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Abstract

Lag phase is observed in bacterial growth during a sudden change in conditions:

growth is inhibited whilst cells adapt to the environment. Bi-phasic, or diauxic growth

is commonly exhibited by many species. In the presence of two sugars, cells initially

grow by consuming the preferred sugar then undergo a lag phase before resuming

growth on the second. Biomass increase is characterised by a diauxic growth curve:

exponential growth followed by a period of no growth before a second exponential

growth. Recent literature lacks a complete dynamic description, artificially modelling

lag phase and employing non-physical representations of precursor pools. Here, we

formulate a rational mechanistic model based on flux-regulation/proteome partitioning

with a finite precursor pool that reveals core mechanisms in a compact form. Unlike

earlier systems, the characteristic dynamics emerge as part of the solution, including

the lag phase. Focussing on growth of Escherichia coli on a glucose–lactose mixture

we show results accurately reproduce experiments. We show that for a single strain

of E. coli, diauxic growth leads to optimised biomass yields. However, intriguingly,

for two competing strains diauxic growth is not always the best strategy. Our descrip-

tion can be generalised to model multiple different microorganisms and investigate

competition between species/strains.
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1 Introduction

Microbial cells show four phases of growth: lag, log (exponential), stationary and

death. Lag phase is observed when microorganisms are subject to a sudden change

in conditions, such as the introduction of fresh growth media. During lag phase cells

adapt to their new environment, synthesising the cellular components necessary for

growth.

Diauxic growth, first described by Monod (1942, 1949), occurs when a microor-

ganism is presented with two sugars that can be metabolised. The microorganism

first consumes the preferred sugar until that source is almost completely exhausted,

only then switching to consume the second food source (Monod 1949). There is a lag

phase between the two phases of microbial growth on the different food sources which

appears to be the result of a trade-off between rapid adaptation to changing growth

conditions and supporting a high (and therefore competitive) growth rate (Chu and

Barnes 2016). Diauxic growth can be interpreted as a way to maximise growth on two

substrates (Kompala et al. 1984; Salvy and Hatzimanikatis 2021): the sequential use

of substrates rather than the simultaneous consumption being beneficial under a wide

range of conditions (Chu and Barnes 2016). However, the exact conditions are unclear

for which diauxic growth performs better than other strategies, such as consuming both

substrates at the same time, albeit at reduced efficiency; in a competitive environment

where the two resources are limited, which strain grows most overall?

The underlying molecular interactions governing the response of a microorganism

to a change in conditions are complex, although some important regulatory processes

have been identified. For example, E. coli produces proteins to metabolise lactose

only when lactose is present and glucose (the preferred carbon source) is absent. This

is achieved through carbon catabolite repression (CCR) and inducer exclusion. CCR

is one of the most significant regulatory processes in many bacteria, accounting for

5−10% of all bacterial genes (Görke and Stülke 2008). In E. coli, CCR is mediated by

the prevention of transcriptional activation of catabolic genes in the presence of glucose

via the catabolite activator protein (CAP). CAP senses glucose indirectly through the

‘hunger signal’ molecule cyclic adenosine monophosphate (cAMP). Glucose depletion

induces E. coli to produce more cAMP which binds to CAP, inducing a conformational

change that results in binding to DNA, stimulating transcription of the genes involved

in lactose metabolism.

The uptake of glucose inhibiting the ability of lactose permease to transport lactose

into the cell is known as inducer exclusion (Aggarwal and Narang 2022). The uptake of

glucose by the phosphotransferase system (PTS) is accompanied by the formation of

the de-phosphorylated enzyme EIIAGlc, which inactivates lactose permease by binding

to it (Hogema et al. 1998).
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The cooperative coordination of gene expression levels between these two regula-

tory mechanisms ensures that the preferred carbon source is used first, then metabolism

is reconfigured to use the secondary carbon source.

Guanosine 3′,5′-bispyrophosphate (ppGpp), which down-regulates ribosome pro-

duction and up-regulates amino acid biosynthesis genes, has been found to have an

overarching role in coordination of gene expression during glucose–lactose diauxie

(Traxler et al. 2006). The regulation of ribosome synthesis, via ppGpp, is determined

by a balance between demand for and synthesis of amino acids. This amino acid flux

has been identified as an important factor in the regulation of bacterial growth rate

(Scott et al. 2014). cAMP, which is important in the regulation of metabolism as noted

above, coordinates the expression of catabolic, biosynthetic and ribosomal proteins,

ensuring that proteomic resources are spent on distinct metabolic sectors as required

in different growth conditions (You et al. 2013).

The mechanisms responsible for reorganisation of gene expression (resource alloca-

tion) in microorganisms are generally believed to be optimised by evolution (Giordano

et al. 2016). The optimum mechanism will depend on the growth environment. For

example, in a non-competitive environment the maximisation of growth yield is

thought to provide an advantage (Giordano et al. 2016) whereas when there is compe-

tition for resources, maximising growth rate will give a competitive advantage (Ibarra

et al. 2002).

Recent theoretical studies on resource allocation have focussed on maximizing

growth rate (Scott et al. 2014, 2010). Scott et al. (2014) used a coarse-grained model

of the cell to show that maximum growth rate is acheived at a specific value of the

ribosomal protein fraction through maximisation of the amino acid flux. The amount

of protein in the cell was assumed constant and divided into related sectors (proteome

partitioning): ribosomal proteins and metabolic proteins. Increasing the number of

ribosomes therefore decreases metabolic enzyme levels. Their optimisation control

strategy was based on the amino acid pool size, assumed to be signalled via ppGpp,

controlling the fraction of total protein synthesis producing ribosomes (Scott et al.

2014). Similar models of resource allocation optimisation include energy constraints

in addition to constraints on the proteome (Maitra and Dill 2015; Weiße et al. 2015).

The above studies involve steady state models, describing an environment that is

stable over a long period of time. However, on the whole a microorganism is sub-

ject to a fluctuating range of growth conditions in its natural environment. This has

motivated the formulation of dynamic resource allocation models (Salvy and Hatz-

imanikatis 2021; Giordano et al. 2016; Pavlov and Ehrenberg 2013; Erickson et al.

2017; Basan et al. 2020; Kremling et al. 2018). Kremling et al. (2018) present an

ensemble of different models all showing diauxic behaviour. By qualitatively compar-

ing model predictions they offer an insight into the variety of mechanisms that have

been proposed to play a role in CCR. Basan et al. (2020) invesitgated shifts between

two single carbon sources reporting that long lag phases are due to the depletion of key

metabolites and resulting metabolic bottlenecks. Pre-shift growth rates were varied by

using different carbon sources and their model of sequential flux limitation predicts a

linear relationship between lag time and pre-shift growth rate. A stochastic simulation

model presented by Chu and Barnes (2016) shows that it is impossible to shorten the

lag phase without reducing the long term growth potential. Premature activation of
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the secondary metabolism shortens the lag but causes costs to the cell thus reducing

the growth rate on the preferred substrate. They predict, using simulated evolution,

that the lag phase will evolve to be longer in environments where switching is less

likely to be required and shorter in frequently changing environments. Erickson et al.

(2017) present a kinetic flux-controlled regulation model that quantitatively describes

adaptation dynamics based on the dynamic reallocation of proteomic resources. The

time evolution of gene expression is determined by regulation functions whose form

is derived from steady-state growth laws. There are limitations on the validity of

these regulation functions and in addition the model predicts constant proportionality

between growth rate and substrate uptake rate, which is not observed experimentally

during lag-phase growth.

In this study we extend and modify the model of Erickson et al. (2017) to include

accurate prediction of biomass growth and substrate uptake during an initial lag-phase

and during diauxic shift. We develop a coarse-grained model which uses qualita-

tive knowledge of the molecular processes and a flux balance approach. We have

avoided the potentially excessive complication of other models (Salvy and Hatzi-

manikatis 2021) explicitly so that we do not have large numbers of unmeasurable

parameters. Unknown kinetic parameters in the model description are related to mea-

surable kinetic parameters to minimise the need for fitting. Unlike many mathematical

models describing lag-phase (Swinnen et al. 2004; Erickson et al. 2017), we do not

introduce an artificial lag parameter to control the onset or length of the lag. Instead,

the timing of the lag-phase is determined by substrate concentrations and the initial

structure of the microorganism’s proteome.

We present a rational description, based on experimentally measurable parameters,

which reproduces all principal features of the growth curve of E. coli during the switch

from rich to minimal media and during glucose–lactose diauxie. Both the lag phase

and log phase of bacterial growth emerge as part of the solution. Such a description

(summarised in Sect. 2.3) can be used to demonstrate the relative merit of diauxic

growth over the whole growth period and explore other growth strategies.

2 Flux-Controlled Regulation of Anabolism and Catabolism

To model flux-controlled regulation (FCR) we shall adopt the modelling formalism of

Erickson et al. (2017), develop a rational mathematical approach to address modelling

inconsistencies and extend the description to describe physical aspects of precursor

and amino acid pools.

2.1 Original FCRModel

The FCR model due to Erickson et al. (2017) describes the time evolution of gene

expression and biomass growth during carbon upshifts and downshifts. The model bal-

ances carbon influx and protein synthesis flux via changes to the average translation

rate, σ , which is set by the size of a pool of central precursors including ketoacids and

amino acids. Which proteins are produced (catabolic enzymes/ribosomes) is deter-
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mined by regulation functions whose form is derived from steady-state growth laws.

The central assumption of this model is that the time-dependence of the regulation

functions during growth transitions depends solely on changes to the translation rate.

2.1.1 Limitations of the Original FCR Model

The regulation functions defined in Erickson et al. (2017) are undefined for a par-

ticular value of the translation rate, which we will call σP , and for σ > σP the

regulation functions incorrectly are negative. Although values of σ ≥ σP do not occur

during steady-state growth they can occur during growth transitions. To remove this

inconsistency and provide a firmer theoretical foundation we derive our regulation

functions directly, associated with a mathematical optimization of the growth rate (see

Sect. 2.2.5).

The original FCR model (Erickson et al. 2017) states that, on the time scale of inter-

est, all fluxes are balanced. This balance is achieved by assuming that the translation

rate adjusts abruptly with any changes to carbon influx (due to changes in substrate

availability or the concentration of a key enzyme). However, for small values of the

ribosome mass fraction or large carbon influx this can lead to large, physically unreal-

istic translation rates. We reason that as the translation rate depends on the size of the

precursor pool, which is finite, the rate must be limited. Therefore, we shall include

this limitation in our model (see Sect. 2.2.3).

Moreover, requiring flux balance in the above way results in the protein synthesis

rate, and hence biomass growth rate, only depending on the catabolic protein mass

fraction: the ribosome mass fraction drops out of the equations. The resulting constant

proportionality between growth rate and substrate uptake (the constant biomass yield)

predicted by the model of Erickson et al. (2017) does not agree with experimental

observations. Our data, which we present in Sect. 3.2.1, shows that during an initial

lag phase the ratio of growth rate to substrate uptake rate is significantly less than

it is during the subsequent log-phase growth: the biomass yield is not constant. This

suggests that growth is not being limited solely by the catabolic proteins, as this would

also limit substrate uptake, but must depend on the levels of other key proteins.

2.1.2 Factors Limiting Growth During the Initial Lag Phase

Prior to the diauxie experiment (a full description of which is given in Sect. 3.2.1)

E. coli was grown on Luria–Bertani broth (LB) which contains carbon sources and

amino acids essential for growth. Cells of E. coli growing in LB can import amino

acids directly and therefore do not need to use anabolic proteins to build amino acids.

Indeed, it has been found experimentally that E. coli grown in LB show much lower

levels of many genes involved in the amino acid biosynthetic pathways than those

grown in minimal media (Tao et al. 1999). Therefore, we propose that the lag phase

occurring when E. coli switches from growth on rich LB to minimal media is caused

by a lack of the anabolic proteins needed for the biosynthesis of amino acids. To

investigate this we extend the original FCR model to include an amino acid synthesis

flux.
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2.2 Modified and Extended FCRModel

External substrates, S j , are consumed by a microorganism, X . Inside the microbial

cell catabolic enzymes break the substrate down into precursors. Anabolic proteins

combine precursors to form amino acids that are subsequently incorporated by ribo-

somes into proteins required for growth. The relative amounts of the different enzymes

and proteins required are determined by the growth conditions and substrates being

consumed.

We construct a mathematical description of this process incorporating proteome

partitioning, flux-controlled regulation and allocation of protein synthesis via optimi-

sation of the growth rate.

2.2.1 Proteome Partitioning

Using an established model of proteome partitioning (Scott et al. 2010; Scott and Hwa

2011) we split the total protein content of the cell into different sectors, each composed

of proteins whose expression levels show similar growth rate dependency in different

growth conditions. The growth rate dependent sectors of the proteome are ribosome-

affiliated proteins, R, enzymes relating to carbon import and metabolism, C , anabolic

enzymes related to the production of amino acids, A, and an ‘uninduced’ sector, U ,

which generally decreases with decreasing growth rate (You et al. 2013). The rest of

the proteome, Q, is growth rate independent and its mass fraction is non-zero and

constant. It follows that

�R + �C + �A + �U + �Q = 1, (1)

where �i is the mass fraction of sector i . The minimum mass fraction of each sector,

�i,0, is assumed to be growth rate independent (You et al. 2013) so that for each

sector the growth rate dependent part is given by φi = �i − �i,0. Thus, in terms of

the growth rate dependent parts of the mass fractions, Eq. (1) becomes

φR + φA + φC + φU = �max,

where �max = 1 −�Q −�R,0 −�A,0 −�C,0 −�U ,0 < 1 is a constant. This can be

further simplified by noting that the uninduced sector of the proteome is found to be

related to the ribosomal sector (under C and A limitation) such that φU = εφR (You

et al. 2013). It follows that

(1 + ε)φR + φA + φC = �max. (2)

During the log phase of growth of bacterial cells, the rate of cell proliferation (the

growth rate) and the expression levels of key proteins are linearly correlated (You et al.

2013; Scott et al. 2010; Erickson et al. 2017). Each protein sector is assumed to be

regulated as a whole (You et al. 2013; Hui et al. 2015) so φi is proportional to the

expression level of a key protein in sector i , and thus to the growth rate. Denoting the

value of the mass fraction during the log phase by φ∗
i it follows that
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φ∗
R =

λ∗

νR

, φ∗
C = �max

(

1 −
λ∗

λC

)

, φ∗
A =

λ∗

νA

, (3)

where λ∗ is the constant growth rate of the E. coli cells in log phase and νR , λC and

νA are constants (see Appendix A for further details).

2.2.2 Flux-Controlled Regulation

The core mechanisms represented in our model are shown in Fig. 1. The microorganism

takes up substrates and breaks them down into carbon precursors. These precursors,

together with other essential nutrients, combine to supply the cell with a pool of

amino acids. The amino acids are utilised by ribosomes to produce proteins, Z . The

rate of protein synthesis depends on the concentration of ribosomes, R, and the average

translation rate, σA, so that dZ/dt = σA R. The total mass of protein as a fraction of

total biomass is relatively constant (Erickson et al. 2017). Therefore, the total biomass

concentration, X , is related to the total protein concentration by Z = pX , where the

constant p is the fraction of biomass that is protein. It follows that

dX

dt
= JR X , (4)

where JR = σA�R represents the protein synthesis flux and �R = R/(pX). Anal-

ogous to JR the amino acid synthesis flux is given by JA = σC�̄G , where σC is

the average amino acid synthesis rate and �̄G is the rescaled mass fraction of a key

anabolic protein, G. (We rescale �G with a factor proportional to �max to remove an

unknown constant from the equations, details are given in Appendix A.3). The rela-

tionship between �̄G and the mass fraction of the total amino acid sector, �A, where

�A = A/(pX), is discussed in Sect. A.3 of the Appendix, with Eq. (A3) giving the

explicit dependence.

