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Abstract—The performance of state-of-the-art Deep Learning
models heavily depends on the availability of well-curated training
and testing datasets that sufficiently capture the operational
domain. Data augmentation is an effective technique in alleviating
data scarcity, reducing the time-consuming and expensive data
collection and labelling processes. Despite their potential, existing
data augmentation techniques primarily focus on simple geometric
and colour space transformations, like noise, flipping and resizing,
producing datasets with limited diversity. When the augmented
dataset is used for testing the Deep Learning models, the derived
results are typically uninformative about the robustness of the
models. We address this gap by introducing GENFUZZER, a novel
coverage-guided data augmentation fuzzing technique for Deep
Learning models underpinned by generative AI. We demonstrate
our approach using widely-adopted datasets and models employed
for image classification, illustrating its effectiveness in generating
informative datasets leading up to a 26% increase in widely-used
coverage criteria.

Index Terms—Generative AI, Deep Learning Testing, Coverage
Guided Fuzzing, Data Augmentation, Safe AI

I. INTRODUCTION

The tremendous progress achieved by Deep Learning (DL) in

several real-world challenging tasks like image classification [1],

object detection [2] and natural language processing [3] led

to its exponential adoption in various application domains,

including medical diagnostics [4], autonomous driving [5] and

infrastructure inspection [6]. A key ingredient in achieving

these impressive results is the availability of large volumes

of high-quality annotated datasets that adequately encode the

characteristics of the target domain [7]. Within a typical DL

pipeline, this data enables the construction of high-dimensional

representations during training, and instruments the robustness

and generalisability assessment during testing [8].

Data scarcity poses a major challenge in devising robust and

competitive DL models [9]. This is particularly important in

domains such as healthcare or security, where relevant data

is not typically available because of privacy considerations or

simply because such data does not exist. Data augmentation

aims at alleviating this issue by intelligently synthesising new

data informed by the available dataset. Compared to the manual

creation of labelled datasets involving human experts, data

augmentation is time-efficient and cost-effective [10].

Driven by traditional software engineering principles, data

augmentation in DL testing is increasingly adopted to improve

the diversity of the test set and achieve higher testing cover-

age [11]. Notwithstanding its merits, conventional augmentation

techniques are limited to noise injection or to the application of

content-preserving geometric and colour-space transformations,

e.g., flipping, cropping, rotation, translation, [8], [12], [13].

These techniques cannot perform semantic transformations, like

altering the content of an input [14], thus producing testing

suites that, albeit yield higher coverage numerical results, are

of low quality and lack semantic diversity [9].

Inspired by the emergence of generative AI models for

input synthesis using latent representations [15], we posit

that leveraging these models can inform the generation of

diverse and realistic synthetic inputs that capture the underlying

variability of the data distribution [16]. More specifically,

generative AI models like stable diffusion can automatically

learn the natural features and latent representations, and

generate realistic images from textual prompts to create rich

and diverse visual content with unprecedented precision [15].

We introduce GENFUZZER, a novel coverage-guided fuzzing

approach for producing semantically-diverse test inputs for

DL testing. Our approach uses inputs (seeds) from a dataset,

including the ground truth and contextual information, and

performs semantic data augmentation by extracting the mask

of the seed and producing a textual prompt. These are both

used by generative AI models (stable diffusion [15] in its

current version) to conditionally fill the mask with a synthesised

image conforming to the textual prompt. Then, by executing

fidelity analysis and coverage tracing, GENFUZZER keeps

only synthesised images whose fidelity scores exceed a given

threshold (i.e., they are photorealistic) and increase the selected

coverage criterion (i.e., they contribute to higher coverage),

respectively. GENFUZZER contributes to addressing two main

problems in DL testing: (i) automated test case generation

through the semantic data augmentation method; and (ii)

coverage-guided fuzzing by integrating a new key component

for fidelity estimation of candidate test cases.

