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ABSTRACT

A novel open-source anisotropic k� e� v2 � f model is presented for turbulent viscoelastic duct flow with dilute polymeric solutions
described by the finitely extensible nonlinear elastic-Peterlin constitutive model. The turbulence model for channel and square duct flow of
Newtonian fluids is adapted to incorporate the polymeric terms within the governing equations. All the required non-linear terms are vali-
dated with simple closure models and are assessed a priori against independent direct numerical simulation data in fully developed channel
flow. The NLTij term, which accounts for the interaction between fluctuating components of the conformation tensor and the velocity gradi-
ent tensor, is modeled with the mean flow direction, ti, and wall-normal, ni, present in the Newtonian model, based on the streamwise align-
ment of mean polymer stretch. The implicit polymer effects on pressure–strain are assessed with a simple ad hoc closure accounting for the
reduced near-wall production of turbulent kinetic energy. The same closure is also adapted for the spanwise Reynolds stress predictions of
polymer-enhanced secondary flow. The model performs well in channel flow and captures low, intermediate, and high drag reduction fea-
tures for a wide range of rheological parameters. The capabilities are extended for square ducts (or any regular polygon) due to the symmetric
modeling of the closure models, which can predict the mean streamwise and secondary flow features associated with second normal
Reynolds stress differences. Accessible codes and models are crucial for the advancement and improvement of turbulent viscoelastic models,
and an OpenFOAM Cþþ code package is developed and freely available on GitHub (https://github.com/MikeMcDermott-Code/v2f).

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0159668

NOMENCLATURE

Cij Mean conformation tensor
DNS Direct numerical simulation
DR Drag reduction
EV Newtonian destruction to the dissipation rate
f Elliptic relaxation function
fd Newtonian spanwise distribution function

f ðCmmÞ Peterlin function
f Vd Viscoelastic spanwise distribution function

HDR High drag reduction
h Channel half height

IDR Intermediate drag reduction
k Turbulent kinetic energy

LDR Low drag reduction
Lt Turbulent length scale
L2 Maximum extensibility of the dumbbell model

MDR Maximum drag reduction
Mij Mean flow distortion term of the conformation tensor

transport
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NLTij Non-linear term of the conformation tensor transport
Nij Redistribution term of Reynolds stress normal

components
ni Wall normal direction
P Mean kinematic pressure
Ph “Wetted” perimeter
Pk Mean rate of production of turbulent kinetic energy

RANS Reynolds-averaged Navier–Stokes
RMS Root mean square
RSM Reynolds stress model
Rh Hydraulic radius

Res0 Friction Reynolds number
Sij Mean rate of strain
Tt Turbulent time scale
ti Mean vorticity direction
Ui Mean velocity

u, v, w Velocity components
v2 Near wall Reynolds stress scaling

Wis0 Friction Weissenberg number
x, y, z Streamwise, transverse, and spanwise directions

Greek symbols

c Shear rate magnitude
dij Kronecker delta
e Dissipation rate of turbulent kinetic energy

eijk Levi-Civita symbol
eV Viscoelastic stress work of turbulent kinetic energy

eijkj Artificial numerical diffusivity constant
k Relaxation time of polymeric fluid
�0 Total kinematic viscosity
�p Polymer kinematic viscosity
�s Solvent kinematic viscosity
�T Kinematic eddy/turbulent viscosity
q Fluid density
sij Shear stress tensor
xx Mean stream-wise vorticity

Superscript/subscript

�a;A Mean quantity
as Newtonian/solvent quantity
aw Near wall quantity
a0 Fluctuating quantity
aþ Normalized by friction velocity

aV, ap Viscoelastic/polymeric quantity

I. INTRODUCTION

Numerical predictions of drag-reducing turbulent flows with
polymer additives have gained much interest among engineers since
the experimental finding of Toms.1 Early studies in the literature
quantify the behavior of turbulent polymer flows in channel and pipe
flows.2–4 The logarithmic velocity profile in polymer flow increases
with respect to Newtonian flow, owing to a reduction in the near-wall
turbulent fluctuations from the stretching of polymers, causing an
effective thickening of the viscous sub-layer2 and enhanced velocity
profile, up to 80%, reaching a maximum drag reduction (MDR) limit.5