The carbon influx rate, JC , is proportional to the rate of substrate uptake. We base the

substrate uptake equation on Michaelis–Menten kinetics (see Appendix B for details).

For the case where there are N substrates, with concentrations {S j } = {S1, S2, ...SN },
we have

dS j

dt
= −kmax, j

(

�̄E, j

�̄∗
E, j

)

S j

KS, j + S j

X , (5)

where �̄E, j is the rescaled mass fraction of a substrate specific catabolic enzyme

and �̄∗
E, j is the value of that mass fraction during log-phase growth on the specific

substrate. (As before, we rescale �E, j to remove an unknown constant from the

equations, details are given in Appendix A.2.) For non-repressed enzymes �̄E, j = φC ,

where φC = �C − �C,0 and �C = C/(pX). The constants kmax, j and KS, j are the

maximum uptake rate and the Michaelis constant for substrate j respectively.

We define YC, j to be the yield of carbon precursors from S j , so, obtaining the

substrate uptake rate from equation (5), it follows that the carbon influx rate due to

substrate S j is given by
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JC, j = YC, j kmax, j

(

�̄E, j

�̄∗
E, j

)

S j

KS, j + S j

, (6)

with the total carbon flux JC =
N
∑

j=1

JC, j . Note that we do not assume that YC, j is

constant, as is the case in Erickson et al. (2017), as this would result in the biomass

yield, Y j , being constant, which is inconsistent with experimental observations (as

discussed in Sect. 2.1.1). In our model YC, j and, therefore, the biomass yield, Y j ,

depend on the growth conditions and proteome structure as we now show.

2.2.3 The Finite Precursor Pool Size

When growth conditions change, the amount of carbon available to enter the growth

pathway (shown in Fig. 1), via the carbon influx, JC , is affected. An abrupt upshift in

substrate quality could cause JC to increase suddenly, resulting in a sudden increase

in the production rate of carbon precursors. The level of the A-sector proteins cannot

increase abruptly (as protein synthesis rates are proportional to the growth rate) and

a bottleneck will occur in the growth pathway. This could be dealt with by abruptly

increasing the amino acid synthesis rate, σC , as in Erickson et al. (2017), but accounting

for large changes in JC in this way requires setting unrealistically high values for σC .

Instead we note that the size of the precursor pool is limited by a cell’s capacity,

there being only finite space within a cell. Thus the abundance of carbon precursors is

limited which, as σC depends on the abundance of carbon precursors, in turn limits the

value of σC . (Similarly, the translational activity, σA, will have a maximum value.) To

maintain flux balance we propose that the carbon entering the growth pathway, JC , is

limited. This is achieved by allowing the yield of carbon precursors, YC, j , to change

as growth conditions change. Note that the substrate that is broken down but does

not enter the growth pathway will be released as product (which we do not explicitly

model). This is the case whether YC, j is constant, as in Erickson et al. (2017), or

changing, as in this model.

We let PC, j represent the concentration of carbon precursors added to the precursor

pool by the flux JC, j , defined in Eq. (6), and PA, j represent the amino acids subse-

quently synthesised from PC, j . The combined size of the carbon precursor and amino

acid pools can therefore be written as

P =
N

∑

j=1

PC, j +
N

∑

j=1

PA, j

αC, j

, (7)

where αC, j is a constant conversion factor from PC, j to PA, j . There is a maximum

value of P that can be maintained in the cell and we denote this by K . This constant, K ,

is analogous to the carrying capacity in population dynamics, the maximum population

size that can be sustained in a given growth environment. In population dynamics the

growth rate is limited by the carrying capacity, with growth tending to zero as the

population size tends towards the carrying capacity. Here we limit the fluxes entering

the carbon precursor pool so that JC, j → 0 as P → K . We have
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Fig. 1 Flux-controlled regulation model. External substrates, S j , are taken in and then broken down by

catabolic enzymes, the C-sector, to supply a pool of carbon precursors. Changes in the concentration of

the substrates and enzyme result in changes to the carbon influx, JC . Other essential nutrients, including

nitrogen, combine with these carbon precursors and are built up by anabolic proteins, the A-sector, to form

amino acids. The flux of amino acid synthesis is given by JA . A balance between JA and JC is achieved

through changes to the average amino acid synthesis rate, σC , which in turn depends on the size of the

precursor pool. The amino acids are “consumed” by ribosomes, the R-sector, in protein synthesis. The

flux of protein synthesis is given by JR . A balance between JR and JA is achieved through changes to

the average translational activity, σA , which depends on the size of the amino acid pool. The regulation

functions χR , χA and χC determine the amount of ribosomal, anabolic and catabolic proteins, respectively,

that are produced. Allocation of protein synthesis is regulated, via ppGpp and cAMP (Traxler et al. 2006;

Scott et al. 2014; You et al. 2013), in response to changes to the precursor and amino acid pools. Under

given growth conditions, there is an optimum level for each protein that will maximise the growth rate.

During growth transitions the proteins are not at optimum levels, leading to changes in the precursor and

amino acid pools and a non-optimum growth rate. In the model the regulation functions are derived directly,

associated with a mathematical optimisation of the growth rate (Image created with BioRender.com) (Color

figure online)

JC, j =
(

K − P

K

)

JC, j,0,

where JC, j,0 is the carbon flux from substrate j when P = 0 given by

JC, j,0 = YC, j,0kmax, j

(

�̄E, j

�̄∗
E, j

)

S j

KS, j + S j

.
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The constant YC, j,0 is the yield of carbon precursors from S j when P = 0. To simplify

notation we introduce the function

f j ({S j }) = αA, jαC, j YC, j,0kmax, j

(

1

�̄∗
E, j

)

S j

KS, j + S j

, (8)

so that

JC, j =
(

K − P

K

)(

1

αA, jαC, j

)

f j �̄E, j . (9)

To keep the number of variables in the model to a minimum we want the carbon

influxes JC, j to be defined only in terms of the substrate concentrations and protein

mass fractions. This means we need to know P , and therefore PC, j and PA, j , only

in terms of the substrate concentrations and protein mass fractions. This is done by

considering flux balance.

The amino acid synthesis flux is given by JA = σC�̄G , as discussed in Sect. 2.2.2,

where σC = σC ({PC, j }) depends on the abundance of carbon precursors. For sim-

plicity, we take a linear dependence, setting σC =
∑

j αC, j kC, j PC, j , where kC, j , the

uptake rate of PC, j , is a constant. The amino acid synthesis flux due to substrate j is

therefore given by JA, j = αC, j kC, j PC, j �̄G . Similarly, as the total protein synthesis

flux JR = σA�R , we take σA =
∑

j αA, j kA, j PA, j , where the constant kA, j is the

uptake rate of PA, j and αA, j is a constant conversion factor from PA, j to protein, and

obtain the protein synthesis flux due to substrate j as JR, j = αA, j kA, j PA, j�R .

The rates of change of PC, j and PA, j in terms of the fluxes, JC, j , JA, j and JR, j

are given by

dPC, j

dt
= JC, j −

1

αC, j

JA, j ,
dPA, j

dt
= JA, j −

1

αA, j

JR, j .

To achieve flux balance, changes in PC, j and PA, j are assumed to take place over a

relatively fast time scale, so that dPC, j/dt = dPA, j/dt = 0. Essentially this means

that on the timescale of interest all fluxes balance so that

JR, j = αA, j JA, j , JA, j = αC, j JC, j . (10)

Substituting for JR, j , JA, j and JC, j in equations (10) we obtain a system of 2N

equations in terms of PC, j and PA, j . These can be solved to give PC, j and PA, j in

terms of the substrate concentrations and protein mass fractions. From these we can

then work out P , using equation (7), and substituting for P into (9) we obtain

JC, j =

(

f j

αC, jαA, j

)

�̄G�R�̄E, j

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

, (11)
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where σAmax,n = αA,nαC,nkA,n K and σCmax,n = αA,nαC,nkC,n K are, respectively,

the maximum translation rate and maximum amino acid synthesis rate when only

substrate n is being consumed. Full details of the derivation of Eq. (11) are given in

Appendix C.

Comparing Eq. (11) with the definition of JC, j given by Eq. (6), it follows that

YC, j =
YC, j,0�̄G�R

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

. (12)

This equation describes how the yield of carbon precursors changes with the substrate

concentrations (through f j ) and protein mass fractions.

We now use the expression we have derived for JC, j , given by Eq. (11), and the

flux balance equations (10) to derive an equation for biomass growth.

2.2.4 Biomass Growth

The equation for biomass growth in terms of the protein synthesis flux, JR =
N
∑

j=1

JR, j ,

is given by equation (4). From flux balance we have JR, j = αA, jαC, j JC, j , with JC, j

given by Eq. (11). It follows that

dX

dt
=

(

N
∑

n=1

fn�̄E,n

)

�̄G�R

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

X , (13)

with f j , given by Eq. (8). Note that the growth rate

μ

(

=
1

X

dX

dt

)

=

(

N
∑

n=1

fn�̄E,n

)

�̄G�R

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

,

(14)

is not directly proportional to the substrate uptake rate and depends on the mass

fractions of each of the growth dependent proteome sectors. For small �R the growth

rate is limited by �R and similarly for �̄G and φC (through �̄E, j ). Crucially, for

fixed substrate concentration (constant f j ), the growth rate μ = μ(�̄G,�R, φC ) has

a unique maximum value at specific values of �̄G , �R and φC . We hypothesise that

during the log-phase cells grow at this optimal rate. This hypothesis uniquely defines
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the values of the unknown constants in Eqs. (13) and (14), σCmax, j , σAmax, j and

αA, jαC, j YC, j,0 (this latter combination of constants appears in the definition of f j ).

In terms of experimentally measurable parameters we find

σAmax, j =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
j kmax, j

(1 + ε)�∗2
R, j

, (15)

σCmax, j =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
j kmax, j

�̄∗2
G, j

, (16)

f j ({S j }) =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
j kmax, j

(

1

�̄∗
E, j

)2
S j

KS, j + S j

, (17)

where the constant Y ∗
j is the measured biomass yield during log-phase growth on

substrate j . Full details are given in Appendix D.

2.2.5 Allocation of the Protein Synthesis Flux

Allocation of protein synthesis is regulated, via ppGpp and cAMP, in response to

changes in the precursor and amino acid pools (Traxler et al. 2006; Scott et al. 2014;

You et al. 2013): protein levels are adjusted until pool sizes are optimal. Variations in

pool sizes manifest as changes to the growth rate (the size of precursor and amino acid

pools being explicitly included in the derivation of the growth rate equation (14), see

Sect. 2.2.3) and it follows that when precursor and amino acid pool sizes are optimal

the growth rate is maximal. We therefore allocate the protein synthesis flux through

regulation functions that adjust the level of proteins until the growth rate is maximal.

Proteins belonging to the growth independent sector of the proteome, Q, are pro-

duced as a constant fraction, �Q , of total protein production. Proteins belonging to the

growth dependent proteome sectors are produced in varying amounts depending on

the current state of the proteome and the growth conditions. The R, A and C sectors of

the proteome are each composed of a growth independent part and a growth dependent

part. The growth independent parts are produced at a constant fraction of total protein

produced as for sector Q. For the growth dependent parts we define regulation func-

tions χR , χC and χA to represent the fraction of the total amount of protein produced

that is R-sector, C-sector, and A-sector protein respectively so that

dR

dt
=

(

�R,0 + χR

) dZ

dt
, (18a)

dC

dt
=

(

�C,0 + χC

) dZ

dt
, (18b)

dA

dt
=

(

�A,0 + χA

) dZ

dt
. (18c)

As the total amount of protein Z = pX the regulation functions are constrained by

(1 + ε)χR + χC + χA = �max, (19)

123



Emergent Lag Phase in Flux-Regulation Models of… Page 13 of 58 84

and we also require χR ≥ 0, χC ≥ 0 and χA ≥ 0 as protein is not recycled or destroyed

(this is a simplifying assumption of our model). Using the relationships between

biomass concentration and total protein concentration, and protein concentrations and

protein mass fractions, given in Sect. 2.2.2, we rewrite Eq. (18) in terms of the growth

dependent protein mass fractions (details given in Appendix E). We have

dφR

dt
= (χR − φR) μ, (20a)

dφC

dt
= (χC − φC ) μ, (20b)

dφA

dt
= (χA − φA) μ, (20c)

with the growth rate, μ, given by Eq. (14). Substrate specific enzymes belong to the

C sector and their regulation therefore depends on χC . We set

dφ̄E, j

dt
=

(

χE, j − φ̄E j

)

μ, (21)

where χE, j is the regulation function for the substrate specific enzyme. For enzymes

that are always expressed proportional to the whole C sector we have χE, j = χC ,

however, if an enzyme is repressed under certain conditions this is not the case. Here

we set

χE, j = η j

(

ζ j�max + χC

(

1 − ζ j

))

, (22)

where the function ζ j (φ̄E, j , φC ) switches χE, j from its maximum level, χE, j = �max,

for φ̄E, j ≪ φC to χE, j = χC for φ̄E, j ∼ φC . The choice of

ζ j =
1

2

(

1 − tanh

(

1

ǫ

(

φ̄E, j

φC

−
1

2

)))

, (23)

where ǫ ≪ 1, facilitates such a switch smoothly (for φ̄E, j ≪ φC we have ζ j → 1

and for φ̄E, j ∼ φC we have ζ j → 0). The function η j ({S j }), 0 ≤ η j ≤ 1, depends

on which substrates are present in the system and determines whether a substrate

specific enzyme is being expressed. For example, when modelling glucose–lactose

diauxie, the glucose specific enzyme will always be expressed so we set ηgl = 1 (note

also that as φ̄E, j = φC when an enzyme is always expressed we have ζgl = 0 and

hence χE,gl = χC ). However, the lactose specific enzyme is only expressed when the

concentration of glucose drops sufficiently. The point at which lactose uptake switches

on is not very well defined but we require ηla ≪ 1 when the glucose concentration,

Sgl, is large and ηla → 1 as Sgl → 0. This can be modelled by setting

ηla =
K 2

L + ξ S2
gl

K 2
L + S2

gl

, (24)
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where KL is a constant and ξ ≪ 1 gives the level of lactose specific enzyme expression

in the presence of glucose (the pre-expression level). This choice of function enables a

smooth transition between repressing lactose uptake when glucose concentrations are

high and no repression of lactose uptake at zero glucose concentration. Glucose levels

must drop so that Sgl ≈ KL before the lactose specific enzyme is fully expressed. A

similar functional form is used in Okano et al. (2020) to model enzyme regulation in

the hierarchical use of substrates by E. coli.