II. BACKGROUND AND RELATED WORK

While software testing [17] follows a clear methodology

involving validation and verification, Deep Learning (DL)

testing is more complex due to the challenge of establishing

precise system specifications against which the DNN model

behaviour can be checked [11]. A growing body of DL testing
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Figure 1: GENFUZZER workflow.

research has evolved that leverages and adapts techniques such

as code coverage, test oracle, and coverage-guided fuzzing

(CGF) from software testing. This line of research focuses

on white box testing, proposing test adequacy criteria, e.g.,

neuron coverage (NC) [18], DeepGauge [19], DeepGini [20],

DeepImportance [21], and analysis techniques [22] to improve

the DNN model quality. Furthermore, CGF principles have been

applied successfully to DL testing aiming at identifying bugs,

i.e., erroneous behaviour, in real systems [23]. DeepHunter [24],

DeepTest [13] and TensorFuzz [12] are fuzzing techniques that

generate new tests cases through metamorphic transformations

with the intention that the new test and its original (seed)

share the same semantics from a human perspective. These

approaches instrument mutations that encode possible real-life

errors through simple geometric and colour space transfor-

mations, e.g., contrast, blurring, fog effect [25]. While these

mutations are realistic, they are encoded as domain-specific

metamorphic relations and lack sufficient semantic diversity to

further extend the scope of testing. This gap is addressed by

our new data augmentation GENFUZZER approach.

III. GENFUZZER

GENFUZZER (Fig. 1) is a coverage-guided fuzzing (CGF)

approach that can enhance the size, quality, and semantic

diversity of datasets such that extensible DNN testing can be

performed. Using a dataset T , and a DNN model D trained

on T , our approach produces synthetically augmented images

using generative AI (e.g., inpainting diffusion models [26]).

Then, it carries out a fidelity analysis step to select images

that are to a sufficient level, photo-realistic, and effectively

augment the dataset’s feature space. Finally, GENFUZZER

deploys extensible testing criteria as feedback to guide the

selection of augmented images that enhance DNN testing. We

run the trained DNN against the newly generated tests; test

cases that increase coverage are kept. These test cases simulate

real-world scenarios and are used to evaluate DNN robustness.

A. Problem Formulation

Semantic-based coverage-guided fuzzing for DNNs can be

formulated as the problem of generating synthetic examples

x′ = A(x) that are semantically within the data domain X ,

but with enough perturbation to enhance its feature space.

This can be understood as adding ϵ perturbations to the

original example x, and adding a large perturbation ε with

new characteristics to the data domain X . The objective is

to minimize the overall perturbation ε and maximize the

adequacy criterion λ, i.e., the coverage score Cov(x′), so that

the synthetic sample x′ belongs to the in-domain distribution

of X . This problem can be encoded in the objective function:

Ex∼X

[

min
ε

A(x+ ϵ),max
λ

Cov(x′)

]

(1)

B. Seed Selection & Semantic Data Augmentation

In order to solve the optimization problem defined in (1)

effectively and efficiently, we deploy text-conditional generative

AI model [26]. Let Dj be our original trained DNN model

on a training dataset T r, and T t be the testing set, both of

which belong to the same data distribution domain. SS(.) is

the seed selection strategy that samples and selects input seeds

based on a random uniform sampling strategy with sampling

probability Pi ∈ P , where P defines the sampling probability

of all samples xi ∈ T t. Note that we can use T r or T t for

seed sampling. Let Aκ be our augmentation technique for Dj

with κ hyper-parameters. Aκ is a data-level mutation operator

(as conventionally named in GCF) that targets the testing data

T t, by augmenting it with a set of new test cases T ′ to obtain

the augmented testing set T t
κ = T t∪T ′. Using the input image

xi in the test set as a reference (input seed), we represent the

data augmentation technique as: Aκ(xi) = Aug (xi, η) , xi =
SS (T t,P) where Aug(.) is the generative AI augmentation

