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Abstract

Linear systems occur throughout engineering and the sciences, most notably as
differential equations. In many cases the forcing function for the system is unknown,
and interest lies in using noisy observations of the system to infer the forcing, as
well as other unknown parameters. In differential equations, the forcing function is
an unknown function of the independent variables (typically time and space), and
can be modelled as a Gaussian process (GP). In this paper we show how the adjoint
of a linear system can be used to efficiently infer forcing functions modelled as GPs,
using a truncated basis expansion of the GP kernel. We show how exact conjugate
Bayesian inference for the truncated GP can be achieved, in many cases with
substantially lower computation than would be required using MCMC methods.
We demonstrate the approach on systems of both ordinary and partial differential
equations, and show that the basis expansion approach approximates well the true
forcing with a modest number of basis vectors. Finally, we show how to infer point
estimates for the non-linear model parameters, such as the kernel length-scales,
using Bayesian optimisation.

1 Introduction

Linear systems are used as models throughout the sciences and engineering, encompassing a wide
range of both ordinary and partial differential equations (including the heat, wave, Schrédinger’s,
Maxwell’s equations etc), as well as systems of linear algebraic equations (such as eigenvalue
problems). To fix notation, let £ : &/ — V be a linear operator between Banach spaces &/ and V (i.e.,
complete normed spaces, Kreyszig (1991)) . A prototypical linear system is then of the form

Lu=f, )

where u € U is the quantity of interest being modelled, and f € V is the forcing function of the
system. Given a fully specified operator £ and forcing function f (and possibly initial and boundary
conditions), solving the system for w is referred to as the forward problem. Typically, this is a
computationally intensive task. For example, consider modelling air pollution as it moves through the
atmosphere. In this case, £ may be a partial differential operator describing the advection, diffusion,
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and reaction of the pollution, and f will be a function describing the source of the pollution at each
location and time. The forward problem refers to computing the concentration, u, given the emission
sources and will usually require the use of numerical integration methods.

In many applications, both the linear operator £ and the forcing f may not be fully specified, and we
may face the statistical task of learning £ and f from noisy observations of u:

z=h(u)+e. )

Here, z € R"™ are the observations, & the observation operator, n the number of observations, and
e € R™ a zero-mean observation error. This is often referred to as the inverse problem in applied
maths and statistics (Stuart, 2010), or sometimes as a latent force model in machine learning (Alvarez
et al., 2009). In the air pollution example this would equate to finding the distribution of pollution
sources, f, given a set of concentration measurements z.

We focus on the situation where
1. f is modelled as a Gaussian process (GP) when V is an infinite dimensional Banach space,
or with a Gaussian distribution in the finite dimensional case. E.g., if £ is an ordinary
differential operator with independent variable ¢, then f will be an unknown function of ¢.
2. The observation operator i : U/ — R™ is affine. In the finite dimensional case, this implies
h(u) = Hu + ¢ for some constant matrix H and vector ¢, but in the infinite dimensional
case (when U is a space of functions) includes pointwise evaluation of u, i.e. u(x,t) for
some values of z and ¢, and integral and derivative observations of u, e.g. f u dzdt, % etc.
3. The observation error € has a Gaussian distribution. This assumption can be relaxed for
maximum likelihood (ML) estimation.

The full specification of the statistical model is then
Lu=f, z=h(u)+e

f~GP(m(-),k(-,-)), € ~ N, (0,0°1,) ®)

where m and k are the prior mean and covariance (kernel) functions of the GP. Note that the linear
system in Egs. (3) may include initial and boundary conditions for differential operators. Our aim is
to infer f (and possibly u, £, and k) given z either via

* ML estimation, by solving the constrained optimization problem

mfin (z —h(u) " (z — h(u) + a||f]3 st. Lu=f

* Bayesian inference, by computing the posterior distribution

([, ul2) o< (zlu)m(ul f)m(f)- €
The prior distribution for f, 7(f), and the regularization parameter, «, play a similar role in the two
approaches. To solve either problem numerically is likely to require many solves of the forward
problem (Eq. 1). For example, for ML we may seek a solution using numerical optimization (e.g.
Arellano Jr et al., 2007; Troltzsch, 2010), whereas with Bayes, we might use an MCMC scheme (e.g.
Kopacz et al., 2009; Cotter et al., 2013; Sengupta et al., 2016; Albani et al., 2021) or a variational
approach (Chappell et al., 2008). All of these approaches require multiple solves of the forward
problem. Here we develop an approach to minimize the computational cost of inference.

1.1 Contribution

In this paper we show that implementing an adjoint of the linear system can result in much faster
statistical inference. Instead of using numerical approaches to solve either the ML or Bayesian
inference problem, we can do inference for f at the cost of n forward model solves, where n is the
number of data points. In many (but not all) cases, this will incur a substantially lower computational
cost than competing methods, such as MCMC. More specifically, we show that

1. if f depends linearly on parameters ¢, we can estimate g or its distribution analytically, i.e.
without resorting to numerical integration methods;

2. if we model f as a Gaussian process, then by using a truncated basis expansion we can
efficiently infer the posterior distribution for f.



The paper is structured as follows. In the next section we discuss related work before introducing
adjoints in Section 3.1. We derive the main results in Section 3.2, and in Section 3.3 we show how
linearizing Gaussian processes via a basis expansion reduces inference for GPs in linear systems
to simple linear algebra. Finally, in Section 4 we demonstrate the approach on two linear systems:
ordinary (ODE) and partial differential equations (PDE).

2 Related work

The problem defined by Eqgs. (3) is often referred to as a latent force model (Alvarez et al., 2009,
2013). Alvarez et al. (2009) showed how the posterior distribution (4) can be computed by using the
integral formulation of Lu = f, i.e. u(z) = [ G(z — v) f(v)dv, where G(-) is the Green’s function
associated with the differential operator £. Due to the linearity of the integral transform, placing
a GP prior over f leads to a joint GP over f and w. From this joint GP, the posterior distributions
7(u | f) and 7(u) can be computed in closed form'. However, in many situations, particularly for
non-trivial differential equation models, the expressions for the covariances are cumbersome and
lead to the use of error functions with complex arguments or functions like the Faddeeva function
that can be numerically unstable to compute. Guarnizo & Alvarez (2018) proposed representing f
using random Fourier features (RFFs) to reduce the number of integrations necessary to be solved
analytically. Here, rather than using Green’s functions, we instead use adjoints to write the problem
as a linear model and then use a reduced-rank Gaussian process formulation, leading to numerically
stable and fast approximations to the posterior distribution.