As stated above, we require the regulation functions in our model to adjust the level

of proteins until, for the given conditions i.e. substrate concentrations, the growth rate

is maximised. To derive the regulation functions we make use of the standard calculus

result that the greatest rate of increase of a function at a given point is in the direction

given by the gradient of that function at that point. As the regulation functions are

constrained we set

χR = φR +
C({S j })

1 + ε

((

1

1 + ε

)

∂μ

∂φR

− γ ({S j })
∂μ

∂φC

− (1 − γ ({S j }))
∂μ

∂φA

)

,

(25a)

χC = φC + C({S j })
(

∂μ

∂φC

− γ ({S j })
∂μ

∂φA

− (1 − γ ({S j }))
(

1

1 + ε

)

∂μ

∂φR

)

,

(25b)

χA = φA + C({S j })
(

∂μ

∂φA

− (1 − γ ({S j }))
∂μ

∂φC

− γ ({S j })
(

1

1 + ε

)

∂μ

∂φR

)

,

(25c)

which satisfies Eq. (19). The function C({S j }) is chosen to ensure that (1 + ε)χR , χC

and χA never individually exceed �max, and γ ({S j }) is chosen to ensure that χR ≥ 0,

χC ≥ 0 and χA ≥ 0. Details of the derivation of C({S j }) and γ ({S j }) are given in

Appendix F.

These regulation functions are a mathematical representation of protein synthesis

regulation via ppGpp and cAMP: protein levels are adjusted to optimise growth rate

in a given environment. The regulation functions are never negative and the constraint

on protein production, given by Eq. (19), is always satisfied.

From here on we will not solve explicitly for φA as its value is determined from φR

and φC using equation (2).

2.3 Governing Equations

In summary, we have constructed a mechanistic model describing the time evolu-

tion of biomass growth, substrate concentration and gene expression during carbon

upshifts and downshifts. Phases of microorganism growth emerge from the dynamics

of the proteome, rather than being switched on/off at a particular time. The model

incorporates proteome partitioning, flux-controlled regulation and optimal allocation

of protein synthesis. The governing equations are
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dS j

dt
= −kmax, j

(

�̄E, j

�̄∗
E, j

)

S j

KS, j + S j

X , (26a)

dφR

dt
= (χR − φR) μ, (26b)

dφ̄E, j

dt
=

(

χE, j − φ̄E j

)

μ, (26c)

dX

dt
= μX , (26d)

with the growth rate, μ = μ({S j },�R, {�̄E, j }), given by equation (14). An overview

of the model variables and parameters is given in Tables 1 and 2.

The exact mechanism underlying the inhibition of substrate uptake is not made

explicit in the model, making it flexible and applicable to many processes. In addi-

tion, the description can be generalised to model multiple different microorganisms,

facilitating investigation of competition between different species or strains.

The model can be applied to describe lag phases caused by a lack of ribosomal

proteins, anaobolic proteins or catabolic proteins. Indeed, unlike previously published

models (Erickson et al. 2017; Salvy and Hatzimanikatis 2021; Wu et al. 2023), this

model can capture more complex systems where there are sequential lag phases, for

example an initial lag due to a change from rich to minimal growth media (lack of

anabolic proteins) followed by a diauxic shift (lack of specific catabolic protein).

We now apply our model to the particular case of E. coli growing on a

glucose–lactose mixture, comparing numerical results to data from the literature and

preliminary experimental data.

3 Results

We first parameterize and test our mathematical model using the E. coli glucose–

lactose diauxie experimental data from Erickson et al. (2017). We then test the model

against our own experimental data, which in addition to the glucose–lactose diauxic

shift includes an initial lag due to a change from rich to minimal growth media.

3.1 Simulation 1: Modelling a Single Lag Phase

We simulated the diauxic shift of E. coli growing on a mixture of glucose and lactose

and compared our results to experimental data from Erickson et al. (2017). Full details

of the governing equations and parameters used in the numerical simulations are given

in Appendix G. The equations were solved in Matlab (MATLAB 2020) using the solver

ode15s.

Figure 2 shows simulation results from our model, simulation results we have

reproduced using the model of Erickson et al. (2017) and experimental data taken

from Figure 3 of Erickson et al. (2017). Figure 2a shows growth curves of E. coli

grown on 0.03% glucose and 0.2% lactose. Our model results are shown as the solid
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Table 1 Overview of model variables

Variable Description

S j Concentration of j th substrate

X Concentration of biomass

φR Growth-dependent mass fraction of R-sector proteins

φC Growth-dependent mass fraction of C-sector proteins

φA = �max − (1 + ε)φR − φC Growth-dependent mass fraction of A-sector proteins

�R = �R,0 + φR Total mass fraction of R-sector proteins

�̄E, j Total mass fraction of substrate specific C-sector protein

�̄G = �̄G,0 + φA Total mass fraction of key A-sector protein

f j ({S j }) Defined in Eq. (17) Substrate dependent function

μ Defined in Eq. (14) Growth rate

χR Defined in Eq. (25a) Fraction of growth-dependent protein produced that is R-sector

χC Defined in Eq. (25b) Fraction of growth-dependent protein produced that is C-sector

χE, j Defined in Eq. (22) Regulation function for substrate specific catabolic enzyme

ζ j (φ̄E, j , φC ) Defined in Eq. (23) Function determining whether substrate specific enzyme is expressed

η j ({S j }) Example given in Eq. (24) Function determining whether substrate specific enzyme is expressed

C({S j }) Defined in Appendix F Ensures that (1 + ε)χR and χC do not exceed �max

γ ({S j }) Defined in Appendix F Ensures that χR and χC are positive

A full description and derivation of variables is given in the text

1
23



Em
erg

en
t

Lag
P

h
ase

in
Flu

x-R
eg

u
latio

n
M

o
d

els
o

f…
P

ag
e 1

7
 o

f 5
8

8
4

Table 2 Overview of model parameters

Parameter Description

Y ∗
j

Biomass yield measured during log-phase growth on substrate S j

kmax, j Maximum uptake rate of S j

KS, j Half saturation constant on S j

νR Fitted parameter in growth law

λC Fitted parameter in growth law

νA =
(

�max
λC

− (1+ε)
νR

)−1
Fitted parameter in growth law

�max Total combined mass fraction of growth dependent proteins

ε Constant relating uninduced sector to R-sector

φ∗
R, j

=
Y ∗

j kmax, j

νR
Value of φR during log-phase growth on substrate S j

φ∗
C, j

= �max

(

1 −
Y ∗

j kmax, j

λC

)

Value of φC during log-phase growth on substrate S j

φ∗
A, j

=
Y ∗

j kmax, j

νA
Value of φA during log-phase growth on substrate S j

�R,0 Minimum ribosomal mass fraction

�G,0 Minimum mass fraction of key A-sector protein

σAmax, j =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
j kmax, j

(1 + ε)�∗2
R, j

Maximum translation rate when consuming S j

σCmax, j =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
j kmax, j

�̄∗2
G, j

Maximum amino acid synthesis rate when consuming S j

A full description and derivation of parameters is given in the text

1
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Fig. 2 Comparison of simulation results using our model and the model of Erickson et al. (2017) with

experimental data taken from Figure 3 of Erickson et al. (2017). a Growth curves of E. coli grown on

0.03% glucose and 0.2% lactose. The solid black line shows results of our model, the dashed black line

shows results using the Erickson model (Erickson et al. 2017) and red circles show experimental data. b

Expression level of lactose specific catabolic enzyme PlacZ. The solid black line shows results of our model,

the dashed black line shows results using the Erickson model (Erickson et al. 2017) and green triangles

show experimental data. c Comparison of regulation functions in the two models. Solid lines show this

model and dashed lines the Erickson model. The main difference between the models is in the regulation

of the C sector at the point of diauxic shift. In our model the large upscaling of enzyme production affects

only the lactose specific enzyme whereas in the Erickson model the whole C sector is upregulated. Vertical

dashed lines indicate the diauxic shift (Color figure online)

black line, the dashed black line shows results using the Erickson model (Erickson

et al. 2017) and red circles show experimental data. There is a discrepancy between

the results of the Erickson model we have reproduced here and those shown in Figure

3 of Erickson et al. (2017). This is due to the miscalculation of a scaling factor in

the original work that we have corrected (the predicted response immediately after

shift quoted in the caption to Figure 3 in Erickson et al. (2017) as 7866 Uml−1OD600

should be 8280Uml−1OD600). Figure 2b shows the expression level of lactose specific
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catabolic enzyme PlacZ. The solid black line shows results of our model, the dashed

black line shows results using the Erickson model (Erickson et al. 2017) and green

triangles show experimental data. The expression of PlacZ is repressed in the presence

of glucose but then increases rapidly on depletion of glucose, which occurs at t = 0

shown by the vertical dashed line. A comparison of regulation functions in the two

models is shown in Fig. 2c. Solid lines show the regulation functions for our model

and dashed lines for the Erickson model with χR (red), χC (blue) and χE,la (green).

The main difference between the models is in the regulation of the C sector at the

point of diauxic shift. In our model the large upscaling of enzyme production affects

only the lactose specific enzyme whereas in the Erickson model the whole C sector is

upregulated.

Results show that both models reproduce the growth curve and enzyme expression

level well with our model fitting slightly better to the growth curve data (residual sum

of squares (RSS) 1.6 × 10−3 our model, 3.8 × 10−3 Erickson model) and Erickson

model fitting slightly better to the PlacZ expression level (RSS 1.2 × 10−3 our model

and 4.1 × 10−4 Erickson model).

3.2 Simulation 2: Modelling Two Sequential Lag Phases

We now use our model to describe a more complex experimental system where there

are two sequential lag phases: an initial lag due to a change from rich to minimal growth

media followed by a diauxic shift. To accurately predict the time evolution of biomass

and substrate concentrations in such a system a model must include multiple proteome

sectors and a variable biomass yield. These features are included in our model unlike

previously published models (Pavlov and Ehrenberg 2013; Erickson et al. 2017; Salvy

and Hatzimanikatis 2021) which are, therefore, unable to model this system.

3.2.1 Methods

We recreated the glucose–lactose diauxie experiment of Mostovenko et al. (2011),

using mixed E. coli strains. The following two strains were employed: E. coli MV1717

(MG1655 lac+ containing chromosome-encoded, inducible CDI-msfGfp, chloram-

phenicol (Cm) resistance) and E. coli MV1300 (MG1655 delta lacZYA; kanamycin

(Kan) resistance). Strain MV1717 can grow on lactose (lac+), while MV1300 cannot

utilise lactose (lac−) as it is missing the lacY gene that encodes lactose permease, a

membrane transporter that pumps lactose into cells. This characteristic was confirmed

by growth on MacConkey agar, as shown in Fig. 3, where MV1717 (lac+) colonies

grow pink and MV1300 (lac−) colonies grow colourless (white).

Strains were grown separately overnight on Luria–Bertani agar (LB-agar Miller;

LMM0204, Formedium, Hunstanton, UK) at 37°C. A single colony of each strain was

then grown overnight in 50 mL Falcon tubes containing 25 mL LB medium (LB broth,

Miller; BP9723-500, Fisher BioReagents, Loughborough, UK) at 37°C with 120 rpm

orbital shaking. Both the LB-agar and LB broth contained antibiotics: 30 µg/mL Kan

for MV1300 and 34 µg/mL Cm for MV1717 respectively. The use of antibiotics was
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Fig. 3 The two utilised E. coli

strains growing on differential

MacConkey agar. Lactose

fermenters grow red or pink,

cells unable to utilise lactose do

not change colour. Left:

MV1717 a lactose fermenting

(lac+) strain. Right: MV1300 a

non-lactose utilising (lac−)

strain (Color figure online)

necessary for the qPCR we carried out which targeted plasmids carried by these strains

that were used for quantification.

Biomass was measured using an established OD vs cell density relationship for

E. coli (Brown 2010). (Note that whilst OD will likely depend on the geometry of

cells, granularity and other aspects, it is commonly assumed to be proportional to

biomass.) When the optical density at 600 nm (OD600) reached 1.4 (∼ 1.1 × 109

cells/mL), the biomass from each tube was harvested via centrifugation (Centrifuge

5810 R, Eppendorf) at 1940×g, 37°C. Supernatants were removed and the pellet

was resuspended in 10 mL of warm (37°C) filter sterile 1x phosphate buffered saline

(PBS 20-7400-10, Severn Biotech Ltd.). The biomass was spun again with the same

parameters. The PBS was removed and the pellet was resuspended in 10 mL of 1x

Morpholinepropanesulfonic acid (MOPS) minimal medium (Teknova, Hollister, CA,

USA).

The strains were mixed in 1:1 ratio (v/v) prior to inoculation and OD600 measured

(the inoculum OD600 was 6.82). The mixed culture was used to inoculate a 3 L glass

autoclavable bioreactor (Applikon Biotechnology, Delft, The Netherlands) with 1 L of

1x MOPS minimal medium (Teknova, Hollister, CA, USA) containing 0.5 g/L glucose

and 1.5 g/L lactose as the only carbon sources (Traxler et al. 2006; Mostovenko et al.

2011). Bioreactor temperature was maintained at 37°C (±0.3°C) via a recirculating

water bath (OLS200, Grant Instruments). Culture pH was monitored and logged via

a Bio Controller (ADI 1010, Applikon Biotechnology, Delft, The Netherlands) and

maintained at pH 7.2 ± 0.05 by addition of 2 M NaOH. Dissolved oxygen was main-

tained above 20% saturation by adjusting agitation speed in the range of 270 - 500

rpm (Motor Controller, ADI 110, Applikon Biotechnology, Delft, The Netherlands)

with fixed 1 L/min air flow (Traxler et al. 2006).

To monitor cell density and glucose and lactose concentration, 2 mL samples were

collected every 30 min before and after diauxie and every 10 min near and during the
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Fig. 4 Mixed E. coli strains diauxic growth profile on glucose and lactose. a Growth curves of three

independent biological replicates illustrating the transitions between the initial lag phase, lag phase due

to diauxic shift and the stationary phase as all sugars are depleted. b Glucose and Lactose concentrations

relating to different parts of the growth curve for replicate experiment 3; black line and circles in a, shown

again here for completeness. Glucose (blue line, squares) is initially depleted by both strains (MV1717,

MV1300) before a lag phase induced by the diauxic shift to lactose fermentation. Vertical dashed lines

indicate the passage of diauxic shift (Color figure online)

diauxic shift, as described in Mostovenko et al. (2011). E. coli growth was measured by

assessing OD600 using a Thermo Spectronic Biomate 3 UV-Visible spectrophotome-

ter (ThermoFisher Scientific, UK) zeroed against an uninoculated growth medium

blank. For large values of OD600 (> 0.4), we calculated OD600 based on samples

that were diluted in media and remeasured. The concentrations of glucose and lactose

were assayed using enzymatic kits (CBA086, Sigma-Aldrich and K624, BioVision,

respectively). Aliquots of cells were also cultured on MacConkey agar and incubated

at 37°C overnight for differentiation and enumeration of lactose and non-lactose fer-

menting strains.

Cell density and glucose and lactose concentration measurements allowed the accu-

rate establishment of the initial lag phase (caused by the switch from growth on rich

LB to minimal media) and the onset of diauxic growth, see Fig. 4.

