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A simple approach for image‑based 
modelling of the heart that enables 
robust simulation of highly 
heterogeneous electrical excitation
Michael A. Colman * & Alan P. Benson 

Remodelling of cardiac tissue structure, including intercellular electrical coupling, is a major 
determinant of the complex and heterogeneous excitation patterns associated with cardiac 
arrhythmias. Evaluation of the precise mechanisms by which local tissue structure determines 
global arrhythmic excitation patterns is a major challenge that may be critically important for the 
development of effective treatment strategies. Computational modelling is a key tool in the study 
of cardiac arrhythmias, yet the established approaches for organ-scale modelling are unsuitable to 
capture the impact of local conduction heterogeneities; a novel approach is required to provide this 
multi-scale mechanistic insight. We present a fundamentally simple yet powerful approach to simulate 
electrical excitation in highly heterogeneous whole-heart models that exploits the underlying 
discreteness of the myocardium. Preliminary simulations demonstrate that this approach can capture 
lower conduction velocities and reproduce wave breakdown and the development of re-entry in a 
range of conditions.

Cardiac arrhythmias are a major cause of morbidity and mortality associated with cardiovascular disease (CVD). 
Loss of the regular rhythm of the heart can substantially reduce cardiac output, detrimentally affecting the deliv-
ery of oxygen and nutrients to the vital organs of the body. Acute arrhythmia events can be fatal; indeed, sudden 
cardiac death accounts for a substantial proportion of mortalities associated with CVD1.

Electrical and structural remodelling occur over the progression of multiple CVDs and it is well established 
that this generally promotes both the initiation and sustenance of arrhythmia2, 3. Recent studies have highlighted 
the mechanistic role by which structural remodelling promotes arrhythmia: conduction heterogeneity contrib-
utes to unidirectional conduction block and enables the development of re-entrant circuits4–8. However, due to 
the conflict in spatial scales required to simultaneously resolve local conduction while maintaining the global 
picture of whole-heart activation, it is a major challenge to fully dissect and elucidate the precise mechanisms 
by which intercellular coupling and microstructure determine arrhythmia dynamics.

Multi-scale computational modelling has proved an invaluable tool for elucidation of the complex mecha-
nisms underlying arrhythmia; such insight can help to drive novel pharmacological and surgical interventions 
to prevent, manage, or treat CVD in a diverse population9–11. The two most commonly used numerical methods 
for simulation of organ-scale cardiac electrophysiology are the finite difference method (FDM) and the finite 
element method (FEM), referring to different mathematical approaches to discretise the mono- or bi-domain 
reaction–diffusion equations that describe spatial diffusion of electrical or chemical activity12. Both of these 
approaches, however, are limited in their ability to capture the discrete underlying details of electrical coupling 
between myocytes, and are furthermore not well-suited to modelling the impact of locally heterogeneous con-
duction associated with structural remodelling, including the proliferation of fibrosis and spatial remodelling 
of connexin expression.

Recently, tissue models at the cellular-scale have been developed which describe intercellular coupling to a 
much greater level of sophistication13–16, accounting for the influence of intra- and extra-cellular spaces, dynamic 
gap-junction conductance, and the potential role of ephaptic coupling. However, large-scale, whole-chamber 
image-based models of the heart are computationally intractable to perform at cellular-scale resolutions, and it is 
not trivial to extend these approaches to the whole-heart scale. There is therefore a strong motivation to develop 
an approach to discretise image-based tissue models that readily facilitates highly heterogeneous conduction 
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properties and is compatible with these more sophisticated models of electrical coupling. Such a model would 
offer the possibility to reveal new insight into the mechanisms of cardiac (dys)function and develop ever more 
accurate models of the heart, including for genuine subject specificity (for example, in patient specific clinical 
models). Here, we present a fundamentally simple yet powerful network model to achieve this goal. This manu-
script will discuss the derivation of the approach and perform demonstration simulations that illustrate how it 
may be used to model heterogeneous conduction conditions.

Results
Connection maps in 2D and 3D.  The presented approach creates a network of axial and transverse inter-
nodal connections which are weighted based on local myocyte orientation on a 2D or 3D structured grid tissue 
geometry (Fig. 1a,c). These weightings determine the magnitude of the nodal conductance values that contribute 
to the junctional conductance value at each network connection (Fig. 1b). Weighted network connections are 
illustrated for three idealised cases (with different, global orientation directions) in a 2D sheet (Fig. 2a—left). It is 
worth noting that when the orientation points either exactly along the axis or diagonal, the junctional conduct-
ance in that direction is exactly equal to the axial conductance (ga) and the transverse coupling is applied also 
only in one direction (perpendicular); in these special cases, only two directions have a non-zero weighting (one 
axial and one transverse; Fig. 2a).

