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Observer-Based Adaptive Fuzzy Finite-Time
Attitude Control for Quadrotor UAVs

Kang Liu, Member, IEEE, Po Yang, Senior Member, IEEE, Rujing Wang, Lin Jiao, Member, IEEE, Tao Li,

Member, IEEE, and Jie Zhang

Abstract—This study presents an observer-based adap-
tive fuzzy finite-time attitude control strategy for quadrotor
unmanned aerial vehicles (UAVs). To estimate the informa-
tion of angular velocity with the finite-time property, an
adaptive neural network observer is first developed. Sub-
sequently, an adaptive fuzzy logic system (FLS)-based non-
singular fast terminal sliding mode controller is proposed
to compensate for the lumped disturbance and adjust the
control gain online. To cope with the input saturation, an
auxiliary system without the boundedness of the saturation
difference is constructed. The theoretical analysis proves
that all the system signals are bounded and the tracking
errors can converge to small neighbourhoods in finite time.
Finally, comparative simulations and experiments are per-
formed to manifest the feasibility and superiority of the
proposed control strategy, in terms of strong robustness,
singularity avoidance, free-chattering, fault tolerance, and
saturation attenuation.

Index Terms—Attitude control, finite-time convergence,
fuzzy logic system (FLS), input saturation, quadrotor UAVs.

I. INTRODUCTION

IN recent years, quadrotor unmanned aerial vehicles (UAVs)

have been widely applied in various fields [1]–[5] due to

some distinct advantages such as hovering capability, simple
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structure, and vertical take-off and landing. However, there

are many difficulties such as the complex atmosphere, high

nonlinearity, under-actuation, and various disturbances [6]–

[9]. The above difficulties greatly increase the challenge of

the controller design and reduce the dynamic performance.

As we know, the accuracy of attitude control directly affects

the accuracy of position control, so how to realize the high

performance of attitude control is the top priority.

Nowadays, many control strategies have been developed

[10]–[15], [17]–[22]. Due to its fast response and strong ro-

bustness, the SMC scheme was designed in [10] to compensate

for various uncertainties, but large control gain causes severe

chattering. To improve the performance of SMC, the study

[2] presented an adaptive SMC-based observer, but the distur-

bance’s derivative is required to be bounded. Attributed to the

strong approximation ability, radial basis function neural net-

works (RBFNNs) show remarkable performance for nonlinear

systems [11]. An adaptive NN-based dynamic surface control

(DSC) policy was proposed to solve the ”exponential explo-

sion” problem [12]. Tripathi et al. [13] designed a disturbance

observer (DO)-based SMC and conducted the experiments to

verify its validity. Fang’s team presented a new NN-based

hybrid mode-switching controller for the flapping wing aerial

vehicle [14]. As an alternative intelligence method, fuzzy logic

system (FLS) can work reasonably well in the face of non-

linear systems [15]–[19]. Besides, FLS provides an effective

human-interpretable solution that is very easy to understand,

especially from the perspective of laypersons. In [19], the

authors proposed a T-S fuzzy-based event-triggering attitude

control for the spacecraft systems to reduce the communication

burden. Ma et al. [20] presented a hybrid flight controller

for unmanned helicopters, where the FLS was constructed to

cope with the parametric uncertainties. The fuzzy SMCs were

proposed to realize the chattering attenuation and improve the

disturbance rejection capability [17], [21], [22]. Although the

accurate system dynamics is unnecessary, many logic rules are

required for the fuzzy controller design, which would lead to

structural complexity and computational pressure. As a result,

there remains an ongoing challenge to investigate an adaptive

fuzzy approximation control with a simpler fuzzy structure

and fewer logic rules.

Recently, the finite-time control has attracted considerable

attention [23]–[25]. Its primary advantage is that the system

convergence can be guaranteed in finite time instead of infinite

time. In [26], a linear-quadratic regulation attitude controller

was presented, but it may be impossible to realize the desired

control effect for the quadrotor UAV in the presence of high



nonlinearity. Moreover, it is less robust and has high sensitivity

to unanticipated disturbances. To solve these difficulties, a

terminal SMC (TSMC), which adopts a nonlinear surface to

replace a linear surface, was presented to realize the finite-

time convergence [27], [28]. In contrast to the linear SMC

(LSMC), the TSMC has a slower convergence speed and

an inevitable singularity. Hence, fast TSMC (FTSMC) [29]

and nonsingular TSMC (NTSMC) [30] were proposed for the

quadrotor attitude system. However, individual FTSMC [29]

or NTSMC [30] schemes cannot handle above two disadvan-

tages in the TSMC. To solve the above two disadvantages,

some nonsingular FTSMCs (NFTSMCs) were presented in

[9], [31]–[34]. In [9], an adaptive NFTSMC was developed

to obtain the desired performance. Xu et al. [33] studied a

fault-tolerant control (FTC) method based on NFTSMC to

achieve strong robustness and fast response. Nevertheless, the

chattering problem is difficult to avoid. To this end, several

solutions such as the boundary layer technique [29], [31],

continuous controller [10], [27], and observer/approximator

[25], [35], have been developed. Although these approaches

are constructive, they would lose the fast finite-time nature,

and there is just theoretical assurance for the control precision.

These important requirements correspond to our goal.

Most attitude controllers require the acquirability of angular

velocity. However, it is difficult to measure accurately due to

sensor failure and measurement noise, and it costs expensive

expenses to install extra velocity sensors. Hence far, many

works have been deeply studied to obviate this problem [23],

[37]–[42]. The motion capture system [37] was used to nu-

merically estimate the velocity signals. However, the obtained

velocity signals contain the noises and errors and therefore

cannot be used to make rigorous stability analysis. By applying

the immersion and invariance technique, an exponentially

convergent velocity observer was designed for mechanical sys-

tems, but it ignores the unknown parameters and disturbances

[38]. Even though the velocity estimation is a critical issue

in the quadrotor UAV, the key is to consider the existence of

unknown parameters and external disturbances in the design of

the state observer. The finite-time observer was presented via

high-order sliding mode mechanism [23] to detect the angular

velocity, but it requires the boundedness of the disturbance and

its first-order derivative. To solve this challenge, in [39] and

[40], the authors designed a state observer-based FLS/NN, but

the finite-time convergence cannot be guaranteed. In [41], a

distributed finite-time homogeneous controller was proposed

to achieve the aim of velocity-free. However, the finite-time

convergence analysis is unclear when the system is subject to

various disturbances and actuator faults. To address this chal-

lenge, a model-free velocity observer was developed in [42]

to realize the velocity-free attitude control, but its estimation

speed is relatively slow. Notably, the precise reconstruction of

angular velocity is important for the system stability, and this

is also one of our aims.

In reality, the actuator faults and input saturation should be

considered, otherwise it could cause mechanical failure and

unpredictable consequences. Current results on how to solve

the input saturation mainly include: i) the small-gain approach

is used to reduce the input amplitude [43]; ii) the auxiliary

system or observer technique is constructed to compensate

for the saturation difference [44]–[46]; and iii) the continuous

function is adopted to approximate the discontinuous signal

[47]. However, there are some problems that needed to be

improved, such as free singularity, fast saturation elimination,

and compensation-error ability. For another problem, many

FTCs have been developed to guarantee the safety of the

system. In [48], an active FTC-based observer was developed

to tackle the actuator faults, while the fault-tolerant ability

depends on the accuracy of the fault estimation. As a key

component of the active FTC, the fault detection and isolation

(FDI) could increase the complexity of the FTC. To solve the

above problems, some passive FTCs were proposed in [22],

[49]–[51]. By combining the benefits of FLS and DO, the

parametric uncertainties and fault components were resolved

[22], [49]. In [50], the authors proposed a finite-time FTC via

the Lyapunov-Krasovskii function. Xiao et al. [51] designed a

projection-based adaptive algorithm to overcome the actuator

faults while ensuring the boundedness of the adaptive param-

eters. Compared with the active FTC, the passive FTC can

address the actuator faults without any FDI process and is

robust in solving a group of considered faults.

Although diverse results have been obtained, solving all

the aforesaid factors simultaneously brings major challenges.

This study develops an observer-based adaptive fuzzy finite-

time attitude controller for quadrotor UAVs with unavailable

angular velocity, external disturbances, parametric uncertain-

ties, actuator faults, and input saturation, which can realize

free singularity, satisfactory robustness, chattering avoidance,

fault tolerance, and saturation elimination. First, an AFTNNO

is proposed to estimate the accurate information of angular

velocity. Then, an adaptive FLS-based NFTSMC is designed

to improve the system robustness. Besides, an auxiliary system

is constructed to solve the input saturation. By comparison, the

main contributions of this study are summarized as

1) In contrast to the previous state observers in [20], [23],

[38], [41], the designed adaptive finite-time NN observer

(AFTNNO) can estimate the information of angular veloc-

ity without the accurate knowledge of the system dynamics.

Meanwhile, the AFTNNO not only keeps the basic property

of the controller with the full-state measurable compared

with the state observer in [23], but also realizes the finite-

time convergence rather than the exponential convergence

in [38]–[40] and provides a faster convergence speed than

the state observer in [42]. These infer the AFTNNO can

achieve better estimation performance.

2) In comparison with the conventional fuzzy SMCs in [3],

[18], [22] and fuzzy logic controllers in [15]–[17], [19]–

[21], the designed adaptive FLS-based NFTSMC strategy

not only has a simpler fuzzy structure, fewer logic rules

and free singularity, but also updates fuzzy gain automat-

ically, achieves the finite-time stability and improves the

convergence speed, which helps overcome the undesired

chattering and enhance the steady-state performance. When

the tracking errors are close to the sliding mode surface,

the fuzzy switching control part is removed to decrease the

unnecessary energy loss. Furthermore, compared with the



current works in [10], [13], [17], [22], [26], [35], where

the lumped disturbance D and its derivative Ḋ are both

bounded [17], [22], [26], Ḋ changes slowly (i.e., Ḋ = 0)

[13], or the bound of D needs to be known [10], [35], this

work just requires D to be bounded. These could release

the application limitation and possess higher adaptability.