More specifically, estimation of forcing functions in differential equation models has been extensively
studied, for example, in the field of modelling atmospheric advection-diffusion (e.g. Yee, 2008;
Borysiewicz et al., 2012; Singh & Rani, 2014; Rajaona, 2016; Yeo et al., 2019) with some authors
solving the inverse problem using an adjoint approach in combination with MCMC to compute the
posterior distribution (e.g. Yee, 2008; Hwang et al., 2019; Luhar et al., 2020; Albani et al., 2021).
Of particular relevance is Hwang et al. (2019) who use a point source model of pollution, and use
the adjoint to write the backward finite difference approximation, noting that this can be written as a
linear model, where the features are conjugate fields associated with each sensor. MCMC sampling is
still a limiting factor, restricting the extension of the approach to more complex situations such as
time-varying pollution sources.

Other related work includes the stochastic PDE approach of Lindgren et al. (2011), in which the
underlying function u is modelled as a Gauss Markov random field (GMRF), which can then be
formulated as a stochastic partial differential equation. This allows finite element methods to be
used to efficiently compute the posterior distribution for « given z. Similarly, Hartikainen & Sarkki
(2010) exploit the link between GMRFs and dynamical systems to convert inference for u to a form
in which Kalman filtering methods can be used, which scale linearly with n. Sigrist et al. (2015)
focus exclusively on the advection diffusion PDE considered in Section 4.2, and use white noise
for the forcing function, f, to create a stochastic PDE model for u. They use a spectral approach,
solving the PDE in the Fourier domain, to develop an efficient algorithm for statistical inference.
Whilst attractive, it is difficult to generalize this approach from white noise models of f to correlated
Gaussian process models. Jidling et al. (2017) show how to infer statistical inference for linearly
constrained systems, i.e., where Lu = 0. These approaches all model u, whereas our focus is on
inferring the forcing function f.

3 Methods

We first recap the definition of adjoints, before deriving our main result illustrating how they can be
used to accelerate inference. We then show how using a truncated basis approximation to Gaussian
processes allows us to find the GP posterior distribution without resorting to MCMC methods.

3.1 Adjoints

Recall that £ : U — V is a linear mapping between Banach spaces I/ and V. Let /* and V* denote
the dual spaces of ¢/ and V (Kreyszig, 1991). We can construct the adjoint to a continuous linear

"For a more detailed explanation of the Green’s function method, please see the supplementary material.



operator L as follows. Let v* € V* and define F' : U/ — Rby F : uw +— v*(Lu). Then F' is a bounded
linear functional on U, i.e., F' = u* for some u* € U*. Thus for all v* € V* we’ve associated a
unique u* € U*:

LY v —=u" =0v"oL. 5)
We call £* the adjoint of £, and L£* is itself a bounded linear operator (Estep, 2004). By construction,
we have that for all w € U and v* € V*

(L707)(u) = v* (Lu), (6)

a result known as the bilinear identity. In the case where I/ and V are also real Hilbert spaces
with respect to inner products (-, -); and (-, )y, then we can identify the dual spaces with their
underlying space: by the Riesz representation theorem if v* € V* then there exists v € V such that
v*(+) = (-, v)y. In this case, the bilinear identity reduces to its more familiar form

(Lu,v)y =v"(Lu) = (L") (u) = (u, L )y @)

where we now consider £* : V — U. We only consider real vector spaces here, resulting in a
symmetric inner product.

Generally, the adjoint £* will be the same type of operator as £ (e.g. if £ is a differential operator then
L* will be too), so solving an adjoint system of the form £*v = h will have similar computational
complexity as solving Lu = f. See Estep (2004) for an introduction to adjoints, and Section 4 for
examples of adjoint systems.

3.2 Benefits of adjoints

How does the development of an adjoint to a linear system help us perform statistical inference for
that system? Consider the situation where uncertainty about the unknown forcing function, f in
Eq. (1), can be characterized by a linear dependence upon unknown parameters ¢g. That is, we can

write
M

FO =" amom(). ®)
m=1
In the infinite dimensional case where U and V are spaces of functions on some set X, the ¢,,, will
also be functions on &. In the finite-dimensional case, the ¢,,, will be vectors of fixed length.

In the situation where the observation operator (2) is linear, then we can write the it" observation as
h;(u) = (h;, u) plus noise, for some h; € U. Consider the n different adjoint systems

Lv; =h;fori=1,...,n.
Then using the bilinear identity (7) we have that
hi(u) = (hi, u) = (L0, u) = (vi, Lu) = (vs, f),

i.e., the i** observation is the inner product between the unknown forcing function f and the solution
of the i*" adjoint system. At first, the introduction of the adjoint doesn’t appear to have helped.
To evaluate the likelihood (or sum of squares) we have gone from needing a single solve of the
forward problem, to requiring the solution to n adjoint systems. The benefit arises if we now use the
assumption of a linear dependence upon the parameters, and linearity of inner products:

M M
hz(u) = <Uia Z Qm¢m> = Z Qm<via ¢m>
m=1 m=1

The complete observation vector z can then be written as

z =

(vi,01) - {v,0m)\ /g,
: ' < ) +e=Pg+e )
am

<vn;¢1> <Un7.¢1v1>

where ¢ € RM is the parameter vector, and ® € R"*M is the matrix of inner products between the n
adjoint solutions and M basis vectors.



This can be recognized as a linear model. Thus, standard results can be used to compute the least
squares/ML and Bayesian estimators. For ML, the minimum of S(q) = (z — h(u))" (2 — h(u))
subject to Lu = f, is obtained at § = (® T ®) ' ® T 2 with Var(§) = 02(®"®)~! in the case where
the observation errors ¢; are uncorrelated and homoscedastic with variance 2. Standard results can
be used from regularized least squares if we need to regularize q.

In a Bayesian setting, if we assume a priori that g ~ Nys(po, Xo), then the posterior for g given z
(and other parameters) is
q | ZNNJVI(NTMETL) (10

where
1 1 -1
[y = (2<1>Tz + 251%) , Y, = <2c1>Tc1> + 251) . (11)
g g

See, e.g., O’Hagan & Forster (2004). Note that the solutions of the adjoint equation, v;, are present
in the posterior distribution of ¢ in the matrix .