Inter-nodal connections are further illustrated in 2D for the more complex condition with a spatially varying 
myocyte orientation vector field (Fig. 2a—right) in both control (all connections preserved) and remodelling (a 
set proportion of axial and transverse cellular connections have been removed.) It is worth explaining the pat-
terns that are observed in the cellular connections, for clarity of interpretation of how the model works. If the 
orientation points exactly in x, the x-component of the nodal conductance, gxx

node, will be exactly equal to ga (the 
axial weight, Wxx = 1, and transverse weight, Wxx

t = 0), gyy
node will be exactly equal to gt (Wyy = 0; Wyy

t = 1) and there 

Figure 1.   Summary of model approach. (a)—Illustration of the different coupling directions and terminology 
referring to these directions, in 2D (left) and 3D (right). (b)—illustration of how the nodal and junctional 
conductance parameters are related and contribute to the total gap junctional conductance, for three nodes 
i, j, and k and two junctions n and m. (c)—Illustration of the relationship between myocyte orientation angle 
and the weighting terms towards the axis and diagonal within a segment (2D) and towards the axis, in-plane 
diagonal, elevation diagonal, and corner in a quadrant (3D). The arrows labelled “axial” and “transverse” indicate 
the direction that the myocyte orientation is pointing in (and the direction perpendicular to this) and the 
shaded region indicates the segment (in 2D) or quadrant (in 3D) that contains the orientation vector: it is the 
nodes that are associated with this segment (2 nodes) or quadrant (4 nodes) which form the coupling junctions. 
The weighting towards each node is determined by the orientation: in 2D, it is a simple linear weight based on 
the angle between the two nodes; in 3D, the weights are a combination of angles in each plane, as illustrated in 
the panel on the right. Every myocyte orientation must fall within a segment or quadrant; when the orientation 
is exactly along an axis or diagonal, the weight towards that axis or diagonal is equal to 1, and it is arbitrary 
which segment or quadrant it is considered to point in (all other weights are 0 so it has no impact which choice 
is made).
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will be no diagonal connections (Wxy++ = Wxy+- = 0). As the orientation is rotated towards the diagonal, the axial 
weight for the x direction will linearly reduce from 1 to 0 (while the weight for the diagonal linearly increases 
from 0 to 1) and the transverse weight for the y direction also linearly reduces from 1 to 0. Thus, exactly at the 
diagonal, gxx

node and gyy
node are 0 for both axial and transverse. As the orientation is rotated further towards y, 

the transverse weight for x increases from 0 to 1 along with the axial weight for y. Thus, gxx
node is smallest when 

the orientation points towards the diagonal, increases to gt as the orientation rotates towards y, and increases to 
ga as the orientation rotates towards x.

Connection maps are shown for two 3D geometrical models: a human ventricular wedge17 where only the 
myocyte orientation was given (and so the two transverse directions were calculated within the model; Fig. 2b), 
and a full reconstruction of rat bi-ventricular geometry11 wherein all three orientations describing cardiac tis-
sue structure (myocyte, sheet, and sheet normal, corresponding to the three DT-MRI eigenvectors) were given 
(Online Supplement Fig. S5).

Verification of conduction patterns and comparison to finite difference method.  The network 
model was parameterised to match FDM implementations regarding axial and transverse conduction velocity 
(see “Methods: Cellular dynamics and model parameters”). There were some notable differences in the conduc-
tion patterns in 2D and 3D between the two implementations (Fig. 3), but the overall patterns and activation 
time match well, and it is not necessarily the case that FDM represents a “ground truth”. Note that the spatial 
pattern in both methods when the orientation is diagonal is not an identical symmetrically rotated version of the 
pattern when the orientation is in-axis. This is discussed further in the Online Supplement 1.

Figure 2.   Illustration of weighted network connection maps. (a)—Illustration of the connection maps in 2D 
for idealised cases with a global myocyte orientation in three different directions (left) and in the case of a 
spatially varying orientation field (right) for both control (ga and gt are spatially homogeneous; upper) and in 
a case where 20% of axial and 80% of transverse connections have been randomly removed (lower). Global 
orientation maps are illustrated on a 10 × 10 grid for clarity in visualisation. This smaller map size enables the 
connections to be visualised directly as connections between nodes, and connections in all directions to be 
visualised on the same plot. (b)—Illustration of directional conductances in a 3D human ventricular wedge 
model. Myocyte orientation streamlines are shown to provide context, with colour corresponding to either the 
z- or x-component (dependent on the view), along with the magnitude of the connection for each direction. 
Each panel shows the magnitude of the coupling between adjacent nodes in each direction at every location 
throughout the tissue, and all 13 independent coupling directions are shown for completeness; it is not possible 
to clearly show all coupling directions on a single plot. The anisotropy ratio is 4:1 (i.e., ga = 4gt). Note that, for 
clarity of visualisation, the junctional conductances defined in Eqs. (37–39) have not been scaled by the 1/Δx 
etc. factors, in order to normalise between axis and diagonal conductances.
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Convergence and stability.  As with any numerical scheme, it is important to test that the solutions exhibit 
convergence towards a unique solution. Simulations were performed to test convergence by varying the integra-
tion time step, Δt, between 0.0001 ms and 0.1 ms (Supplementary Fig. S8). These simulations revealed a smaller 
than 1% difference in conduction velocity between Δt of 0.05 and 0.01 ms, and a smaller than 0.01% difference 
in conduction velocity between Δt of 0.005 and 0.001 ms, demonstrating convergence of the solution to a stable 
value. The solution began to break down (become unstable) at Δt of 0.07 ms and above, although we note that 
this may be constrained by the single cell electrophysiological model. Therefore, within the range of integration 
time steps that are both practical and suitable for the stiff equations of the cellular models used in cardiac simula-
tions, our new approach is highly stable and is within the range of convergence. It also did not exhibit breakdown 
of the solution in the presence of complex anisotropy and rapid spatial gradients in coupling strength, to which 
FDM solutions are prone.

