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Supplementary Material

| Algorithms for Inference and Prediction in the Calibration Pair Model

Algorithm 1 Variational Inference for calibration.

Note: For implementation we structure an input matrixX to hold the time, sensor and component as three columns.

This matrix is 2C times the number of observation pairs (N , the length of Y ). Split into C submatrices, each pair of

rows in each submatrix is associated with one row of Y . f now becomes a vector with each item associated with one

row ofX . The parameters are selected using slice notiation.

Inputs

Observation time, sensor and parameter,X = {xi }
2CN
i=1
;

Observation pair values, Y = { [y
(1)

i
, y

(2)

i
] }N

i=1
;

Inducing point locations (time, sensor and parameter), Z = {zi }
M
i=1
;

Calibration function, φ (y , c) ;

Number of parameters used by function, C ;

Kernel, k ( ·, · ) ;

Likelihood variance σ2;

Reference sensors, r = {0, 1}S ;

Number of samples in MC approximation, P .

Outputs

Approximating Gaussian distribution parameters: meanm and factorR (where distribution covariance is RR⊤).

1: procedure VI(X,Y ,Z,φ ( ·),C , k ( ·, · ),σ2
, r)

2: whilem orR not converged do

3: ▷ q (f ) is the approximate posterior over all latent variables defined inX .

4: q (f ) ∼ N (KxzK
−1
zz m,Kxx − KxzK

−1
zz Kzx + KxzK

−1
zz RR

⊤K −1
zz Kzx )

5: for j = 1..P do ▷ Sample P times

6: for i = 1..N do

7: ▷ Sample the latent variables relevant to the two sensors.

8: s
(1)

i
, s

(2)

i
= sample[q (f2i−1::2N ), q (f2i ::2N ) ] ▷ s

(1)

i
and s

(2)

i
are each of length C .

9: Li j = log p

 "

y
(1)

i

y
(2)

i
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s
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i

s
(2)

i
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▷ Compute likelihood of sample, using (4)

10: end for

11: end for

12: L ←
1

P

ÍP
j=1

ÍN
i=1

�

Li j
�

− DKL

�

N (m, RR⊤ ),N (0,KZ Z )
�

▷ Compute ELBO

13: compute dL
m
and dL

R
▷ using automatic differentiation.

14: updatem andR using stochastic gradient descent (using Adam).

15: end while

16: end procedure
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Algorithm 2 Prediction for Algorithm 1

Inputs

Test time, sensor and component,X∗ = {x∗i }
N∗

i=1
; y∗ = {y∗i }

N∗

i=1
raw observations (unlike normal regression we need

to give uncalibrated observations at test time)

Inducing point locations (time, sensor and component), Z = {zi }
M
i=1
;

Calibration function, φ (y , c) ;

Number of components used by function, C ;

Kernel, k ( ·, · ) ;

Approximating Gaussian distribution parameters:m andR.

Number of samples for each test point, P .

Outputs

An N∗ × P matrix of P samples for each of the N∗ test points, S

1: procedure Predict(X∗,Y∗,Z,φ ( ·),C , k ( ·, · ) )

2: ▷ q (f ) is the approximate posterior over all latent variables defined inX∗.

3: q (f ) ∼ N (Kx∗zK
−1
zz m,Kx∗x∗ − KxzK

−1
zz Kzx∗ + Kx∗zK

−1
zz RR

⊤K −1
zz Kzx∗ )

4: for i = 1..N∗ do

5: ▷ Sample the latent variables relevant to each test point.

6: si = φ (yi , sample[q (fi ::N∗
) ] ) ▷ Sample K times.

7: end for

8: end procedure
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| Algorithms for Training and Prediction in the Multi-hop ’graph’ Algorithm

Algorithm 3Multi-hop ‘Graph’ Algorithm

Inputs

Observation time, sensor id pair,X = {xi }
N
i=1
, soX is (N × 3) ;

Observation pair values, Y = { [yi1, yi2 ] }
N
i=1
, so Y is (N × 2) ;

Window size, δ ;

Edge ‘distances’, connect by colocation events and over time, dcolocation, dtime;

Reference sensors, r = {0, 1}S .