During the initial lag phase (up to around 200 min) substrate is taken up (the glucose

level declines; see blue line and squares in Fig. 4b) but the growth rate is significantly

less (the gradient of the growth curve, black line and circles in Fig. 4b, is much less

for t < 200 min than for t > 200 min). The longer initial lag phase observed in

experiments 1 and 2 is likely due to the fact that the two cultures used to inoculate

experiments 1 and 2 were slightly older (20 h post inoculation) compared to experiment

3 (18 h post inoculation). Diauxie began when the culture reached OD600 of ∼ 0.5

or a density of approximately 4 × 108 cells/mL (Brown 2010) and was indicated by

a 20−30 min plateau in the growth curve (Fig. 4). The OD600 of the diauxic shift

was comparable in three experiments (OD600 of 0.52, 0.59, 0.55), see Fig. 4a and

Mostovenko et al. (2011). The onset of diauxie corresponded to exhaustion of glucose

in the growth media. Lactose was depleted at around 250 min after the diauxic shift

and growth reached stationary phase when OD600 ∼ 2. Data for qPCR indicate that

MV1717 and MV1300 are present in approximately equal numbers while glucose is
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Fig. 5 The enumeration of lactose (MV1717) and non-lactose (MV13000) fermenting strains on Mac-

Conkey agar. BD = samples in exponential growth before the diauxic shift (420 min); DI–DIII = samples

during the diauxic shift (470, 480 and 490 min, respectively); AD = samples after the diauxic shift and

during exponential growth (600 min). Bars represent the standard deviation of three replicates (n = 3). The

significance of differences was analysed by two-way ANOVA test (****P < 0.0001; ns, not significant)

and performed using GraphPad Prism software version 9.0.2 (Motulsky 2021) (Color figure online)

available in the media but that only MV1717 continues to grow after the lag phase

associated with the switch to fermenting lactose, see Fig. 5. These cells reach stationary

phase once the sugar sources have been depleted.

These results clearly demonstrate the lag phases associated with switching from

rich to minimal media and glucose/lactose diauxie. Growth is interrupted and then

resumed as the cells switch metabolic pathways.

3.2.2 Comparison with Experiment

We have two strains of E. coli, with concentrations X1 and X2, one of which, X2, cannot

grow on lactose. Both strains are initially grown on a rich media (LB broth). The strains

are then mixed in a 1 : 1 ratio and transferred to a minimal media containing a mixture

of glucose (0.5g/L) and lactose (1.5g/L) as the only carbon source. Measurements of

the concentrations of glucose, Sgl, lactose, Sla, and total biomass, X1 + X2, are taken

at intervals from the point at which the strains are transferred to the minimal media,

t = 0.

Full details of the governing equations and parameters used in the numerical sim-

ulations are given in Appendix H. The equations were solved in Matlab (MATLAB

2020) using the solver ode15s. Results showing the predicted concentration of sugars

and total biomass over time are shown as the solid lines in Fig. 6a with the experimental

data (shown as crosses) plotted for comparison. The mass fractions of the proteome

sectors are plotted in Fig. 6b for both strains.

The model predicts very slow initial biomass growth even though substrate is being

taken up, which is in good agreement with the experimental data. The initial slow

growth is due to the protein mass fractions being at non-optimum levels for growth

on glucose in a minimal media. The strains, having previously been growing in a

rich media, have a low level of anabolic A-sector proteins, hence �̄G is small (see

Fig. 6b), resulting in slow growth. As the growth rate increases, the mass fractions

move towards their optimum levels for glucose consumption. On depletion of glucose,
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Fig. 6 Mixed E. coli strains diauxic growth profile on glucose and lactose. a Solid lines show numerical

predictions of glucose (blue) and lactose (red) concentrations and growth curve (black). Experimental data

(Experiment 3 in Fig. 4) are shown as crosses. The growth curve is the sum of biomass of both strains,

X1 + X2. The model predicts a sequence of regimes. Initially there is very slow biomass growth even though

substrate is being taken up, which is in good agreement with the experimental data. The diauxic shift can

clearly be seen in the predicted growth curve at around 8 h, in agreement with experiment. b Mass fractions

of R-sector proteins (blue), C-sector proteins (red), lactose specific enzyme (magenta) and A-sector proteins

(green) for strain 1 (solid lines) and strain 2 (dashed lines). The initial low level of A-sector proteins (�̄G )

results in slow growth and, as protein production is proportional to growth rate, slow change in protein mass

fractions. As the growth rate increases the mass fractions move towards their optimum levels for glucose

consumption. Strain 2 stops growing when glucose is depleted and its protein mass fractions stop changing.

Strain 1 begins to consume lactose and readjusts its protein mass fractions, most notably the level of lactose

specific enzyme, towards levels optimum for lactose consumption. Strain 1 stops growing when lactose is

depleted, at around 12 h, and its protein mass fractions stop changing (Color figure online)

strain 2 stops growing and its protein mass fractions stop changing. The protein mass

fractions of strain 1, notably that of the lactose specific enzyme, are at non-optimal

levels for lactose consumption and its growth slows, the lag phase. We measure the lag

duration as the period when growth rate has dropped below 50% of the maximum on

glucose. The model predicts the lag-phase to occur between 450 and 475 min in good

agreement with the experimentally observed lag phase between 470 and 490 min. (The

accuracy of determining the lag-phase duration from the data is obviously constrained

by the frequency of measurements, in this case every 30 min pre and post diauxic shift

and every 10 min during the shift).

As strain 1 begins to consume lactose its protein mass fractions adjust to optimise

lactose consumption, most notably the mass fraction of the lactose specific enzyme.

Strain 1 stops growing when lactose is depleted, at around 12 h, and its protein mass

fractions stop changing. There are differences between model predictions of lactose

concentration (zero at 12 h) and experimental data (lactose not fully depleted after

12 h). As a microorganism enters the stationary phase different proteins, required for

survival in nutrient deprived conditions, must be expressed (Jaishankar and Srivastava

2017). We do not consider this in our model, as we are primarily focused on describing

the lag phases, and this may explain the observed discrepancies.

It can be seen from Fig. 6a that our description captures all principal features of the

non-trivial growth curve of E. coli glucose–lactose diauxie. The lag-phase and diauxic

shift are reproduced accurately using our rather fundamental model with minimal

fitting and without the need for introducing an artificial lag parameter. All phases of
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growth, including the initial lag and diauxic shift, are determined from the structure

of the microorganism’s proteome.

We now present the results of a sensitivity analysis looking at how changes to the

fitted parameters affect the model predictions.

3.3 Sensitivity Analysis

The parameters Y ∗
gl, Y ∗

la, �G,0, KL and ǫ were determined to give a best fit to both the

Erickson et al. (2017) data and our experimental data. For consistency, all parameters

(fitted and those taken from the literature) have the same values for both simulations

with the exception of the log-phase yields Y ∗
gl and Y ∗

la. This is because the yield depends

on the ratio of OD600 to g/L of biomass which will differ between the Erickson et al.

(2017) experiment and our own experiment. We do, however, keep the ratio Y ∗
gl : Y ∗

la

the same for both simulations.

The best fit values are given in Table 5 of Appendix G. The log-phase yields in

the table are those fitted to the Erickson et al. (2017) data; fitting to our data gives

Y ∗
gl = 0.67 and Y ∗

la = 0.536.

Figures 7 and 8 show results from simulation 1 and 2 respectively for different

values of the fitted parameters (experimental data is also shown for comparison). The

parameters KL and ǫ were fitted to simulation 1 as in this case we have data for enzyme

expression levels as well as biomass. The parameter �̄G,0 was fitted to simulation 2

as it has negligible effect on the results of simulation 1 as there is no initial lag phase.

The log-phase yields were fit to both simulations seperately, as discussed above.

In Figs. 7 and 8 the predicted curve using the best fit parameters is shown in red.

In each subfigure one parameter is varied while all other parameters are fixed (to the

values given in Tables 4 and 5 in Appendix G). As expected, changing the yields on

glucose and lactose alters the final biomass concentration; a lower yield value giving

lower final biomass concentration and vice versa (see Figs. 7a, b, and 8a, b). This is

more evident for simulation 2 (Fig. 8a, b) where the simulation is run until lactose is

depleted.

The constant KL determines when the lactose specific enzyme starts to be expressed

via the function

ηla =
K 2

L + ξ S2
gl

K 2
L + S2

gl

,

and ǫ affects the rate of production of lactose specific enzyme via the function

ζla =
1

2

(

1 − tanh

(

1

ǫ

(

φ̄E,la

φC

−
1

2

)))

.

For values of Sgl ≫ KL we have ηla ≈ ξ ≪ 1 and the lactose specific enzyme is

expressed only at a very low level. This expression level increases only when glucose

levels drop so that Sgl ≈ KL . Reducing KL increases the length of the diauxic lag

phase as glucose levels must reach a lower value before lactose begins to be consumed

123



Emergent Lag Phase in Flux-Regulation Models of… Page 25 of 58 84

Fig. 7 Comparison of numerical solutions when values of fitted parameters are varied (experimental data

shown as red circles (biomass) and green triangles (PlacZ concentration)). a The fitted value, Y ∗
gl = 0.24,

is shown in red. Reducing Y ∗
gl (Y ∗

gl = 0.14 shown in blue) decreases the biomass growth on glucose and

brings forward the time of diauxic shift to t ≈ −10 min. Conversely, increasing Y ∗
gl (Y ∗

gl = 0.34 shown in

green) increases the biomass growth on glucose and the diauxic shift occurs later at around t = 10 min.

b The fitted value, Y ∗
la = 0.192, is shown in red. Reducing Y ∗

la (Y ∗
la = 0.092 shown in blue) or increasing

Y ∗
la (Y ∗

la = 0.292 shown in green) has little effect on the predicted growth curve. c, d The fitted value,

KL = 10−3, is shown in red. Reducing KL (KL = 10−4 shown in blue) means that the glucose level must

reach a lower value before the lactose specific enzyme is expressed. This increases the length of the diauxic

lag. Conversely, increasing KL (KL = 10−2 shown in green) means that the lactose specific enzyme is

expressed at higher glucose levels which shortens the diauxic lag. The fitted value was chosen to give a

best fit to both the growth curve and enzyme expression level curve. e The fitted value, ǫ = 0.01, is shown

in red. Reducing ǫ (ǫ = 0.005 shown in blue) decreases the production rate of lactose specific enzyme

more quickly. Conversely, increasing ǫ (ǫ = 0.02 shown in green) means that the production rate of lactose

specific enzyme is higher for longer (Color figure online)
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Fig. 8 Comparison of numerical solutions when values of fitted parameters are varied (experimental data

shown as black crosses). a The fitted value, Y ∗
gl = 0.67, is shown in red. Reducing the log-phase yield

(Y ∗
gl = 0.57 shown in blue) decreases the biomass concentration. Conversely, increasing the log-phase

yield (Y ∗
gl = 0.77 shown in green) increases the biomass concentration. b The fitted value, Y ∗

la = 0.536, is

shown in red. Reducing the log-phase yield (Y ∗
la = 0.436 shown in blue) decreases the biomass concentration

post diauxic shift. Conversely, increasing the log-phase yield (Y ∗
la = 0.0.436 shown in green) increases the

biomass concentration post diauxic shift. c The fitted value, �G,0 = 2.6×10−5, is shown in red. Reducing

�G,0 (�G,0 = 1.3 × 10−5 shown in blue) reduces the initial growth rate, increasing the time taken for

the protein mass fractions to reach their optimum levels thus increasing the length of initial lag phase. The

final biomass yield is also reduced. Conversely, increasing �G,0 (�G,0 = 5.2 × 10−5 shown in green)

increases the initial growth rate, shortens the initial lag phase and increases final biomass concentration.

The qualitative behaviour of the growth curve is similar for all cases shown (Color figure online)

(Fig. 7c, d). If on the other hand KL is increased the lag phase will shorten, with

the extreme case KL → ∞ (ηla = 1) removing the diauxic lag phase completely

(glucose and lactose are consumed simultaneously). The function ζla is essentially a

smoothed-out step function (ζla = 1 for φ̄E,la < φC/2 and ζla = 0 for φ̄E,la ≥ φC/2)

with the parameter ǫ defining the sharpness of the step (as ǫ → 0 we tend towards a

step function, for larger ǫ the change from 1 to 0 as φ̄E,la increases is more gradual).

For small ǫ (a steep changing ζla) the production of lactose specific enzyme is reduced

from the maximum level �max quite sharply when φ̄E,la ≈ φC/2. As ǫ increases the

production rate drops more slowly as φ̄E,la increases past φ̄E,la ≈ φC/2. This means

that for larger ǫ we have a higher production rate of enzyme for longer, as can be seen

in Fig. 7e where the expression level of lactose specific enzyme increases at a higher

rate for larger values of ǫ.
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Changing the minimum mass fraction of the key anabolic protein, �G,0, alters the

length of the initial lag phase and the final combined biomass concentration (Fig. 8c).

The lower the value of �G,0 the slower the initial growth rate, increasing the time

taken for the protein mass fractions to reach their optimum levels thus increasing the

length of initial lag phase. The final biomass yield is also less for smaller �G,0.

3.4 Applying theModel to Investigate Different Growth Strategies

Diauxic growth is usually regarded as a process by which a microorganism max-

imises growth, however, during the diauxic lag phase there is a significant loss of

growth. There is a trade-off between consuming the preferred sugar efficiently, max-

imising the microorganism’s long-term growth, and lost growth during the switch as

the microorganism adjusts to using the secondary sugar. Are there conditions under

which diauxic behaviour is an advantage and others which favour simultaneous con-

sumption of resources?

When resources are scarce, a strain that can outgrow its competitors will have an

advantage (Giordano et al. 2016). In the following we compare two strains with the

same initial biomass, hence we define the ‘better’ growth strategy as belonging to the

strain with a higher final biomass concentration.

To examine whether diauxie is beneficial for growth we use our parameterised

model to simulate the growth of two different strains of E. coli. We let XD denote a

diauxic strain (the same as X in simulation 1) and introduce a theoretical strain, XND,

which does not exhibit diauxie. This non-diauxic strain consumes glucose and lactose

simultaneously, so that ηla,ND = 1 (this is the limit KL → ∞ noted in Sect. 3.3).

All other growth parameters are assumed to be the same as for XD given in Tables

4 and 5. Initial conditions for both strains are identical and equal to those used in

simulation 1, described in Appendix G, with the exception of those for the lactose

specific enzyme. For XD we have φ̄E,la,D = ξ�max (the pre-expression level) and for

XND we have φ̄E,la,ND = φC as the enzyme will always be expressed for this strain

(lactose consumption is not inhibited for the non-diauxic strain).

We first use our parameterised model to predict growth curves when only XD is

present and when only XND is present. We then simulate the growth for the two strains

in competition (for this simulation we assume the initial biomass to be split equally

between the two strains). The results are shown in Fig. 9. When only one strain is

present (Fig. 9a) the final biomass concentration is higher for XD (blue) than XND

(green): in this case it is beneficial to grow diauxically. The diauxic strain blocks the

uptake of lactose when glucose is present, using all of the cells’ resources to metabolise

glucose. The non-diauxic cells must share their resources to break down glucose and

lactose simultaneously, reducing the efficiency and lowering the final biomass yield. If

however, we look at the case where the diauxic and non-diauxic strains are competing

for resources, growth curves are shown in Fig. 9b, we find that XND (green) outgrows

XD (blue). The total biomass, XD + XND (black curve), is lower than in the case of

growth only on XD (blue curve in Fig. 9a) but higher than that on only XND (green

curve in Fig. 9a). When both sugars are present, the growth rate of the non-diauxic

strain (consuming two sugars simultaneously) is higher that that of the diauxic strain
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Fig. 9 Growth curves for E. coli strains growing on a 0.3 g/L glucose/2.0 g/L lactose mixture. a Growth

curves from two simulations with only one strain present (no competition): diauxic strain XD (blue); and

non-diauxic strain XND (green). The strain exhibiting diauxie, XD has a higher final biomass as it is able

to consume glucose efficiently in the presence of lactose. b Growth curves from one simulation where two

strains XD (blue) and XND (green) are competing for resources. The non-diauxic strain, XND, out-competes

the diauxic strain, XD. Initially XND has a higher growth rate than XD as it consumes both glucose and

lactose simultaneously. In addition, it is able to consume lactose efficiently immediately on exhaustion of

glucose. These two factors give it a competitive advantage over the diauxic strain (Color figure online)

giving it a competitive advantage. In addition the non-diauxic strain has no pause in

growth on depletion of glucose, no diauxic shift, giving it a further advantage over the

diauxic strain.