Conduction patterns in heterogeneous media.  The impact of removing cellular connections at 
defined probability thresholds was demonstrated using a 2D model, implementing the heterogeneous vector 
field illustrated in Fig. 2a, across total spatial extents of 50 × 50 nodes and 200 × 200 nodes, enabling direct rela-
tion to visualised connection maps (Fig. 4 and Supplementary Video 1). Removing axial and transverse connec-
tions caused different spatial patterns of activation to emerge which clearly corresponded to the differential loss 
of connections in these directions. Non-uniformity in the propagating wavefront was observed in all conditions 
where cellular connections were removed. Patterns in media with sampled distributions of scale factors (rather 
than the binary choice of preserved/removed) are shown in the Online Supplement Fig. S6.

Preliminary simulations implementing heterogeneously removed cellular connections revealed that these 
conditions were sufficient to promote wavefront breakup (Fig. 5a), which, in combination with rapid pacing, 
could lead to the development of re-entry. This re-entry was not observed using simulations which matched 
the same total activation time through a global reduction to the coupling strength (Fig. 5b and Supplementary 
Videos 2 and 3). It should be clarified that the regimes shown in these cases correspond to a substantial loss of 
connections and thus slow global conduction velocities and activation times, and this is reflected in square-like 
waves in the FDM implementation.

Parameterisation to match heterogeneous experimental data.  Finally, we demonstrate in prin-
ciple the ability to apply the model to match heterogeneous conduction patterns observed in experiment. In a 
previous study, we showed the correspondence between experimental optical mapping data and anisotropic 
simulations performed on DTI reconstructions of the same heart18. This approach yielded a good approxima-
tion for the experimentally observed activation pattern. However, there were notable differences between simu-
lation and experiment, implicating an underlying regional heterogeneity in intercellular coupling strength or 

Figure 3.   Comparison between activation patterns in parameter matched FDM and network model simulations 
in 2D with different global orientations (fully in x, exactly in xy++), and in the heterogeneous vector field shown 
in Fig. 2, as well as in the 3D ventricular wedge model. Simulations with global orientation direction were 
performed on a 300 × 300 grid at a spatial resolution of Δx = 0.25 mm with coupling parameters of D1 = 0.4 mm/
ms and D2 = 0.1 mm/ms (FDM method) and ga = 1.6 nS/pF and gt = 0.4 nS/pF (network model). Simulations 
using the vector field for myocyte orientation were performed on a 200 × 200 grid at a spatial resolution of 
Δx = 0.2 mm with coupling parameters of D1 = 0.2 mm/ms and D2 = 0.05 mm/ms (FDM method) and ga = 0.8 
nS/pF and gt = 0.2 nS/pF (network model). Simulations on the 3D human ventricular wedge were performed at 
a spatial resolution of Δx = Δy = 0.2125 mm and Δz = 0.25 mm with coupling parameters of D1 = 0.1171 mm/ms 
and D2 = 0.0130 mm/ms (FDM method) and ga = 0.55 nS/pF and gt = 0.061 nS/pF (network model).
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super-resolution microarchitecture. As a proof-of-principle, we applied our network model to perform simula-
tions on this reconstruction, using differences between simulated and experimental activation patterns to infer 
regions of faster and slower conduction that could be used to parameterise the gap junction coupling strength 
and axial-transverse anisotropy ratio (Fig. 6). In the case where gap junction conductance was homogeneous and 
therefore local conduction velocity is determined by myocyte orientation, the network model yielded similar 
results to the original simulations performed using FDM: the overall pattern showed similarities to experiment, 
with notable differences (Fig. 6). The adjusted, parameterised model which accounted for local differences in gap 
junction conductance gave activation patterns that more closely matched the original data (Fig. 6). This demon-
strates not only the model’s ability to closely match experimental or clinical data, but also the ability of the model 
to infer underlying structural detail from functional measurements.

Figure 4.   Conduction patterns in different connection-removal conditions. (a)—Connection maps and 
activation patterns in a 50 × 50 grid, where the pattern can be somewhat directly visually related to the 
connection maps. Control refers to the condition where all connections are present, and the bottom row is 
the condition where 20% of the axial and 80% of the transverse connections are randomly removed. (b)—
Connection maps and conduction patterns in four different conditions (control and cases where 50–50%, 
20–80% and 80–20% axial-transverse connections have been removed) in a 200 × 200 grid, where direct 
visual relation to the connection map is more difficult, but the tissue has sufficient area to permit a reasonable 
activation time.
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Discussion
We have presented a novel approach to construct a network model to describe cardiac intercellular electrical 
coupling on structured-grid geometries. The approach calculates coupling weights between adjacent nodes 
based on the local myocyte orientation (Figs. 1, 2). We have demonstrated that this approach leads to expected 
conduction patterns in idealised and non-idealised tissue (Figs. 3, 4, 5). We have further demonstrated that 
this approach readily facilitates the direct manipulation of intercellular connections (Fig. 2), enabling complex 
conduction patterns to be simulated, such as observed with high levels of fibrosis. The model conserves current, 
is highly stable to complex media, and naturally accounts for boundary conditions.