Outputs

Dictionary of scaling factors for (sensor,window) tuples F .

1: procedure BuildGraph(X,Y , δ, r)

2: for w in all time windowsW of width δ do

3: for si ,s j in all pairs of sensors from X , where s i , s j do

4: Y ′
←YX:,2=si ∧X:,3=sj ∧X:,1∈w ▷ Selects observation pairs that are in the time window and between

sensors si and s j

5: if |Y ′ | ≥ 5 then ▷We don’t add edges where there are fewer than five observations

6: G.addEdge((si ,w ) → (s j ,w ) , value=mean(log(Y ′

:,1
) − l og (Y ′

:,2
) , distance=dcol ocat i on ))

7: end if

8: end for

9: end for

10: for w in all time windowsW − 1 of width δ do

11: for si in all sensors from X do

12: G.addEdge((si ,w ) → (si ,w + 1) , value=0, distance=dt ime )

13: G.addEdge((si ,w + 1) → (si ,w ) , value=0, distance=dt ime )

14: end for

15: end for

16: for w in all time windowsW − 1 of width δ do

17: for si in all sensors from X do

18: P ← Shortest path (using Dijkstra) from (s i ,w ) to any reference sensor, specified in r .

19: if Path P exists then

20: F [si ,w ] =
Í

p∈P pv al ue ▷ Sum log ratios over path

21: end if

22: end for

23: end for

24: end procedure
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Algorithm 4Multi-hop ‘Graph’ prediction algorithm

Inputs

Observation time, sensor id,X∗ = {xi }
N
i=1
, soX∗ is (N∗ × 2) ;

Observed raw values, yraw, so yraw is an (N∗ × 1) vector;

Window size, δ ;

Dictionary of scaling factors for (sensor,window) tuples F , from Algorithm 3.

Outputs

Predicted calibrated values, y∗, so y∗ is an (N∗ × 1) vector.

1: procedure Predict(X∗,yraw, δ, r, G )

2: for x∗ inX∗; y∗ in y∗; and yraw in yraw do

3: w ← window computed for[x∗ ]1using window size δ

4: if ( [x∗ ]2,w ) < F then

5: Raise exception: No path to a reference sensor.

6: end if

7: y∗ ← eF [ [x∗ ]2,w ] × yraw

8: end for

9: end procedure
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| Errors for predicting reference sensor without synthetic drift added

Figure 10 shows the errors in predictions for the low-cost sensor. Errors computed using a nearby reference sensor,

while the predictions were made by relying on the network of colocations from a distance reference sensor.
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F IGURE 10 Errors in the predictions for the reference sensor in Kampala without any drift added.

| Example Using Two Parameters

We provide a toy example to illustrate a two-parameter calibration function (the scaling and offset). Figure 11 shows

the toy data (a simple sinusoid of observations: the low cost sensor is periodically offset, but not scaled).
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F IGURE 11 Demo data: The ‘low-cost’ sensor equals the reference measurements, except for a varying offset.

To show how one might use the available python module to fit this, we include a code sample in Algorithm 5. The

key features are,

1. The simplicity of defining a calibration function. One just needs to replace the transform_fn and the associated

log-gradient function transform_fn_loggrad. These take as inputs, samples of the parameters (samps), the raw

measurements (Y) and other observations (sideY, e.g. humidity) that we might wish to use in our calibration

function.