3) Compared with the previous approaches in [44], [45], [47]

to tackle the input saturation, the designed auxiliary system

not only guarantees the finite-time stability without the

boundedness of the saturation region, but also overcomes

the singularity issue and the saturation-compensation error,

which are beneficial to improve the saturation rejection

capability. Extensive comparative simulations and real-time

experiments are executed to demonstrate the effectiveness

and advantages of the developed control strategy.

The rest of this paper is described as follows: Section II

describes some preliminaries. Section III gives the controller

development and the stability analysis. Section IV performs

comparative simulations and experiments. In Section V, con-

clusive statements are given.

Notations: Ip×p, 0p×p, and tr(•) are the p × p identity

matrix, the p × p zero matrix, and the matrix’s trace, re-

spectively. λmin(•) and λmax(•) stand for the minimum and

maximum singular values of a matrix. For any vector y ∈ R
m

and a scalar b > 1, sign(y)b is defined as sign(y)b =
[

|y1|bsign(y1); . . . ; |ym|bsign(ym)
]

, which can be proved that
d
dt (sign(y)

b) = b|y|b−1ẏ. The subscript × is a transformation

of a vector z = [z1; z2; z3] to skew-symmetric matrix, which

can be written by [z]× = [0,−z3, z2; z3, 0,−z1;−z2, z1, 0].

II. PRELIMINARIES AND PROBLEM FORMULATION

A. System Description

The physical structure of the quadrotor UAV is vividly

shown in Fig. 1, where the coordinate frames A and B stand

for the earth-fixed and body-fixed frames, respectively. The

relation of attitude angle Θ = [ϕ; θ;φ] and angular velocity

Ω = [pb; qb; rb] is given by

Ω = Rs(Θ)Θ̇ =





1 SϕTθ CϕTθ

0 Cϕ −Sϕ

0 Sϕ/Cθ Cϕ/Cθ



 Θ̇ (1)

where Si ≜ sin(i), Ci ≜ cos(i), and Ti ≜ tan(i), i = ϕ, θ, φ.

Notice that the Euler angles ϕ and θ are limited to (−π
2 ,

π
2 ),

which is physically meaningful to ensure the quadrotor UAV

never be overturned and to prevent the singular issue in the

Euler angle propagation equations [1], [13], [20].

The quadrotor attitude dynamics can be modeled via Euler-

Lagrangian methodology, as [4], [9]:

JΩ̇ = −[Ω]×JΩ+ u+ d (2)

where u = [u1;u2;u3] and J = diag{Jx, Jy, Jz} are the

control input and inertial matrix, respectively; d = [d1; d2; d3]
denotes the disturbance disturbance factor.

Assumption 1 [21]: With the consideration of the structural

flexibility and load changes, the inertial matrix J can be

described as J = J0 + J∆, where J0 =
[

J0,x; J0,y; J0,z
]
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Fig. 1. Physical structure of the quadrotor UAV

and J∆ =
[

J∆,x; J∆,y; J∆,z

]

denote the ideal part and un-

certain part of J , respectively, which is reasonable to assume

∥J∆∥ ≤ J̄ with J̄ > 0 denoting an unknown scalar.

Assumption 2 [21]: The external disturbance d is unknown

but bounded by an unknown constant d̄ > 0, i.e., ∥d∥ ≤ d̄.

B. Analysis of Actuator Faults and Input Saturation

The control input with actuator faults and input saturation

can be generally expressed by [22], [44]:

u = Esat(uo) + uf (3)

where uo = [uo,1;uo,2;uo,3] is the designed control input.

The additive fault uf = [uf,1;uf,2;uf,3] represents the un-

controllable portion of the control input that is unmeasurable

and time-varying. In a real quadrotor UAV system, uf means

the external input, such as wind disturbances, the dampings

from various frictions, or the force bias induced by the

electric regulator errors of the motors. E = diag{e1, e2, e3}
is the actuation effectiveness matrix. This study considers the

following types of actuator faults:

1) Type 1: If ei = 1 and uf,i = 0, it means that the ith
actuator is healthy.

2) Type 2: If ei = 1 and uf,i ̸= 0, it means that the ith
actuator is additive fault.

3) Type 3: If ei ∈ (0, 1) and uf,i = 0, it means that the ith
actuator is partial effectiveness.

4) Type 4: If ei ∈ (0, 1) and uf,i ̸= 0, it means that the ith
actuator is partial effectiveness and additive failure.

Assumption 3 [32], [44]: The parameters uf,i and ei satisfy

the conditions such that |uf,i| < ∞ and 0 < ei ≤ 1.

The actual input sat(uo,i(t)) can be characterized by

sat(uo,i(t)) =















ui, uo,i(t) < ui

gr,i(uo,i(t)), ui ≤ uo,i(t) ≤ 0
gl,i(uo,i(t)), 0 < uo,i(t) ≤ ūi

ūi, u0,i(t) > ūi

(4)

where ui < 0 and ūi > 0 are the known lower and upper

bounds on uo,i(t), and gr,i(·) and gl,i(·) are unknown nonlin-

earities. Thus, the attitude model of the quadrotor UAV can

be expressed by

N1(Θ)Θ̈+N2

(

Θ, Θ̇
)

Θ̇ = RT
t sat(u0) +D (5)

where Rt is the inverse matrix of Rs (i.e., Rt = R−1
s ),

N1 = RT
t J0Rt, N2 = RT

t J0Ṙt − RT
t

[

J0RtΘ̇
]

×Rt and

D = RT
t

(

d + J∆Rt + J∆Ṙt −
[

J∆RtΘ̇
]

×Rt + (E −
I3×3)sat(u0) + uf

)

. It is worth emphasizing that since the

Euler angle θ is constrained to −π
2 < θ < π

2 , Rt is



nonsingular. On the basis of this, each elements of N1 and

N2 are respectively written by

N1 =





m11 0 m13

0 m22 m23

m13 m23 m33



 , N2 =





n11 n12 n13

n21 n22 n23

n31 n32 n33





where m11 = J0,x, m13 = −J0,xSθ, m22 = J0,yC
2
ϕ+J0,zS

2
ϕ,

m23 = (J0,y−J0,z)CϕSϕCθ, and m33 = J0,xS
2
θ+J0,yS

2
ϕC

2
θ+

J0,zC
2
ϕC

2
θ ; n11 = 0, n12 = (J0,y−J0,z)

(

θ̇CϕSϕ+ φ̇S2
ϕCθ

)

−
J0,xφ̇Cθ+(J0,z−J0,y)φ̇C

2
ϕCθ, n13 = (J0,z−J0,y)φ̇C

2
ϕSϕC

2
θ ,

n21 = −(J0,y − J0,z)
(

θ̇CϕSϕ + φ̇S2
ϕCθ

)

+ J0,xφ̇Cθ −
(J0,z − J0,y)φ̇C

2
ϕCθ, n22 = (J0,z − J0,y)ϕ̇CϕSϕ, n23 =

−J0,xφ̇SθCθ+J0,yφ̇S
2
ϕCθSθ+J0,zφ̇C

2
ϕSθCθ, n31 = (J0,y−

J0,z)φ̇C
2
θSϕCϕ − J0,xθ̇Cθ, n32 = (J0,z − J0,y)

(

θ̇CϕSϕSθ +

ϕ̇S2
ϕCθ

)

+J0,xφ̇SθCθ−(J0,z−J0,y)ϕ̇C
2
ϕCθ−J0,yφ̇SϕSθCθ−

J0,zφ̇CϕSθCθ, and n33 = (J0,y − J0,z)ϕ̇CϕSϕC
2
θ −

J0,y θ̇S
2
ϕCθSθ + J0,xθ̇CθSθ − J0,z θ̇C

2
ϕCθSθ. Thus, it can be

concluded that N−1
1 and N−1

2 are nonsingular.

Assumption 4: The lumped disturbance D satisfies ∥D∥ ≤
D̄, where D̄ > 0 is an unknown scalar.

Remark 1: In this article, the problems of the external

disturbances, uncertain parameters, actuator faults, input sat-

uration, and unmeasurable angular velocity are considered

simultaneously in the attitude dynamics. Because this could

lead to the complexity of the controller development and

model establishment, most prior studies in [7]–[10], [12] only

considered part of the aforesaid issues. Moreover, in contrast

to the previous study in [6], the pitch angle and roll angle

are not assumed to vary near zero and be relatively small.

Therefore, the considered situations are more realistic.

Remark 2: For Assumptions 1–4, it is necessary to make

further discussions: (i) The uncertain inertia matrix is usually

caused by the deployment of sensors, the structural flexibility

and the change in payloads, Assumption 1 is thus general

[21]. (ii) Since the external disturbances like wind gusts,

aerodynamic friction and gyroscopic effect are constantly

changing and have the limited energy influence, the external

disturbances acting on the quadrotor UAV can thus be regarded

as unknown time-varying yet bounded commands. (iii) In fact,

insufficient battery power would lead to the degradation of the

actuator effectiveness, and due to the limited energy and the

avoidance of infinite control gain, Assumption 3 is standard to

describe the actuator faults [32], [44]. (iv) Since the lumped

disturbance D contains the external disturbance, uncertain

inertia, and actuator faults, it is reasonable to assume that D

is bounded. Besides, in contrast with [10], [13], [17], [22],

[26], [35], where the lumped disturbance D and its derivative

Ḋ are both bounded [17], [22], [26], Ḋ changes slowly (i.e.,

Ḋ = 0) [13], or the bound of D is known [10], [35], this

study only requires that d is bounded by an unknown scalar.

Thus, Assumption 4 removes the application restriction.

C. RBFNN Approximation

Any unknown nonlinear function F(Z) : Rw → R can be

approximated by the following RBFNN:

F(Z) = W ∗Th(Z) + δ(Z) (6)

Z PN

imlim , rim ,0

(a) Input fuzzy sets for m

ZI PINI

1,ir2,ir3,ir ig

(b) Output fuzzy sets for ri

Fig. 2. Illustration of Membership functions.

where Z ∈ ΩZ ⊂ R
w is the RBFNN’s input, δ(Z) is the

approximation error and holds ∥δ(Z)∥ ≤ η̄ with η̄ being a

positive scalar, and h(Z) ∈ R
p can be written by [12]

hi(Z) = exp

[

(Z −Ci)
T(Z −Ci)

κ2
i

]

, i = 1, · · · , p (7)

where Ci ∈ R
w and κi > 0 represent the center of the re-

ceptive field and the width of hi(Z), respectively. In addition,

W ∗ ∈ R
p expresses the ideal weight vector calculated by [14]

W ∗ = argmin
Ŵ ∗

{

sup
Z∈ΩZ

∣

∣

∣
F(Z)− Ŵ ∗Th(Z)

∣

∣

∣

}

. (8)

where Ŵ ∗ ∈ R
p is the estimation of W ∗, W̄ is the upper

bound of ∥W ∗∥, p > 1 is the the node number of RBFNN.