Of the established approaches, neither of the commonly implemented FDM or FEM models satisfactorily 
reproduce very slow conducting re-entrant circuits19. One possible explanation is that they are derived from a 
mathematical discretisation of a spatially continuous system of equations, yet cardiac tissue is inherently discrete 
at a sufficiently large spatial scale (that of the myocyte: 10–100 μm) that this discreteness may be important 
for dynamics. More sophisticated and complex discretisation approaches have also been presented. Finite vol-
ume methods20 are centred on the flux between nodes, similar to our formulation; various recently presented 
bidomain21 and tridomain22 formulations present advantages over the commonly implemented approaches, 
including the ability to incorporate dynamic gap junctions. We argue that our approach represents a funda-
mentally different philosophy to these prior models, centred on simplicity and exploitation of the underlying 
inherent discreteness of the system, that is nevertheless able to robustly simulate electrical conduction in the 
heart in the context of highly heterogeneous conduction properties. The main advantages, and primary motiva-
tion for the development of the model, are: (1) the ability to directly modify or remove cellular connections, 

Figure 5.   Illustration of wave-break and re-entry occurring in the network model with reduced connections. 
(a)—Voltage snapshots and activation pattern in the 2D model with the same vector orientation field as previous 
figures, paced from one edge of the tissue. (b)—Voltage snapshots in two different pacing scenarios (edge 
pacing for five stimuli, upper, and centre focal pacing for two stimuli, lower) on the same model as (a). Sites of 
conduction block and wave propagation direction are labelled for clarity.
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resulting in representation of barriers to conduction between excitable regions; and (2) compatibility with the 
more sophisticated models of intercellular electrical coupling, including models of dynamic, voltage-gated gap-
junction conductance.

Previous tissue simulations have typically represented tissue remodelling through a reduction of the diffusion 
coefficient and increase in the anisotropy ratio6, 23, reflecting the slower overall conduction velocities and longer 
activation times associated with fibrosis and other structural remodelling features. This is generally applied 
homogeneously (i.e., the diffusion coefficient is reduced globally in all fibrosis regions) but may be applied 
according to spatial gradient maps6. Our approach does not rely on changes to the coupling strength, but instead 
reproduces reduced coupling by removing individual intercellular connections. A change in the anisotropy ratio 
consequentially arises if axial and transverse connections were differentially removed (Fig. 4).

Example simulations demonstrated that removing cellular connections can produce complex, heterogeneous, 
and highly anisotropic conduction patterns that may degenerate into arrhythmic dynamics; longer activation 
times and slower average conduction velocities were reproduced but with a distinct underlying pattern to a simple 
global reduction in intercellular coupling (Fig. 5). The importance of this feature is highlighted by considering 
conduction patterns in low coupling regimes: the FDM method produces unphysiological square-like waves, 
whereas the new approach captures the same overall reduction in activation time but with highly heterogeneous 
underlying wavefronts. Importantly, re-entry could emerge from regular rapid pacing, rather than requiring a 
well-timed S1-S2 stimulus or other complex protocol, more closely reproducing ex vivo and in vivo experiments24, 

25. Due to the importance of electrotonic interactions on the generation of phenomena such as alternans26, 27 and 

Figure 6.   Matching heterogeneous conduction data. Upper panels show the reconstruction of rat ventricle 
including anisotropy, and an optical mapping activation pattern measured on the same heart (data from18). The 
lower panels illustrate the default simulation, in which the coupling strength is homogeneous, and the main 
determinant of the conduction pattern is the anisotropy, and the adjusted simulation in which coupling strength 
was heterogeneous, as inferred by differences between the experimental and default simulated activation maps. 
Nodal coupling in two different directions is shown to illustrate the model adjustments made.
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afterdepolarisations28, 29, it may be critically important in disease models to accurately capture the underlying 
coupling substrate, rather than implement a simple global reduction to cellular coupling.

Alternatively, other studies have captured tissue remodelling, such as fibrosis, by setting selected nodes to be 
unexcitable30, which introduces conduction heterogeneity more comparable to that presented in this study. Our 
approach enables conduction barriers to be captured without the need to remove nodes of tissue from being 
excitable. This, importantly, can promote temporary unidirectional conduction block which is a key mechanistic 
pathway for the generation of re-entrant circuits31, 32. It is worth noting that many studies have further included 
electrotonic coupling between fibroblasts and myocytes in their descriptions of fibrosis23, 33, 34. This was not 
considered in the present study but is independent from the discretisation method and thus trivial to include, 
if desired, in future studies.

Recent studies have presented alternatives to the established approaches for discretising cardiac tissue and 
solving the propagation of electrical excitation, many focusing on small tissue strands/slices at cellular-scale 
resolutions. Most directly comparable to our approach, network models of electrical coupling have been previ-
ously presented4, 30, 35. However, these models were not designed to implement complex anisotropy and are not 
directly set up for the modification of individual cellular (or nodal) connections.

