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Featured Application: Microfluidic-integrated biosensor design for point-of-care applications.

Abstract: Biosensors are favored devices for the fast and cost-effective detection of biological species
without the need for laboratories. Microfluidic integration with biosensors has advanced their capabil-
ities in selectivity, sensitivity, controllability, and conducting multiple binding assays simultaneously.
Despite all the improvements, their design and fabrication are still challenging and time-consuming.
The current study aims to enhance microfluidic-integrated biosensors’ performance. Three different
functional designs are presented with both active (with the help of electroosmotic flow) and passive
(geometry optimization) methods. For validation and further studies, these solutions are applied
to an experimental setup for DNA hybridization. The numerical results for the original case have
been validated with the experimental data from previous literature. Convection, diffusion, migration,
and hybridization of DNA strands during the hybridization process have been simulated with finite
element method (FEM) in 3D. Based on the results, increasing the velocity on top of the functionalized
surface, by reducing the thickness of the microchamber in that area, would increase the speed of
surface coverage by up to 62%. An active flow control with the help of electric field would increase
this speed by 32%. In addition, other essential parameters in the fabrication of the microchamber,
such as changes in pressure and bulk concentration, have been studied. The suggested designs are
simple, applicable and cost-effective, and would not add extra challenges to the fabrication process.
Overall, the effect of the geometry of the microchamber on the time and effectiveness of biosensors
is inevitable. More studies on the geometry optimization of the microchamber and position of the
electrodes using machine learning methods would be beneficial in future works.

Keywords: engineering; computational fluid dynamics; mass transfer in microfluidic systems;
biosensor design and optimization; electroosmotic flow

1. Introduction

A biosensor is a device that uses an immobilized agent (enzymes, antibiotics, or-
ganelles, or whole cells) to detect the biological targets. The biological targets are nearly
always transported by a carrier fluid, in vitro and in vivo. Especially for point-of-care
applications and human body samples, bio-MEMS and microsystems must deal with body
fluids [1,2]. Hence, microfluidics is a crucial element in the design and fabrication of
biosensors. Since 1990, with the advent of microfluidics, the development of microfluidic-
integrated biosensors has been intensive due to their potential in early diagnosis, on-site
and routine analysis, and high selectivity [3]. Microfluidics also improve sensitivity by
providing a more stable sensing environment, integrating multiple functions, and enhanc-
ing efficiency, accuracy, and controllability while reducing the sensing region [4–6]. The
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attention towards microfluidic-integrated biosensors is enhanced extra by its capability of
detecting a low concentration of biomarkers [7,8]. It also has application in various fields
such as real-time health monitoring, point-of-care (POC) disease diagnosis, significant data
statistics in health management, food safety, and environmental monitoring [9–11].

Although there has been a significant improvement in current biosensors, the design
and fabrication are still challenging and time-consuming. These challenges are bolder
in bio-receptors and assay matrix design, achieving specific binding and detecting low
concentration target molecules within a low-volume sample [12–16]. Scientists have been
using various active and passive methods to improve biosensors’ sensing and fabrication
to resolve these challenges. In passive methods, sensing is enhanced with new materials
and geometry optimization, while in active methods, moving parts and external forces
such as electric or pressure field are applied. Some solution in this matter include utilizing
conducting polymers for high-performance biosensors due to their chemical versatility and
charge transport [17,18], use of metamaterials in resonators for better and durable biosen-
sors [19,20], microelectrode array approach for high sensitivity and live detection [21,22],
and microfluidic approach for DNA analysis [23–25]. In the current study, to enhance the
performance of microfluidic-integrated biosensors, three different types of functional de-
signs, with both active (E cases) and passive (H cases) methods, are presented. It is shown
that these designs would improve the efficiency (in sensing and time of detection) by 6–62%,
while they would not have a considerable effect on the fabrication and costs. Additional
advantages of these designs are simplicity and application to different channels. Finally,
for validation and further studies, these methods are applied on an experimental setup of
DNA hybridization. Figure 1 illustrates the bio-recognition process for DNA hybridization.
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Figure 1. Bio-recognition process for DNA hybridization in a microchamber equipped with four functionalized surfaces
for recognizing a specific sequence, dissociation of the double helix structure of the DNA, and hybridization with the
functionalized surface.