We find that when a single strain of E. coli is growing on a mixture of glucose

(0.3 g/L) and lactose (2.0 g/L), it is better to consume the two sugars sequentially,

however, when strains are competing for these resources it is not necessarily benefi-

cial for a strain to grow diauxically. To investigate whether this remains the case for

different glucose–lactose mixtures, the simulations were repeated for a range of dif-

ferent initial concentrations of glucose and lactose. Each simulation was run until all

sugars were depleted and the final biomass concentration for each strain was obtained.

The ratio of the final biomass of the two strains XD/XND was calculated. The results

for the non-competitive case are shown in Fig. 10a. The diauxic strain performs better,

XD/XND > 1, for the majority of initial concentrations of glucose and lactose. The

non-diauxic strain has a higher biomass, XD/XND < 1, only when the initial concen-

tration of glucose is much higher than the initial concentration of lactose. Figure 10b

shows the results for the competitive case. The non-diauxic strain always has a higher

final biomass, XD/XND < 1, when the strains are competing for the same resources.

The results in Fig. 9 show that on a mixture of 0.3 g/L glucose 2.0 g/L lactose,

the diauxic strain has a lower growth rate but a higher biomass yield than the non-

diauxic strain. By running the simulations over a range of initial concentrations of

glucose and lactose, results shown in Fig. 10, we find that, except when the initial

concentration of glucose is much higher than the initial concentration of lactose, we

have the same situation: the diauxic strain has a lower growth rate but a higher biomass

yield than the non-diauxic strain. We infer that diauxic growth is the optimal growth

strategy in a non-competitive environment, where the maximisation of growth yield

is an advantage (Giordano et al. 2016), whereas in a competitive environment, where
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Fig. 10 Comparison of two strains of E. coli, XD which exhibits diauxie and XND which has no diauxic

shift, growing in a glucose/lactose mixture. a Non-competitive simulations results. Final biomass ratio

XD/XND from simulations with varying different initial concentrations of glucose and lactose. The diauxic

strain has a higher final biomass (XD/XND > 1) for the majority of initial concentrations of glucose and

lactose. The non-diauxic strain has a higher final biomass (XD/XND < 1) only when the initial glucose

concentration is much larger than the initial lactose concentration. b Competitive simulations results. Final

biomass ratio XD/XND from simulations with varying different initial concentrations of glucose and lactose.

The non-diauxic strain always has a higher final biomass (XD/XND < 1) (Color figure online)

maximising growth rate is an advantage (Ibarra et al. 2002), diauxic growth is not the

optimum growth strategy.

Studies have shown that strains of bacteria (Spencer et al. 2007) and yeast (Wang

et al. 2015) can evolve to have differing lengths of diauxic shift. When a microorganism

is subject to frequent changes in environment the diauxic lag will evolve to be short,

whereas in a stable environment the lag phase will be longer (Chu and Barnes 2016).

For constant sugar concentrations we have a stable growth environment. When

sugars are consumed the growth environment changes on depletion of glucose/lactose

so the higher the initial sugar concentrations the longer the time before conditions

change. Therefore, the environment can be considered stable for a longer period as

the initial concentrations of the two sugars increases. The results in Fig. 10a show that

the advantage of growing diauxically increases (XD/XND increases) as initial sugar

concentrations increase. Our simulation results agree qualitatively with experimental

evidence that bacteria (Spencer et al. 2007) and yeast strains (Wang et al. 2015) with

a long diauxic lag perform better in a stable environment and those with a short (or

no) diauxic lag perform better in a changing environment.

4 Discussion

In this paper, we have formulated a coarse-grained mechanistic model describing the

time evolution of biomass growth, substrate concentration and gene expression during

carbon upshifts and downshifts. The model extends recent descriptions, incorporating

proteome partitioning, flux-controlled regulation and optimal allocation of protein

synthesis. Carbon influx is balanced with amino acid and protein synthesis fluxes via

adjustments to the amino acid synthesis rate and average translation rate, the rates
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being determined by the size of pools of central precursors (including ketoacids and

amino acids). Here, we recognise that the central precursors are limited by the innate

capacity of a cell; the model includes a mechanistic functional response to limit the

size of the precursor pools, ruling out physically unrealizable behaviour observed in

results from earlier models.

Phases of microorganism growth emerge from the dynamics, rather than being

switched on/off at a particular time. The selective use of substrates, regulated by

mechanisms such as CCR, is achieved by completely different methods in different

microorganisms (Görke and Stülke 2008). Accordingly, the exact mechanism under-

lying the inhibition of substrate uptake is not made explicit in our model, making it

flexible and applicable to processes other than E. coli glucose–lactose diauxie, which

we have focussed on. The switch to consuming the secondary substrate, controlled

through functions η j , occurs when the concentration of the preferred substrate drops

below a set value, KL . In this way we avoid having to artificially switch on the inferior

carbon uptake system at a predetermined time as in other models (Erickson et al. 2017;

New et al. 2014).

Furthermore, the regulation functions allocating protein synthesis are derived

directly, associated with a mathematical optimisation of the growth rate. Resource

allocation in steady state conditions can be determined from fundamental growth laws

relating protein levels to growth rate (You et al. 2013; Scott et al. 2010; Erickson et al.

2017; Hui et al. 2015). In dynamic conditions, however, it remains unclear how protein

synthesis is regulated. Erickson et al. (2017) construct regulation functions based on

the steady state growth laws but these suffer from being undefined or negative dur-

ing growth transitions. Therefore, we formulated an alternative description of protein

allocation, that is valid during growth transitions, where the regulation functions are

derived directly via mathematical optimization of the growth rate.

Employing our modelling approach, we found that phases of bacterial growth,

including the lag phase and diauxic shift, emerged from the structure of the bacterial

proteome. In particular, the deterministic model predicted the diauxic growth of E. coli

on glucose and lactose, comparing favourably with the model of Erickson et al. (2017)

and the related experimental data. Furthermore, unlike earlier models (Pavlov and

Ehrenberg 2013; Erickson et al. 2017; Salvy and Hatzimanikatis 2021), our model

was able to simulate a more complex system with two successive lag phases; the first

lag due to the switch between growth on a rich and a minimal media, the second a

diauxic lag. The lag-phase and diauxic shift were reproduced accurately using our

rather fundamental model with minimal fitting. The primary focus of the current

study was to describe lag and log-phase growth. Therefore, the transition to stationary

phase is less well captured (as demonstrated by inconsistencies between predicted and

measured lactose concentration post 12 h). This could be addressed by taking account

of the expression of proteins required for survival in nutrient deprived conditions

(Jaishankar and Srivastava 2017).

Earlier dynamic resource allocation models have focused on predictions of growth

rate/biomass and protein levels (Pavlov and Ehrenberg 2013; Erickson et al. 2017).

However, these models are unable to capture the non-simple relationship between

substrate uptake rate and growth rate observed experimentally during the lag phase.

Substrate concentrations have been predicted in the rather large and complex modelling
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approach of Salvy and Hatzimanikatis (2021). Complex models typically have many

undetermined/unmeasurable parameters. We found that our much simpler coarse-

grained model was sufficient to describe the time evolution of substrate concentrations

in addition to biomass and protein levels, accurately replicating the observed relation-

ship between substrate uptake and biomass growth during lag phase.

When a microorganism switches between carbon sources there is a trade off between

optimising growth on the preferred substrate and being able to switch quickly when

the primary source is depleted (Chu and Barnes 2016; Basan et al. 2020). We have

shown that the lag phase observed when E coli. switches from a rich to a minimal

media can be explained by a low level of a key anabolic protein causing a bottleneck

in the metabolic flux pathway. This agrees with the conclusions of Wu et al. (2023)

and Basan et al. (2020) that lag phases are caused by metabolic bottlenecks.

Our investigation into the merits of different bacterial growth strategies finds that in a

non-competitive environment, where the maximisation of growth yield is an advantage

(Giordano et al. 2016), growing diauxically is the optimum strategy. Conversely, in

a competitive environment, where maximising growth rate is an advantage (Ibarra

et al. 2002), diauxic growth is not the best strategy. This behaviour is in agreement

with results of Chu and Barnes (2016) that premature activation of the secondary

metabolism shortens the lag but causes costs to the cell thus reducing the growth rate

on the preferred substrate.

Recent work has made clear that microorganisms living in changing environments

do not always favour perfect catabolite repression (Wang et al. 2015; New et al.

2014; Siegal 2015). New et al. (2014) found that although stringent catabolite repres-

sion seems favourable in relatively stable environments, less stringent regulation can

increase fitness in variable conditions. To explore competition in a changing envi-

ronment we ran simulations starting with a limited amount of sugar. The growth

environment changes on depletion of glucose/lactose so the higher the initial sugar

concentrations the longer the time before conditions change. The environment is there-

fore stable for a longer period as the initial concentrations of the two sugars, particularly

glucose, increases. Our results show that, in a non-competitive environment the advan-

tage of growing diauxically increases the more stable the environment becomes. Our

results compare favourably with the results of New et al. (2014) and other experimen-

tal evidence that bacteria (Spencer et al. 2007) and yeast strains (Wang et al. 2015)

with a long diauxic lag dominate in a stable environment and those with a short (or

no) diauxic lag dominate in a changing environment.

This study adds to the rich body of work showing how microorganisms react to

changing environments (Salvy and Hatzimanikatis 2021; Erickson et al. 2017; New

et al. 2014; Mori et al. 2019; Wang et al. 2019; Wu et al. 2023). The range of applications

of our modelling approach is large: the description can be easily adapted to model

multiple different microorganisms, investigate competition between different species

or strains and explore other growth strategies. The model can be adapted to predict the

growth of many bacteria and yeasts that exhibit diauxie. More generally, the model

provides a means to investigate and describe lag phase, the mechanisms for which,

despite many years of research, are only just being revealed.
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Appendix A: The Values of theMass Fractions During the Log Phase of
Growth

It has been shown experimentally that during the log phase of growth of bacterial cells,

the rate of cell proliferation (the growth rate) and the expression levels of key proteins

are linearly correlated (You et al. 2013; Scott et al. 2010; Erickson et al. 2017). In

these experiments E. coli cells are grown on a range of different nutrients. Once the

cells reach the log phase of growth measurements of protein expression levels and the

growth rate are taken. In the following a star denotes the value of a variable during the

log phase of growth.

A.1 R-Sector Proteins

Experimentally the RNA/protein ratio, r , which is a well established proxy for the

ribosomal mass fraction (Erickson et al. 2017), is measured rather than �R itself. For

cells growing exponentially under nutrient (e.g. carbon or nitrogen) limitation, r is

linearly correlated with the growth rate (Scott et al. 2010) and we have the following

bacterial growth law

�∗
R =�R,0 +

λ∗

νR

, or φ∗
R =

λ∗

νR

,
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where λ∗ is the growth rate of E. coli cells during log phase, �R,0 is the growth

independent minimum level of �R and νR is a constant (Erickson et al. 2017). Values

of these parameters taken from the literature are shown in Table 3 (the relation �R =
0.46 r was used to fit the data in Erickson et al. (2017)).

A.2 C-Sector Proteins

The value of φ∗
C is determined by assuming proportionality to a reporter enzyme

(PLacZ in You et al. (2013) and Erickson et al. (2017)). Experimentally it has been

shown (You et al. 2013; Scott et al. 2010; Erickson et al. 2017) that when carbon is

limiting growth we have

L∗ = Lmax

(

1 −
λ∗

λC

)

,

where Lmax, the maximum level of the reporter enzyme, L , and the constant λC are

determined by fitting to experimental data. Values of these parameters taken from the

literature are shown in Table 3.

The growth dependent part of the catabolic protein sector is assumed to be regulated

as a whole (You et al. 2013; Hui et al. 2015). If a catabolic enzyme is not being repressed

its expression level will therefore be proportional to the expression level of the total

catabolic sector. The mass fraction of such a catabolic enzyme, �E, j , therefore satisfies

�E, j − �E, j,0 = βE, j

(

�C − �C,0

)

= βE, jφC , (A1)

where �E, j,0 is the growth independent minimum level of the enzyme and βE, j is

a constant (βE, j = (�E, j,max − �E, j,0)/�max). For the reporter enzyme, L , we

therefore have L − L0 = βLφC , where L0 is the growth independent minimum level

of reporter enzyme (the total protein level is independent of growth rate (You et al.

2013) so L is directly proportional to the mass fraction of reporter enzyme). When the

catabolic sector is at its maximum this gives Lmax − L0 = βL�max and it follows that

φ∗
C = �max

L∗ − L0

Lmax − L0
= �max

(

Lmax

Lmax − L0

(

1 −
λ∗

λC

)

−
L0

Lmax − L0

)

.

Experimental results show that Lmax ≫ L0 (You et al. 2013; Erickson et al. 2017) so

the above expression can be simplified by neglecting small terms to give

φ∗
C = �max

(

1 −
λ∗

λC

)

.

Rescaling the mass fraction so that �̄E, j = �E, j/βE, j we can remove βE, j from

equation A1. Further assuming that �E, j,max ≫ �E, j,0 (as supported by experimental

evidence (You et al. 2013)), equation A1 reduces to to �̄E, j = φC , which holds for
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all non-repressed catabolic enzymes. It follows that

�̄∗
E, j = �max

(

1 −
λ∗

j

λC

)

,

for all catabolic enzymes.

A.3 A-Sector Proteins

The A-sector is assumed to be regulated as a whole (You et al. 2013; Hui et al. 2015)

so for an anabolic protein, G, with mass fraction �G , we have

�G − �G,0 = βG

(

�A − �A,0

)

, (A2)

where �G,0 is the growth independent minimum level of protein G and

βG =
�G,max − �G,0

�max
.

Rescaling the mass fraction so that �̄G = �G/βG , we can remove βG from Eq. (A2)

obtaining

�̄G = �̄G,0 +
(

�A − �A,0

)

= �̄G,0 + φA. (A3)

The value of φA can be determined from φR and φC : from Eq. (2) we have

φA = �max − (1 + ε)φR − φC ,

which yields

φ∗
A =

λ∗

νA

,

with

νA =
(

�max

λC

−
(1 + ε)

νR

)−1

.
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Table 3 Parameter values taken from the literature that are used in the equations defining the value of mass

fractions during the log phase

RNA/protein ratio (C-limitation) Ribosomal mass fraction (C-limitation)

r∗ = r0 + λ∗
νR

a
�∗

R
= �R,0 + λ∗

νR

a

r0 νR (h−1) �R,0 νR (h−1)

0.076 ± 0.005b 5.3b 0.049 ± 0.02c 11.02 ± 0.44c

PLacZ expression (C-limitation)

L∗ = Lmax

(

1 − λ∗
λC

)

Lmax (MU×103) λC (h−1)

32 ± 1b 1.2 ± 0.0b

21.8 ± 0.5c 1.17 ± 0.05c

These equations are described fully in the text
a The two expressions for the ribosomal bacterial growth law given in You et al. (2013) and Erickson et al.