At the cellular-scale, multiple recent studies have developed sophisticated models that describe intercellular 
electrical coupling to varying levels of detail. Some have explicitly described the time-and voltage-dependence 
of the gap junctional conductance, demonstrating these dynamic properties to be an important regulator of 
electrical conduction and repolarisation16, 36. Jæger et al.13 presented a sophisticated model of intercellular cou-
pling at the individual myocyte scale that accounts for the three domains of the extra-cellular, intra-cellular and 
membrane spaces. Such an approach enabled simulation of “micro-re-entry”, which cannot be reproduced using 
larger scale discretisations. Other studies have developed approaches that account for ephaptic coupling, in which 
ion channels localised to the intercalated discs play an important mechanistic role in electrical coupling14, 15. 
These studies have demonstrated important dynamical implications for the features that were included, high-
lighting the disparity between cellular-scale and larger-scale tissue simulations. Translation of these models 
to the whole-heart scale is non-trivial, and there are many features that would need to be carefully considered 
(e.g., the relationship between coupling strength and discretisation spatial step size). Nevertheless, compared to 
FDM and FEM, our new approach presents much greater compatibility with these more complex, dynamically 
regulated models: coupling is solved on the connection, not the node, and the gap-junction conductance of each 
connection is an explicit parameter which can be easily modified through the inclusion of gating variables, and 
extended to account for the conductivities in the different cellular/extracellular domains.

Very few studies have attempted to include these finer details of electrical coupling at the whole-heart scale. 
In Hurtado et al. 37, non-linear homogenization theory was used to develop an up-scalable approximation of 
gap junctions that does not require explicit description of the underlying dynamics; in Saliani et al.38, a non-
ohmic model of intercellular coupling was developed that was applied to a cable-based geometrical model, and 
included interruptions to intercellular coupling similar to our study. Both approaches offer powerful and com-
plex alternatives to the established models of cardiac intercellular coupling. Our model represents a different 
philosophy based on simplicity and broad applicability; the ability to easily implement the model on structured 
grid geometries was a major motivation. It would be valuable in future studies to compare these different models 
and their resulting dynamics across a range of physiological and pathophysiological conditions.

Because the model is both simple and robust to heterogeneous media, it is ideally suited to application in 
contexts where such heterogeneities are important, such as in disease. The model was tested for stability in tis-
sue models which contained complex anisotropy as well as rapid gradients in conductivity and other cellular 
parameters such as the magnitude of the sodium current (relevant for conduction velocity) and repolarisation 
currents (relevant for complex electrotonic interactions). We also have demonstrated its suitability to match 
experimental activation sequences and infer the underlying spatial profile of inter-cellular coupling strength, 
which may also be useful for clinical applications and patient-specific modelling. The development of rigorous 
and semi-automated image analysis tools to perform this parameterisation was beyond the scope of this study, 
but would be a worthwhile future endeavour.

There are a number of limitations which must be considered. Whereas this method is based on “intercellular 
connections”, the connection between nodes in a discretised geometry does not directly correspond to individual 
myocyte connections, as each node/voxel occupies a volume that contains multiple myocytes. This limitation is 
not unique to our new approach and applies to any tissue implementation that is not at the direct cellular scale. 
However, this does imply that modifying “intercellular connections” at this scale is not directly translatable 
to heterogeneous connections at the individual myocyte level. Nevertheless, it still enables implementation of 
functional barriers to conduction without requiring excitable nodes to be removed, which we argue is a more 
accurate representation of the underlying substrate. To further bridge this gap, future studies could develop high-
throughput image analysis approaches to derive this model from local, high-resolution histological data (e.g., 
describing connexin expression and fibrosis) further to the whole-heart data for which it has been designed, and 
appropriate approximations could be developed in simulations to match models at different scales.

A further limitation, albeit another not specific to this model but rather of most approaches to modelling 
spatial coupling, is that the absolute coupling strength between two nodes is dependent on the spatial resolu-
tion such that a set conduction velocity can be matched. However, electrotonic coupling between myocytes in 
reality is clearly not dependent on the spatial resolution of a geometrical model, and this may have important 
implications on dynamics: electrotonic coupling affects cellular action potential morphology, including the 
rapid upstroke and the potential emergence of after depolarisations. Potential solutions to this limitation will 
be considered in future works.

Finally, there is a choice of how to treat mixed connections in the model (where one node contributes an 
axial but the other a transverse connection), and it is not clear which approach would be the most accurate. 
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For example, a mixed connection would be observed at an abrupt change in fibre orientation, where the axial 
conductance of one node is coupled to the transverse of its neighbour. As presented in this study, the junctional 
conductance was simply an average of the two contributing conductances, independent of which type of con-
nection they were. One could just as easily make a choice to model such junctions as either fully axial (axial 
connection only contributes to the junctional conductance) or fully transverse. This is a choice which could be 
carefully explored in future studies.

In summary, we have presented a simple alternative formulation to the reaction–diffusion equation which 
sums over gap junctional currents rather than discretising the continuous gradients. Whereas the model shares 
superficial similarities with FDM implementations, it also contains a fundamentally different underlying 
approach which presents advantages. Most notable is the ability to directly control intercellular connections, 
and suitability for integration with more sophisticated models of intercellular coupling mechanisms. These fea-
tures enable more accurate and robust simulations of cardiac tissue to be performed, opening new avenues for 
the elucidation of underlying arrhythmia mechanisms.