3.3 Inference of Gaussian forcing functions

We now consider the case where the forcing function is given a Gaussian process prior distribution:

where m(-) and k(-,-) are the prior mean and covariance functions respectively (Rasmussen &
Williams, 2006). Our approach is to use a reduced-rank representation of the GP, as in Eq. (8), derived
by truncating an expansion for % of the form

k(xz,2') = Z G (1) P (). (13)
m=1

There are many possible choices for the basis vectors ¢;(-), including the Karhunen-Loéve (KL)
(Deheuvels & Martynov, 2008), Laplacian (Solin & Sirkkd, 2020; Coveney et al., 2020; Borovitskiy
et al., 2020), and random Fourier feature (RFF) (Rahimi et al., 2007) expansions. The Karhunen
Loeve basis is formed by finding the spectral expansion of the integral operator defined in Mercer’s
theorem:

T1(0) = [ ) fla!)a

In the case where dim(x) is small (such as the ODE example below), the eigenfunctions of T},
are easy to compute either analytically (Rasmussen & Williams, 2006, Section 4.3.2, p116) or
numerically (Greengard & O’Neil, 2021). Using the eigenfunctions of T}, gives the L?-optimal
approximation (Kosambi, 2016), but the eigenfunctions can be difficult to compute even in three
dimensions. A simpler approach that extends easily to higher dimensional problems, is to use RFFs
(Rahimi et al., 2007). This relies upon Bochner’s theorem, which can be used to express stationary
kernels k(z,z") := k(z — 2’) as the Fourier transform of a positive measure p

k(x —2') = /exp(—iw(x —2'))dp(w).

If we use an isotropic exponentiated quadratic (EQ) kernel £, then the measure p corresponds to a
multivariate Gaussian, and Rahimi et al. (2007) give expressions for the Fourier feature basis vectors
that can be used to approximate the Gaussian process:

/ 2 1 NT / 27—2 1 T
k(x—2")=r71 exp(—ﬁ(x—a:) (x—2") = onx)= ﬁcos(xwmx—l-bm) (14)

where wy,, ~ N(0,I) and b,,, ~ U(0, 27). Substituting this ¢,, into equation 8 allows us to write
the forcing function f as a truncated Gaussian process with an EQ kernel (as such the true Gaussian
process is never calculated). The extension to anisotropic kernels is straight-forward.

Although the RFF expansion will require more basis vectors (a larger M) than the KL expansion to
achieve the same accuracy, the computational complexity of our adjoint approach is dominated by the
number of adjoint solves, not the number of features (which only affects the cost of computing the
relatively low-cost Eq. 13), and so including more terms has a minor effect on overall computational
cost.



3.4 Time complexity of Algorithm 1

Let GG be the number of grid elements, n the number of observations, and M the number of features.
There are five stages in our algorithm:

Solving the n adjoint systems, which requires O(Gn) operations.

Computing each basis vector, ¢, over the grid for each feature requires O(G M) operations.
Computing the matrix @, requires O(GMn) operations.

Finding ® " ® requires O(n.M?) operations.

A e

Finally solving the matrix inverse will require O(M?) operations.

This results in an algorithm that scales linearly in the number of data points, n. Empirically, for the
problems we’ve experimented with, we found computing ¢ over the large grid was the most time
consuming step. The overall time complexity is O(GMn) + O(nM?) + O(M?3), but note that the
constants associated with each term are important in most problems.

4 Experiments

4.1 Ordinary differential equation (ODE)

Consider the non-homogeneous linear ODE:

d?u du
il e = f(t 15
P2 g +Prgy +pou f(@t) (15)
on the domain [0, T'] with initial conditions «(0) = «/(0) = 0. The right hand side, f(t), is the
unknown forcing function that we wish to estimate, and pg, p1, p2 are parameters in the linear operator.
We model f as a zero-mean GP with an EQ kernel (Eq. 14).We assume observations are obtained as
noisy averages over short time windows:

ti+At 1
hi(u) = —u(t)dt = (u, h; 16
= [ g = (o (16)

where h; is the indicator function ﬁi(t) = I}, +,+a4(t). This includes direct measurements of u(t;)

if we set h;(t) = 6(t — t;), the Dirac delta function. To generate synthetic data, we simulate a
realization f from the GP model, solve Eq. (15) for u(t), and then simulate n observations from
Eq. (16) with T =1, p, = 0.5,p1 = 1,pg = 5, At = % t; = %, adding zero-mean Gaussian
noise with standard deviation o = 0.1. For simplicity, we solve the ODE with a simple forward
Euler approximation, but higher order schemes can and should be used in real applications. We
approximate the GP using Eq. (8), using 200 RFFs generated using Eq. (14) with A = 1/0.6 and

72 = 4. The linear operator in this case is

Lu = d—2+ iJr
U= p2dt2 pldt Po | u.

To derive the adjoint operator we use the bilinear identity (Eq. 7), and integrate by parts twice:

T T T
(Lu,v) = / (Lu)vdt = / (p2ii + pri + pou)vdt = / (p2¥ — P10 + v)udt = (u, L V)
0 0 0

when v(T") = v(T) = 0. So the adjoint of L is

L & d +
v= — —D1— v.
b2 dr2 b1 dt Po
Note that rather than an initial condition, the adjoint has a final condition: to solve the system we

have to integrate backwards in time from ¢t = 7" to ¢t = 0. See Algorithm 1.

Fig. 1 shows the effects of the number of training points n and the number of features M on the
posterior distribution of the forcing function. As expected, more data results in a more confident



Algorithm 1 Computing the posterior distribution of ¢

fori=1...ndo _

Solve adjoint system L*v; = h; with appropriate final and boundary conditions.
end for
form=1...Mdo

Sample an RFF basis vector ¢,,, using Eq. (14).

fori=1...ndo

Compute [(I)]im = <Ui7 ¢m>

end for
end for
Compute the posterior distribution for ¢q using Eqgs. (10) and (11).

output, f(t)
output, f(t)

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Input, t Input, t Input, t

Figure 1: Posterior distribution for the unknown forcing function (with 95% credibility interval). True
forcing in red. The number of training points and features are, (left) n = 10 and M = 100; (middle)
n = 100 and M = 10; (right) n = 100 and M = 100. The overconfident and wrong posterior when
M = 10 is a consequence of the model being heavily misspecified.

posterior. Note though the danger of using too few features: with M = 10 the approximation of f has
limited expressive power and cannot capture the true form of f, i.e., the model is heavily misspecified.
This can result in the uncertainty collapsing upon the most likely, but wrong, value. This can be
difficult to spot, so users should check the sensitivity of the posterior with respect to M (which can
be done with no additional forward solves).