Note that the ideal network weight W ∗ is unknown and used

only for analysis objectives, and it needs to be estimated in

the design procedure.

D. FLS Design

The fuzzy inference engine uses a set of IF-THEN rules to

perform a mapping from the input m = [m1, . . . ,mn]
T ∈ R

n

to the output g = [g1, . . . , gn]
T ∈ R

n, where mi and gi are

described by

• mi [antecedent proposition]: P (positive), N (negative), Z

(zero);

• gi [consequent proposition]: PI (positive influence), NI

(negative influence), ZI (zero influence).

In this study, the fuzzy linguistic rule bases are given by

• Rule 1: If mi belongs to P, then gi belongs to PI.

• Rule 2: If mi belongs to Z, then gi belongs to ZI.

• Rule 3: If mi belongs to N, then gi belongs to NI.

The membership functions of mi and gi are shown in Fig. 2,

and the choice of mi,r and mi,l is based on the performance

demands. From the perspective of simple calculation and

intuitive credibility, the singleton fuzzification with triangular

membership function and center of gravity defuzzification

scheme is employed. As a result, one obtains

gi =

∑3
j=1 vi,jri,j
∑3

j=1 vi,j
=

(vi,1ri,1 + vi,2ri,2 + vi,3ri,3)

(vi,1 + vi,2 + vi,3)
(9)

where vi,j ∈ [0, 1] is the firing strength of Rule j. The fuzzy

gains ri,1, ri,2 and ri,3 need to be chosen suitably, and ri,1 =
ra,i, ri,2 = 0 and ri,3 = −ra,i are the centers of PI, ZI, and

NI, respectively; the relation vi,1+vi,2+vi,3 = 1 is true since it

meets the special situation of triangular membership function.

Next, this study will analyze only four possible situations:



• Situation 1: Only Rule 1 satisfies (i.e., vi,1 = 1, vi,2 = 0
and vi,3 = 0), one gets gi = ra,i.

• Situation 2: Both Rules 1 and 2 satisfy (i.e., 0 < vi,1 < 1,

0 < vi,2 < 1 and vi,3 = 0), one gets gi = vi,1ri,1 =
vi,1ra,i.

• Situation 3: Both Rules 2 and 3 satisfy (i.e., vi,1 = 0,

0 < vi,2 < 1 and 0 < vi,3 < 1), one gets gi = vi,3ri,3 =
−vi,3ra,i.

• Situation 4: Only Rule 3 satisfies (i.e., vi,1 = 0, vi,2 = 0
and vi,3 = 1), one gets gi = −ra,i.

Thus, one can get a conclusion (vi,1 − vi,3)ra,i = |(vi,1 −
vi,3)ra,i| ≥ 0, and the following result holds

gi = (vi,1 − vi,3)ra,i. (10)

Further, the final output of the designed FLS can be written

as g = (v1 − v3)ra, where ra = [ra,1, . . . , ra,n]
T ∈

R
n, v1 = diag{v1,1, . . . , vn,1} ∈ R

n×n, and v3 =
diag{v1,3, . . . , vn,3} ∈ R

n×n.

Remark 3: To realize low-computation fuzzy approximation,

the number of fuzzy rules is unexpected to be large. In this

study, the total number of fuzzy rules is less than in previous

studies on the attitude control of the quadrotor UAV [3], [15],

[17]. Particularly, this study performs comparative simulations

and experiments to verify that even though the number of

fuzzy rules is reduced, good control performance can still be

achieved.

Lemma 1 [36]: For a scalar β > 0 and any two matrices

P and Q with appropriate dimensions, it follows that 2PTQ

≤ βPTP + β−1QTQ.

Lemma 2 [4]: For a scalar h ∈ (0, 1] and any variable xi, the

following inequality holds:

(

∑n

i=1
|xi|
)h

≤
∑n

i=1
|xi|h ≤ n1−h

(

∑n

i=1
|xi|
)h

. (11)

Lemma 3 [32]: For the nonlinear system ẋ = f(x), f(0) = 0,

x ∈ R
n, suppose there exist a Lyapunov function V (x) and

some scalars 0 < η < ∞, π1 > 0, π2 > 0 and 0 < π3 <
1 such that V̇ (x) ≤ −π1V (x) − π2V

π3(x) + η. Then, the

system is fast practically finite-time stable and the function

V (x) converges to the following bounded region, as

lim
t→T

V (x) ≤ min

{

η

(1− ϵ)π1
,
( η

(1− ϵ)π2

)1/π3
}

(12)

where ϵ ∈ (0, 1), and the convergence time T is bounded by

T ≤ max

{

t0 +
1

ϵπ1(1− π3)
ln

ϵπ1V
1−π3(t0) + π2

π2
,

t0 +
1

π1(1− π3)
ln

π1V
1−π3(t0) + ϵπ2

ϵπ2

}

(13)

where t0 is the initial time.

Lemma 4 [31]: For a Gauss’ hypergeometric function:

Λ(χ1, χ2, χ3, χ4) =
∑∞

k=0

(χ1)k(χ2)k
(χ3)kk!

χk
4 (14)

if χ1, χ2, and χ3 are positive constants and satisfy the

condition χ3 − χ2 − χ1 > 0, the function Λ(·) is convergent

within the definition domain χ4 < 0.
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Fig. 3. Block diagram of the presented control framework.

Lemma 5 [24]: For any variable z, a constant ϵ1, 0 < p < 1,

and 0 < q = q1
q2

< 1, where q1 and q2 are positive odd

integers, the following inequality is valid:

−z(z + ϵ1)
q ≤ −1− p

1 + q
z1+q +

ϵ2
1 + q

(15)

where ϵ2 = ϵ1+q
1 +

(

ϵ1
1−(1−p)1/(1+q)

)1+q

+
(

ϵ1(1−p)1/(1+q)

1−(1−p)1/(1+q)

)1+q

.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

Firstly, an AFTNNO is proposed to estimate the angular

velocity. Then, this study designs an observer-based adap-

tive fuzzy finite-time attitude controller to deal with various

disturbances. Finally, the stability analysis is given. For the

convenience of the reader, the overall block diagram for the

attitude control system is vividly shown in Fig. 3.

A. AFTNNO Design

First, by letting a new state variable as w = Θ̇, one gets
{

Θ̇ = w

ẇ = f(Θ,w) + p1sat(u0) + p2(uf + d)
(16)

where f = −RtJ
−1
0

[

Rsw
]

×JRsw − RtJ
−1
0 J∆

(

Ṙsw +

Rsẇ
)

+ ṘtRsw, p1 = RtJ
−1
0 , and p2 = RtJ

−1
0 .

Then, an AFTNNO is designed as
{

˙̂
Θ = ŵ + k1y1

˙̂w = k2y2 + Ŵ ∗Tĥ(Θ̂, ŵ) + p1sat(u0)
(17)

where Θ̂ =
[

ϕ̂; θ̂; φ̂
]

, ŵ =
[

˙̂
ϕ;

˙̂
θ; ˙̂φ

]

and Ŵ ∗ stand for the

estimations of Θ, w and W ∗, respectively; k1 > 0 and k2 >

0 are design parameters; y1 = sign
3l−2

l

(

Θ̃
)

+ k3Θ̃, y2 =

k3y1 +
3l−2

l

(

sign
5l−4

l (Θ̃) + k3sign
3l−2

l

(

Θ̃
)

)

, Θ̃ = Θ − Θ̂,

and k3 > 0. Here should satisfy 4
5 < l < 1 and 2l − 1 = l1

l2
,

where l1 and l2 are positive odd integers. In this study, Ŵ ∗

can be adjusted by

˙̂
W ∗ = Υ

(

ĥyT
1 − k4Ŵ

∗ − ĥĥTŴ ∗

2k3

)

(18)



where Υ ∈ R
3×3 is a positive-definite matrix and k4 > 0.

By denoting w̃ = w − ŵ, W̃ ∗ = W ∗ − Ŵ ∗ and h̃ =
h(Θ,w)− ĥ(Θ̂, ŵ), it follows that

{

˙̃
Θ = w̃ − k1y1

˙̃w = −k2y2 + W̃ ∗Tĥ+ Ŵ ∗Th̃+ Ξ
(19)

wherein Ξ = f + p2(uf + d). For simplicity, we denote a

new estimation error as ξ =
[

ξT1 ; ξ
T
2

]

=
[

yT
1 ; w̃

T
]

. Then, the

time derivative of ξ along (16)–(19) is given by

ξ̇ =
(

aA1 + k3
)

A2ξ +A3

(

W̃ ∗Tĥ+ Ŵ ∗Th̃+Ξ
)

(20)

where A1 =
[

diag
{

|Θ̃| 2l−2
l

}

,03×3;03×3, diag
{

|Θ̃| 2l−2
l

}]

∈ R
6×6, A2 =

[

− k1I3×3, I3×3;−k2I3×3, 03×3

]

∈ R
6×6,

A3 =
[

03×3; I3×3

]

∈ R
6×3 and a = 3l−2

l . Denote two

matrices as B =
[

I3×3,03×3

]

∈ R
6×6, and E = BT −CA3

with C ∈ R
3×6 being a positive-definite matrix.