(2017) respectively are interchangeable. In Erickson et al. (2017) it is presented in terms of the ribosomal

mass fraction, although the RNA/protein ratio is measured, and the relation �R = 0.46r is used to fit the

model to data. Further details are given in Sects. A.1 and A.2
b Data from You et al. (2013).
cData from Erickson et al. (2017).

Appendix B: Substrate uptake—Michaelis–Menten Kinetics

Following Michaelis–Menten kinetics (Murray 2013), substrates with concentrations

S j are broken down by a key catabolic enzyme, E j , in the following way

S j + E j

k1 j

−−⇀↽−−
k−1 j

SE j

k2 j−→ Pj + E j ,

where Pj represents the product of the reaction. The reactions to form the enzyme-

substrate complexes SE j are assumed to be reversible with the rate of the forward

reaction given by k1 j and the reverse reaction given by k−1 j . The product forming

reactions are not reversible with rate given by k2 j . Applying the law of mass action

we obtain the ordinary differential equations

d[S j ]
dt

= −k1 j [S j ][E j ] + k−1 j [SE j ], (B4a)

d[E j ]
dt

= Q({[S j ]}) − k1 j [S j ][E j ] + k−1 j [SE j ] + k2 j [SE j ], (B4b)

d[SE j ]
dt

= k1 j [S j ][E j ] − k−1 j [SE j ] − k2 j [SE j ], (B4c)

where Q({[S j ]}) gives the rate of enzyme production and square brackets denote

concentration. We assume that the enzyme-substrate complex is formed on a much

faster timescale than product formation and that the concentration of complex does

not change on the time-scale of product formation (quasi-steady-state assumption).
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We therefore set

d[SE j ]
dt

= k1 j [S j ][E j ] − k−1 j [SE j ] − k2 j [SE j ] = 0,

so that

[SE j ] =
[S j ][E j ]

KS, j

, (B5)

where

KS, j =
k−1 j + k2 j

k1 j

,

is the Michaelis constant for substrate j . We now introduce [ET , j ] = [E j ] + [SE j ]
to be the total amount of catabolic enzyme present in the system (the free enzyme

plus the enzyme in the substrate-enzyme complex). Substituting in for [SE j ] from

Eq. (B5) and rearranging gives

[E j ] =
[ET , j ]

1 +
[S j ]
KS, j

,

which on substitution back into Eq. (B5) gives

[SE j ] =
[S j ][ET , j ]
KS, j + [S j ]

.

Equation (B4) become

d[S j ]
dt

= −k2 j

[S j ][ET , j ]
KS, j + [S j ]

,

d[ET , j ]
dt

= Q({[S j ]}).

Writing [ET , j ] = p �E, j [X ], where the constant p (introduced in Sect. 2.2.2) is the

fraction of biomass that is protein, the substrate equations become

d[S j ]
dt

= −k2 j p �E, j

[S j ]
KS, j + [S j ]

[X ].

The maximum uptake rate, kmax, j , occurs during the log-phase of growth when sub-

strate j is the only substrate present and is in excess ([S j ] ≫ KS, j ) so that

kmax, j = k2 j p �∗
E, j ,
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where �∗
E, j is the value of the mass fraction of enzyme during log-phase growth on

substrate j . It follows that

d[S j ]
dt

= −kmax, j

(

�E, j

�∗
E, j

)

[S j ]
KS, j + [S j ]

[X ].

In terms of the rescaled mass fractions �̄E, j (= �E, j/βE, j ) introduced in Appendix

A.2 we have

d[S j ]
dt

= −kmax, j

(

�̄E, j

�̄∗
E, j

)

[S j ]
KS, j + [S j ]

[X ].

In the main text the brackets denoting concentration are dropped: substrate and biomass

concentrations in the main text are denoted by S j and X respectively.

Appendix C: Solving the Flux Balance Equations to Obtain the Carbon
Influxes, JC,j

To keep the number of variables in the model to a minimum we can remove the

explicit dependence of the carbon influxes, JC, j , on P . In this section we solve the

flux balance equations to obtain PC, j and PA, j , and hence P , only in terms of the

substrate concentrations and protein mass fractions. We can then eliminate P from

the equation for JC, j .

The flux balance equations, given in the main text in equation (10), are

JR, j = αA, j JA, j and JA, j = αC, j JC, j , (C7)

with the fluxes given by JR, j = αA, j kA, j PA, j�R , JA, j = αC, j kC, j PC, j �̄G and, from

Eq. (9),

JC, j =
(

K − P

K

)(

1

αA, jαC, j

)

f j �̄E, j . (C8)

Substituting for JR, j and JA, j into the first of equations (C7) and rearranging we

obtain

PA, j =
αC, j kC, j �̄G

kA, j�R

PC, j .

It follows, from Eq. (7), that the combined size of precursor and amino acid pools is

given by

P =
N

∑

j=1

(

1 +
kC, j �̄G

kA, j�R

)

PC, j .
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This expression for P can now be substituted into equation (C8) from which we obtain

JC, j =

(

1 −
1

K

N
∑

n=1

(

1 +
kC,n�̄G

kA,n�R

)

PC,n

)

1

αA, jαC, j

f j �̄E, j . (C9)

Substituting for JA, j and JC, j into the second of Eq. (C7) and rearranging we obtain

PC, j =

⎛

⎝K −
N

∑

n=1(n �= j)

(

1 +
σCmax,n�̄G

σAmax,n�R

)

PC,n

⎞

⎠ f j �̄E, j

σCmax,n�̄G +
(

1 +
σCmax,n�̄G

σAmax,n�R

)

f j �̄E, j

.

To simplify the notation we have introduced σAmax,n = αA,nαC,nkA,n K , the maximum

translation rate when only substrate n is being consumed. The definition of σAmax,n

follows from substituting the maximum possible value for PA,n = αC,n K (which

comes from Eq. (7) with P = K , PA, j = 0 for j �= n and PC, j = 0 ∀ j) into

our expression for the translation rate σA =
∑

j

αA, j kA, j PA, j . We similarly define

σCmax,n = αA,nαC,nkC,n K which is αA,n times the maximum amino acid synthesis

rate when only substrate n is being consumed. (Defining σCmax,n as being αA,n times

the maximum amino acid synthesis rate instead of just the maximum amino acid

synthesis rate further simplifies our notation.)

We now have each PC, j in terms of all the other PC,n , a total of N equations for

N unknowns. We solve the equations by first eliminating PC,1 from all the equations

then PC,2, until we obtain an expression for PC,N which does not reference any other

PC,n . For j = 1 we have

(

σCmax,1�̄G +
(

1 +
σCmax,1�̄G

σAmax,1�R

)

f1�̄E,1

)

PC,1

=

⎛

⎝K −
(

1 +
σCmax,i �̄G

σCmax,i�R

)

PC,i −
N

∑

n=2,n �=i

(

1 +
σCmax,n�̄G

σAmax,n�R

)

PC,n

⎞

⎠ f1�̄E,1,

and for j = i ≥ 2 we have

(

σCmax,i �̄G +
(

1 +
σCmax,i �̄G

σAmax,i�R

)

fi �̄E,i

)

PC,i

=

⎛

⎝K −
(

1 +
σCmax,1�̄G

σAmax,1�R

)

PC,1 −
N

∑

n=2,n �=i

(

1 +
σCmax,n�̄G

σAmax,n�R

)

PC,n

⎞

⎠ fi �̄E,i ,

where we have written out explicitly terms in PC,1 and PC,i . Eliminating PC,1 from

these equations we obtain
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PC, j =

⎛

⎝K −
N

∑

n=2,n �= j

(

1 +
σCmax,n�̄G

σAmax,n�R

)

PC,n

⎞

⎠ f j �̄E, j

σCmax, j �̄G

⎛

⎝1 +
∑

n=1, j

(

1

σCmax,n�̄G

+
1

σAmax,n�R

)

fn�̄E,n

⎞

⎠

,

where
∑

n=1, j

denotes the sum of the 1st and j th terms. Again, writing out explicitly

terms in j = 2 and j = i ≥ 3 we have for j = 2

σCmax,2�̄G

(

1 +
2

∑

n=1

(

1

σCmax,n�̄G

+
1

σAmax,n�R

)

fn�̄E,n

)

PC,2

=

⎛

⎝K −
(

1 +
σCmax,i �̄G

σAmax,i�R

)

PC,i −
N

∑

n=3,n �=i

(

1 +
σCmax,n�̄G

σAmax,n�R

)

PC,n

⎞

⎠ f2�̄E,2,

and for j = i ≥ 3

σCmax,i �̄G

⎛

⎝1 +
∑

n=1,i

(

1

σCmax,n�̄G

+
1

σAmax,n�R

)

fn�̄E,n

⎞

⎠ PC,i

=

⎛

⎝K −
(

1 +
σCmax,2�̄G

σAmax,2�R

)

PC,2 −
N

∑

n=3,n �=i

(

1 +
σCmax,n�̄G

σAmax,n�R

)

PC,n

⎞

⎠ fi �̄E,i .

Eliminating PC,2 from these equations we obtain

PC, j =

⎛

⎝K −
N

∑

n=3,n �= j

(

1 +
σCmax,n�̄G

σAmax,n�R

)

PC,n

⎞

⎠ f j �̄E, j

σCmax, j �̄G

⎛

⎝1 +
∑

n=1,2, j

(

1

σCmax,n�̄G

+
1

σAmax,n�R

)

fn�̄E,n

⎞

⎠

.

Carrying on in this way we obtain an expression for PC,N as

PC,N =
K fN �̄E,N

σCmax,N �̄G

(

1 +
N

∑

n=1

(

1

σCmax,n�̄G

+
1

σAmax,n�R

)

fn�̄E,n

)
,

123



84 Page 40 of 58 F. Bate et al.

and in general we have

PC, j =
K f j �̄E, j

σCmax, j �̄G

(

1 +
N

∑

n=1

(

1

σCmax,n�̄G

+
1

σAmax,n�R

)

fn�̄E,n

)
.

Substituting into Eq. (C9) and rearranging we obtain

JC, j =

(

f j

αC, jαA, j

)

�̄E, j �̄G�R

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

,

which is the carbon influx from substrate j in terms of only the substrate concentrations

{S j } (through the substrate dependent functions { f j }) and the protein mass fractions

�R , �̄G and �̄E, j .

AppendixD:Determining theUnknownConstants�Cmax,j ,�Amax,j and
˛A,j˛C,jYC,j,0 in Terms of Experimentally Measurable Parameters

The expression for the growth rate, given in the main text by Eq. (14), is

μ =

(

N
∑

n=1

fn�̄E,n

)

�̄G�R

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

.

This contains the unknown constants σCmax, j , σAmax, j and αA, jαC, j YC, j,0, the latter

combination of constants appearing in the definition of f j (Eq. (8)). We cannot deter-

mine these constants directly from known experimental measurements so instead we

relate them to measurable parameters such as growth rate, biomass yield and protein

mass fraction. These experimental measurements are obtained when only one sub-

strate is present. The equation for growth rate simplifies when only one substrate is

present giving

μ =
f j �̄E, j �̄G�R

�̄G�R +
f j

σCmax, j

�̄E, j�R +
f j

σAmax, j

�̄E, j �̄G

. (D10)

The unknown constants in this equation are determined by finding the maximum value

of μ in terms of the protein mass fractions and assuming that during the log-phase of

growth the growth rate is equal to this maximum value.
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We optimise μ in terms of �R , �̄G and �̄E, j using the method of Lagrangian

multipliers with the constraint given by

�max = (1 + ε)
(

�R − �R,0

)

+
(

�̄G − �̄G,0

)

+ �̄E, j ,

which is obtained from Eq. (2). We have used the fact that in the absence of other

substrates there will be no inhibitory effects on enzyme production and therefore the

mass fraction of the specific catabolic enzyme will be directly proportional to the mass

fraction of the whole C-sector and, as derived in Appendix A.2, we have φC = �̄E, j .

Writing

L = μ + λ
(

�max − (1 + ε)
(

�R − �R,0

)

−
(

�̄G − �̄G,0

)

− �̄E, j

)

,

it follows that

∂L

∂�R

=

(

f j

)

(

f j

σAmax, j

)

�̄2
G�̄2

E, j

(

�̄G�R +
f j

σCmax, j

�̄E, j�R +
f j

σAmax, j

�̄E, j �̄G

)2
− (1 + ε)λ,

∂L

∂�̄G

=

(

f j

)

(

f j

σCmax, j

)

�2
R�̄2

E, j

(

�̄G�R +
f j

σCmax, j

�̄E, j�R +
f j

σAmax, j

�̄E, j �̄G

)2
− λ,

∂L

∂φC

=
(

f j

)

�̄2
G�2

R
(

�̄G�R +
f j

σCmax, j

�̄E, j�R +
f j

σAmax, j

�̄E, j �̄G

)2
− λ,

∂L

∂λ
= �max − (1 + ε)

(

�R − �R,0

)

−
(

�̄G − �̄G,0

)

− �̄E, j .

Setting all partial derivatives equal to zero and eliminating λ we obtain

�2
R = �̄2

E, j

(

1

(1 + ε)

f j

σAmax, j

)

, (D11a)

�̄2
G = �̄2

E, j

(

f j

σCmax, j

)

, (D11b)

�max = (1 + ε)
(

�R − �R,0

)

+
(

�̄G − �̄G,0

)

+ �̄E, j . (D11c)

We denote experimental measurements of biomass yield and growth rate on a single

substrate S j during the log-phase of growth by Y ∗
j and μ∗

j (= Y ∗
j kmax, j ) and mass

fraction values by �̄∗
G, j

�∗
R, j and �̄∗

E, j . The values of the mass fractions during the

log-phase are calculated from Eq. (3). Now, assuming that during log-phase the growth

rate, μ∗
j , takes its maximum value, the calculated values for the mass fractions must
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satisfy Eq. (D11) and it follows from equations (D11a) and (D11b) that

σAmax, j =
f ∗

j �̄∗2
E, j

(1 + ε)�∗2
R, j

, (D12a)

σCmax, j =
f ∗

j �̄∗2
E, j

�̄∗2
G, j

, (D12b)

where f ∗
j is the value of the function f j during the log-phase of growth on substrate

j . From Eq. (D10) we have

μ∗
j =

f ∗
j �̄∗

G, j�
∗
R, j �̄

∗
E, j

�̄∗
G, j�

∗
R, j +

(

f ∗
j

σCmax, j

)

�∗
R, j �̄

∗
E, j +

(

f ∗
j

σAmax, j

)

�̄∗
G, j �̄

∗
E, j

.

which after elimninating σAmax, j and σCmax, j using Eq. (D12) gives

μ∗
j =

f ∗
j �̄∗2

E, j

�max + (1 + ε)�R,0 + �̄G,0

.