In the supplementary material we provide a comparison between the adjoint method, the Green’s
function methods as in Alvarez et al. (2009) and Guarnizo & Alvarez (2018), and a vanilla Gaussian
process when applied to this ODE problem.

4.2 Partial differential equation (PDE)

We now demonstrate the approach on a PDE in which there are two spatial variables, z € X C R?,
and time, ¢ € [0,T] C R, so that the solution v = u(x, t) is a function of three independent variables.
We consider the advection-diffusion equation

0

8—7:+p1-vu—v-(p2vu):fin2cx[o,T] (17)
with initial and boundary conditions u(z,0) = 0 for z € X and V,u = 0 for z € 0X. Here,
the unknown forcing function f = f(z,t) is a function of space and time, and we model it as a
zero-mean Gaussian process, f(z,t) ~ GP(0, k((x,t), (¢',¢')) with EQ kernel k (Eq. 14). We use
an RFF approximation to k with random weights w,, ~ N5(0, ) and by, ~ U(0, 27).

Observations are assumed to arise from sensors which take an average of u(x, t) over a small spatial
and temporal window R; x 7; C X x [0,T]:

1 : ) :
Zi:<u,ibi>+6i with ;Li: IR:[7:l 1f$€7.?,2 and¢ € T
0 otherwise.

The adjoint of the linear operator Lu = %? +p1.Vu—V - (p2Vu) is

L = —% —p1.Vo =V - (p2Vo).
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Figure 2: Spatial maps of the forcing function at a single slice: f(z,5). Left shows ground truth,
middle shows the posterior mean with 4 sensors, right shows the posterior mean using 16 sensors.

Table 1: Posterior mean and standard deviation of the ¢ parameters estimated by MCMC and the
adjoint method.

q1 q2 g3 g4 g5
MCMC -3.62(0.02) -0.64 (0.01) 1.68(0.01) -0.09 (0.01) 4.31(0.02)
Adjoint  -3.62 (0.02) -0.64 (0.01) 1.68(0.01) -0.09 (0.01) 4.31(0.02)

Our adjoint-aided approach then requires the solution of
L*v; = h; in X x [0,T] fori=1,...,n.
The final and boundary conditions on the adjoint system are
vi(x,T)=0forx € X, and pv;i(z,t)+ p2Vou(z,t) =0forz € 0Qandt € [0,T].
For details of the adjoint derivation see the supplementary material and Estep (2004).

Inference then proceeds as before. After solving the n adjoint systems, we compute the inner product
of these solutions with the RFF basis vectors to form the matrix ® (Eq. 9). We can then use Eq. (11)
to compute the posterior with minimal additional computational cost.

Data was simulated on the spatial domain X = [0, 10]? for ¢ € [0, 10] by first randomly generating
a forcing function f(z,t) (generated from a GP using an EQ kernel with A = 2, 72 = 2), and then
solving the forward problem (Eq. 17) to find u(x,t) using PDE parameters p; = (0.4,0.4) and
p2 = 0.01. We generate n observations using sensors that record averages over short time windows
equally spaced across the domain [0, 10] at the locations shown in Fig. 3. Zero-mean Gaussian
distributed noise is added to the true sensor readings with standard deviation o = 0.05 (note that this
is relatively small compared to the signal, which can often create problems for sampling methods).
We then use Algorithm 1 to calculate the posterior distribution for ¢, hence giving the posterior for
f. By sampling forcing functions from this posterior and simulating forward, we can evaluate the
posterior predictive accuracy of the model.

To validate the posterior estimates from the adjoint method, we also used MCMC to compute the
posterior distribution for the PDE model using just M/ = 10 RFFs. Table 1 shows the posterior
mean and variance of the first 5 ¢ parameters determined using both methods, which can be seen
to be in close agreement. Fig. 7 in the supplementary material shows the trace plots. We used a
batch-update random-walk Metropolis-Hastings (MH) sampler, which failed to converge (after an
hour of computation) when using a larger number of features. Even with M = 10, we still required
10,000s of forward model evaluations to reach convergence (whereas in comparison, the adjoint
method required just 75 forward model solves in this case).

To illustrate the effects of sensor density, observations were generated for five time windows using
arrays of 4 and 16 sensors at the locations shown in Fig. 3, i.e., a total of either n = 20 or n = 80
observations. The ground truth forcing and inference results (with M = 200) are shown in Fig. 2. As
expected, more sensors results in improved estimates. Fig. 3 shows the posterior standard deviation
for f in the 4 and 16 sensor cases. Here advection occurs parallel to the y = « line as p; = (0.4,0.4)
(i.e., as if there is wind blowing from the south west). We can see that standard deviation is smallest
upwind of the sensors, with more uncertainty downwind, as expected.

To investigate the effects of varying feature and sensor numbers we performed a posterior predictive
check using held-out data and used Monte Carlo estimation to calculate the posterior predictive mean
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Figure 3: Posterior standard deviation for the examples shown in Fig. 2. The left image is for the case
where 4 sensors are used, and the right for 16 sensors. Sensor locations are shown as white crosses.

Table 2: The median MSE as a function of number of sensors and RFFs. The ground truth was
generated using a GP with A\ = 2, 72 = 2 and PDE parameters p; = (0.01,0.01), p; = 0.01. The
MH algorithm did not converge after 20,000 iterations for 50 or more RFFs. The numbers brackets
are the 95% confidence intervals computed from 10 repeated experiments (for the adjoint approach)
and 5 (for MH).