Over the last few decades, several experimental and direct numerical
simulation (DNS) studies examined the energy exchanges between the
polymer chains and turbulent structures, to investigate the mechanisms
of drag-reducing channel flow,6–10 with some notable reviews on these
mechanisms.11,12 For the numerical investigations, the finitely extensible
nonlinear elastic-Peterlin (FENE-P) dumbbell model13 has been predomi-
nantly used to represent the polymer chains, because of its molecular
roots in kinetic theory. It is now known to at least low to moderate levels
of drag reduction (DR) that the mechanism is the transfer of energy from
the near-wall (buffer layer) streamwise vortices to polymers that stretch in
the extensional flow and then relax as they are rolled into other vortices.
This generates forces that tend to inhibit the hairpin vortices.14

Quantitatively, this can be expressed as a polymer body force,8 which is
positive in the streamwise direction, with an opposite sign (anti-correla-
tion) in the transverse and spanwise directions. These forces are also
accompanied by a substantial reduction in the velocity–pressure gradients
in the Reynolds stress transport,6 leading to strong flow anisotropy. The
two primary sources for vorticity production, the production from the
mean velocity gradient and the mixed production, decrease drastically, in
an almost symmetric fashion with increasing viscoelasticity.

There is a wealth of Reynolds-averaged DNS data7–9,14–16 that
examine the effects of the polymer chains in fully developed turbulent
channel flow by varying the rheological and flow parameters, such as
the viscosity ratio, b, friction Weissenberg number, Wis, maximum
chain extensibility of the dumbbell model, L2, and friction Reynolds
number, Res. The data assist the development of viscoelastic turbu-
lence models to predict flow features in channels and pipes for engi-
neering applications. Although DNS studies in turbulent channel flow
with FENE-P fluids are well documented, numerical simulations for
other canonical systems are scarce, with some recent work for turbu-
lent viscoelastic jets,17 turbulent planar wakes,18 turbulent flow with
spherical particle suspensions,19 and turbulent flow in square ducts.20

The enhanced streamwise features of turbulent polymer flows in
square ducts are similar to those documented in channel flow, showing
an increase in the mean velocity profile and thickening of the buffer
layer, with a decrease in the wall-normal Reynolds stresses.20 One of
the key features of Newtonian turbulent flow in square ducts is the
existence of secondary flow of the second kind,21 predominantly gen-
erated from the production of Reynolds stress gradients.22 The second-
ary flow in the cross-stream plane gives rise to bending of the mean
streamwise velocity isolines toward the duct corners,23 along with eight
counter-rotating vortices.

Although the intensity of the secondary motion is small com-
pared to the streamwise motion (usually a few percent), they are gen-
erally assumed to have some important practical impact in
redistributing friction along the duct perimeter.24 In the presence of
polymers, the reduction in the wall-normal Reynolds stresses (or nor-
mal stress anisotropy) results in a shift of the maximum vorticity,
moving toward the center of the duct.20 The vorticity behavior is con-
current with the streamwise enstrophy budget in turbulent channel
flows.6 Further, recent work analyzing turbulent entrainment in visco-
elastic jets suggest that regions of high enstrophy dynamics interact
strongly with polymer stresses,25 which shows good evidence that drag
reduction and changes to the vorticity field are interconnected.
Predicting secondary motion and vorticity features is of great interest
for engineering purposes and toward a more general viscoelastic tur-
bulence model for wall-bounded flows.
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Many attempts have been made to predict the secondary flow
features of Newtonian turbulent square duct flow in the context of
Reynolds-averaged Navier–Stokes (RANS) modeling. It is well known
that classical isotropic eddy viscosity models fail to capture the self-
sustained secondary motion.26 This necessitated the use of Non-Linear
Eddy Viscosity Models,27,28 in which the Boussinesq hypothesis is
extended to have higher order dependence on the strain and vorticity
rates, based on the polynomial tensor basis of Pope.29 Pecnik and
Iaccarino30 developed the isotropic k� e� v2 � f model of Lien
et al.31 to predict normal stress anisotropy, and thus secondary flow
features. The model obeys the linear eddy viscosity hypothesis, whilst
introducing a non-isotropic contribution, Nij, based on the wall
Reynolds stress scalar, v2, without relying on additional nonlinear
terms. Modesti32 performed a priori DNS tests on eddy viscosity mod-
els by quantifying their accuracy in predicting the wall-normal and
shear Reynolds stress components in Newtonian turbulent square
ducts. They concluded that the anisotropic v2 � f model performed
best for both components, although it is not based on the nonlinear
expansion.29 Given that drag reduction in turbulent viscoelastic duct
flow is associated with enhanced wall normal Reynolds stresses, the
model of Pecnik and Iaccarino30 is chosen for the Newtonian closures
within this study. The k� �� /� f of Laurence et al.33 was consid-
ered as the baseline Newtonian model, where / ¼ v2=k. However,
given that the k� �� v2 � f model has shown promise for predicting
Newtonian flow in square duct flows30 and has also been applied for
turbulent viscoelastic channel flows,34 the k� �� /� f model is
beyond the scope of this work and will be considered within future
implementations.