Methods
Overall approach.  Cardiac myocytes are electrically coupled through intercalated discs which are con-
nections between cells that contain gap junctions enabling intercellular flow of ionic currents39. Myocytes are 
elongated in structure (with a length approximately five-to-ten times their diameter) and gap junctions are pref-
erentially located at the longitudinal (or axial) connections, forming fibre-like strands of coupled myocytes. 
Coupling is also observed in the direction perpendicular to myocyte orientation but is less than in the axial 
direction, and the conduction velocity in the axial direction is typically at least twice that in the transverse 
direction2. This feature of differentiated axial and transverse intercellular coupling—and the ability to interrupt 
them individually—underlies the philosophy our proposed novel approach.

The approach operates on a structured gird of nodes i.e., a square (2D) or cuboid (3D) lattice. This repre-
sents the simplest discrete reconstruction of cardiac images, as opposed to an unstructured gird comprised of 
polygonal elements and vertices, and corresponds to the same system on which the FDM approach is applied. 
In this system, we present the inherently discrete equation governing the voltage differential for some node, i

where Igap
(i,n) is the current associated with gap junction n that is connected to node i, and the sum over n cor-

responds to all junctions associated with node i (in 2D this is a sum of up to eight junctions; in 3D it is a sum 
of up to 26 junctions). It is common to absorb the membrane capacitance, Cm, into the formulation of the ionic 
currents, through the definition of the maximal conductances in units of nS/pF. The same will be applied here 
for the conductance of the gap junctions, and so Eq. (1) simplifies to:

The junctional current for some junction, n, between two adjacent nodes, i and j, is defined by:

where ggap
n is the conductance of gap junction n. The gap junctional current for the nodes i and j, the term that 

contributes to the sum in Eqs. (1) and (2), is therefore given by:

Note that we use the terms “gap junction”, “junctional current” and “junctional conductance” broadly here, 
as they may not correspond to individual gap junctions between individual myocytes, but rather the connections 
between nodes. Moreover, this approach is not a formulation of gap junctional dynamics itself, and the conduct-
ance of the junction will be assumed to be constant (i.e., not voltage- or time-dependent). Rather, we present a 
method to discretise the tissue model in order to determine the magnitude of this gap junctional conductance 
between neighbouring nodes based on local myocyte orientation.

We must now determine how nodes are connected to form junctions, and how to derive the gap junctional 
conductance, ggap

n based on local myocyte orientation. Throughout the remainder of the methods section for 
brevity, only the minimum number of equations necessary to understand the construction of the model will be 
shown, exploiting symmetries (e.g., x-directions will be shown but not the symmetric y and z equivalents); full 
equations are provided in the Online Supplement.

Derivation of the approach in 2D.  Axial and transverse connections.  In a 2D structured grid, each node 
can be connected to eight other nodes, corresponding to four along the axes (± x, ± y) and four along the diago-
nals (± xy++, ± xy+−) (Fig. 1a). Due to the different directions along each of these lines being indifferent (+ x is the 
same as − x), this reduces to four independent connection directions: x, y, xy++ and xy+−. Note that xy++ refers to 
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the diagonal where the sign on x and y is identical (+ x and + y, or − x and − y) and xy+− to the diagonal where 
the signs are different.

The main concept of this approach is that, for each node, the contribution to the connection to its neighbours 
in each of these directions will be determined from weighting terms defined by the local myocyte orientation. 
Defining ga as the conductance of a gap junction in the axial direction (along the primary myocyte orientation) 
and gt as the conductance of a gap junction in the transverse direction (i.e., orthogonal to the primary myocyte 
orientation), the nodal junctional conductance in each direction (gei

node) can be described as:

And similarly for the y and xy+− directions (Online Supplement), where gxx
node is the contribution of the node 

to the gap junctional conductances in the x-direction, and equivalently for all other directions, Wxx is the weight 
towards the x-axis for the axial component, Wxx

t is the weight towards the x-axis for the transverse component 
(and equivalent for all other directions), and Δx and Δy refer to the discretisation space step in each dimension 
and are included from geometrical arguments. Due to considerations regarding the relationship between coupling 
strength and the spatial step (see Discussion), it may also be desirable to define these conductances independent 
of the spatial steps. In this case, it is important to retain the factor of 1/√2 in the diagonal terms, or otherwise 
account for the increased distance in the diagonal directions, for geometrical consistency.

Defining the junction conductance and currents.  Before describing how the weighting terms are derived, it is 
important to relate the nodal conductances (Eqs. 6, 7) to the junctional conductance in Eq. (3). A junction is 
formed between all pairs of nodes which correspond to tissue, adjacent to each-other in any of the coupling 
directions. For some junction, n, the conductance, ggap

n in Eq. (3), is given by the mean of the nodal conduct-
ances in the direction in which they are coupled (Fig. 1b). For example, for two nodes, i and j, adjacent to each-
other in the x-direction, forming a junction n

And equivalently for all other directions in which nodes may be coupled. There is no distinction here whether 
the connection is axial or transverse, so mixed connections (e.g., at an abrupt change in fibre) are possible. Every 
time a junction is created, maps must be created (for implementation purposes) defining which node is the posi-
tive and which is the negative contributor to this junction

The gap junctional current for junction n, Eq. (3), is therefore:

And these junctional currents are summed for each node as described in Eqs. (2, 4 and 5).