In a specific condition of pH or temperature, the double helix can start denaturing.
Then, the single DNA strands can be used in the bio-recognition process. First, a known
DNA sequence is fabricated and copied; then, they are used to functionalize the surface
to recognize the complementary sequence of specific DNA strands [26,27]. The buffer
fluid carrying the targeted DNA strands would pass through the functionalized surfaces
in the microchamber. As a result, the targeted DNA strands would bond with their
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complementary DNA strands on the surface. This is a reversible equilibrium reaction,
which is called hybridization [28]. Then, the methodology for numerical simulation of
DNA hybridization in microchamber, governing equations, and boundary conditions are
presented. In this numerical method [2,29], the microchamber’s convection, diffusion,
hybridization, and DNA-strand migration are modelled. The numerical results for the
original setup have been validated with experimental data from the previous literature [28].
In the final part, through numerical results, the performance of different cases has been
studied. The ‘best’ design choices have been introduced based on the efficiency, ease of
fabrication, cost, and applicability of different cases.

2. Model Setup

DNA hybridization is another sensing application of a functionalized surface in
the microchannel. An experimental device for the bio-recognition of DNA is used as
the base case study (Case A-01). The experimental setup corresponds to the model in
Tables 1 and 2—this microchamber comprising four reactive surfaces. The buffer fluid
carries DNA strands with 15 bp (basis pairs) and goes through the microchamber, and
passes the functionalized surfaces. The flow is on for the first 50 min (t1) and then it
is stopped for the next 100 min (t0). Dimension of the microchamber, the buffer fluid
conditions, and the hybridization properties are presented in Table 1.

Table 1. The experimental properties for hybridization of short DNA strands.

Sign Name Value

bp Number of essential pairs DNA strands 15
D Diffusion coefficient (m/s) 7.5 × 10−10

c0 Inlet Concentration of targets or analytes (mol/m3) 4.6 × 10−6

kon Adsorption coefficient at the wall (m3/(s·mol)) 125
ko f f Desorption coefficient at the wall or elution (1/s) 10−5

bm Initial concentration in available hybridization sites (mol/m2) 9.064 × 10−8

Vav Average flow velocity (m/s) 10−3

σw The conductivity of the ionic solution (S/m) 1.1845 × 10−1

εr The relative permittivity of the fluid 80.2
ζ Zeta potential (V) −0.1

V0 The maximum value of AC potential (V) 0.1
ω Angular frequency of AC potential (Hz) 50.265
P2 Pressure in the second outlet for case S-05 (pa) −2
H Height of the microchamber (m) 10−3

Hs Height of the volume above the biosensor for case H-03 (m) 2.5 × 10−4

L Length of the microchamber (m) 10−2

W Width of the micro (m) 10−2

Win Width of the inlet (m) 1.25 × 10−3

Wout Width of the outlet (m) 10−3

The primary purpose of this biochip is the analysis and recognition of DNA strands.
Therefore, the detection process should be fast, reliable, and sensitive. In addition, the
design must be suitable for simultaneous and parallel recognition. With this aim, three
other types of designs are applied to the original case (A-01). Details of these cases are
presented in Tables 2 and 3. In the first design, the flow volume on top of the functionalized
surfaces is reduced to improve the sensing performance and reducing the detection time
by applying a deformation in the geometry (cases H-02 and H-03). In the second design, a
second outlet is added to the setup to improve one of the functionalized surfaces (cases
S-04 and S-05). In the last design, the efficiency is enhanced with the help of electroosmotic
flow (cases E-06 and E-07).
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Table 2. The geometry of the microchamber for four types of setups; original experimental setup (Case A), thin chamber
(series H), suction (series S), and electroosmotic flow (series E).

Case A-01
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3. Methods 
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behavior, biochemical reaction kinetics, and the presence of DNA in the vicinity of the 
reagents are important design factors. Hence, in the numerical simulation, coupling these 
critical parameters is essential. For this matter, the current approach consists of three 
steps: (1) modelling the microfluidic flow as a carrier fluid, (2) modelling the behavior of 
DNA strands in the microchamber, and (3) modelling the electroosmotic flow. These three 
models have been coupled and solved with the 3D finite element method (FEM) in the 
commercial code, COMSOL, for all 7 cases in Table 3. However, the third approach is only 
applicable for cases E-01 and E-02. 