Leighton et al.35 proposed the first turbulence model based on
FENE-P fluids. The developed Reynolds stress model (RSM) laid the
foundation of the governing equations, and the general nomenclature
followed,36 which is largely adapted by the proceeding literature.
Pinho et al.37 proposed a new RANS model which extended the
Newtonian low-Reynolds number k� e model. Their work largely
reduces the model complexity by analyzing the dominant contribu-
tions in the governing equations, to which closures were proposed and
predictions up to Low Drag Reduction (LDR) were achieved.
However, the turbulent kinetic energy exhibited a mean peak and
global reduction, which opposed the experimental7 and DNS find-
ings.38 Soon after, Resende et al.39 extended the model capacity to the
intermediate drag reduction (IDR) regime. This was achieved by
improving the closure predictions for the nonlinear term of the con-
formation tensor equation (denoted NLTij), the viscoelastic stress
work (denoted eVij ), and the viscoelastic turbulent transport in the tur-
bulent kinetic energy equation (denotedQV). The samemodel closures
were adapted40 to a k� x Newtonian model, although the same limi-
tations occur as previous37,39 along with exceedingly complex model
closures. Later, Resende et al.41 improved the model capabilities to
high drag reduction (HDR) regimes and reduced the complexity of the
NLTij term, along with the correct increase for the turbulent kinetic
energy via a modified damping function to include viscoelastic effects.
This occurred by analyzing the change in the production term within
the transport of k,42 along with a priori DNS data analysis for a new
NLTij relation.

43 The work was then extended to remove all friction
velocity, bulk parameters, and reduce further the model complexity,44

along with a k� x counterpart, which includes b variation.45 The
model can predict all ranges of friction Reynolds numbers within the

literature, along with a large range of rheological parameters.
However, the model is limited to the isotropic context and does not
feature the normal Reynolds stress anisotropy needed for secondary
flow calculations, although the development of viscoelastic closures for
the polymer stress tensor is important to this study.

Iaccarino et al.46 proposed the first k� e� v2 � f model for
FENE-P fluids in fully developed channel flow. The concept of a tur-
bulent polymer viscosity was introduced, which accounts for the com-
bined effect of turbulence with polymer chains on the polymer shear
stress in the momentum equation. The turbulent polymer viscosity
was modeled with direct dependence on the turbulent kinetic energy.
The effect of the polymer chains on the rate of production was
included implicitly, with a model for the viscoelastic stress work
depending on the turbulent polymer viscosity. Masoudian et al.15 later
improved the closure model for the turbulent polymer viscosity with
dependence on the local eddy viscosity. The viscoelastic stress work
was modeled as it is within previous models,37,39 along with an ad hoc
model for the combined effects of the transverse viscoelastic stress
work and pressure–strain term in the v2 transport equation. The trace
of NLTij is modeled with dependence on the local eddy viscosity and
mean flow distortion term, which is shown to perform well for all
ranges of DR. The model can predict all regimes of DR but contains
friction velocity dependence which becomes problematic in flows with
stagnation points. Masoudian et al.34 extended the model capabilities
to include heat transfer with a passive scalar temperature field. They
also produce a Boussinesq-like closure for NLTij, which models both
the polymer extension (NLTkk), and the shear component (NLTxy)
that calculates the polymer shear stress in the momentum equation.
However, this closure is misrepresented as the NLTxy term has an
opposite sign, as shown by the DNS.47 Benzi48 demonstrated in their
toy model that the overall role of polymer stretching is to induce an
effective polymer viscosity proportional to the transverse conforma-
tion tensor component, Cyy, which is dominated by the NLTyy term
(also see Fig. 1 in Pinho et al.37 for further DNS). Masoudian et al.49

produced a RSM which greatly improves flow predictions from
Leighton et al.35 The NLTij closure is made proportional to the
Reynolds stress tensor by analyzing the events of the two fields,
although requiring an additional damping function to correct the
near-wall behavior.