Deriving the weights based on myocyte orientation.  The weights that scale the contribution of the axial and 
transverse gap junctional conductances to each nodal directional conductance term (Eqs. 6, 7) must be defined. 
The myocyte orientation in 2D will always point in a segment between one axis and one diagonal direction 
(Fig. 7). Due to periodicities and symmetries in the trigonometric functions, we can consider and calculate the 
weight towards the axis and diagonal independent of in which segment the orientation is pointing. We can first 
calculate the angle from the x-axis, θ:

where Ox is the x-component of the normalised orientation vector, and Oy is the y-component. This will always 
return an angle between 0 rad (when the orientation is along the x axis) and π/2 rad (when the orientation is 
along the y axis). We can then define a weight which linearly depends on this angle as a measure of where the 
orientation lies between the x or y axis (θ = 0 or π/2 rad, respectively) and the diagonal (θ = π/4 rad):

i.e., Waxis is equal to 1 if the orientation points exactly along either the x or y axis (θ = 0 or π/2 rad, respectively), 
equal to 0 if it points exactly along the diagonal (θ = π/4 rad), and linearly varies between 0 and 1 based on the 
angle in-between (Fig. 7). The weight towards the diagonal is then simply:
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A conditional algorithm could then be applied to determine to which axis and diagonal the weighting terms 
should be applied. Alternatively, and perhaps more concisely, these choices can be absorbed into a single general 
equation through the introduction of binary pointing parameters. Thus, we may define:

where Px is a binary parameter which is equal to 1 if the orientation vector points between the x-axis and either 
diagonal and equals zero otherwise; Pxy+ is equal to 1 if the orientation points between the diagonal xy++ and 
either axis. Note that Py and Pxy- could also be introduced, defined as 1-Px and 1-Pxy+, respectively. From this, 
the weighting towards the four directions is then given by:

This approach can be illustrated by considering some simple example cases (Online Supplement Fig. S1D).

Transverse direction.  A major feature of this approach is to apply the transverse coupling always at an orthogo-
nal direction to the myocyte orientation (Fig. 7), as opposed to FDM, for example, where the basic isotropic 
coupling is always applied along the axes, independent of the myocyte orientation. In 2D the transverse weights 
are trivial to calculate:

Which are the same as Eqs. (17–19) with the pointing parameters swapped.

Derivation of the approach in 3D.  Primary myocyte orientation weights in 3D.  In 3D each node 
can be connected to 26 neighbours (i.e., 13 independent directions given the + /- directional indifference), 
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Figure 7.   Illustration of pointing parameters and transverse connections. (a)—Illustration of the different 
values the binary pointing parameters take dependent on in which segment the myocyte orientation points. 
(b)—Illustration of the transverse orientation vectors and the directions to which they contribute in 3D. 
Left—illustration of the three orientation vectors as given by imaging data; each vector points in a quadrant, 
contributing to up to four directions. Right—illustration of the definition of the two transverse vectors if only 
the primary eigenvector is given. From the axial orientation, a π/2 rotation is applied towards the z-axis to define 
transverse vector 1. The cross-product of these two vectors then defines transverse vector 2, which will always 
point in the x–y plane.
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corresponding to the axes and diagonals in each plane and the four corners (Fig. 1a). The primary myocyte 
orientation vector therefore points in a segment which corresponds to a quadrant on the surface of a cube, i.e., 
contributing towards the weight of up to four directions at once (Fig. 1c). Similar to the approach in 2D, we 
can consider how the weights towards these four directions depend on the angle(s), independent of which axes 
and diagonals define the quadrant. The four directions (Fig. 1c) correspond to the axis, the in-plane diagonal 
(dependent on θ1), the elevation diagonal (dependent on θ2) and the corner (dependent on both θ1 and θ2). Note 
that both θ1 and θ2 are defined as the projection in the axis planes i.e., θ2 does not correspond to the spherical 
polar coordinate’s elevation angle. We can then define the weight towards each of these directions as (Fig. 1c):

where Waxis
plane and Waxis

elevation are defined from the two angles, θ1 and θ2, in the same way as the 2D model 
(dependent on which axes contribute to these calculations). The three angles (θxy, θxz, θyz) and corresponding 
weights (Waxis

xy, Waxis
xz, Waxis

yz) in each plane are defined by:

and the pointing parameters in 3D become:

And similarly for the y- and z-directions (Online Supplement). Note that only one of Px, Py and Pz can be 
non-zero at any time (the orientation can only be pointing primarily towards one of these axes). Pxy+, Pxz+ and 
Pyz+ can all be non-zero. In full, therefore, the weights towards the four quadrant directions are given by:

Note that because only one of Px, Py and Pz can be non-zero at a time, these equations reduce immediately 
to the equivalent of Eqs. (23–26).

The weighting towards each direction is defined by:

And similarly for all other directions (Online Supplement). Note that the form of Eq. (35) results from the 
convention that when pointing primarily towards z (Pz = 1), the xz diagonal is considered “in plane” and the 
yz diagonal considered the “elevation” direction, whereas when pointing towards x or y, the xz and yz are both 
considered the elevation direction. This is an arbitrary choice, and the results would be the same whichever choice 
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is made. As with the 2D case, when the pointing parameters are factored into these equations, only a maximum 
of four terms will result in being non-zero: one axis, two diagonals, and one corner.