technique and η are the specific parameters for the given

technique. Our approach currently supports text-conditional

generative AI [26] that enables editing specific parts of an

image by providing a mask and a text prompt to generate

augmented seeds automatically. In particular, diffusion model

inpainting can be performed by sampling and replacing the

known region (i.e., mask) of the image with a sample from

data distribution T t. It is important to note that our approach is

generic and can support different generative models, including

Glide [27], eDiffi [28] and Imagic [29]. We also emphasize

the importance of using a text-conditional generative model

as it has the advantage of providing a control mechanism

through textual prompts to adjust the mutations introduced

to the original image. GENFUZZER automatically generates

a mask and prompt for each input seed image xi. To do so,

we apply Mask R-CNN [30] for instance segmentation and

use the image corresponding class ci to select a mask mi of

the main object in xi. For the text prompt ti, we use natural

language processing [31] to generate a prompt where the target

object name is used to extract the named entity from within the

input seed caption/description yi and replace it with a newly

selected named entity. The generative AI model consumes

this information and replaces the masked region of the input

seed image with the target object c
′

i ∈ C \ {ci}, generating an

augmented seed xκ
i , where C represents the data classes of
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T t. This is repeated for all C \ {ci}. Thus, for text-conditional

generative AI η = (mi, yi, ti). Fig. 2 shows two examples of

how the process is performed. The first example illustrates the

input seed xi (first row) with a caption yi =“a dog sitting in

the back seat of a car with sunglasses on”, the class ci = dog

and the generated prompt ti=“a high-fidelity image of a panda

sitting in the back seat of a car with sunglasses on”, where

we replaced the main object dog with a panda.

C. Fidelity Estimation

As not all augmented seeds correspond to realistic images,

our approach estimates the visual or textual fidelity of each aug-

mented seed xκ
i , retaining only those surpassing a predefined

fidelity threshold given by:

isValid(xκ
i , Q) =

{

True if f(xκ
i , Q) ≥ δ

False otherwise
(2)

where f(.) denotes the employed fidelity assessment technique.

For visual fidelity, Q = xi, i.e., the input seed, in which case

we use FID [32] or SSIM [33]. For textual fidelity assessment,

Q = ti, i.e., the text prompt, and we use CLIP [34]. FID and

SSIM are quantitative measures that identify the acceptable

deviation between the original and mutated images. CLIP is

widely used to guide image generation through textual input. δ

is a domain-specific threshold experimentally defined for each

assessment measure individually. This step involves the initial

part of equation 1, aiming to minimize the overall perturbation

by creating high-fidelity images with minimal alterations to

the original input. It focuses solely on the object’s mask ci,

leading to the creation of a set of valid augmented seeds.

D. Coverage Tracing

Our approach uses coverage guidance to filter valid aug-

mented seeds and identify new test cases T ′. GENFUZZER

keeps seeds that bring new semantic information to the testing

set and adds them to the fuzzing queue. The semantic diversity

of these seeds is quantified based on their ability to maximize

selected coverage criteria when added to the test set T t (latter

part in (1)). T ′ largely increases the fuzzing effectiveness and

enables adding the informative inputs into the test set. Several

test adequacy criteria exist for analysing the inner behaviours

of DNN models and providing feedback metrics for our

fuzzer to determine T ′. GENFUZZER currently supports neuron

coverage (NC) [18], DeepImportance’s IDC [21], likelihood-

based surprise adequacy (LSA) [35], and the neuron-level

Table I: Datasets and DNN models used in our experiments

Dataset DNN model #Layers Accuracy

COCO [36] Vgg19 [37] 19 82.04%

CIFAR-10 [38] LeNet5 [2] 5 77.20%

Leaves1 All-ConvNet [39] 18 97.73%

criteria k-Multisection Neuron Coverage (KMNC) and Neuron

Boundary Coverage (NBC) from DeepGauge [19]. Each metric

uses a specific test adequacy criterion that identifies the parts

of DL logic exercised by a given test set.

IV. EVALUATION

A. Experimental Setup

We have implemented GENFUZZER as a self-contained fuzz

testing framework in Python based on the open-source machine

learning framework Keras with Tensorflow (v2.6) backend. We

extensively evaluate GENFUZZER on 3 different DNNs trained

on the datasets described in Table I. The COCO dataset was

filtered, and only images belonging to the superclass ‘animal’

were selected, resulting in 10 classes with 250 samples each.