Now μ∗
j = Y ∗

j kmax, j and f ∗
j = αA, jαC, j YC, j,0kmax, j/�̄

∗
E, j , from Eq. (8), and on

substituting for μ∗
j and f ∗

j into the above and rearranging we obtain

αA, jαC, j YC, j,0 =

(

�max + (1 + ε)�R,0 + �̄G,0

�̄∗
E, j

)

Y ∗
j .

This can now be substituted into Eq. (8) to give

f j ({S j }) =

(

�max + (1 + ε)�R,0 + �̄G,0

�̄∗2
E, j

)

Y ∗
j kmax, j

S j

KS, j + S j

, (D13)

and we have eliminated the unknown constants from f j . In addition substituting for

f ∗
j =

(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
j kmax, j/(�̄

∗2
E, j ) into Eq. (D12) we have

σAmax, j =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
j kmax, j

(1 + ε)�∗2
R, j

,

σCmax, j =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
j kmax, j

�̄∗2
G, j

,

so that σAmax, j and σCmax, j are both expressed entirely in terms of experimentally

measurable parameters.
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Appendix E: Rewriting the ProteinDynamics Equations in Termsof the
Growth Dependent Protein Mass Fractions

The R, A and C sectors of the proteome are goverened by Eq. (18)

dR

dt
=

(

�R,0 + χR

) dZ

dt
, (E14a)

dC

dt
=

(

�C,0 + χC

) dZ

dt
, (E14b)

dA

dt
=

(

�A,0 + χA

) dZ

dt
. (E14c)

As described in Sect. 2.2.2 we have the following relationships between total protein

concentration, Z , and biomass concentration, X , and protein concentrations, R, A and

C , and protein mass fractions, �R , �A and �C ,

Z = pX , R = pX�R, A = pX�A, C = pX�C ,

where the constant p is the fraction of biomass that is protein. Substituting for R and

Z into Eq. (E14a) we obtain

X
d�R

dt
+ �R

dX

dt
=

(

�R,0 + χR

) dX

dt
.

Now �R = �R,0 + φR , where φR is the growth dependent ribosomal mass fraction,

and we use this expression to substitute for �R into the above equation giving

X
dφR

dt
+

(

�R,0 + φR

) dX

dt
=

(

�R,0 + χR

) dX

dt
.

Rearranging we obtain

dφR

dt
= (χR − φR)

1

X

dX

dt
,

and as the growth rate, μ = (1/X)(dX/dt) we have

dφR

dt
= (χR − φR) μ.

We use the same method to rewrite the equations for C and A, Eqs. (E14b) and (E14c),

in terms of φC and φA obtaining

dφC

dt
= (χC − φC ) μ,

dφA

dt
= (χA − φA) μ.
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Appendix F: Regulation Functions

In this section we describe the calculation of the functions C({S j }) and γ ({S j }) which

appear in the definition of the regulation functions, given in the main text in equation

(25). We have

χR = φR +
C({S j })

1 + ε
gR

(

{S j }, φR, φC , φA

)

, (F15a)

χC = φC + C({S j }) gC ({S j }, φR, φC , φA), (F15b)

χA = φA + C({S j }) gA({S j }, φR, φC , φA). (F15c)

where we have introduced

gR({S j }, φR, φC , φA) =
(

1

1 + ε

)

∂μ

∂φR

− γ
∂μ

∂φC

− (1 − γ )
∂μ

∂φA

, (F16a)

gC ({S j }, φR, φC , φA) =
∂μ

∂φC

− γ
∂μ

∂φA

− (1 − γ )

(

1

1 + ε

)

∂μ

∂φR

, (F16b)

gA({S j }, φR, φC , φA) =
∂μ

∂φA

− (1 − γ )
∂μ

∂φC

− γ

(

1

1 + ε

)

∂μ

∂φR

. (F16c)

The regulation function for each protein sector should reach its maximum value

as the corresponding growth dependent protein mass fraction tends to zero, that is

χR → χR,max as φR → 0, χC → χC,max as φC → 0, χA → χA,max as φA → 0. As

we must also satisfy the constraint equation (19) we have χR,max ≤ �max/(1 + ε),

χC,max ≤ �max and χA,max ≤ �max. The function C({S j }) is calculated to ensure

that these conditions are always satisfied, as we will now show.

The concentrations of substrates, {S j } (and therefore the functions { f j }) define

the growth conditions. For each set of values {S j } there is a maximum value of the

functions gR , gC and gA, denoted by gR,max({S j }), gC,max({S j }) and gA,max({S j }),
which can be determined by examining the limiting values of the derivatives of the

growth rate.

The growth rate, given in the main text by Eq. (14), is

μ =

(

N
∑

n=1

fn�̄E,n

)

�̄G�R

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

,
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so that

∂μ

∂φR

(

=
∂μ

∂�R

)

=

(

N
∑

n=1

fn�̄E,n

) (

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄2
G

(

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

)2
,

∂μ

∂φA

(

=
∂μ

∂�̄G

)

=

(

N
∑

n=1

fn�̄E,n

) (

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�2
R

(

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

)2
,

∂μ

∂φC

=
N

∑

j=1

∂μ

∂�̄E, j

∂�̄E, j

∂φC

,

with

∂μ

∂�̄E, j

=
f j �̄G�R

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

−

(

N
∑

n=1

fn�̄E,n

)

�̄G�R

(

f j

σCmax, j

�R +
f j

σAmax, j

�̄G

)

(

�̄G�R +

(

N
∑

n=1

fn

σCmax,n

�̄E,n

)

�R +

(

N
∑

n=1

fn

σAmax,n

�̄E,n

)

�̄G

)2
.

F.1 All Substrate Specific Enzymes Proportional to Catabolic Sector

If all substrate specific enzymes have expression levels proportional to the total

catabolic sector, �̄E, j = φC , the partial derivatives simplifies to

∂μ

∂φR

=
F1({S j })F3({S j })φ2

C�̄2
G

(

�̄G�R + F2({S j })φC�R + F3({S j })φC�̄G

)2
, (F17a)

∂μ

∂φA

=
F1({S j })F2({S j })φ2

C�2
R

(

�̄G�R + F2({S j })φC�R + F3({S j })φC�̄G

)2
, (F17b)

∂μ

∂φC

=
F1({S j })�̄2

G�2
R

(

�̄G�R + F2({S j })φC�R + F3({S j })φC�̄G

)2
, (F17c)
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where

F1({S j }) =
N

∑

n=1

fn, F2({S j }) =
N

∑

n=1

fn

σCmax,n

, F3({S j }) =
N

∑

n=1

fn

σAmax,n

. (F18)

To determine gR,max, gC,max and gA,max we examine the limiting values of the above

derivatives as we change φR , φC and φA.

Firstly, as φR → 0, with φA, φC ∼ �max, we note that ∂μ/∂φR is tending towards

its maximum value whereas ∂μ/∂φA, and ∂μ/∂φC tend to their minimal values. We

have, therefore, ∂μ/∂φR ≫ ∂μ/∂φC , ∂μ/∂φA and hence gR,max can be determined

to leading order by the maximum value of ∂μ/∂φR . Substituting �R = �R,0, �̄G =
�̄G,0 + φA and φC = �max − φA into Eq. (F17a) and rearranging we obtain

∂μ

∂φR

=

F1

F3
(

1

F3

�R,0

(�max − φA)
+

F2

F3

�R,0

(�̄G,0 + φA)
+ 1

)2
,

which is a function of φA only. The maximum value of ∂μ/∂φR can thus be found by

differentiating with respect to φA and setting the derivative to zero.

d

dφA

(

∂μ

∂φR

)

=
−2

F1

F3

(

1

F3

�R,0

(�max − φA)2
−

F2

F3

�R,0

(�̄G,0 + φA)2

)

(

1

F3

�R,0

(�max − φA)
+

F2

F3

�R,0

(�̄G,0 + φA)
+ 1

)2
= 0,

from which it follows that

φA =
√

F2�max − �̄G,0

1 +
√

F2

,

(

φC =
�max + �̄G,0

1 +
√

F2

)

, (F19)

where we have taken the positive square root as 0 ≤ φA ≤ �max. So the maximum

value of ∂μ/∂φR occurs for �R = �R,0, �̄G =
√

F2(�max + �̄G,0)/(1 +
√

F2) and

φC = (�max + �̄G,0)/(1 +
√

F2), and it follows that

gR,max =
(

1

1 + ε

)

F1 F3(φmax + �̄G,0)
2

(

�R,0(1 +
√

F2)
2 + F3(�max + �̄G,0)

)2
.

In a similar manner we find as φA → 0

gA,max =
F1 F2

(

�max + (1 + ε)�R,0

)2

(

�̄G,0

(

1 +
√

(1 + ε)F3

)2 + F2

(

�max + (1 + ε)�R,0

)

)2
,

123



Emergent Lag Phase in Flux-Regulation Models of… Page 47 of 58 84

for

φC =
�max + (1 + ε)�R,0

1 +
√

(1 + ε)F3

,

�R =
(

1

1 + ε

)

√
(1 + ε)F3

(

�max + (1 + ε)�R,0

)

1 +
√

(1 + ε)F3

,

and as φC → 0

gC,max = F1,

for

�R =
(

1

1 + ε

)

⎛

⎜

⎜

⎜

⎜

⎝

�max + (1 + ε)�R,0 + �̄G,0

1 +

√

F2

(1 + ε)F3

⎞

⎟

⎟

⎟

⎟

⎠

,

�̄G =

√

F2

(1 + ε)F3

(

�max + (1 + ε)�R,0 + �̄G,0

)

1 +

√

F2

(1 + ε)F3

.

Setting C({S j }) = �max/ max(gR,max, gC,max, gA,max) ensures that χR,max ≤
�max/(1 + ε), χC,max ≤ �max and χA,max ≤ �max as required.

To determine the function γ ({S j }) we note that χR , χA, χC ≥ 0 (as a simpli-

fying assumption of this model is that protein is not destroyed). We look at the

limiting case φ j → 0 for the sector for which g j,max is largest. For example,

if gR,max > gC,max, gA,max we look at what happens as φR → 0. In this case

C({S j }) = �max/gR,max and we have ∂μ/∂φR → (1 + ε)gR,max with the other par-

tial derivatives negligible as ∂μ/∂φR ≫ ∂μ/∂φC , ∂μ/∂φA. Substituting into equation

F15 we obtain

χR =
�max

1 + ε
,

χC =
�max + �̄G,0

1 +
√

F2

− (1 − γ ) �max = 0,

χA =
√

F2�max − �̄G,0

1 +
√

F2

− γ�max = 0,

where we have used the values for φA and φC given in Eq. (F19). The constraint

equation (19) together with the requirement that χA and χC are positive means χA =
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χC = 0. Solving for γ we obtain

γ =
√

F2�max − �̄G,0

�max

(

1 +
√

F2

) for gR,max > gC,max, gA,max.

Similarly we have

γ =
�max + �̄G,0 − (1 + ε)�R,0

√

F2

(1 + ε)F3

�max

(

1 +

√

F2

(1 + ε)F3

)
, for gC,max > gR,max, gA,max,

and

γ =
�max + (1 + ε)�R,0

�max

(

1 +
√

(1 + ε)F3

) , for gA,max > gR,max, gC,max.

F.2 Substrate Specific Enzymes Non-proportional to Catabolic Sector

To illustrate the case when the substrate specific enzymes are not all proportional to

φC we use the example of glucose–lactose diauxie. Here, the mass fraction of glucose

specific enzyme is proportional to φC , �̄E,gl = φC , but the mass fraction of lactose

specific enzyme, �̄E,la, is not. We have

∂μ

∂φC

=
∂μ

∂�̄E,gl

+
∂μ

∂�̄E,la

∂�̄E,la

∂φC

,

As we do not have an explicit expression for �̄E,la in terms of φC we calculate

∂�̄E,la/∂φC by

∂�̄E,la

∂φC

=

d�̄E,la

dt
dφC

dt

,

and therefore from Eq. (20b) and equation (21) we have

∂�̄E,la

∂φC

=
χE,la − �̄E,la

χC − φC

= ηla (1 − ζla) +
ηlaζla (�max − φC ) + ηlaφC − �̄E,la

χC − φC

.

For ηlaζla (�max − φC )+ηlaφC −�̄E,la �= 0 we have ∂�̄E,la/∂φC → ∞ as χC → φC

and hence ∂μ/∂φC → ∞ as χC → φC . It follows that when ηlaζla (�max − φC ) +
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ηlaφC − �̄E,la �= 0 the maximum of the function gC occurs when χC → φC giving

gC,max → ∞ and therefore we must set C = 0 (and the other regulation functions are

simply χR = φR and χA = φA).

The case ηlaζla (�max − φC )+ηlaφC − �̄E,la = 0 occurs when the lactose enzyme

is either at its initial leaky level φ̄E,la = ξ�max (in which case ηla = ξ , ζla = 1) or

when it is proportional to φC (in which case ηla = 1, ζla = 0 and φ̄E,la = φC ). In both

these cases we calculate the regulation functions as described in Sect. F.1, but with

the modified functions

F1 =
N

∑

n=1

ηn (1 − ζn) fn, F2 =
N

∑

n=1

ηn (1 − ζn) fn

σCmax,n

, F3 =
N

∑

n=1

ηn (1 − ζn) fn

σAmax,n

,

in place of those given in equation F18, to take into account whether we have φ̄E,la =
ξ�max or φ̄E,la = φC .

Appendix G: Governing Equations and Parameters Used in Simulation
1

In the following section we describe the governing equations, variables and parameters

used to simulate glucose–lactose diauxie in both our model and, for comparison, the

model of Erickson et al. (2017). Subscripts gl and la denote parameters for growth on

glucose and lactose respectively.

G.1 Our Model

The governing equations are

dSgl

dt
= −

(

kmax,gl

�̄∗
E,gl

)

(

Sgl

KS,gl + Sgl

)

�̄E,gl X ,

dSla

dt
= −

(

kmax,la

�̄∗
E,la

)

(

Sla

KS,la + Sla

)

�̄E,la X ,

dφR

dt
= (χR − φR) μ,

dφ̄E,gl

dt
=

(

χC − φ̄E,gl

)

μ,

dφ̄E,la

dt
=

(

χE,la − φ̄E,la

)

μ,

dX

dt
= μX .
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where

μ =
(

fgl�̄E,gl + fla�̄E,la

)

�̄G�R

�̄G�R +
(

fgl�̄E,gl

σCmax,gl
+ fla�̄E,la

σCmax,la

)

�R +
(

fgl�̄E,gl

σAmax,gl
+ fla�̄E,la

σAmax,la

)

�̄G

,

with

fgl =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
glkmax,gl

(

1

�̄∗
E,gl

)2
(

Sgl

KS,gl + Sgl

)

,

fla =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
lakmax,la

(

1

�̄∗
E,la

)2
(

Sla

KS,la + Sla

)

,

�R = �R,0 + φR,

�̄E,gl = φ̄E,gl = φC ,

�̄E,la = φ̄E,la,

�̄G = �̄G,0 + �max − (1 + ε)φR − φ̄E,gl,

and the constants

σAmax,gl =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
glkmax,gl

(1 + ε)�∗2
R,gl

,

σCmax,gl =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
glkmax,gl

�̄∗2
G,gl

,

σAmax,la =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
lakmax,la

(1 + ε)�∗2
R,la

,

σCmax,la =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
lakmax,la

�̄∗2
G,la

,

with �∗
R,gl, �̄∗

G,gl
and �̄∗

E,gl calculated using equation (3) with λ∗ = Y ∗
glkmax,gl, and

�∗
R,la, �̄∗

G,la
and �̄∗

E,la calculated using equation (3) with λ∗ = Y ∗
lakmax,la.