Sensors Features

10 50 100 200 300 500
1 3.42(2.82,4.39) 3.27 (3.13,3.38) 3.24 (3.10,3.37)  3.27(3.17,3.44) 324 (3.12,3.36)  3.27(3.17,3.35)
4 7.12(1.57,28.81)  2.39(2.06,2.62) 2.41(2.13,2.60)  2.45(2.32,257) 2.50(241,2.69)  2.53(2.32,2.60)
9 2.38 (1.41,4.40) 2.12 (1.48,3.98) 1.70 (1.49,2.07) 1.48 (1.40,1.72) 1.47 (1.32,1.61) 1.45 (1.40,1.50)
16 1.73 (1.23,3.28) 3.99(2.32,10.90)  2.18(1.72,3.54) 1.3 (1.02,1.68) 1.12 (0.98,1.37) 1.12(1.02,1.21)

25 1.35 (1.19,3.09) 8.93(4.92,39.86)  4.36 (2.53,8.20) 1.86 (1.43,2.75) 1.35 (1.07,1.81) 1.05 (0.89,1.45)
25(MH)  3.27(1.73,6.12) - -

squared error (MSE). Table 2 gives the MSE as the number of sensors and RFFs vary. As both
increase, so does the accuracy of our estimates. In general, the accuracy depends upon a variety of
factors, including the PDE parameters (ratio of diffusion to advection), kernel parameters (decreasing
lengthscale makes the problem more challenging), and sensor locations. The speed and efficiency of
the proposed adjoint-aided approach allows us to investigate these effects in a way that would not be
possible if we were using MCMC (as each estimate of the posterior requires tens of thousands of
simulator evaluations, rather than just the n evaluations required for the adjoint-aided approach).

Although not our focus here, we note that we can infer the remaining parameters p (PDE) and (72, \)
(GP hyperparameters) in a variety of ways. For example, using Bayesian optimization we can find
the maximum likelihood estimates of these parameters with relatively minimal computational cost.
See the supplementary material for details and examples.

In the supplementary material we include some examples of the effect of varying the Gaussian process
lengthscale on inference quality, an example in which we apply our method to an advection diffusion
problem using the Roundhill II dataset (Cramer & Record, 1957) and apply our method to shift
operators (a non-differential linear operator).

4.3 Real time cost analysis

We compared the run time of the adjoint method to a basic MH MCMC algorithm (recorded on
a laptop with 16GB RAM and an Intel i7-1065G7 CPU @ 1.50 GHz). Exact inference of the
posterior of f in the ODE model using the adjoint method on a 100 element temporal grid with 100
observations using 100 RFFs took 569 £ 72.5 ms. This is approximately the time it took to perform
a single iteration of the MH algorithm. Inference of the posterior of f in the PDE model using the
adjoint method on a 50 x 30 x 30 spatiotemporal grid with 100 observations using 100 RFFs took
3.32 £ 0.18 s. In this time we were able to run 11+£2 iterations of the MH algorithm.

The Metropolis Hastings algorithm is comparatively inefficient due to the matrix multiplication
required to compute the forcing function f from a given ¢ using the basis vectors (see equation 8).
In the adjoint method this only needs to be calculated once, but is required at each step of the MH
algorithm.



Whilst more sophisticated MCMC implementations will achieve faster convergence than random walk
samplers, any MCMC algorithm will require 10,000s of forward model evaluations to approximate
the same posterior the adjoint method can compute exactly? in a fraction of the time.

5 Discussion

This work was motivated by the problem of inferring the distribution of spatially and temporally
varying sources of pollution across a city from noisy observations using a model of the pollution’s
atmospheric transport. Estimating the pollution concentration and its sources can help local authorities
reduce the population’s exposure, and to motivate policy interventions. Linear systems such as this,
are typical of the type of challenge faced throughout the sciences and engineering, and still pose
computational challenges that make principled statistical inference almost intractable, or if they are
tractable, the computational cost (e.g. of using MCMC) is such that only a limited range of models
and situations can be analysed. In this paper we developed an approach that results in conjugate
Bayesian inference of an unknown GP forcing function, with a computational cost that scales linearly
with the number of observations, n. As n increases, the approach may eventually require more
computation than competitor methods such as MCMC (which in theory has cost independent of n),
but given that MCMC typically requires 10° — 10° iterations even for low-dimensional problems?,
there is still a large range of problems for which an adjoint may be beneficial. In our PDE example,
the adjoint-aided approach required orders of magnitude fewer PDE solves than MCMC. We should
note that a key limitation of our approach is that it only applies to linear systems and cannot be used
to determine forcing functions for non-linear systems such as the Navier-Stokes equations.

We only briefly touched upon the problem of estimating the operator’s non-linear parameters p
(e.g., advection and diffusion rates) and the GP hyperparameters. Adjoint sensitivity methods (see,
e.g. Bradley, A. M., 2010; Margossian, 2019; Yashchuk, 2020) can be used to estimate gradients
of the log-likelihood with respect to the non-linear parameters in a numerically stable alternative
to automatic-differentiation frameworks (such as TensorFlow), which can be unstable when back
propagating through long iterative loops. Access to gradient information allows inference of the
additional parameters to be performed efficiently within the preferred statistical paradigm (e.g.
maximum likelihood using Bayesian optimization - see the supplementary information; Hamiltonian
Monte Carlo (Neal, 2011); or a variational autoencoder (Kingma & Welling, 2014) framework etc.).

Finally, there are many ways in which this approach may be accelerated, for example, by the use
of intelligent numerical solvers that reuse solution trajectories and adaptive step size solvers, multi-
fidelity methods that use varying grid sizes, and stochastic approaches which use only a subset of the
data at each stage. The core computational tasks in our approach (solving the adjoint systems) are
embarrassingly parallelisable, enabling easy deployment on HPC facilities if required.

Software: The algorithm has been implemented (for both the ODE and PDE problems) in a Python
module available at https://github.com/SheffieldML/advectionGP. The repository also contains Jupyter
notebooks that are used to produce the figures and tables in this paper.
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Here "exactly" refers to our ability to write down and compute the posterior for a given basis truncation of
the GP, rather than approximating the posterior with MCMC.