In general, the availability of developed open-source code pack-
ages is desirable for advancing research. Many works, with respect to
RANS turbulent viscoelastic flow modeling, operate with in-house
codes with FORTRAN.15,34,37,39,50 Commercial software, Ansys, has
been adapted to include the k� e� v2 � f model15 with user-defined
functions,51 along with OpenFOAM52 for the same model,15 although
the code is not readily available. A good modern review of numerical
methods and challenges for turbulent viscoelastic flows including the
FENE-P model can be viewed in the work of Alves et al.53

In the present study, the anisotropic k� e� v2 � f model for
Newtonian fluids30 is adapted to predict polymer flow features in fully
developed turbulent channel flows, and more generally, regular poly-
gons such as square ducts. The model capabilities could extend to
other wall-bounded flows such as a turbulent diffuser, but is here
untested and beyond the scope of this work. The NLTij term modeling
within previous studies is assessed and adapted for wall-bounded
flows. The overall model is validated and assessed against independent
DNS data in turbulent viscoelastic channel flow for LDR, IDR, and
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HDR. The NLTij model coefficients are adapted and applied to square
duct flow data20 at IDR. An OpenFOAM Cþþ code is developed by
creating a base class for the k� e� v2 � f model based on
Newtonian fluids,30 then adapted to incorporate the conformation
transport equations and properties. The source code, case folders, and
accompanying configuration files are freely available here (https://
github.com/MikeMcDermott-Code/v2f). The paper is organized as
follows: Sec. II introduces the Reynolds-averaged governing equations
appropriate for wall-bounded turbulent polymer flow; Sec. III explains
in detail the development of viscoelastic turbulent closures; Sec. IV
summarizes the present model; Sec. V presents the numerical proce-
dure and accompanying studies; Sec. VI presents the results; and
finally in Sec. VII, the main conclusions are presented.

II. GOVERNING EQUATIONS

The governing equations appropriate for fully developed, steady
state, incompressible turbulent flow of dilute polymer solutions are
presented in Subsections IIA–IID. Overbars or upper-case represent
Reynolds-averaged quantities, and primes or lower-case represent the
fluctuating quantities. For brevity, the computational domain for fully
developed channel flow and square duct flow can be viewed in Fig. 1,
which represent one-half and one-quarter of the full domain, respec-
tively, with channel half-height, h, defined. The direction of the mean
flow, tx, and wall-normal, ni, is described mathematically in the pro-
ceeding sections.

A. Continuity and momentum equations

The Reynolds-averaged continuity and momentum equations
are, respectively,

@Ui

@xi
¼ 0; (1)

Uj
@Ui

@xj
¼ � @P

@xi
þ @

@xj
�sij � u0iu

0
j

� �
; (2)

where Ui is the mean velocity, P is the mean kinematic pressure, �sij is
the mean extra stress tensor, and u0iu

0
j is the Reynolds stress tensor. �sij

describes the rheology of the fluid and is given in Eq. (3) as the sum of
a Newtonian solvent contribution of kinematic viscosity, �s, with a

polymeric contribution �sij;p described by the FENE-P rheological con-
stitutive model,13

�sij ¼ �sSij þ �s ij;p; (3)

where Sij is the mean strain rate tensor defined by

Sij ¼
1
2

@Ui

@xj
þ
@Uj

@xi

 !
: (4)

B. Constitutive equation

The Reynolds-averaged equation of the polymeric stress for a
FENE-P dumbbell model is well documented37 and is represented by
an explicit function of the mean conformation tensor, Cij, given by

�s ij;p ¼
�p

k
f ðCkk þ c0kkÞðCij þ c0ijÞ � f ðLÞdij
h i

; (5)

f ðCmmÞ ¼
L2 � 3
L2 � Ckk

and f ðLÞ ¼ 1; (6)

where �p is the kinematic polymeric viscosity, k is the relaxation time,
and L2 denotes the maximum molecular extensibility of the model
dumbbell.