Theorem 1: For the attitude system (16) and the presented

AFTNNO (17) and (18), the estimation errors Θ̃, w̃ and W̃ ∗

converge to the bounded regions in finite time, if the positive-

definite matrix C holds the linear matrix inequalities, as:

CA2 +AT
2 C < −K1 (21a)

CA2 +AT
2 C +EET < −K2 (21b)

where E = BT − CA3 with C ∈ R
3×6 being a positive-

definite matrix, A3 =
[

03×3; I3×3

]

∈ R
6×3, A2 =

[

−
k1I3×3, I3×3;−k2I3×3,03×3

]

∈ R
6×6, B =

[

I3×3,03×3

]

∈
R

6×6, K1 and K2 are arbitrary positive-definite matrices, k1
and k2 are positive constants, k3 >

2νλ2
max(CA3)

k3λmin(K2)
with ν1 > 0

being an arbitrary parameter, and k4 > h̄2

k3
.

Proof: Construct the Lyapunov function as

V1 = ξTCξ + tr
{

W̃ ∗T
Υ

−1W̃ ∗T
}

. (22)

Taking the derivative of (22) yields

V̇1 =aξTA1

(

CA2 +ATC
)

ξ + k3ξ
T
(

CA2 +ATC
)

ξ

+ 2ξCA3

[

W̃ ∗Tĥ+W ∗Th+Ξ
]

+2k4tr
{

W̃ ∗TŴ ∗
}

+ k−1
3 tr

{

W̃ ∗TĥĥTŴ ∗T
}

− 2tr
{

W̃ ∗TĥyT
1

}

. (23)

With consideration of Lemma 5, Assumptions 1–4, and

∥Rt∥ = 1
cos(θ) ≤ ν2 < ∞, it follows that

∥

∥Ξ
∥

∥ ≤ ∥f∥ +

∥p∥∥d∥ ≤ δ̄ + ν2
∥

∥J−1
0

∥

∥D̄ ≜ µmax with µmax being an

unknown positive scalar. Hence, (23) can be rewritten as

V̇1 ≤− aΘ̃
2l−2

l
max ξ

TK1ξ + k3ξ
T
(

CA2 +ATC
)

ξ

+ 2νξTλ2
max

(

CA3

)

ξ + 2ξCA3W̃
∗Tĥ+ ν−1

1

× h̃TW ∗W ∗Th̃+ ν−1
1 Ξ

T
Ξ+ 2k4tr

{

W̃ ∗TŴ ∗
}

+ k−1
3 tr

{

W̃ ∗TĥĥTŴ ∗T
}

− 2tr
{

W̃ ∗TĥyT
1

}

≤− aΘ̃
2l−2

l
max ξ

TK1ξ + k3ξ
T
(

CA2 +ATC
)

ξ

+ 2ξCA3W̃
∗Tĥ+ 2νξTλ2

max

(

CA3

)

ξ + k−1
3

× tr
{

W̃ ∗TĥĥTŴ ∗T
}

+ 2k4tr
{

W̃ ∗TŴ ∗
}

+ ν−1
1 W̄ 2h̄2 + ν−1

1 µ2
max − 2tr

{

W̃ ∗TĥyT
1

}

(24)

where Θ̃max = max
{

Θ̃1, Θ̃2, Θ̃3

}

and y1 = Cξ. Based

on
(

0.5k3
∥

∥W̃ ∗∥
∥

2
)

2l−1
l − 0.5k3

∥

∥W̃ ∗∥
∥

2 ≤ 1, W̃ ∗TŴ ∗ =

W̃ ∗TW ∗ −
∥

∥W̃ ∗∥
∥

2 ≤ −0.5
∥

∥W̃ ∗∥
∥

2
+ 0.5W̄ 2, Lemma 5,

(21) and E = BT −CA3, (24) can be transformed to be

V̇1 ≤− aΘ̃
2l−2

l
max ξ

TK1ξ + k3ξ
T
(

CA2 +ATC
)

ξ

+ ν−1
1 W̄ 2h̄2 − 2ξEW̃ ∗Tĥ+ ν−1

1 µ2
max

+ 2νξTλ2
max

(

CA3

)

ξ − 0.5
(

k4 − k−1
3 h̄2

)

∥

∥W̃ ∗∥
∥

2

+ 0.5k−1
3 W̄ 2h̄2 −

(

0.5k4
∥

∥W̃ ∗∥
∥

2
)

2l−1
l

− k−1
3 hT(Θ, ŵ)W̃ ∗W̃ ∗Tĥ+ k4W̄

2 + 1

≤− aΘ̃
2l−2

l
max λmax

(

K1

)

∥ξ∥2 − k3λmin

(

K2

)

∥ξ∥2

+ 2νλ2
max

(

CA3

)

∥ξ∥2 − 0.5
(

k4 − k−1
3 h̄2

)

∥W̃ ∗∥2

−
(

0.5k4
∥

∥W̃ ∗∥
∥

2
)

2l−1
l

+ ν−1
1 W̄ 2h̄2 + ν−1

1 µ2
max

+ 0.5k−1
3 W̄ 2h̄2 + k4W̄

2 + 1. (25)

Since 2l−2
l < 0 and Θ̃max ≤

∥

∥Θ̃
∥

∥ ≤ k−1
3 ∥y1∥ ≤ k−1

3 ∥ξ∥,

one can get that
(

k−1
3 ∥ξ∥

)

2l−2
l ≤ Θ̃

2l−2
l

max . In view of Lemma

2, (25) is rewritten as

V̇1 ≤− aλmax

(

K1

)

k
2−2l

l
3 ∥ξ∥ 4l−2

l −
(

0.5k4
)

2l−1
l
∥

∥W̃ ∗∥
∥

4l−2
l

−
(

k3λmin

(

K2

)

− 2νλ2
max

(

CA3

)

)

∥ξ∥2

− 0.5
(

k4 − k−1
3 h̄2

)

∥

∥W̃ ∗∥
∥

2
+∆1

≤−Ψ1V1 −Ψ2V
2l−1

l
1 +∆1 (26)

as long as k3 >
(

2νλ2
max(CA3)

)

/
(

k3λmin(K2)
)

and

k4 >
(

h̄2/k3
)

, the inequality (26) will be satisfied. Mean-

while, Ψ1 = min
{

aλmax

(

K1

)

k
2−2l

l
3 , (0.5k4)

2l−1
l

}

, Ψ2 =

min
{

k3λmin(K2) − 2νλ2
max(CA3), 0.5

(

k4 − k−1
3 h̄2

)

}

and

∆1 = ν−1
1 µ2

max + 0.5k−1
3 W̄ 2h̄2 + k4W̄

2 + 1.

Afterwards, we can transform (26) into the following:

V̇1 ≤ −Ψ1Ξ1V1 − (1− Ξ1)Ψ1V1 −Ψ2V
2l−1

l
1 +∆1 (27)

or

V̇1 ≤ −Ψ1V1 − Ξ1Ψ2V
2l−1

l
1 − (1− Ξ1)Ψ2V

2l−1
l

1 +∆1 (28)

where 0 < Ξ1 < 1. Based on (27) and (28), it follows that

when the function V1 satisfies V1 ≥ ∆1/
(

Ψ1(1 − Ξ1)
)

, then

V̇1 ≤ −Ψ1Ξ1V1−Ψ2V
2l−1

l
1 ; and when the function V1 satisfies

∆1/
(

(1−Ξ1)Ψ2

)
l

2l−1 , then V̇1 ≤ −Ψ1V1−Ξ1Ψ2V
2l−1

l
1 . Thus,

based on Lemma 3, it can be obtained that the function V1 shall

converge into the following region, as

V1 ≤ min

{

∆1

Ψ1(1− Ξ1)
,

∆1
(

(1− Ξ1)Ψ2

)l/(2l−1)

}

. (29)
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By letting Ω1 = ∆1/
(

Ψ1(1 − Ξ1)
)

and Ω2 = ∆1/
(

(1 −
Ξ1)Ψ2

)
l

2l−1 , it follows that Θ̃, w̃ and W̃ ∗ will drive into the

following regions, as










∥

∥Θ̃
∥

∥ ≤ k−1
3 λ

− 1
2

min

(

C
)

min
{

Ω1,Ω2

}

∥

∥w̃
∥

∥ ≤ λ
− 1

2

min

(

C
)

min
{

Ω1,Ω2

}

∥

∥W̃ ∗∥
∥ ≤ λ

− 1
2

min

(

Υ
−1
)

min
{

Ω1,Ω2

}

(30)

and the setting time t is bounded by

t ≤ t0+max

{

l

Ξ1Ψ1(1− l)
ln

Ξ1Ψ1V
(1−l)/l
1 (t0) + Ψ2

Ψ2
,

l

Ψ1(1− l)
ln

Ψ1V
(1−l)/l
1 (t0) + Ξ1Ψ2

Ξ1Ψ2

}

. (31)

where t0 is the initial time. Consequently, this completes proof.

B. Controller Development

Since the signals Θ and Θ̇ can be substituted by their

estimations Θ̂ and
˙̂
Θ, the estimated errors can be written by

Θe = Θ̂−Θd, Θ̇e = ŵ − Θ̇d (32)

where Θd and Θ̇d are the desired attitude signal and its first-

order derivative. Then, a NFTSM surface is introduced as

sn = Θe + βasign(Θe)
mc + βbsign

(

Θ̇e

)

ma
mb (33)

where sn =
[

sn,1; sn,2; sn,3
]

expresses the NFTSM surface,

βa > 0, βb > 0, and ma and mb denote positive odd integers

with 1 < ma

mb
< 2 and mc >

ma

mb
.

Remark 4: The mathematical expressions of LSM, TSM and

FTSM surfaces are described by

LSM surface: sl = βcΘe + Θ̇e (34a)

TSM surface: st = βdΘe + Θ̇

p0
q0
e (34b)

FTSM surface: sf = Θ̇e + pasign(Θe)
pc + pbsign(Θe)

pd

(34c)

where βc > 0, βd > 0, pa > 0, pb > 0, pc ≥ 1, 0 <
pd < 1, and p0 > 0 and q0 > 0 denote odd numbers with

0 < p0/q0 < 1. When the state is close to the equilibrium, Θe

ensures fast transient convergence. When the state is far from

the equilibrium, the term pasign(Θe)
pc would accelerate the

error Θe to zero. From Fig. 4, it can be observed that FTSM

provides a faster convergence speed than that of LSM and

TSM surfaces, and the convergence speed of the FTSM surface

can be accelerated by selecting a larger value pd. Furthermore,

in contrast to the FTSM surface, the NFTSM surface can solve

the singularity problem due to the fractional order ma

mb
−1 > 0.