Transverse connections in 3D.  In 3D, two transverse directions are necessary. These may correspond to the 
distinguishable “sheet” and “sheet normal” directions40 if these data describing the laminar/sheet structure of 
cardiac tissue are available (e.g. from diffusion tensor MRI41–45) or to two indistinguishable (equal magnitude) 
transverse directions if only myocyte orientation data are available (i.e. in the absence of data describing the 
laminar/sheet architecture of cardiac tissue). The junctional conductance is therefore given by:

And similarly for all other directions (Online Supplement). Similarly to the 2D case, if these are defined inde-
pendent of the spatial step, the factors of 1/√2 and 1/√3 must be retained for the diagonal and corner directions, 
respectively. If differentiating between in-sheet and transverse to sheet, then gt1 > gt2, whereas if not imposing 
this distinction, gt1 = gt2 = gt and the equation(s) reduce to:

If implementation is based on three eigenvectors (e.g., from DTI), then the orientation components of the 
two transverse vectors directly determine Wei

t1 and Wei
t2 for each direction through the same Eqs. (34–37) as the 

primary orientation vector (Fig. 7). However, if only information on the primary eigenvector is defined, then we 
must define the transverse vectors from this (Online Supplement).

Implementing heterogeneous media.  One main advantage, and indeed motivation for the develop-
ment of the above approach, is to be able to modify cellular connections directly. For example, connexins (gap 
junctions) are heterogeneously expressed in tissue and may not exist between every adjacent myocyte. In disease 
in particular, highly heterogeneous media may be observed, corresponding to heterogeneity in connexin expres-
sion, increased fibrosis (e.g., collagen expression, fibroblast coupling), and increases in fatty deposits. The latter 
features may be associated with a loss of cellular connectivity and changes to the anisotropy ratio of conduction 
velocity, implying differential loss of transverse and axial connections.

Implementing these heterogeneities in this network model may be approached in different ways, depending 
on the application. For example, a map can be passed in that simply scales local (nodal) ga and gt, in the same way 
as one might do when using FDM. However, we can also scale the junctions directly, or even remove them. In 
this study we demonstrate these different approaches and their potential impact on function, although it should 
be clarified that we are not constructing physiologically validated parameter combinations for different health 
and disease states but, rather, demonstrating how this model may be applied in these contexts.

This approach readily facilitates differential removal of axial and transverse cellular connections. One can 
define a threshold for each type of connection that determines the probability of a connection being removed. It 
is important to identify if a connection is axial (the contribution from both nodes is from the primary orientation 
vector), transverse (the contribution from both nodes is from a transverse vector) or mixed (one node contrib-
utes an axial component and the other a transverse). Once complete, random numbers can be generated and 
combined with the threshold to determine which connections are removed. Alternatively, as a more sophisticated 
approach, junctional conductance could be scaled by continuous factors, for example, randomly sampled from 
various user-defined distributions or based on analysis of variability in experiment.

Cellular dynamics and model parameters.  Example simulations presented in this study were per-
formed using cellular electrophysiology described by the hybrid minimal model presented in Colman (2019). 
This is a simple model parameterised for the magnitudes of ionic currents and voltage range observed in cardiac 
electrical excitation. It is useful and desirable to be able to define the connection parameter conductances (ga 
and gt) from the diffusion coefficient, D, to enable easy implementation to replace FDM, or similar, where D has 
been defined to match conduction velocity. A conversion factor can be obtained through analysis of a simple 
case (Online Supplement), yielding:
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As will be shown in results, this conversion gives the same conduction velocities as the FDM method in these 
simple conditions. Note that this linear relationship means gt can be defined from the anisotropy ratio (AR) and 
ga, in the same way as often for D1 and D2:

In this setup, the units of ga and gt are the same as those for the maximal conductances of the ion currents 
(nS/pF), as the membrane capacitance (Cm) in Eq. (1) has been absorbed into these maximal conductance terms 
(Eq. 2). However, this model does not require this to be the case and enables coupling between cells of different 
Cm while still conserving current; one could define ga as an absolute conductance (nS) and maintain inclusion 
of the factor Cm

−1 when implementing Eq. (1).

A note on boundary conditions.  Boundary conditions must be applied when implementing the FDM 
or FEM methods, and in some cases, the choice of how to implement them can have implications on dynamics. 
In our new approach, connections are only created between nodes that exist in tissue; boundary conditions are 
therefore inherently accounted for, as there are no terms to solve at a boundary. We believe this is cleaner and 
less open to subjectivity in approach.

Ethics declaration.  No human or animal tissues were used in this study. No previously unpublished data 
derived from human or animal tissue samples were used in this study.

Preprint.  A previous version of this manuscript was published as a preprint46.

Data availability
Implementation of the model readily enables direct replacement of previous implementations using FDM or 
any other structed-grid approach (the same geometrical and myocyte orientation reconstructions can be used, 
and conduction parameters easily matched). For this purpose, the model is made available open-source in two 
different packages: (1) packaged with the Multi-scale cardiac simulation framework17 and (2) in a simplified, 
single-file implementation in C +  + to be extracted and used in any context. Tools to generate heterogeneous 
connection maps are also provided with the code, all available at http://​physi​csoft​hehea​rt.​com/​downl​oads.​html 
and https://​github.​com/​micha​elcol​man/.
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