The behavior of the mean conformation tensor, Cij, follows a
hyperbolic differential equation known as the Reynolds-averaged con-
formation evolution (RACE), of the form

Uk
@Cij

@xk
�Mij � CTij � NLTij ¼ �

�s ij;p
�p

; (7)

Mij ¼ Cjk
@Ui

@xk
þ Cik

@Uj

@xk
; (8)

CTij ¼ u0k
@c0ij
@xk

; (9)

NLTij ¼ c0jk
@u0i
@xk
þ c0ik

@u0j
@xk

: (10)

Here,Mij is the mean flow distortion term; it is non-zero, but requires
no closure. The remaining two terms are named following the nomen-
clature of Li et al.38 and Housiadas et al.54 They are labeled with CTij;
representing the contribution to the transport of the conformation
tensor due to the fluctuating advective terms, and NLTij, which
accounts for the interactions between the fluctuating components of
the conformation tensor and the velocity gradient tensor.

C. Reynolds stresses

The Reynolds stress tensor is computed with the model of Pecnik
and Iaccarino,30 which adopts a “linear” (the linearity holds because
u0mu

0
m ¼ 2k, however, non-isotropic) Boussinesq turbulent stress–

strain relationship,

�u0iu0j � 2�tSij �
2
3
dij þ Nij

� �
k; (11)

where �t is the eddy viscosity, k is the turbulent kinetic energy, and Nij

is formulated to redistribute k in the normal components such that the
trace of Nij has to preserve Nijdij ¼ 0. The full derivation can be found
in Pecnik and Iaccarino30 and is here represented by

FIG. 1. Computational domain for (a) channel flow and (b) square duct flow, with
channel half-height, h. The direction of the mean flow, tx, coincides with the stream-
wise direction, with wall normals, ni, displayed. The red and blue patches are the
wall and symmetry planes, respectively.
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Nij ¼ 1� 3
2
v2

k

� �
dij
3
� ninj

� �

þ 2� fd
2þ fd

� 1
2
v2

k

 !
ð2titj þ ninj � dijÞ: (12)

The first term within Eq. (12) ensures that the wall-normal fluctuating
Reynolds stress v02 ¼ v2 and fulfills the physical requirements, which
are zero trace and vanishing contribution in isotropic flow regions
where v2 ¼ 2

3 k. The wall-normal is represented by a normalized gradi-
ent of a general variable /,

ni ¼
@/
@xi

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@/
@xj

@/
@xj

s
; (13)

such that / solves an elliptic relaxation equation given as

@2/
@xk@xk

¼ �1; (14)

typically used to obtain smooth variations of the wall distance in com-
plex geometries.55 At solid walls, / ¼ 0, and @/=@xi ¼ 0 at open
boundaries.

The second term in Eq. (12) removes the equality of
u02 ¼ w02 ¼ k� 1

2 v
2, which would be the case for Eq. (12) containing

just the first term. The function fd is represented as

fd ¼ min max
3
2
v2

k

� �1=2

; 0:3

 !
; 1:0

" #
: (15)

This function ensures the correct asymptotic behavior of the compo-
nents parallel to the wall so that u02 / y2 and w02 / y2. This was
achieved by setting the damping function to a constant value of
fd0 ¼ 0:3 until yþ � 10 given the DNS data.56 Above this yþ value,
the damping function is modeled as a function of v2=k.

The normalized direction of the largest normal Reynolds stress
component, ti, is assumed to coincide with the normalized velocity
gradient.30 This is a reasonable assumption for our studies in pressure-
driven wall-bounded flows. More generally, ti can coincide with the
mean direction of vorticity such that

ti �
xi

jxij
¼ �ijk

@Uj

@xk

.
c; (16)

where �ijk is the Levi-Civita symbol, xi is the vorticity, and c ¼
ffiffiffiffiffiffiffiffiffi
SijSij

p
is the shear rate magnitude.

In this work, the eddy viscosity is modeled by the k� e� v2

�f formulation of Lien et al.31 This particular choice of model is jus-
tified by the fact that the polymer drag reduction is mostly a near
wall phenomenon, and it requires a modification to the turbulence
redistribution mechanism. The model represents a comprehensive
and accurate approach to capture these aspects of turbulent bound-
ary layers within a Boussinesq framework. The near-wall eddy vis-
cosity model is inspired by the physics of the full Reynolds stress
transport model, but retains only the wall-normal Reynolds stress
scalar, v2 , and its source, kf, representing the redistribution by pres-
sure fluctuations. Then, in the classical closure for the eddy viscosity
(�t / k2

e ) the wall damping effect is obtained by substituting one
instance of k by v2 as

�t ¼ Clv
2Tt; (17)

where Cl is a constant coefficient, v2 is the transverse (wall-normal)
Reynolds stress scalar, and Tt is the turbulent timescale defined as

Tt ¼ max
k
e
;CT

ffiffiffiffiffi
�0
e

r( )
; (18)

where �0 ¼ �s þ �p is the total viscosity, e is the Newtonian rate of
dissipation of k, and CT is a constant coefficient.