The glucose specific enzyme will always be produced and its expression level

is governed by the level of the C-sector as a whole. The lactose specific enzyme,

however, will only be produced when the concentration of glucose drops sufficiently.

Its expression level is therefore not proportional to that of the C-sector. The regulation

functions are given by

χR = φR +
C

1 + ε

((

1

1 + ε

)

∂μ

∂φR

− γ
∂μ

∂φC

− (1 − γ )
∂μ

∂φA

)

,

χC = φC + C

(

∂μ

∂φC

− γ
∂μ

∂φA

− (1 − γ )

(

1

1 + ε

)

∂μ

∂φR

)

,
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Table 4 Parameters for E. coli taken from the literature

Parameter Description Value

λ∗
gl = Y ∗

glkmax,gl Growth rate on glucose 0.91 (h−1)a

λ∗
la = Y ∗

lakmax,la Growth rate on lactose 0.95 (h−1)a

�R,0 Minimum ribosomal mass fraction 0.049a

νR Fitted parameter in growth law 11.02 (h−1)a

λC Fitted parameter in growth law 1.17 (h−1)a

ξ Pre-expression level of lactose specific enzyme 0.012a

�max Maximum mass fraction of growth dependent proteins 0.43b

KS,gl Half saturation constant on glucose 0.04 (gL−1)c

KS,la Half saturation constant on lactose 0.43 (gL−1)c

ε Constant relating uninduced sector to R-sector 0.91d

aData from Erickson et al. (2017)
bData from You et al. (2013)
cData from Doshi and Venkatesh (1998)
dCalculated using data from Wu et al. (2023) (see Appendix H)

Table 5 Fitted parameters

Parameter Description Best fit value

Y ∗
gl Log-phase yield on glucose ((OD600 X )/(g/L Sgl)) 0.24

Y ∗
la Log-phase yield on lactose ((OD600 X )/(g/L Sla)) 0.192

�G,0 Minimum mass fraction of �G 2.6 × 10−5

KL Constant in function regulating lactose uptake (g/L) 0.001

ǫ Constant in function regulating lactose uptake (g/L) 0.01

χE,la = ηla (ζla�max + χC (1 − ζla)) ,

with C and γ calculated as described in Appendix F.2. The point at which the lactose

enzyme switches on is modelled by setting

ηla,1 =
K 2

L + ξ S2
gl

K 2
L + S2

gl

,

ζla =
1

2

(

1 − tanh

(

1

ǫ

(

φ̄E,la

φC

−
1

2

)))

,

where KL , ξ and ǫ are constants.

The parameters in the governing equations whose values are taken from the literature

are given in Table 4. Where parameter values are given in Erickson et al. (2017) these

values have been used. Fitted parameters, shown in Table 5, were determined to give

a best fit to the experimental data.
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For the initial conditions we have taken initial values of variables from Erickson

et al. (2017): Sgl,I = 0.3 g/L, Sla,I = 2.0 g/L and X I = 0.20 OD600. The initial values

for φR and φC are obtained by substituting for the initial growth rate (λI = 0.92 h−1

calculated at the end of the next section) into Eq. (3) and the initial level of the lactose

specific enzyme is ξ�max.

G.2 EricksonModel

A description of all parameters and variables used is given in Erickson et al. (2017).

We have the following governing equations

dM

dt
=

αM

α
σ(t)MRb(t),

dMRb

dt
= χRb(t)σ (t)MRb(t),

dMCat,gl

dt
= φCat,gl,maxχCat(t)σ (t)MRb(t),

dMCat,la

dt
= hlaχCat(t)σ (t)MRb(t),

with

σ(t) =
1

MRb(t)
α
(

kmax,gl

(

Sgl(t)

KM,gl + Sgl(t)

)

MCat,gl(t) + kmax,la MCat,la(t)
)

,

χRb(t) =
φRb,0

1 − σ(t)/γ
,

χCat(t) = 1 −
σ(t)

λC
χRb(t),

hla(t) =

{

xφCat,la,max for t < tsw,

φCat,la,max for t ≥ tsw,
.

From the equations during log phase growth on a single substrate the relationαkmax, j =
λ∗

j/φ
∗
Cat, j is obtained, where λ∗

j is the log phase growth rate on the substrate and

φ∗
Cat, j is the value of the mass fraction during log phase growth. The equation for σ(t)

becomes

σ(t) =
1

MRb(t)

(

λ∗
gl

φCat,gl,max(1 − λ∗
gl/λC )

(

Sgl

KM,gl + Sgl

)

MCat,gl(t)

+
λ∗

la

φCat,la,max(1 − λ∗
la/λC )

MCat,la(t)

)

,

where we have substituted in for φ∗
Cat,gl = φCat,gl,max(1 − λ∗

gl/λC ) and φ∗
Cat,la =

φCat,la,max(1 − λ∗
la/λC ), from the growth laws. To tidy up the equations we rescale
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with M̄Cat,gl = αM MCat,gl/(αφCat,gl,max), M̄Cat,la = αM MCat,la/(αφCat,la,max) and

M̄Rb = αM MRb/α to give

dM

dt
= σ(t)M̄Rb(t),

dM̄Rb

dt
= χRb(t)σ (t)M̄Rb(t),

dM̄Cat,gl

dt
= χCat(t)σ (t)M̄Rb(t),

dM̄Cat,la

dt
= h̄laχCat(t)σ (t)M̄Rb(t),

with

σ(t) =
1

M̄Rb(t)

(

λ∗
gl

(1 − λ∗
gl/λC )

(

Sgl

KM,gl + Sgl

)

M̄Cat,gl(t) +
λ∗

la

(1 − λ∗
la/λC )

M̄Cat,la(t)

)

,

χRb(t) =
φRb,0

1 − σ(t)/γ
,

χCat(t) = 1 −
σ(t)

λC
χRb(t),

h̄la(t) =

{

x for t < tsw,

1 for t ≥ tsw,
.

This system of equations is not closed as it does not include an equation for Sgl.

This equation is not given explicitly in Erickson et al. (2017) but we take it to be

dSgl

dt
= −

kmax, j

αS

(

Sgl

KM,gl + Sgl

)

MCat,gl.

We have introduced the constant αS to represent the conversion factor from imported

substrate to metabolic influx because in Erickson et al. (2017) this conversion factor

has been incorporated into the uptake rate (JC = kgl MCat,gl + kla MCat,la). In terms of

the rescaled protein concentration we have

dSgl

dt
= −

λ∗
gl

(1 − λ∗
gl/λC )

1

αMαS

(

Sgl

KM,gl + Sgl

)

M̄Cat,gl.

Now αM is the conversion factor from carbon influx to biomass flux so the product

αMαS gives the conversion from imported substrate to biomass flux (the yield of

biomass). The yield is assumed to be a substrate specific constant but its value is not

given in Erickson et al. (2017). We, therefore, fit the yield to match the results shown

in Erickson et al. (2017).
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The initial values of biomass and glucose are taken from Erickson et al. (2017),

Sgl,I = 0.3 g/L and MI = 0.20 OD600 and for the proteins we have

M̄Rb,I =
(

φRb,0 +
λI

γ

)

MI ,

M̄Cat,gl,I =
(

1 −
λI

λC

)

MI ,

M̄Cat,la,I = x

(

1 −
λI

λC

)

MI .

To find initial growth rate λI we know that dM/dt = λ(t)M(t) so it follows that

σ(t)M̄Rb(t) = λ(t)M(t). As MRb(t) = φRb(t)MP (t), where MP (t) = (α/αM )M(t)

is the total protein concentration, we have M̄Rb(t) = φRb(t)M(t). The growth

rate is therefore given by λ(t) = σ(t)φRb(t). If we also note that M̄Cat,gl(t) =
(φCat,gl(t)/φCat,gl,max)M(t) and M̄Cat,la(t) = (φCat,la(t)/φCat,la,max)M(t) we obtain

λ(t) =
λ∗

gl

(1 − λ∗
gl/λC )

(

Sgl(t)

KM,gl + Sgl(t)

)

φCat,gl(t)

φCat,gl,max
+

λ∗
la

(1 − λ∗
la/λC )

φCat,la(t)

φCat,la,max
.

Now Sgl,I ≫ KM,gl so we have

λI =
λ∗

gl

(1 − λ∗
gl/λC )

φCat,gl,I

φCat,gl,max
+

λ∗
la

(1 − λ∗
la/λC )

φCat,la,I

φCat,la,max
,

and if we assume that initially everything is in steady state we can write φCat,gl,I =
φCat,gl,max(1 − λI /λC ) and φCat,la,I = xφCat,la,max(1 − λI /λC ) (the x appears here

as the lactose metabolism is not yet switched on) giving

λI =
λ∗

gl

(1 − λ∗
gl/λC )

(1 − λI /λC ) +
λ∗

la

(1 − λ∗
la/λC )

x(1 − λI /λC ).

This can be solved to give

λI =
λ∗

gl + xλ∗
la − (1 + x)

λ∗
glλ

∗
la

λC

1 − (1 − x)
λ∗

la
λC

− x
λ∗

glλ
∗
la

λ2
C

.

Appendix H: Governing Equations and Parameters Used in Simulation
2

In the following governing equations, subscripts 1 and 2 denote the mass fractions and

growth rates of strains X1 and X2 respectively. Subscripts gl and la denote parameters

for growth on glucose and lactose respectively. The two strains are assumed to have the
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same parameters for growth on glucose. For both strains the glucose specific enzyme

will always be produced and its expression level is governed by the level of the C-

sector as a whole. The lactose specific enzyme, however, is never produced by the

mutant strain X2 and will only be produced by X1 when the concentration of glucose

drops sufficiently. Its expression level is not proportional to that of the C-sector. Our

governing equations are

dSgl

dt
= −

(

kmax,gl

�̄∗
E,gl

)

(

Sgl

KS,gl + Sgl

)

(

�̄E,gl,1 X1 + �̄E,gl,2 X2

)

,

dSla

dt
= −

(

kmax,la

�̄∗
E,la

)

(

Sla

KS,la + Sla

)

�̄E,la,1 X1,

dφR,1

dt
=

(

χR,1 − φR,1

)

μ1,
dφR,2

dt
=

(

χR,2 − φR,2

)

μ2,

dφ̄E,gl,1

dt
=

(

χC,1 − φ̄E,gl,1

)

μ1,
dφ̄E,gl,2

dt
=

(

χC,2 − φ̄E,gl,2

)

μ2,

dφ̄E,la,1

dt
=

(

χE,la,1 − φ̄E,la,1

)

μ1, φ̄E,la,2 = 0,

dX1

dt
= μ1 X1,

dX2

dt
= μ2 X2.

where

μ1 =
(

fgl�̄E,gl,1 + fla�̄E,la,1

)

�̄G,1�R,1

�̄G,1�R,1 +
(

fgl�̄E,gl,1

σCmax,gl
+ fla�̄E,la,1

σCmax,la

)

�R,1 +
(

fgl�̄E,gl,1

σAmax,gl
+ fla�̄E,la,1

σAmax,la

)

�̄G,1

,

μ2 =
(

fgl�̄E,gl,2

)

�̄G,2�R,2

�̄G,2�R,2 +

(

fgl�̄E,gl,2

σCmax,gl

)

�R,2 +

(

fgl�̄E,gl,2

σAmax,gl

)

�̄G,2

,

with

fgl =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
glkmax,gl

(

1

�̄∗
E,gl

)2
(

Sgl

KS,gl + Sgl

)

,

fla =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
lakmax,la

(

1

�̄∗
E,la

)2
(

Sla

KS,la + Sla

)

,

�R,1 = �R,0 + φR,1, �R,2 = �R,0 + φR,2,

�̄E,gl,1 = φ̄E,gl,1 = φC,1, �̄E,gl,2 = φ̄E,gl,2 = φC,2,

�̄E,la,1 = φ̄E,la,1, �̄E,la,2 = φ̄E,la,2 = 0,

�̄G,1 = �̄G,0 + �max − (1 + ε)φR,1 − φ̄E,gl,1,

�̄G,2 = �̄G,0 + �max − (1 + ε)φR,2 − φ̄E,gl,2,
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and the constants

σAmax,gl =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
glkmax,gl

(1 + ε)�∗2
R,gl

,

σCmax,gl =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
glkmax,gl

�̄∗2
G,gl

,

σAmax,la =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
lakmax,la

(1 + ε)�∗2
R,la

,

σCmax,la =
(

�max + (1 + ε)�R,0 + �̄G,0

)

Y ∗
lakmax,la

�̄∗2
G,la

.

The regulation functions are given by

χR,1 = φR,1 +
C1

1 + ε

((

1

1 + ε

)

∂μ1

∂φR,1
− γ1

∂μ1

∂φC,1
− (1 − γ1)

∂μ1

∂φA,1

)

,

χC,1 = φC,1 + C1

(

∂μ1

∂φC,1
− γ1

∂μ1

∂φA,1
− (1 − γ1)

(

1

1 + ε

)

∂μ1

∂φR,1

)

,

χE,la,1 = ηla

(

ζla�max + χC,1 (1 − ζla)
)

,

χR,2 = φR,2 +
C2

1 + ε

((

1

1 + ε

)

∂μ2

∂φR,2
− γ1

∂μ2

∂φC,2
− (1 − γ1)

∂μ2

∂φA,2

)

,

χC,2 = φC,2 + C2

(

∂μ2

∂φC,2
− γ2

∂μ2

∂φA,2
− (1 − γ2)

(

1

1 + ε

)

∂μ2

∂φR,2

)

,

with C1, C2, γ1 and γ2 calculated as described in Appendix F.2. The point at which

the lactose enzyme switches on is modelled by setting

ηla =
K 2

L + ξ S2
gl

K 2
L + S2

gl

,

ζla =
1

2

(

1 − tanh

(

1

ǫ

(

φ̄E,la,1

φC,1
−

1

2

)))

,

where KL , ξ and ǫ are constants.

We keep the parameter values the same as in the diauxic-shift only simulation

(described in Appendix G with parameters shown in Tables 4 and 5) with the exception

of the log-phase yields, Y ∗
gl and Y ∗

la (fitted values for simulation 2 are Y ∗
gl = 0.67 and

Y ∗
la = 0.536). This is because the yield depends on the ratio of OD600 to g/L of

biomass which will differ between the experiments. We do, however, keep the ratio

Y ∗
gl : Y ∗

la the same in both simulations.

Initial values for Sgl, Sla and X1 = X2 were taken from our experimental data at

t = 0. The initial value for φR,1 = φR,2 = 0.2 was determined using data from Wu

et al. (2023) assuming a doubling rate in Luria–Bertani broth of 25 min (Tao et al. 1999).
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The initial level of catabolic proteins was taken to be φ̄E,gl,1 = φ̄E,gl,2 = �̄∗
E,gl/2.

This is based on data from Wu et al. (2023) showing that the expression level of

glycerol uptake enzymes approximately doubles in the transition from rich to minimal

media. The anabolic proteins were initially assumed to be at their minimum value

so φA,1 = φA,2 = 0. Using the initial levels of the protein mass fractions and the

constraint equation 2 we obtain the value of the constant relating the uninduced sector

to the ribosomal sector as ε = 0.91.
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