” in 2018 IEEE International Conference on

Big Data (Big Data), Dec. 2018, pp. 5263–5266.

[21] J. Godino-Llorente and P. Gomez-Vilda, “Automatic detection of
voice impairments by means of short-term cepstral parameters and
neural network based detectors,” IEEE Transactions on Biomedi-

cal Engineering, vol. 51, no. 2, pp. 380–384, Feb. 2004, confer-
ence Name: IEEE Transactions on Biomedical Engineering.

[22] I. Miliaresi, K. Poutos, and A. Pikrakis, “Combining acoustic
features and medical data in deep learning networks for voice
pathology classification,” in 2020 28th European Signal Process-

ing Conference (EUSIPCO), Jan. 2021, pp. 1190–1194, iSSN:
2076-1465.

[23] J. D. Arias-Londoño, J. Andrés Gómez-Garcı́a, L. Moro-
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