Hyper-parameter analysis was carried out to select the

optimal threshold δ for each fidelity assessment metric, aiming

to identify photorealistic seeds. δ was set to 0.8, 0.6 for CLIP

and SSIM (higher is better), respectively. After normalization

between [0, 1], the FID threshold was set to 0.2 (lower is better).

Concerning the coverage criteria, we used for each approach the

hyper-parameters recommended in its original research paper.

We set the threshold for NC to 0.7. For KMNC, the k value, i.e.,

the number of multisections is set to 10. For LSA, we manually

choose the layer in each of the DNN models. We deployed

Gaussian noise to create a new fuzzer “Random-Noise” for the

comparative study GENFUZZER denoted ‘Random-Inpainting’.

Gaussian noise is a metamorphic technique that adds white

noise to xi by adding a random number to every colour channel

of each pixel. It has the mean µ and standard deviation σ of

the random noise as η parameters.

B. Results and Discussion

We have performed a set of experiments to demonstrate

the usability of semantic data augmentation, i.e., using text-

conditional generative AI for fuzz testing. We instantiated our

ideas and answered two main questions.

RQ1 (Photo-realism): How effective is GENFUZZER in

generating synthetic images that are semantically meaningful?

Assessing the fidelity of the synthesised inputs (step III-C)

is key in establishing the effectiveness of GENFUZZER. To

answer RQ1, we perform a large-scale controlled study using

three image datasets (Table I). This experiment is designed to

quantitatively assess the quality of the augmented images. For

each selected input seed, the fuzzer mutates |C|−1 times (with

C representing the data classes), and we deduct 1 to count for

the input seed class. Each augmented seed is validated against

the input seed and text prompt. Only those maximising the

fidelity scores are kept. Table II shows the ratio of valid syn-

thetic images generated by different strategies identified through

the Fidelity Estimation step. Overall, according to SSIM, the



Table II: (%) Valid images generated by Stable Diffusion,

according to fidelity scores FID and SSIM

SSIM FID # augmented seeds

COCO 49.44% 92.0% 2750
Leaves 58.54% 89.04 % 1260
CIFAR 10 28.88% 8.11% 1800

Table III: The ratio of valid images according to CLIP.

Strategies Coco Leaves CIFAR 10

Stable Diffusion 1596 (±58.0%) 1232 (97.78%) 226 (20.56%)

Gaussian Noise 450 (50%) 277 (22%) 7 (0.67%)

fidelity rates of COCO and Leaves datasets are generally higher

than CIFAR-10 for both augmentation techniques, e.g., 49.44%

of augmented seeds are evaluated as valid for COCO, while

only 28.88% are valid augmented seeds for CIFAR-10. The

FID metric provides different results, with 92.0% of augmented

seeds by SD being valid for COCO and 8.11% for CIFAR-10.

Those results support findings in other studies like [40]. In fact,

FID and SSIM use different indicators to evaluate the quality

of images, which leads to incompatibility in their assessment

results. Another observation is that SSIM similarity scores are

unsurprisingly low, e.g., only 28.88% of CIFAR augmented

seeds are valid. SSIM quantifies the similarity between input

and augmented seed based on three key features (luminance,

contrast, and structure). With SD, the augmentation happens

by introducing disturbing changes into the input image latent

space, i.e., larger changes in these features, which consequently

results in a high level of dissimilarity and low SSIM values.

Thus, a deeper analysis using CLIP score is performed and

enables us to compare the augmented seed to the text prompt

used to generate it. The results are reported in Table III and

assess the augmented seed fidelity using the CLIP metric with

threshold δ = 0.8 after normalisation. The CLIP results are

in line with FID and demonstrate the effectiveness of SD

inpainting in generating photo-realistic images, especially for

Leaves and COCO datasets with up to 97.78% of augmented

seeds being evaluated as high fidelity for the Leaves dataset

and 58% for COCO. The fidelity rate of CIFAR-10 is generally

lower than other datasets with only 20.56%. Intuitively, the

reason behind the low quality of CIFAR-10 augmented seeds

is due to the resolution of CIFAR-10 which is relatively low.