The derivative of (33) along (5) is first formulated as

ṡn = Θ̇e + βamc|Θe|mc−1
Θ̇e + βb

ma

mb

∣

∣Θ̇e

∣

∣

ma
mb

−1
+N−1

1

×
(

−N2
˙̂
Θ−N1Θ̈d +RT

t Esat(u) +D
)

. (35)

The equivalent controller uo,eq can be obtained by solving

(35) without consideration of D, as

uo,eq =− P−1
2

(

βamcmb

βbma
diag

{

|Θe|mc−1
}

sign
(

Θ̇e

)2−ma
mb

+
ma

mbβb
sign

(

Θ̇e

)2−ma
mb + P1

˙̂
Θ− Θ̈d

)

. (36)

where P1 = N−1
1 N2 and P2 = N−1

1 RT
t . Since N−1

1

and N−1
2 described in (5) are nonsingular and based on the

definition of Rt, it is not hard to know that P−1
1 and P−1

2

are nonsingular.

Since the lumped disturbance is inevitable in practice, this

study puts forward the following switching controller, as






uo,sw = −P−1
2

(

uo,sw,1 + uo,sw,2

)

uo,sw,1 = kasn + kbsign(sn)
kc
kd

uo,sw,2 = ra(v1 − v3)

(37)

where uo,sw,1 is a fast switching control part, ka > 0 and

kb > 0, kc > 0 and kd > 0 denote odd integers with kc < kd;

uo,sw,2 is a fuzzy logic inference mechanism part.

To overcome the problem of the input saturation, this article

presents an auxiliary system with the following form:

χ̇ =− naχ− nbχ
ma
mb

−
(

Ξ(χ) + 1
2

)(

sTnsn +∆uT∆u
)

2||χ||2 χ+∆u (38)

with a smooth and nonsingular function Ξ(χ) being

Ξ(χ) =















0, ∥χ∥ ≤ δa
1, ∥χ∥ ≥ δb

1− cos

(

π
2 sin

(

π
2
∥χ∥2−δa
δ2b−δ2a

)

)

, otherwise
(39)

where na > 1 and nb > 0; δa > 0 and δb > 0 are arbitrarily

small design constants; ∆u = uo − sat(u). Therefore, the

saturation compensation controller uo,sa is constructed by

uo,sa = P−1
2 χ. (40)

By recalling the previous development, the composite attitude

control law is given by

uo = uo,eq + uo,sw + uo,sa. (41)

Since the upper bound of the lumped uncertainty is hard to

obtain accurately, a larger ra needs to be chosen. Unfortu-

nately, this causes more energy consumption and chattering.

To overcome this challenge, this article develops the following

adaptive mechanism to update the parameter ra:

˙̂ra =
βbma

mb
diag

{

∣

∣Θ̇e

∣

∣

ma
mb

−1
} (v1 − v3)sn

σ
− µ1r̂a − µ2r̂

µ3
a

(42)



where r̂a =
[

r̂a,1; r̂a,2; r̂a,3
]

, r̂a,i(0) ≥ 0, µ1 > 0, µ2 > 0,

0 < µ3 < 1, and σ > 0 can adjust the estimation rate of r̂a.

From (41) and (42), an observer-based adaptive fuzzy finite-

time attitude controller can be deduced to the following

uo =− P−1
2

(βamcmb

βbma
diag

{

∣

∣Θe

∣

∣

mc−1
}

sign
(

Θ̇e

)2−ma
mb

+
ma

mbβb
sign

(

Θ̇e

)2−ma
mb + P1Θ̇− Θ̈d + kasn

+ kbsign(sn)
kc
kd + (v1 − v3)r̂a − χ

)

. (43)

Theorem 2: For the attitude system (5), the proposed attitude

control law in (38), (39), (42) and (43) can guarantee that all

the system signals can bounded and tracking errors converge

to sufficiently small bounded regions in finite time.

Proof: Select a composite Lyapunov function as

V2 = ξTCξ + tr
{

W̃ ∗T
Υ

−1W̃ ∗T
}

+
1

2
sTnsn +

1

2
χTχ+

σ

2

3
∑

i=1

r̃2a,i (44)

where r̃a,i = r̂a,i − r̄a,i denotes the estimation error, and r̄a,i
is the upper bound of r̂a,i. Without loss of generality, r̄a,i is

suppose to be r̄a,i =
∣

∣

∣

D̄
c1−c3

∣

∣

∣
+r0,i, and in which r0,i is a very

small positive constant and belongs to an element of ro ∈ R
3.

The stability analysis are give by the following three cases.

Case 1: For ∥ξ∥ ≥ δb, i.e., Ξ(ξ) = 1. Substituting (43) into

the derivative of (44), and using the Lemma 1 that sTnχ ≤
3
2s

T
nsn + 1

6χ
Tχ and χT∆u ≤ 1

6χ
Tχ+ 3

2∆uT∆u, yield

V̇2 ≤sTn

{

Θ̇e+ βamcdiag
(

|Θe|mc−1
)

Θ̇e− diag
(

|Θ̇e|
ma
mb

−1
)

×
[

−βamcdiag(|Θe|mc−1)sign(Θ̇e)
2−ma

mb − βbma

mb

(

kasn

+kbsign(sn)
kc
kd −D+(v1−v3)r̂a

)

+sign(Θ̇e)
2−ma

mb

]

}

− naχ
Tχ− nbχ

Tχ
kc
kd + sTnχ− 3

2
∆uT∆u− 3

2
sTnsn

+χT∆u−Ψ1V1−Ψ2V
2l−1

l
1 + r̃Ta

(

diag
{

∣

∣Θ̇e

∣

∣

ma
mb

−1
}

×
(

(v1 − v3)
)

sn

)βbma

mb
− σµ1

3
∑

i=1

r̃a,ir̂a,i

− σµ1

3
∑

i=1

r̃a,ir̂
µ3

a,i +∆1

≤− βbma

mb
sTndiag

(

∣

∣Θ̇e

∣

∣

ma
mb

−1
)(

kasn + kbsign(sn)
kc
kd

−D + (v1 − v3)r̂a

)

−
(

na −
1

3

)

χTχ− nbχ
Tχ

kc
kd

+ r̃Ta

(βbma

mb
diag

(

∣

∣Θ̇e

∣

∣

ma
mb

−1
)

(

(v1 − v3)sn
)

)

−Ψ1V1

−Ψ2V
2l−1

l
1 − σµ1

3
∑

i=1

r̃a,ir̂a,i − σµ1

3
∑

i=1

r̃a,ir̂
µ3

a,i +∆1.

(45)

By taking sn as the input of FLS, it follows that each element

of sTn (v1 − v3) is positive. Thus, one has

−sTn (v1 − v3)ra + sTnD =

− sTn (v1 − v3)

(

ra −
1

v1 − v3
D

)

. (46)

By adding and subtracting (v1 − v3)r̄a to the right-hand side

of (45), and using (46), (45) can hence be formulated as

V̇2 ≤− βbma

mb
sTndiag

(

∣

∣Θ̇e

∣

∣

ma
mb

−1
)(

kasn + kbsign(sn)
kc
kd

−D + (v1 − v3)r̂a + (v1 − v3)r̄a − (v1 − v3)r̄a

)

−
(

na −
1

3

)

χTχ− nbχ
Tχ

kc
kd −Ψ1V1 −Ψ2V

2l−1
l

1

+ r̃Ta

(βbma

mb
diag

(

∣

∣Θ̇e

∣

∣

ma
mb

−1
)

(

(v1 − v3)sn
)

)

− σµ1

3
∑

i=1

r̃a,ir̂a,i − σµ2

3
∑

i=1

r̃a,ir̂
µ3

a,i +∆1

=− βbma

mb
sTndiag

(

∣

∣Θ̇e

∣

∣

ma
mb

−1
)(

kbsign(sn)
kc
kd + r̃a(v1

− v3) + kasn

)

−
(

na −
1

3

)

χTχ− nbχ
Tχ

kc
kd −Ψ1V1

−Ψ2V
2l−1

l
1 + r̃Ta

(βbma

mb
diag

(

∣

∣Θ̇e

∣

∣

ma
mb

−1
)

(

(v1 − v3)

× sn
)

)

−σµ2

3
∑

i=1

r̃a,ir̂
µ3

a,i−rT0

(βbma

mb
diag

(

∣

∣Θ̇e

∣

∣

ma
mb

−1
)

×
(

(v1 − v3)sn
)

)

− σµ1

3
∑

i=1

r̃a,ir̂a,i +∆1. (47)

Now recalling Lemmas 1 and 5, one can derive

−σµ1r̃a,ir̂a,i ≤ −σµ1

2
r̃2a,i +

σµ1

2
r̄2a,i, (48a)

−σµ2r̃a,ir̂
µ3

a,i ≤ −σµ2(1− µ4)

(1 + µ3)
r̃1+µ3

a,i +
σµ2υi
1 + µ3

(48b)

where 0 < µ4 < 1 and υi = r̄a,i +
(

r̄a,i

1−(1−µ4)1/(1+µ3)

)1+µ3

+
(

r̄a,i(1−µ4)
1/(1+µ3)

1−(1−µ4)1/(1+µ3)

)1+µ3

.

Combining (47) and (48), leads to

V̇2 ≤− λmin

(

L1

)

sTnsn−λmin

(

L2

)

∥sn∥
kc+kd

kd −nb∥χ∥
kc+kd

kd

−
(

na −
1

3

)

χTχ−Ψ1V1 −Ψ2V
2l−1

l
1 − σµ2(1− µ4)

(1 + µ3)

×
3
∑

i=1

r̃1+µ3

a,i − σµ1

2

3
∑

i=1

r̃2a,i +
σµ1

2

3
∑

i=1

r̄2a,i +∆1

≤− L3V2 − L4V
2l−1

l
2 +∆2 (49)

where na > 1
3 , 2l−1

l = kc+kd

2kd
, L1 =

kaβbma

mb
sTndiag

(

∣

∣Θ̇e

∣

∣

ma
mb

−1
)

, L2 = kb

ka
L1,

L3 = min
{

2λmin(L1), 2
(

na − 1
3

)

,Ψ1, µ1

}

,

L4 = min
{

2
kc+kd
2kd λmin(L2), 2

kc+kd
2kd nb,Ψ2,

2µ2(1−µ4)
(1+µ3)

}

,

µ3 = 3− 2
l , and ∆2 = ∆1 +

σµ1

2

3
∑

i=1

r̄2a,i + σµ2

3
∑

i=1

υi.