Since the concentration of DNA strands is lower than 10% of the concentration of the 
buffer fluid, the targeted species could be assumed to be diluted. Due to the dilution, the 
whole sample fluid’s properties would be considered as the solvent (water). The flow is 
highly ordered laminar in this microchamber as the Reynolds number is less than 10. 
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Table 3. Difference of the setups; original experimental setup (case A-01), thin chamber (series H-02),
the thin chamber with half-height (case H-03), second outlet with zero pressure (case S-04), suction
(case S-05), electroosmotic flow (cases E-06 and E-07).

Name Hs Po2 V Description

Case A-01 H N/A 0 The original experimental setup.
Case H-02 Hs N/A 0 Deformation is added at the top of the channel of case A-01.
Case H-03 Hs/2 N/A 0 The height of the deformation in case H-02 is halved.
Case S-04 H 0 0 A second outlet is added close to case A-01.
Case S-05 H P2 0 A suction is added to the case S-04.
Case E-06 H N/A V0 The Electroosmotic effect is applied to case A-01.
Case E-07 H N/A 2×V0 The potential in Case E-06 is doubled for this case.

3. Methods

DNA strands are immersed and carried by buffer fluid in the microchamber. Flow
behavior, biochemical reaction kinetics, and the presence of DNA in the vicinity of the
reagents are important design factors. Hence, in the numerical simulation, coupling these
critical parameters is essential. For this matter, the current approach consists of three steps:
(1) modelling the microfluidic flow as a carrier fluid, (2) modelling the behavior of DNA
strands in the microchamber, and (3) modelling the electroosmotic flow. These three models
have been coupled and solved with the 3D finite element method (FEM) in the commercial
code, COMSOL, for all 7 cases in Table 3. However, the third approach is only applicable
for cases E-01 and E-02.

Since the concentration of DNA strands is lower than 10% of the concentration of the
buffer fluid, the targeted species could be assumed to be diluted. Due to the dilution, the
whole sample fluid’s properties would be considered as the solvent (water). The flow is
highly ordered laminar in this microchamber as the Reynolds number is less than 10.

For the first step, the Navier–Stokes Equations (Equations (1)–(4)) describe the flow in
the microchamber [2].

∂ρ

∂t
+ ρ

[
∂u
∂x

+
∂v
∂y

+
∂w
∂z

]
= 0 (1)

ρ
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
(2)

ρ
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= −∂p
∂y

+ µ

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
(3)

ρ
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −∂p
∂z

+ µ

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
(4)

where u and v (m/s) are the velocity in the x and y direction, respectively, while ρ (kg/m3)
is the density, and µ (kg/(m·s)) is the molecular viscosity. The fluid is considered as
continuum and incompressible because of its negligible changes in density.

In the second step, the focus is on the adsorption reactions for DNA hybridization.
The adsorption and desorption reactions at the functionalized surfaces are described by
reaction in Equation (5) [28].

A
Kon
−−−→←−−−

Ko f f

As (5)

where kon denotes the adsorption coefficient at the wall (m3/(s·mol)), ko f f refers to the
desorption coefficient at the wall or elution (1/s), A represents the DNA strands in the
buffer fluid and As refers to the ones adsorbed on the functionalized surfaces. Electrokinetic
flow or ionic migration only occur in case series E (the third step). Overall, for steps two
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and three, the general mass balance equation for convection, diffusion, and migration is
solved (Equation (6)) [30].

∂c
∂t

= ∇·(−D∇c + zumFc∇V − cU) + S (6)

where c (mol/m3) denotes the bulk concentration of DNA strands, D (m2/s) is the diffusion
coefficient of it, z is the charge number of ionic species, U (m/s) is the velocity field,
F (A.s/mol) is Faraday’s constant, V (V) refers to the electric potential, um (mol.s/kg)
denotes the ionic mobility, and S is the reaction rate expression for the chemical species
or any other source or sink terms. The velocity can be computed with the Navier-stokes
equations (Equations (1)–(4)). Based on the Langmuir model [28], the source term in
the equation is generated with the rate of adsorption and desorption of DNA strands
(Equations (7)–(9)).

rads = konc(bm − b) (7)

rdes = ko f f b (8)

S = rads − rdes (9)

in which bm (mol/m2) is the total surface concentration of active sites, b (mol/m2) is
the surface concentration of A, rads (mol/(m2·s)) refers to the adsorption rate and rdes
(mol/(m2·s)) refers to the desorption rate of the targeted species.