2. The choice of kernels for the two parameters. We assume here we have some prior information that the offset

changes more quickly than the scaling. We use this to define a shorter lengthscale for the former, which means

this is largely what the model uses for explaining the discrepancy between the two sensors.
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F IGURE 12 Demo predicted parameters (offset and scaling). The red lines in the two graphs show the true

scaling and offset. The model can’t distinguish between the two sources of discrepancy, given the limited data,

which leads to large uncertainty. 95% credible intervals plotted.
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F IGURE 13 Demo predicted pollution. Red line is the true pollution. The green line shows the prediction (using

the low-cost sensor). 95% credible intervals are plotted.
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F IGURE 14 Plot of samples showing the (negative)correlation between the scaling and offset at t=25.828s.

Because an exponential is used for the scaling parameter in the calibration function, the distribution is not Gaussian.

The key feature is that, because we avoided using a mean-field approximation, these parameters can be correlated,

allowing the model to represent a range of possible explanations for the data.

Figure 12 and 13 illustrate the estimates for the calibration parameters and the resulting prediction. Note that there

is wide uncertainty in the estimates for the parameters. This is simply because there is a range of possible explanatory

parameters that lead to similar predictions. The two plots hide that there is correlation between them. Figure 14

shows this (negative) correlation in the posterior, which means there is less uncertainty in the final prediction.
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Algorithm 5 Python code example for toy data, using the calibration python module.

import numpy as np

from calibration import CalibrationSystem #our calibration module

import gpflow #uses gpflow kernels

import tensorflow as tf #uses tensorflow to compute gradients

#######################################

###Generate Synthetic Data (in X and Y)

X = np.c_[np.linspace(0,40,101),np.zeros(101),np.ones(101)]

y = np.cos(X[:,0]*2)*25+25

Y = np.c_[y,y+20*np.cos(X[:,0]/5)+10]

refsensor = np.array([1,0]) #which sensors are reference sensors

Z = np.linspace(0,40,10)[:,None] #inducing points

#######################################

###Create and Optimise the Model

#Calibration Function

def transform_fn(samps,Y,sideY):

return 10*samps[:,:,0:1] + Y*tf.exp(samps[:,:,1:2])

#Log derivative (wrt y) of calibration function

def transform_fn_loggrad(samps,Y,sideY):

return samps[:,:,1:2]

#The kernels for the two parameters

ks = []

ks.append(gpflow.kernels.RBF(5.0,5.0)+gpflow.kernels.Bias(5.0)) #scaling

ks.append(gpflow.kernels.RBF(5.0,100.0)+gpflow.kernels.Bias(5.0)) #offset

#Which kernel to use for which parameters/sensors

kernelindices = [[0]*len(refsensor),[1]*len(refsensor)]

#Define the model

cs = CalibrationSystem(X, Y, Z, refsensor, 2, transform_fn,transform_fn_loggrad,

ks, kernelindices, likelihoodstd=0.001,lr=0.05,jitter=1e-3)

#Optimise the variational approximation

elbo_record = cs.run(its=200)
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Algorithm 6 Python code example for making predictions.

#######################################

###To use the model to make predictions

from calibration import SparseModel

C = 2 #number of parameters

si = 1 #sensor to use for predictions

#build test observations matrix, and create the model object to use this

x = np.linspace(0,15,151)

testX = np.zeros([0,3])

for ci in range(C):

tempX = np.c_[x,np.ones_like(x)*si,np.full_like(x,ci)]

testX = np.r_[testX,tempX]

testsm = SparseModel(testX,cs.Z,C,cs.k)

#use the variational distribution parameters from the calibration system (cs.mu, cs.scale)

#to either give us the mean and covariance between the test points, or sample from the test

#points.

#qf_mu,qf_cov = testsm.get_qf(cs.mu,cs.scale)

samps = testsm.get_samples_one_sensor(cs.mu,cs.scale,num=1000)

#If we want to predict the true pollution, feed the low-cost observations

#into the calibration function

truey = np.cos(x*2)*25+25

testy = np.c_[truey,truey+20*np.cos(x/5)+10]

predy = transform_fn(samps,testy[:,1:2],None)