Case 2: For ∥ξ∥ ≥ δa, i.e., Ξ(ξ) = 0, the inequality (47)

can be rewritten as

V̇2 ≤− λmin

(

L1

)

sTnsn−λmin

(

L2

)

∥sn∥
kc+kd

kd −nb∥χ∥
kc+kd

kd

−
(

na − 1
)

χTχ−Ψ1V1 −Ψ2V
2l−1

l
1 − σµ1

2

3
∑

i=1

r̃2a,i

− σµ2(1− µ4)

(1 + µ3)

3
∑

i=1

r̃1+µ3

a,i +
σµ1

2

3
∑

i=1

r̄2a,i +∆1

≤− L5V2 − L4V
2l−1

l
2 +∆2 (50)

where L5 = min
{

2λmin(L1), 2(na−1),Ψ1, µ1

}

, µ3 = 3− 2
l ,

and ∆2 = ∆1 +
σµ1

2

∑3
i=1 r̄

2
a,i + σµ2

∑3
i=1 υi.

Case 3: For the remaining case, it has Ξ(χ) ∈ (0, 1). Based

on the previous analysis, one can get the similar result, as

V̇2 ≤ − λmin

(

L1

)

sTnsn − λmin

(

L2

)

∥sn∥(kc+kd)/kd

−
(

na −
(

1

4
(

Ξ(χ) + 1
2

) + Ξ(χ) +
1

2

))

χTχ

− nb∥χ∥
kc+kd

kd − σµ2(1− µ4)

(1 + µ3)

3
∑

i=1

r̃1+µ3

a,i − σµ1

2

3
∑

i=1

r̃2a,i

+
σµ1

2

3
∑

i=1

r̄2a,i +∆1 −Ψ1V1 −Ψ2V
2l−1

l
1

≤− L6V2 − L4V
2l−1

l
2 +∆2 (51)

where L6 = min
{

2λmin(L1), 2
(

1

4
(

Ξ(χ)+ 1
2

) + Ξ(χ) +

1
2

)

,Ψ1, µ1

}

, µ3 = 3 − 2
l , and ∆2 = ∆1 +

σµ1

2

∑3
i=1 r̄

2
a,i +

σµ2

∑3
i=1 υi. For the analysis of (49)–(51), one gets

V̇2 ≤ −L∗V2 − L4V
2l−1

l
2 +∆2 (52)

where L∗ = max{L3, L5, L6} ≥ 1.

According to (52), it is equivalent to the following:

V̇2 ≤ −Ξ2L
∗V2 − (1− Ξ2)L

∗V2 − L4V
2l−1

l
2 +∆2 (53)

or

V̇2 ≤ −L∗V2 − Ξ2L4V
2l−1

l
2 − (1− Ξ2)L4V

2l−1
l

2 +∆2 (54)

where 0 < Ξ2 < 1.

On one hand, it follows from (53) that when V2 ≥ ∆2/
(

(1−
Ξ2)L

∗), then V̇2 ≤ −Ξ2L
∗V3 − L4V

[(2l−1)/l]
3 . Based on

Lemma 3, one can know that all the system signals will drive

into the following










∥

∥Θ̃
∥

∥ ≤ k−1
3 λ

− 1
2

min

(

C
)√

Ω3,
∥

∥w̃
∥

∥ ≤ λ
− 1

2

min

(

C
)√

Ω3,
∥

∥W̃ ∗∥
∥ ≤ λ

− 1
2

min

(

Υ
−1
)√

Ω3,
∥

∥sn
∥

∥ ≤
√
2
√
Ω3,

∣

∣r̃a,i
∣

∣ ≤
√
2σ
σ

√
Ω3

(55)

where Ω3 =
(

∆2/(1− Ξ2)L
∗), and the convergence time T1

is bounded by

T1 ≤ T0 +
l

Ξ2L∗(1− l)
ln

(

Ξ2L
∗V (1−l)/l

2 (T0)+L4

L4

)

. (56)

where T0 denotes the initial time.

On the other hand, it follows from (54) that when V2 >
(

∆2

(1−Ξ2)L4

)l/(2l−1)
, then V̇2 ≤ −L∗V3−Ξ2L4V

(2l−1)/l
2 . Then,

all the system signals converge to the following regions:










∥

∥Θ̃
∥

∥ ≤ k−1
3 λ

− 1
2

min

(

C
)√

Ω4,
∥

∥w̃
∥

∥ ≤ λ
− 1

2

min

(

C
)√

Ω4,
∥

∥W̃ ∗∥
∥ ≤ λ

− 1
2

min

(

Υ
−1
)√

Ω4,
∥

∥sn
∥

∥ ≤
√
2
√
Ω4,

∣

∣r̃a,i
∣

∣ ≤
√
2σ
σ

√
Ω4

(57)

where Ω4 =
(

∆2

(1−Ξ2)L4

)l/(2l−1)
. The upper bound of the

convergence time T2 is calculated by

T2 ≤ T0 +
l

L∗(1− l)
ln

(

L∗V (1−l)/l
2 (T0) + Ξ2L4

Ξ2L4

)

. (58)

To sum up, we can know that all the closed-loop signals will

converge to the following regions:










































∥

∥Θ̃
∥

∥ ≤ k−1
3 λ

− 1
2

min

(

C
)

√

min
{

Ω3,Ω4

}

∥

∥w̃
∥

∥ ≤ λ
− 1

2

min

(

C
)

√

min
{

Ω3,Ω4

}

∥

∥W̃ ∗∥
∥ ≤ λ

− 1
2

min

(

Υ
−1
)

√

min
{

Ω3,Ω4

}

∥

∥sn
∥

∥ ≤
√
2
√

min
{

Ω3,Ω4

}

∣

∣r̃a,i
∣

∣ ≤
√
2σ
σ

√

min
{

Ω3,Ω4

}

(59)

and the convergence time Treach is bounded by

Treach ≤ max

{

l

Ξ2L∗(1− l)
ln

(

Ξ2L
∗V (1−l)/l

2 (T0) + L4

L4

)

+ T0,
l

L∗(1− l)
ln

(

L∗V (1−l)/l
2 (T0) + Ξ2L4

Ξ2L4

)

+ T0

}

.

(60)

Next, the error convergence for Θe is studied by transforming

(33) into the following form:
(

Θe −
sn

2

)

+
(

βa −
sn

2
sign(Θe)

−mc

)

sign
(

Θe

)mc

+βbsign(Θ̇e)
ma/mb

= 0. (61)

The system states will be maintained in the FNTSM surface

if the following conditions are held:

2Θe − sn > 0, 2βa − snsign(Θe)
−mc > 0. (62)

From (62), the tracking error Θe converges into the following

∥Θe∥ ≤ max

{

Λ

2
,
( Λ

2βa

)1/mc
}

(63)

where Λ =
√

2min
{

Ω3,Ω4

}

. The total convergence time

Ttotal is Ttotal = Treach + Tsliding, where Treach has been

given earlier, and Tsliding is can be computed according

to Remark 4 in [31], that is, Tsliding = ma∥Θe(0)∥
1−

mb
ma

βb(ma−mb)
·

Λ
(

mb

ma
, ma−mb

(mc−1)ma
, 1+ ma−mb

(mc−1)ma
,−βa∥Θe(0)∥mc−1

)

. By us-

ing
(

1 + ma−mb

(mc−1)ma

)

− ma−mb

(mc−1)ma
− mb

ma
= 1 − mb

ma
∈
(

0, 1
2

)

and −βa∥Θe(0)∥mc−1 < 0 and Lemma 4, it follows that the

function Λ(·) is convergent. Thus, Theorem 2 is proved.

Remark 5: In (41), uo,eq is the equivalent control signal to

drive the system states into the sliding mode surface under

the ideal conditions, uo,sw,1 is designed to realize the fast



finite-time convergence and alleviate the undesired chattering,

uo,sw,2 is the fuzzy control signal to stem from the time-

varying external disturbances, uncertain parameters and actu-

ator faults, and uo,sa is the saturation compensation control

law to restrain the negative effects of the input saturation.

Remark 6: For the auxiliary system in (38) and (39), there

are two advantages to be pointed out: (1) Different from [44],

the singularity problem can be effectively avoided in this

study when the state ξ closes to zero. (2) Unlike [45], this

study designs an auxiliary system without the boundedness

information of ∆u. (3) Compared with [46], the output of

the auxiliary system is smooth. These help improve the anti-

saturation ability and release the application limitation.

Remark 7: In contrast to the well-known conclusions on

adaptive fuzzy control approaches, the main differences of this

study are described as follows:

1) The system states in [17], [18] are supposed to be known,

and our results are derived without requiring the system

states to be known.

2) The control performance in [17], [21], [22], [46] can be

achieved when the convergence time is infinite, while our

work can achieve the control objective when the conver-

gence time is finite.

3) The control framework of adaptive fuzzy control has a

simpler fuzzy structure and fewer fuzzy gains to handle

the lumped disturbance compared to the existing works on

the attitude control of the quadrotor UAV [3], [15], [17],

which helps to reduce the computational burden of fuzzy

approximation.

Remark 8: To achieve better attitude control performance,

the main design parameters should be carefully selected ac-

cording to the following criteria:

1) Choice of parameters mi and lj , (i = a, b, c; j = 1, 2):
Under the conditions 1 < ma

mb
< 2 and mc > ma

mb
,

larger values ma

mb
and mc can improve the convergence

speed. From (30) and 4
5 < l < 1, a smaller value

l is useful for providing high-accuracy state estimation,

but in turn, it tends to cause high-frequency oscillations.

Moreover, positive odd integers l1 and l2 are chosen based

on 2l − 1 = l1
l2

.