3In the best case scenario of independent Gaussian posteriors, the number of iterations required for random
walk Metropolis Hasting scales as O(M?) (Gelman et al., 1997) and O(M 1) for Hamiltonian Monte Carlo,
(Beskos et al., 2013) where M is the dimension of the parameter, with each iteration requiring a solve of the
forward problem. For more complex problems, scaling rates will be worse.
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Supplementary material for Adjoint-aided inference of Gaussian process driven
differential equations

Latent force models using Green’s functions

Existing approaches to latent force models rely upon the concept of a Green’s function (e.g. Higdon,
2002; Boyle & Frean, 2005; Alvarez et al., 2009, 2013; Guarnizo & Alvarez, 2018). Here, we briefly
describe this approach and how it links to our adjoint-aided approach, and discuss the advantages and
disadvantages of both methods. Consider the linear system

Lu=f for x € Q (18)
u=0 for x € 09.
Here, £ is assumed to be a differential operator, and the solution w is a function of « with domain 2.
The Green’s function for this system, G, (), satisfies
LGy(z) = d§y(z) forz € Q (19)
Gy(z)=0 for x € 002
where d,(x) = 6(« — y) is the Dirac delta function, and £* is the adjoint of £. Once we have

determined a Green’s function, solution of the original problem (18) can be found by computing the
convolution of G with f:

u(y) = (dy, u) by definition of Dirac delta
= (£ *Gy, u) by Eq. (19)
= (Gy, Lu) by definition of the adjoint
=(Gy, ) by Eq. (18)
- [,

The standard approach to latent force models then assumes f is a Gaussian process, [ ~ GP(0, k),
and uses the linearity of this expression and the closure of Gaussian processes under linear operations
(Rasmussen & Williams, 2006) to conclude that « is also distributed as a Gaussian process,

u~ GP(0,k,)

with covariance function
bulws) = [ Gyfa) [ Gy lak(a,a')de'de, 20)

For some forms of the kernel k, e.g. the exponentiated quadratic kernel, it is possible to evaluate
these integrals analytically when G is known. Alternatively, we can resort to numerical integration to
evaluate Eq. (20), for example, using random Fourier features (Guarnizo & Alvarez, 2018). Other
works have represented G using a polynomial series (Guarnizo & Alvarez, 2018) or have put another
GP prior over G (Tobar et al., 2015).

When the Green’s function is known for a given system, this approach can work efficiently and may
perform as well or better than the adjoint-aided approach. See Cole (2000) for a comprehensive list
of Green’s functions. However, for many systems (particularly operators with spatially/temporally
varying coefficients) the Green’s functions are not analytically computable. For diagonalizable
operators, we can try to find the eigenfunctions of L, i.e., \;, and ¢;(x) such that L¢; = \;¢;, then

we can write
=3 5o
— /\
If we can estimate \; and ¢;(x) numerically (1.e., by numerically solving the differential equation

Lo; = A\;i¢; on some computational mesh) we can then truncate this sum and form a numerical
approximation of G, (x). But in this case, we would then need to use our numerical approximation of

G in a further numerical approximation of the integral in Eq.(20) which can easily lead to numerical

14



instabilities and low accuracy. In addition, not all differential operators are diagonalizable (i.e., admit
a basis of eigenfunctions), for example, operators which are not self-adjoint.

In contrast, our adjoint-aided approach relies solely on the existence of the adjoint operator £* and our
ability to solve adjoint systems numerically. To do this, we can deploy modern finite element solvers
that are efficient, stable, and offer good error-control. A full numerical analysis of the respective
errors of the two approaches is beyond the scope of this paper, and would necessarily be specialized
to the implementation details of all the particular numerical algorithms used.

In summary, we would recommend that in the special case where G is known and Eq. (20) is tractable,
that a Green’s function approach be used. In other situations, the ease of the adjoint approach
introduced here is likely to be an attractive alternative both in terms of accuracy, numerical stability,
and ease of implementation.

Comparison to competing methods

We conducted a comparison between the adjoint method, the Green’s function method and a classical
Gaussian process on the ordinary differential equation model presented in section 4.1. Observations
were taken at 20 time points over ¢ € [0, 10] with a grid resolution of 200.

* The Gaussian process had a mean squared error of 0.0055 between the true output and the
inferred output.

¢ The Green’s function method (as in Alvarez et al. (2009)) had an MSE of 0.0051 for the
output error and 0.0860 for the source error.

e The Green’s function method with random Fourier features (as in Guarnizo & Alvarez
(2018)) achieved the following MSEs:

20 features: Source MSE of 0.099 and output MSE of 0.0058

200 features: Source MSE of 0.0927 and output MSE of 0.0055.

500 features: Source MSE of 0.0856 and output MSE 0f 0.0052.

2000 features: Source MSE of 0.0861 and outpute MSE of 0.0051.

* The adjoint method with M=2000 random Fourier features had an MSE of 0.0056 between

the ground truth concentration and the inferred concentration and an MSE of 0.079 between
the ground truth and inferred sources.

All three methods achieve a similar quality of inference over the system output. This is to be expected
as all three methods utilise a similar statistical model. For larger numbers of features (M ~ 200)
the adjoint method and the GP predicted the system response with similar accuracy. It should be
noted that by using a classical GP approach it is not possible to infer the unknown forcing function, f,
which is one of the key advantages of the adjoint method. The Green’s function method also performs
to a similar level of accuracy as the adjoint method, though the Green’s function method with Fourier
features appears to perform better at low numbers of features for this particular test case.

Derivation of the Advection Diffusion Adjoint Equation

Consider the advection diffusion operator discussed in Section 4.2:

0
£u=ai:+p1-Vu—V-(p2Vu)inXx[O,T] @1)
with initial condition
u(z,0) =0 forall z € X (22)
and Neumann boundary condition
Vau=0forx € 0X, (23)

where 90X is the boundary of X, V,,u = Vu - fi denotes the normal derivative of u, with fi(z) the
outward facing normal of X at x. Let Q = X x [0, T'] denote the spatial temporal domain of w.
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The adjoint of the system defined by Eqs (21-23) will depend on both the differential operator, and
the specific initial and boundary conditions imposed. To derive this, we need to find a linear operator
L* and a set of boundary conditions so that the bilinear identity

<Eu,v> = <7.L,,C*’U>

is satisfied for all sufficiently smooth functions « and v with compact support in 2. Let v be such a
function, and consider