The turbulence model for Newtonian fluids has three transport
equations for k, e, v2, and one elliptic equation for f, and it accurately
reproduces the parabolic decay of v2 ¼ k down to the solid wall with-
out introducing the wall-distance or low-Reynolds number damping
functions in the eddy viscosity and k� e equations, which would then
need to be modified to account for viscoelastic fluids.

The governing transport equation for the turbulent kinetic
energy, k, with FENE-P fluids is given by15

Uj
@k
@xj
¼ @

@xj
�s þ

�t
rk

� �
@k
@xj

" #
þ Pk � eþ QV � eV ; (19)

where Pk ¼ u0iu
0
j Sij is the mean rate of production of k, and rk is a

constant coefficient. The last two terms on the right side of Eq. (19)
are

QV ¼
@s0ik;pu

0
i

@xk
and eV ¼ s0ik;p

@u0i
@xk

; (20)

which are the viscoelastic turbulent transport and the viscoelastic stress
work, respectively. They represent the fluctuating viscoelastic turbulent
part of the k transport equation and require suitable closure models.

The corresponding governing transport equation for e is given by

Uj
@e
@xj
¼ @

@xj
�s þ

�t
re

� �
@e
@xj

" #
þ Ce1Pk � Ce2e

Tt
� EV ; (21)

where re; Ce1, and Ce2 are the constant coefficients. The last term on
the right side of Eq. (21) is the viscoelastic contribution to the overall e
balance,

EV ¼ 2�s
@u0i
@xk

@

@xk

@s0ij;p
@xj

 !
; (22)

which has non-negligible effects on flow predictions for all DR regimes
and thus requires a suitable closure model.

The transport equation for the scalar wall Reynolds stress, v2, is
given by

Uj
@v2

@xj
¼ @

@xj
�s þ

�t
rk

� �
@v2

@xj

" #
þ kf � 6

e
k
v2 þ QV

v2 � eVv2 ; (23)

where f is the turbulence energy redistribution, and the last two terms
on the right side are the analogous transverse components of Eq. (20),
which require suitable closure models.

The corresponding governing transport equation for f is derived
from the pressure–strain correlation57,58 in the full Reynolds stress
transport equation, given by
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f � L2t
@2f
@xj@xj

¼ 1
Tt

2
3
ðC1 � 1Þ � ðC1 � 6Þ v

2

k

� �
þ C2

Pk
k
; (24)

with the length scale defined as

L2t ¼ C2
Lmax

k3

e2
; C2

g

ffiffiffiffiffi
�30
e

r( )
; (25)

where C1, C2, CL, and Cg are the constant coefficients.

D. Streamwise vorticity equation

The origins of mean secondary flow in fully developed turbulent
polymer duct flow are found within the mean streamwise vorticity,xx,
transport equation (see the Appendix within Ref. 20)

@ �xx

@t
¼ �v

@ �xx

@y
þ �w

@ �xx

@z|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
C

þ @2

@y@z
ðw0w0 � v0v0 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

þ @2

@y2
� @2

@z2

 !
v0w0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D

� b
Re

@2

@y2
þ @2

@z2

 !
�xx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V

� 1� b
Re

@2�syz;p
@y2

þ @
2�szz;p
@y@z

�
@2�syy;p
@y@z

�
@2�syz;p
@z2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P

; (26)

where C is the convection of the mean vorticity by the secondary
motion; A is the production term associated with the anisotropy of
the in-plane normal stresses; D is the production/dissipation term due

to the cross-stream Reynolds stress component, v0w0 ; V is the viscous
dissipation; andP is the polymeric contribution.

The budget analysis of Eq. (26) in polymeric square duct flow
was performed by Shahmardi et al.20 (Fig. 13 in their work). The dom-
inant contributions in both Newtonian and polymeric flows are from
A and V. Although D is non-zero, it is over 10 times smaller in magni-
tude than A. Thus, it will be neglected in this study. The convection
term, C, along with P are negligible. It is interesting to note that
although the polymeric contribution to xx is small in amplitude, the
presence of the polymer produces macroscopic changes to the flow, by
reducing the anisotropy of the in-plane velocity fluctuations.