2) Choice of parameters βi and ni, (i = a, b): In order to

realize shorter convergence time and smaller convergence

regions, large values βa and βb are usually selected. A

larger value na > 1 can quickly overcome the effect of the

saturation error, while the parameter nb > 0 plays a key

role in achieving the finite-time convergence property.

3) Choice of parameters σ and µi, (i = 1, 2, 3): The param-

eter σ is introduced to adjust the update rate of r̂a, which

is usually chosen to be small enough to accelerate the

update speed, but it may cause the overestimation problem.

Besides, an appropriate value µi can guarantee the finite-

time convergence and avert the drift of the parameter r̂a.

4) Choice of parameters ki, (i = a, b, c, d): Since this

study designs an adaptive fuzzy control part, the values

of the control gains ka and kb can be selected to be

smaller than the work [10], which helps to reduce the

input amplitude. The term sign(sn)
kc
kd with kc < kd can
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Fig. 5. Simulation: Time response of various disturbance factors. (a)
Actuation effectiveness factor and additive actuator fault, (b) External
disturbances, (c) Parametric uncertainties, (d) Gaussian white noise.

enhance the system robustness, where a larger value kc

kd

helps reduce the chattering phenomenon but decreases the

system robustness. Thus, it should make a balance in the

choice of the value kc

kd
.

In particular, there is no standard procedure for selecting these

design parameters. They are currently chosen by trial and error

until satisfactory control results are achieved.

IV. SIMULATIONS AND EXPERIMENTS

In addition to the aforementioned theoretical discussion and

analysis, extensive simulations and experiments are performed

in this section to verify the validity of the proposed controller,

by comparing the proposed controller without an auxiliary

system, proportion-differentiation (PD), finite-time DSC [18],

DO–NTSMC [35], adaptive fuzzy finite-time control [22],

FTC–NFTSM [33], and adaptive NFTSMC [34]. The compari-

son of the proposed controller, the proposed controller without

an auxiliary system, PD, finite-time DSC [18], DO–NTSMC

[35] and adaptive fuzzy finite-time control [16] is to verify

that the proposed controller can achieve saturation elimination,

fault tolerance, and strong robustness, while the comparison

of the proposed controller without an auxiliary system, FTC–

NFTSM [33], and adaptive NFTSMC [34] is to verify that the

proposed switching control part is capable of realizing free

chattering. With the help of the auxiliary system, only the

proposed controller can solve the input saturation.

A. Simulation analysis

Simulation: The reference attitude command Θd(t) =
[ϕd(t); θd(t);φd(t)] is predefined by

ϕd(t) = 1, θd(t) = t/35,

φd(t) =







1, if 0 < t ≤ 10
0.5, if 10 < t ≤ 25
0, if 25 < t ≤ 35

,

and the initial states of the actual attitudes are randomly

selected as [ϕ(0); θ(0);φ(0)] = [0; 1; 0] [rad]. The physical

parameters are set as m = 2 [kg], ld = 0.2 [m], J0,x = J0,y =
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Fig. 6. Simulation: Time response of attitude signals.
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Fig. 7. Simulation: Time response of attitude errors.

0.01175 [N ·m · s2/rad], and J0,z = 0.02229 [N ·m · s2/rad].
The signals of external disturbances, uncertain parameters,

actuator faults, and Gaussian white noise with 0.1 level are

added to illustrate noise immunity and controller robustness,

as shown in Fig. 5. The control parameters are set as mr =
[m1,r;m2,r;m1,3] = [1.2; 1.2; 1.2], ml = [m1,l;m2,l;m3,l] =
[−1.2;−1.2;−1.2], σ = 0.05, µ1 = µ2 = 0.0015, µ3 =
0.002, r̂a(0) = [r̂a,1(0); r̂a,2(0); r̂a,3(0)] = [0.01; 0.01; 0.01],
ma = 19, mb = 17, mc = 1.1, ka = kb = 18, kc = 13,

kd = 20, βa = 3, βb = 0.1, na = 15, nb = 10, l = 8
9 ,

k1 = 0.01, k2 = 0.02, k3 = 0.2, k4 = 0.1, p = 15, κi = 2,

Ci is evenly distributed in the interval [−2, 2], Υ = 10I3×3,

ŵ(0) = 0, Ŵ ∗(0) = 0, Θ̂(0) = 0, and χ(0) = 0. The fuzzy
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Fig. 8. Simulation: Time response of control inputs.
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Fig. 9. Simulation: Time response of various system states under the
proposed controller. (a) Estimation of the attitude angular velocity based
on the designed AFTNNO, (b) NFTSM surface, (c) Adaptive RBFNN
weight, (d) Adaptive fuzzy gains.

rules are set as follows: if sn,i > 1.2, than vi,1 = 1, vi,2 = 0
and vi,3 = 0; if 0 < sn,i ≤ 1.2, than vi,1 = 0.5, vi,2 = 0.5
and vi,3 = 0; if −1.2 < sn,i ≤ 0, than vi,1 = 0, vi,2 = 0.5
and vi,3 = 0.5; else if sn,i ≤ −1.2, than vi,1 = 0, vi,2 = 0
and vi,3 = 1, where i = 1, 2, 3. The input saturation sat(uo,i)
is described as

sat
(

uo,i(t)
)

=







−0.2, uo,i(t) < −0.2
uo,i(t), −0.2 ≤ uo,i(t) ≤ 0.2
0.2, u0,i(t) > 0.2

.

The control results of comparative simulations are visually

shown in Fig. 6 to Fig. 9. As depicted in Fig. 6, we can see

that the proposed controllers with/without an auxiliary system

can resume to closely track the desired attitude signals after

a short transient period even if larger disturbances suddenly

happen, and have smaller oscillations than other controllers. It



Fig. 10. Quadrotor platform used in the experiments
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Fig. 11. Experiment 1: Time response of attitude signals.
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Fig. 12. Experiment 1: Time response of attitude errors.

should be noticed that although other comparative controllers

also have the ability to stabilize the attitude system and achieve

acceptable attitude control performance when the disturbances

do not increase, the output attitude signals are difficult to

accurately track the desired signals when the disturbances

become suddenly large at the time t = 10 [s]. These results
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Fig. 13. Experiment 1: Time response of control inputs.
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Fig. 14. Experiment 1: Time response of various states under the
proposed controller. (a) Estimation of the attitude angular velocity based
on the designed AFTNNO, (b) NFTSM surface, (c) Adaptive RBFNN
weight, (d) Adaptive fuzzy gains.

reflect that the proposed controllers with/without an auxiliary

system can improve the ability of disturbance suppression. To

be precise, it can be found from Fig. 7 that the tracking errors

of the proposed controllers with/without an auxiliary system

are smaller than those of other remaining controllers, which

fully illustrates that the proposed controllers with/without an

auxiliary system are obviously less affected by system uncer-

tainties, time-varying disturbances, and actuator faults. From

Fig. 8, the time responses of control inputs infer that the pro-

posed controller can effectively overcome the input saturation

and is protected from the chattering influence, while the FTC-

NTSMC and adaptive NFTSMC methods suffer from serious

chattering issues and the DO-NFTSMC method has a slightly

chattering phenomena. This reason is that the switching control

part uo,sw in (37) containing the fast-type control uo,sw,1 and
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Fig. 15. Experiment 2: Time response of attitude signals.
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Fig. 16. Experiment 2: Time response of attitude errors.

the compensation control uo,sw,2 can reduce control gain and

accelerate the convergence rate. As shown in Fig. 9 (a), it

can be observed that the designed AFTNNO can realize the

precise estimation of theangular velocity even in the presence

of the lumped disturbance and input saturation. Figs. 9 (b) and

(c) show the time responses of sliding mode surfaces and the

norm of adaptive RBFNN weight, respectively. In addition,

Fig. 9 (d) displays the evolution of adaptive fuzzy gain, and

we can see that there is no parameter drift problem.

B. Experiment analysis

To better demonstrate the superiority of the proposed con-

troller, comparative experiments are performed in this sub-
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Fig. 18. Experiment 2: Time response of various states under the
proposed controller. (a) Estimation of the attitude angular velocity based
on the designed AFTNNO, (b) NFTSM surface, (c) Adaptive RBFNN
weight, (d) Adaptive fuzzy gains.

section. The hardware configuration of the quadrotor UAV

is shown in Fig. 10, where the personal computer is used

to detect the quadrotor’s states, a digital signal processor

is utilized as the on-board control computer to execute the

control algorithm, the attitude information can be estimated

by an inertial measurement unit, the desired attitude signals

are generated by a remote controller, and the wireless data

transmission module is used to establish the network commu-

nication between the quadrotor UAV, the remote controller, and

the ground station. The motor speed signals are sent from the

on-board control computer to four electronic speed controllers

by a serial peripheral interface bus.

Experiment 1: Consider the external disturbances and input

saturation during the entire flight duration. The desired com-



TABLE I
COMPARISON OF ATTITUDE CONTROL PERFORMANCE

Mode Index Unit

Value

Proposed

controller

Proposed controller

without auxiliary

system

PD
Finite-time

DSC [18]

DO–

NTSMC

[35]

Adaptive fuzzy

finite-time

control [22]

FTC–

NFTSMC

[33]

Adaptive

NFTSMC

[34]

Simulation

µSE rad2 82.25 81.91 607.25 485.11 1201.22 1026.55 901.95 108.9

µAE rad 364.01 362.25 1556.82 1375.15 1567.31 1668.45 614.95 385.69

µTWAE rad · s 189.59 188.71 784.73 830.88 841.82 805.39 206.85 380.38

µTEC N · m 572.58 1504.65 1483.65 2507.41 1336.65 1757.17 2559.21 1104.6

Experiment 1

µSE rad2 58.1 56.7 112.69 87.15 353.53 156.45 753.18 89.25

µAE rad 192.85 188.32 455.73 504.35 728.68 365.43 1036.35 325.85

µTWAE rad · s 63.75 62.17 165.33 229.22 165.89 91.54 106.35 117.51

µTEC N · m 422.08 1081.52 721.73 807.81 965.65 1101.79 1724.45 985.25

Experiment 2

µSE rad2 86.5 84.21 568.05 491.41 1509.55 443.19 2563.42 213.49

µAE rad 532.04 514.85 1961.41 1873.89 2609.57 1622.60 3075.28 1059.45

µTWAE rad · s 215.96 208.94 850.79 872.79 873.93 609.51 840.78 447.90

µTEC N · m 468.87 1959.65 2058.00 1724.45 1895.25 1904.01 3313.3 1928.15

mand Θd(t) = [ϕd(t); θd(t);φd(t)] is predefined as follows:

ϕd(t) =







































0 if 0 < t ≤ 5
0.2t− 1 if 5 < t ≤ 10
1 if 10 < t ≤ 15
−0.2t+ 4 if 15 < t ≤ 20
0 if 20 < t ≤ 25
0.2t− 5 if 25 < t ≤ 30
1 if 30 < t ≤ 35

,

θd(t) =







0.3 if 0 < t ≤ 2
0.5 cos(0.7t) if 2 < t ≤ 30
−0.5 if 30 < t ≤ 35

,

φd(t) =







0 if 0 < t ≤ 10
0.25 if 10 < t ≤ 25
0.5 if 25 < t ≤ 35

.