Answer to RQ1: Results show that with proper constraint

design and parameter tuning, GENFUZZER with Stable

Diffusion is effective in generating high-fidelity synthetic

test inputs.

RQ2 (Effectiveness): How effective is Stable Diffusion for

Coverage Guided-Fuzzing compared to metamorphic mutation?

i.e., can the generated test cases improve a given set in terms

of testing capability? To answer RQ2, the experiments are

designed to evaluate the effect of semantic data augmentation

output, i.e., valid augmented seeds (cf. Fig. 1), on improving

coverage in DNN testing under different criteria. We intensively

evaluated two fuzzing strategies: (1)“Random-Inpainting”:

adopts the uniform sampling seed prioritization strategy with

Stable Diffusion Inpainting for data augmentation. (2)“Random-

Table IV: Average results in (%) of coverage criteria over 10

runs by fuzzer with different data augmentation strategies

Model Strategies IDC4 KMNC NBC LSA NC

Vgg19 + COCO

Init 40.29% 2.61% 13.66% 22.21% 5.93%

Random-Inpainting 43.77% 16.71% 31.79% 38.94% 13.21%

Random-Noise 29.01% 14.60% 13.26% 18.12% 4.86%

LeNet5 + CIFAR-10

Init. 21.06% 13.78% 1.61% 1.31% 54.90%

Random-Inpainting 45.13% 21.24% 0.73% 1.46% 67.20 %

Random-Noise 5.13% 14.27% 0.0 % 0.0 % 46.99 %

All-ConvNet + Leaves

Init. 42.86% 19.62% 11.67 49.59% 25.44%

Random-Inpainting 68.75% 35.23% 42.55% 69.17% 32.90%

Random-Noise 37.50% 19.89% 21.69% 35.75% 8.29%

Noise”: this is used as a baseline strategy. It adopts uniform

sampling with Gaussian Noise as a data augmentation technique.

To reduce the influence of randomness, each fuzzer execution

has been repeated 10 times and the results have been averaged

and illustrated in Table IV. The row Init. represents the coverage

achieved by the initial test set T t. Compared to the initial test

set (row Init.), we notice that test cases generated by Random-

Inpainting improve the coverage scores across all the criteria

when added to the test set by up to 26%. For instance, there

was no difficulty in enhancing the IDC, KMNC, and LSA

criteria, when the test set was augmented with the new test

cases, as they went respectively from 40.29%, 2.61%, 22.21%

to 43.77% 16.71% 38.94% for the COCO dataset. On the

other hand, with the Gaussian Noise, there was no significant

increase, and in some cases, we noticed even a drop in the

initial coverage scores. In most scenarios, Random-Inpainting

outperforms Random-Noise in terms of coverage scores when

comparing the results of CGF strategies. Answer to RQ2:

GENFUZZER with semantic augmentation is more effective

to maximize coverage than random (Init. row in Table IV),

and traditional CGF metamorphic technique (i.e., Gaussian

Noise), especially for those criteria that are difficult to cover,

i.e., IDC, LSA.

V. CONCLUSIONS AND FUTURE WORK

We introduced GENFUZZER, a novel CGF method that

uses semantic data augmentation to optimise the test case

generation for DL testing. Our approach can significantly

improve its coverage exploration ability and performs well

in generating semantically-diverse test suites. Unlike existing

work, GENFUZZER advances quality assurance for DL by

leveraging generative AI models like Stable Diffusion. In

the future, we plan to design more comprehensive semantic

mutation techniques using different generative AI models and

use them to guide the fuzzing, thereby improving the ability

to detect failures and improve the overall DNN testing process.

We also plan to conduct extensive experiments to evaluate the

robustness of our approach. This will involve a broader range

of data and a comparison with other advanced augmentation

methods like AugMix [41] and mixup [42]. Furthermore,

we will gather additional data on GENFUZZER’s efficacy in

detecting defects introduced by DNNs during deployment.
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