The Helmholtz–Smoluchowski [31] relation is used for relating the tangent component
of the applied electric field with the electroosmotic velocity (Equation (10)).

u =
εwζ0

RT
∇TV (10)

where εw (F/m) is the fluid’s electric permittivity, ζ0 (V) is the zeta potential at the channel
wall, R (J/(mol·K)) refers to the molar gas constant, and T (K) is the temperature. The
reactions are modelled based on the mass action law. The current balance can be expressed
with Ohm’s law (Equation (11)) by assuming no concentration gradients in the ions.

∇·(σ∇V) = 0 (11)

in which σ (S/m) is the conductivity.

4. Boundary Conditions

The diluted solutions enter from the inlet with a constant velocity (u0) and concentra-
tion (c0). Fluid goes through the microchamber with the no-slip condition for its velocity.
At the same time, the concentration of bio-species in the solution would have the homo-
geneous Neumann condition on the walls and Neumann condition on the functionalized
surfaces. The boundary conditions are the same for all cases and are summarized in Table 4,
although in the S series, an extra outlet is added close to the functionalized surface 3 to
study its efficiency. In E, electrokinetic force field is added with four electrodes placed on
two sides of the microchamber, as shown in Table 2.

Table 4. Boundary conditions for four setups: original experimental setup (Case A), thin chamber
(series H), suction (series S), and electroosmotic flow (series E).

Boundary Concentration, Velocity, and Electric Potential

Inlet c = c0, u = u0
Outlet n.(−D∇c + cu) = n.cu
Walls ∂c

∂n = 0, no-slip
Functionalized surfaces ∂c

∂n = − 1
D

∂b
∂t , no-slip

Insulated (E setup) n.(−D∇b) = 0, −σ∇V·n = 0
Electrodes (E setup) V0
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5. Results and Discussion

The geometries in Table 1 are used for conducting the present numerical simulations.
First, a mesh independence study has been carried out to ensure adequate resolution.
Based on the results, 443,000 tetrahedral elements would provide reliable and comparably
fast results for this dimension. Subsequently, the validity of the numerical model is tested
by modelling the experimental setup (case A-01) [28]. In this setup, a constant carrier
fluid flow, which carries different sequences and lengths of DNA strands, starts at the
time t0. After 50 min (t1), the flow stops for the next 100 min (until t2). The details of the
experimental setup, the flow conditions, and the kinetics of oligonucleotide are presented
in Tables 2 and 3.

Figure 2 shows the surface coverage (θ) over time for both numerical study and the
experimental results [28]. The numerical model is validated based on the results since it
shows a good agreement with the experimental data.
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Figure 2. The time-dependent solution from the beginning of the test (t0) to 50 min (t1), and 150 min
(t2) [28].

For a better comparison, the surface coverage (θ), the fraction of active sites occupied
by adsorbed DNA strands (Equation (12)) are used for presenting the results.

θ =
b

bm
(12)

Figure 3 shows the bulk concentration of DNA strands as the flow goes through the
microchamber. As time passes, the bulk concentration around the functionalized surfaces
reduces since the targeted DNA strands are binding with their specific ligand on the
surface. This can be more evident in the surface coverage and surface concentration results
in Figure 4, as it shows an increase in the surface coverage over time. After the validation,
the numerical simulation is carried out for various cases of the three other setups: thin
chamber (H series), suction (S series), and electroosmotic flow (E series). For each set, only
the optimized values are presented in this paper. For instance, for the H series, the height
Hs varied from H/1.2 to H/20, but only case H-02 (Hs = H/2) and H-03 (Hs = H/4)
are presented here since they have shown the best performance while not causing extra
fabrication challenges. Figure 5a presents a comparison between cases H-02, H-03 and the
original case for the first 50 min of the test. In the t1 (50 min) case, H-02 has 24% more
surface coverage than the original case (Figure 6). The surface coverage increases even
further, by 9%, as the height of the channel on the functionalized surfaces halved in case
H-03. However, this would put excessive pressure on the structure, which is evident from
Figure 7, where the maximum pressure through the microchamber for all cases is shown.
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Figure 6. The coverage speed and maximum coverage after 50 min and 150 min through the microchamber for the original
experimental setup (case A-01), thin chamber (series H-02), the thin chamber with half-height (case H-03), second outlet
with zero pressure (case S-04), suction (case S-05), and electroosmotic flow (cases E-06 and E-07). All values are calculated
based on the original case.
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Figure 7. The maximum pressure through the microchamber for the original experimental setup
(case A-01), thin chamber (series H-02), the thin chamber with half-height (case H-03), second outlet
with zero pressure (case S-04), suction (case S-05), electroosmotic flow (cases E-06 and E-07).