(Lu,v) = / <8u +p1-Vu—-V- (pQVu)) v dSd. (24)
o \ Ot

In the derivation below, we’ll assume p; and p, are constant, and follow the general steps outlined in
Estep (2004). As in the ODE example, the derivation essentially relies upon repeated application of
integration by parts. For the first term in Eq. (24):

ou 0 Ov
A ade = /Q a(uv) —ugy dQ2

T 9 o
= - — [ u=dQ
/X/o at(uv)dtdx /Quatd
ov

:/Xu(xaT)'U(l’,T)—U(JJ,O)U(.’L’,O)dx—/uadﬂ_

Q
For the second term in Eq. (24):

plo/vVu—py(/ V(uv)dQ/uVUdQ)
Q Q Q
T
:p1-< /V(uv) dxdt—/qudQ)
o Jx Q
T
=p1- / % uvh dz dt—/qudQ
o Jox Q

where the first equality uses the vector product rule, and the third the divergence theorem. For the
third term in Eq. (24) we have

T
pg/vV~VudQ:p2 / ?{ vVu~ﬁdzdtf/Vv~VudQ .
Q 0 ox Q

We can then repeat this process on the final term above

T
/Vv-VudQ:/ 7{ qu-ﬁdxdt—/uV-Vde.
Q o Jox Q

Combining all of these terms together gives
ov

(Lu,v) = /Q <_3t —p1-Vo—V- (ngU)) udQ

+ /X (e, T)o(z, T) — u(z, 0)v(x, 0) dz

T
+ / 7{ wvpy.n — pevVu - i + pouVo - hda dt
o Jox
= (u, L*v) + boundary terms.

As in the ODE case, we then choose the boundary and initial conditions on v to make the boundary
terms above vanish. Firstly, as u(z,0) = 0 for all z, setting the final condition v(x,T") = 0 for all
z eliminates the first boundary term. Secondly, as Vu - i1 is 0 on the boundary (from the boundary
conditions on u, Eq. 22), the third term also vanishes. Finally, to set the remainder of the boundary
integral to 0 we assume p1v + poVo = 0 forall z € OX.
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Thus our adjoint operator is

0
L= —3—1; —piV-v—=V - (p2Vv) (25)

with final condition
v(z,T) =0forallz € X

and mixed condition
p1v + peVu =0 forz € OX.

Note that when solving the original and adjoint systems numerically, checking that the bilinear
identity does indeed hold is a useful validation of the derivation and PDE solvers.

PDE Inference Examples

Various factors effect the quality of source inference when using the adjoint method. These include
the number of random Fourier features (RFFs), M, the number of observations, n, the locations of the
sensors, and the ratio of the ground truth source lengthscale, A, to the size of the domain. In Section
4.2 we investigated the effect of changing the values of n and M (see Table 2) for a system with a
fixed lengthscale. Here we briefly illustrate the effect of changing A\. We consider a 10 x 10 x 10
grid in space and time and two scenarios:

1. 100 sensors arranged in a grid, with readings at 10 points in time, using 1000 RFFs to infer
the source (n = 1000, M = 1000);

2. 16 sensors arranged in a grid, with readings at 5 time points, using 500 RFFs (n = 80,
M = 500).

We generated three ground truth sources using length-scales [ = 5, 2 and 1. In each case, we used
the adjoint method in the scenarios described to infer the posterior distribution of the source. Fig. 4
shows the ground truth generated with [ = 5 and the inferred source in each scenario at a single
time-slice. In this case both models perform similarly on visual inspection. The MSE between the
inferred source and the ground truth is 0.004 for scenario 1 (n = 1000, M = 1000), and 0.008 in
scenario 2 (n = 80, M = 500).

Fig. 5 shows the same information for the source generated with length-scale [ = 2. In this case, we
can visually see that the posterior inference is much more accurate in scenario 1. The MSEs are 0.07
for scenario 1 and 0.68 for scenario 2. Finally, in the case where | = 1 (see Fig. 6), visual inspection
reveals that in scenario 2, the posterior mean bears little resemblance to the ground truth, whereas
key features of the ground truth are visible in the posterior mean for scenario 1. This is reflected in
the MSEs, which are 1.85 for scenario 1 (n = 1000) and 2.55 for scenario 2 (n = 80).

These results demonstrate the expected phenomena, namely that as the ratio of the length-scale to
the grid size decreases, more features and observations are required to accurately infer the ground
truth. Furthermore, in the short length-scale case the accuracy of inference is generally lower, as the
source varies more between sensor locations than in the longer length-scale case. Additionally, in
longer length-scale cases, fewer features and observations are required for high quality inference,
thus enabling inference with less computational resource.

Finally, Fig. 7 shows the trace plot for the ¢ parameters for an implementation of the Metropolis
Hastings algorithm in the case where M = 10 features are used. See the main text (Sect. 4.2) for
details.

Bayesian Optimisation Output

Although not our focus here, we note that we can infer the remaining parameters pi, p2 (PDE)
and 72, A (GP hyperparameters) in a variety of ways. By way of illustration, here we use the
GPyOpt (Gonzdlez & Dai, 2016) package to maximise the negative log-likelihood using the expected
improvement acquisition function in a Bayesian optimization approach (Shahriari et al., 2015).

To perform inference for py, p2, 72, A, we wrote a function which, given a parameter array 6, estimates
the posterior predictive accuracy of our source posterior when using 6 (here § may contain a subset
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Figure 4: Ground truth and posterior mean of the source when using kernel length-scale, | = 5
(time-slice at ¢ = 5). The left image shows the ground truth source, the middle image shows the
posterior mean inferred using 80 observations and 500 features (MSE=0.008), the right shows the
posterior mean inferred using 1000 observations and 1000 features (MSE= 0.004).
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Figure 5: Ground truth and posterior mean of the source when using kernel length-scale, | = 2
(time-slice at t = 5). The left image shows the ground truth source, the middle image shows the
posterior mean inferred using 80 observations and 500 features (MSE=0.68), the right shows the
posterior mean inferred using 1000 observations and 1000 features (MSE=0.07).
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Figure 6: Ground truth and posterior mean of the source from with kernel length-scale, | = 1
(time-slice at t = 5). The left image shows the ground truth source, the middle image shows the
posterior mean inferred using 80 observations and 500 features (MSE=1.85), the right shows the
posterior mean inferred using 1000 observations and 1000 features (MSE=2.55).
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Figure 7: Trace plots for MCMC corresponding to Table 1
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of the parameters). We do this by first simulating 100 realizations from the posterior mean of the
source for a fixed parameter, i.e., f1,..., fioo ~ p(f|z,8), and we push these through the PDE to
get a posterior predictive sample of concentration fields u1,...,u190 ~ p(u|z,d). The negative
log-likelihood is then calculated between these and the training observations giving us a way to score
parameter 6. The negative log-likelihood function was used as the objective function in a Bayesian
Optimisation routine Gonzalez & Dai (2016). To test this approach we generated various ground
truth source and solution fields using fixed values of 6.