The control parameters are set as mr = [m1,r;m2,r;m3,r] =
[1.5; 1.5; 1.5], ml = [m1,l;m2,l;m3,l] = [−1.5;−1.5;−1.5],
σ = 0.1, µ1 = µ2 = 0.005, µ3 = 0.002, r̂a(0) =
[r̂a,1(0); r̂a,2(0); r̂a,3(0)] = [0.01; 0.01; 0.01], ma = 23,

mb = 21, mc = 1.1, ka = kb = 25, kc = 25, kd = 17,

βa = 2, βb = 0.3, na = 15, nb = 10, l = 8
9 , k1 = 0.01,

k2 = 0.01, k3 = 0.3, k4 = 0.2, p = 25, κi = 1.5, Ci is

evenly distributed in the interval [−2.5, 2.5], Υ = 12I3×3,

ŵ(0) = 0, Ŵ ∗(0) = 0, Θ̂(0) = 0, and χ(0) = 0. The fuzzy

rules are set as follows: if sn,i > 1.5, than vi,1 = 1, vi,2 = 0
and vi,3 = 0; if 0 < sn,i ≤ 1.5, than vi,1 = 0.5, vi,2 = 0.5
and vi,3 = 0; if −1.5 < sn,i ≤ 0, than vi,1 = 0, vi,2 = 0.5
and vi,3 = 0.5; else if sn,i ≤ −1.5, than vi,1 = 0, vi,2 = 0
and vi,3 = 1, where i = 1, 2, 3.

The obtained results of the Experiment 1 are depicted in

Figs. 11 to 14. Figs. 11 and 12 display the tracking perfor-

mance of attitude angles and the change of the attitude tracking

errors with time, respectively. One can see from Fig. 11 and

12 that the proposed controllers with/without an auxiliary

system not only overcome the effect of the disturbances in a

short time but also avert large oscillations during the control

process. In particular, the curves of the proposed controllers

with/without an auxiliary system are almost the same. These

visually exhibit satisfactory robustness of the proposed con-

troller even in the presence of input saturation. From the three

sub-figures on the left side of Fig. 13, with the help of the

designed auxiliary system, the control inputs of the proposed

controller are constrained within the specified range. To avoid

the interference of the auxiliary system, we compare with the

proposed controller, FTC-NTSMC and adaptive NFTSMC to

infer that the chattering issue can be solved, as depicted in the

three sub-figures on the right of Fig. 13. From Fig. 14 (a), the

designed AFTNNO can estimate the information of angular

velocities accurately. Figs. 14 (b)–(c) show the curves of the

sliding mode surfaces and the norm of the RBFNN weight,

respectively. The time evolution of the adaptive fuzzy gains is

shown in Fig. 9 (d), which indicates that the problem of the

parameter drifting can be avoided. The control performance

of the Experiment 1 is consistent with the theoretical analysis

and simulation results.

Experiment 2: Based on the Experiment 1, the Experiment 2

considers stronger disturbances and persistent actuator faults.

Apart from this, other conditions such as the desired attitude

signal and control parameters are the same as the Exper-

iment 1. The effectiveness matrix E and additive actuator

fault uf are set as E = diag{0.85 + 0.15 sin(0.5t); 0.9 +
0.1 cos(t); 0.75 + 0.25 cos(1.2t)} and uf = [3− cos(2t); 2 +
sin(0.5t); 2 cos(t)], respectively. In the experimental tests, the

actuator faults are injected by software via the thrust signals

before being sent to the quadrotor UAV.

The comparative results of the Experiment 2 are shown in

Figs. 15 to 18. The real attitude signals of different controllers

and the corresponding tracking errors are depicted in Figs.

15 and 16, respectively. From Figs. 15 and 16, one can

find that although the quadrotor UAV is subjected to bigger

disturbances, persistent actuator faults, and input saturation,

the proposed controller still makes the real attitude signals

rapidly return to the desired attitude signals and maintains

satisfactory tracking effects. These imply that the proposed

controller is almost unaffected by the above negative factors,

and has stronger system robustness than other controllers. As

shown in Fig. 17, it can be seen that the control inputs of the

proposed controller are still within the prescribed range even

when the saturation issue occurs in comparison to the proposed

controller without an auxiliary system, and the proposed



TABLE II
CHANGE OF PERFORMANCE INDICES IN EXPERIMENT 2 TO EXPERIMENT 1

Index
Value (Unit: %)

Proposed

controller

Proposed controller

without auxiliary system PD
Finite-

time DSC

[18]

DO–NTSMC

[35]

Adaptive fuzzy

finite-time control [22]

FTC–

NFTSMC

[33]

Adaptive

NFTSMC

[34]

µSE 48.88 48.52 80.16 82.27 76.58 71.20 70.62 58.20

µAE 63.75 63.42 76.78 73.09 77.08 77.48 66.30 352.44

µTWAE 70.48 70.24 83.15 73.74 81.02 84.98 87.35 73.76

µTEC 82.16 81.24 92.71 127.01 96.27 72.81 92.14 95.70

controller can avoid the chattering issue in comparison to the

FTC-NTSMC and adaptive NFTSMC. The control results in

terms of the fault tolerance, saturation elimination, and free

chattering are attributed to the adaptive fuzzy mechanism and

the auxiliary system. Fig. 18(a) shows that the AFTNNO can

precisely estimate the information of angular velocity online.

As shown in Fig. 18 (b), the dynamics of the sliding mode

surface sn can be quickly stabilized around zero. Besides,

the time responses of the adaptive RBFNN weight ∥Ŵ ∗∥ and

the adaptive fuzzy gain r̂a are clearly shown in Figs. 18 (c)

and (d), respectively, which means that the designed adaptive

parameters would ultimately converge.

C. Numerical analysis

To quantitatively evaluate the performance of different

controllers, four performance indices [49] are employed in

this study and are concretely described as 1) Squared er-

ror (SE): µSE =
∑N

i=1

(

ϕ2
e(i) + θ2e(i) + φ2

e(i)
)

[rad2]; 2)

Absolute error (AE): µAE =
∑N

i=1

(

|ϕe(i)| + |θe(i)| +
|φe(i)|

)

[rad]; 3) Time-weighted absolute error (TWAE):

µTAE = 1
N

∑N
i=1 i

(

|ϕe|(i)+ |θe(i)|+ |φe(i)|
)

[rad ·s]; 4) Total

energy consumption (TEC): µTEC =
∑N

i=1

(

|u1(i)|+|u2(i)|+
|u3(i)|

)

[N · m], where N is the total time of the simulation

operation. Since the tracking errors and control inputs may

be negative, these indices are mostly described by using

either the absolute value or the square value. Especially, the

smaller values of µSE , µAE , µTWAE and µTEC illustrate less

persistent oscillations, quicker convergence rate, higher steady-

state precision, and less energy consumption, respectively.

The values of the above performance indices are recorded in

Tables I and II to better explain the superiority of the proposed

controller. From Table I, it can be seen that all the index

values of the proposed controllers with/without an auxiliary

system are smaller than those of the other six controllers,

which strongly implies that the proposed control framework

can provide a higher precision. By comparing the proposed

controller and adaptive NFTSMC, it can be illustrated that

the adaptive fuzzy control part can improve the robustness of

the system to various disturbances. In contrast to the proposed

controller without an auxiliary system, the proposed controller

successfully addresses the problem of input saturation with

the help of the designed auxiliary system. Actually, the input

saturation limits the growth of the control input, which in-

evitably leads to slower tracking speed. However, the control

precision is slightly reduced, but not significantly. The reason

for this is that the designed auxiliary system could limit the

control input beyond the specified requirements. In addition,

one can see from Table II that when external disturbances

become larger and the actuator faults occur, the proposed

controllers with/without an auxiliary system are much less

affected than the other controllers when the control parameters

are not reset, which means that the proposed control frame-

work has higher adaptability and stronger robustness. Through

experimental implementation and numerical analysis, it fully

demonstrates the feasibility and superiority of the proposed

controller in terms of disturbance suppression, free-chattering,

fault tolerance, and saturation elimination.

V. CONCLUSION

This study designs an observer-based adaptive fuzzy finite-

time attitude control strategy for quadrotor UAVs under un-

available angular velocity, external disturbances, uncertain

dynamics, actuator faults, and input saturation. First, an

AFTNNO is constructed to estimate the information of an-

gular velocity online. Subsequently, an adaptive FLS-based

NFTSMC scheme is proposed to automatically adjust the

control gain. Furthermore, an auxiliary system with free singu-

larity is designed to overcome the input saturation. Although

a series of comparative simulations and real-time experiments

authenticate the advantages and effectiveness of the proposed

control strategy, the following limitations are worth to be

investigated in the future: 1) Although the Remark 8 gives

detailed guidance on how to choose the control parameters,

it is necessary to study the reliable tuning mechanism so

as to obtain their optimal values; 2) Although the designed

FLS provides a simpler fuzzy structure and fewer logic rules,

the design complexity of the whole control system has not

significantly reduced, which is one of the future studies; and 3)

Since the problems of sensor failures and state constraints are

not considered, our research direction will also focus on how

to ensure the safer flight in the ever-changing environments.
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