III. DEVELOPMENT OF VISCOELASTIC CLOSURES

In this section, the non-linear viscoelastic terms requiring clo-
sures identified in Sec. II are developed a priori with gathered indepen-
dent DNS data in turbulent viscoelastic channel and square duct flow
for cases 7, 10, and 11 as described in Table I. The data availability for
the NLTij term is exclusively from cases 7, 10, and 11 (Res0 ¼ 395;
Wis0 ¼ 25 and 100; L2 ¼ 900 and 3600), which pertains to interme-
diate friction Reynolds number spanning low to high DR, which is
used to validate the current model closures. This selected data are
also assessed within multiple studies of RANS FENE-P model-
ing.15,34,41,44,45,49 A broad range of rheological parameters
(Res0 ¼ 180–1000; b ¼ 0:9; Wis0 ¼ 18–100; L2 ¼ 900–3600) are
selected with low to high DR for channel flow and intermediate DR
for square ducts to test the model performance on predicting mean
field values such as velocity, Reynolds stresses, conformation tensor,
and secondary flow, within the results section. All future mentions of
“Case x” are referred to by Table I.

TABLE I. Independent DNS data of fully developed turbulent channel and square duct flow for FENE-P fluids with DR model predictions.

Rheological parameters DR (%)

Case References
Res0 ¼

hus

�0
b ¼ �s

�0
Wis0 ¼

ku2s
�0 L2 DNS Model

Channel:
(1) Masoudian et al.15 180 0.9 25 900 19 25
(2) Li et al.9 180 0.9 50 900 31 30
(3) Masoudian et al.15 180 0.9 100 900 38 37
(4) Masoudian et al.15 180 0.9 100 3600 54 46
(5) Iaccarino et al.46 300 0.9 36 3600 33 27
(6) Iaccarino et al.46 300 0.9 60 3600 47 36
(7) Masoudian et al.34 395 0.9 25 900 19 23
(8) Masoudian et al.34 395 0.9 50 900 30 27
(9) Masoudian et al.34 395 0.9 50 3600 38 31
(10) Masoudian et al.34 395 0.9 100 900 37 35
(11) Masoudian et al.34 395 0.9 100 3600 48 46
(12) Masoudian et al.34 590 0.9 50 3600 39 29
(13) Thais et al.10 1000 0.9 50 900 30 26
Square duct:
(A) Shahmardi et al.20 366 0.9 18 900 25 25
(B) Shahmardi et al.20 366 0.9 36 900 29 29
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A. Closures for the conformation tensor

The first term that needs a closure is the mean polymer stress,
Eq. (5). The expansion of this term can be written in the form

�s ij;p ¼
�p

k
f ðCkkÞCij � f ðLÞdij
� 	

þ �p
k

f ðCkk þ c0kkÞðCij þ c0ijÞ � f ðCkkÞCij

h i
: (27)

The magnitude of both terms on the RHS of Eq. (27) was analyzed a
priori using DNS data.37 This analysis showed that at different values
of L2 andWis0 , the first term is nearly 20 times larger regardless of the
rheological parameters. In this study, the mean polymer stress is
approximated by the first term as with other models,15,34,40,46 hence
given by

�sij;p ¼
�p

k
f ðCkkÞCij � f ðLÞdij
� 	

: (28)

The CTij term can be omitted for all DR regimes following a budget
analysis of Eq. (7) carried out by Housiadas et al.54 and Li et al.38 The
NLTij term cannot be neglected since it is a significant contributor in
Eq. (7) and therefore requires a suitable closure.

To compute the polymer stress, one must calculate the compo-
nents of the mean conformation tensor, Cij, via the RACE [Eq. (7)].
The set of analytical equations for fully developed channel flow can be
viewed in Appendix 1 of Ref. 37. In square ducts, there are walls in the
y and z directions, such that

�sxy;p þ �sxz;p ¼
�p

k
f ðCkkÞðCxy þ CxzÞ

¼ �pðNLTxy þ NLTxzÞ

þ �p

f ðCmmÞ
kNLTyy þ 1

 � dU

dy
þ kNLTzz þ 1ð Þ dU

dz

� �
:

(29)

For channel flow, the xz and zz terms are zero, and the transverse
component is strictly in yy. For square duct flow, with symmetry along
y¼ z, the terms in �sxy;p and �sxz;p are identical. Going forward, without
loss of generality, xy, and yy are referred to as the shear and transverse
components, respectively— with the zz term denoted as spanwise.