Fig. 8 shows the exploration and eventual convergence in a particular case where we used A = 2
to generate a ground truth source. In this case, the maximum likelihood estimate of A\ was found

to be A = 2.52 which the optimization found after 29 iterations. In a case where the true kernel
length-scale and variance were both 2, and the wind-speed was 0.04, Bayesian optimisation found
the maximum likelihood values of 1.24, 3.20 and 0.031 respectively after 20 iterations. Further work
is needed to fully explore how to embed this approach into parameter estimation schemes, but we
hope it gives some insight into how parameter estimation could be performed. Finally, note that the
adjoint approach gives the possibility of estimating the gradient of the loss function. This would
enable the adjoint approach to be embedded into gradient based inference algorithms such as the
VAE and Hamiltonian Monte Carlo, hopefully accelerating inference.

- I

Acquisition (arbitrary units)
gp density

6

L(A)

Figure 8: The output of the Bayesian Optimisation algorithm used to infer the value of the GP kernel
length-scale, A. In this case the true value of A is 2 and the algorithm found the minimum of the
negative log-likelihood at A = 2.52. This plot shows where the objective function was evaluated, and
the posterior mean and variance at each point.

PDE model applied to the Round Hill IT dataset

To test the approach using data from a physical experiment, we used the Round Hill II advection-
diffusion experiment (Cramer & Record, 1957). In this study, researchers deployed 183 midget
impingers for measuring sulphur dioxide in three partial concentric rings, 50m, 100m and 200m
downwind from the release site, spanning 69°. A constant source of sulphur dioxide (releasing
approximately 5-10 gs—!) was used over a ten minute period, during which the impingers took
measurements of average concentration over the first 30 seconds, 3 minutes and 10 minutes. The
average wind speed and direction was recorded (2.14 ms~'). We modelled this with our adjoint
approach, as in section 4.2, over a 250m x 250m domain spanning 13 minutes, using 10,000 random
Fourier bases to approximate the Gaussian process forcing term. We tested two aspects of our model’s
capabilities. First: Source attribution. The model’s mean source prediction was roughly flat except
for a peak approximately 45m downwind of the true release site, see Figure 9. This discrepancy
is expected as the true dataset contained a point source while our model had a GP prior (with EQ
kernel and lengthscale of 10m) over the source. This leads to an inferred broader source, slightly
closer to the ring of sensors. The second test was predicting the SO, concentration: We removed
the middle (100m) ring of sensors from the training data, then tried to predict their measurements.
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For comparison we used a Gaussian process with a length-scale of 30m (and 30s) to predict the
concentration. We found it useful to threshold the concentrations to be non-negative for both methods.
Our model performed considerably better than the GP model. For the three measurement periods the
results were:

Our Model GP Model

30s 14444 21385
180s 6628 12968
600s 4503 8490

[measurement units were mg/m?, so these MSEs are in (mg/m?)? | See figure 10 for a comparison
of the inferred concentrations between the two models. Figure 10b indicates that the Gaussian process
generally overestimated the right hand side of the left out sensor array, whereas it can be seen from
10a that the adjoint method predicted the true high concentration area fairly well, with some smaller
overprediction at the left and right hand sides of the array.
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Figure 9: The mean inferred source in the Roundhill experiment at ¢ = 0. The white circle indicates
the true source location.

Shift operators

Here we provide an example of the adjoint method applied to a non-differential operator: the shift
operator. Consider the operator £, : R — R such that

Lo (u(t)) =u(t+ a). (26)
This is the right shift operator. We can derive the adjoint of the right shift operator by taking the

following inner product and using a change of variable (x=t+a).
o0

(Lu,v) = /(XJ u(t + a)v(t)dt = / u(z)v(x — a)dz (27)

—00 —00
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(a) The relative pollutant concentrations in the (b) The relative pollutant concentrations in the
Roundhill experiment between the predicted con- Roundhill experiment between the predicted con-
centration inferred using the adjoint method and centration inferred using a Gaussian process and
the true values. the true values.
Figure 10

and so the adjoint of the right shift operator is the left shift operator, £ : R — R, where LXv(t) =
v(t — a). Having derived the adjoint of the right shift operator, it is possible to apply the adjoint
method to an example system

Lou(t) =u(t+a) = f(¢) (28)
where f(t) is an unknown forcing function and observations of u are obtained as noisy averages over
short time windows (see equation 16).

Figure 11 shows the inferred and true f(¢) and u(¢) of the system given in equation 28 with @ = 2
and 20 observations evenly spaced between ¢ = 2 and ¢t = 8. Observations were generated with
Gaussian noise, € ~ N(0,0.05). The output u(t) is well predicted within the observation range with
relatively high certainty, the prediction is uncertain outside of the observation range. The forcing
function, f is well predicted between ¢ = 0 and ¢ = 6, i.e. the observation range shifted left by a = 2.
The MSE between the observations and the mean value of «(¢) inferred at the observations points is
0.003. For reference, the standard deviation of the observations is 1.001.

Source function Concentration

2 —— estimated source term 2 —— estimated u(t)
—=—- True source term

=== True u(t)

output, f(t)
output, u(t)

=2 -2
-3 -3
-2 0 2 4 6 8 10 0 2 4 6 8 10
Input, t Input, t
(a) Inferred and ground truth source in the shift (b) Inferred and ground truth output, u(t) in the
operator system with @ = 2 shift operator system with a = 2
Figure 11

It seems evident that to predict the source and output more confidently over the entire real line would
require observations over the entire real line. Furthermore, it does not seem possible to infer the shift
parameter, a. For example, if the true shift parameter is ¢ and the the model used to infer the source
assumes shift parameter a, the inferred source will simply be shifted left by a and the quality of
prediction of observation points would be indistinguishable (given a fixed basis for expansion of f).
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