For the S series, the pressure at the end of the second outlet is varied from 0 to −2 pa.
For the sake of brevity, only cases S-04 and S-05 are presented in this paper. In Figure 5b,
by the end of 50 min, cases S-04 and S-05 show 6% and 10% enhancement in the surface
coverage, respectively. It is worth noting that the fabrication of the first case would be
simple and would not add any extra cost, while in the second case, the device must be
equipped with a suction.

In the E series, the electroosmotic flow starts with the applied electric field. Diffusion
would be sufficient for the rapidly diffusive species. However, other methods could en-
hance the bio-recognition process for nucleic acids and proteins with high molecular weight.
For the first type of species (lightweight), diffusion would occur in a matter of seconds
over the microchamber, although for the second type, the required time for equilibration
would be from minutes to hours. Hence, active approaches, such as electroosmotic flow,
would be beneficial for DNA hybridization. After 5 min, case E-06 has 16% more surface
coverage (Figures 5 and 6), while in comparison to E-06, increasing the electric potential in
E-07 negatively affects the speed of surface coverage. This might be caused by the position
of the electrodes, which is where optimization methods can play a role in improving the
outcome. This effect is evident in the results presented in Figure 4. Full surface coverage
of one of the functionalized surfaces (number 2 in Table 2), the surface coverage of its
front (Pt f ) and its back (Ptb) are demonstrated in Figure 4a–c, respectively. The effect of
electroosmotic flow is almost negligible in Pt f , as it has more distance from the electrodes.
Benefit of the electroosmotic flow is more evident in the second part of the test, while the
flow has stopped (Figure 4a) since, in other cases, the surface coverage remains almost the
same in the second stage.

It is also worth mentioning that in order to obtain an optimum design for the biosen-
sors considered here, a full set of parametric studies need to be carried out, similar to
those commonly used in conjunction with Computational fluid dynamics (CFD). In re-
cent years, CFD has successfully been applied to numerous biomedical-related projects
involving design, validation and proof-of-concept; some examples from the present authors
include [32–37]. Making use of more advanced design optimization techniques is one of
the main future works, which the authors are pursuing at the moment.
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6. Conclusions

With the aim of enhancing the bio-recognition process in a microchamber, three flow
control techniques have been applied to an experimental. The evolution of DNA strands
transported by convection, diffusion, and migration due to electric field, as well as the
hybridization process on the functionalized surfaces are modelled numerically. The 3D-
coupled finite element method (FEM) is used to carry out the numerical simulations,
validated against the experimental results from the literature. Among the three setups
tested, reducing the volume of the flow on top of the functionalized surfaces returns the
largest improvement in the performance of the DNA hybridization. In this case, the speed
of surface coverage is increased by 62% compared to the original case, in spite of adding
an excessive pressure (1.41 pa) on the structure, which would consequently reduce the
durability and stability of the microchamber. This pressure is then reduced by up to 75% by
increasing the height of the chamber to 2.5× 10−4 m. Following this design, electroosmotic
flow shows a promising effect on the hybridization process. It can enhance the surface
coverage by 32% simultaneously, while implementing a suction in the microchamber could
increase it by a maximum of 10%. Overall, the present results show that increasing the
flow velocity close to the surface of the biosensor to be the best choice for improving
the efficiency while keeping the device stable, reliable, and cheap. These designs were
optimized for the original setup, although this approach is applicable and practical for
other microfluidic-integrated biosensing devices too, particularly with the help of machine
learning methods and introducing vital parameters.
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