The NLTij components (xx, yy, zz, and xy) require careful consid-
eration for accurate predictions of the polymer shear stress. It was
demonstrated by Masoudian et al.49 that NLTij and u0iu

0
j have a simi-

larity of events, based on their iso-surface projections. This can be
approximated with the assumption for the NLTij normal components
as follows:

NLTij �
u0iu
0
j

2k
NLTkk: (30)

Figure 2 displays a prioriDNS results of Eq. (30) for case 7. The corre-
lations show a similar behavior with the DNS data, capturing peak
locations and trends well with the Reynolds stress tensor distributing
NLTkk. Benzi

48 characterizes an ordering of each Cij term based on
scale analysis such that Cxx � 1=D; Cxy � Oð1Þ, and Cyy ¼ Czz � D,
where D is some small number. This is also reflected for the corre-
spondingNLTij terms.

Instead of considering the full Reynolds normal stress approxi-
mation in Eq. (30), a more simplistic approach is taken. The stretching

of the polymer chains is accounted for by NLTkk, which is dominated
by the streamwise component, as the chains tend to align with the
mean streamwise vortices or enstrophy,6 here represented by ti from
the Newtonian model [Eq. (16)], such that

NLTxx ¼ NLTijtitj � NLTkk: (31)

A closure model is required for the scalar quantity, NLTkk, which is
here given by the Masoudian et al.15 model, NLTkk ¼ CV1ð�t=�0ÞMkk,
where CV1 is a constant coefficient. Present within the DNS data is the
occurrence of a small near-wall negative peak. According to Dubief
et al.59 and Leighton et al.,35 this has some impact on the near wall
energy transfer from the polymers to the turbulence (opposite to the
global energy transfer), although there is no mention within the litera-
ture of a mechanistic role. This term could cause numerical instability
due to the rapid changes in the buffer layer and was neglected by
Masoudian et al.,15,34 and is also the case here.

Benzi48 demonstrated in their toy model that the overall role of
polymer stretching is to induce an effective polymer viscosity propor-
tional to the transverse conformation tensor component, Cyy, which is
determined by NLTyy. This relationship is represented as

NLTyy ¼ NLTv2 �
v2

k
NLTkk: (32)

Figure 3 displays a priori DNS results of Eq. (32) for cases 7, 10, and
11. The trend holds well for all levels of DR, especially capturing the
peak locations and shift away from the buffer layer. TheNLTzz compo-
nent was shown by Pinho et al.37 to have a small impact on overall
model predictions in fully developed channel flow. This is due to the
fact that the presence of NLTzz in the model equations is only via the
NLTkk term, which is dominated by NLTxx, and is therefore neglected.

The NLTxy component has been previously modeled directly via
dependence onMij,

44,45 which also captured the small negative peak in
NLTxx in their modeling. Masoudian et al.34 developed a Bousinesq-
like closure for NLTij, which was made proportional to Mij, meaning
the polymer shear stress was proportional to NLTxy. However, with
this approach, NLTyy is defined to be zero, and NLTxy is defined to be

FIG. 2. A priori analysis of NLTþij [Eq. (30)] in fully developed channel flow with
DNS data case 7.
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positive which is contradictory to the DNS findings. The NLTxy term
has less impact near the wall and buffer layer for polymer shear stress
predictions from DNS data studies37 and is thus neglected. The overall
model for NLTij is presented as

NLTij ¼ CV1
�t
�0

Mkk titj þ CV2
v2

k
ninj

� �
; (33)

where CV2 is a model coefficient. Note that the key feature in Eq. (33)
is adopting the simple and effective closure model for the scalar quan-
tity NLTkk ¼ CV1ð�t=�0ÞMkk, with redistribution in the dominant
streamwise direction, and in the transverse direction with the natural
scaling v2=k. The effect of NLTij on the mean conformation tensor, Cij,
is analyzed in the results section against DNS data for both channel
flow and square duct flow.

B. Closures for the transport of k, e, v2, and f

Budget analysis for each term in the k transport equation was
performed by Pinho et al.37 for different regimes of DR. They demon-
strated that the magnitude of QV has more impact on the overall bud-
get in the IDR regime and also developed a closure. In the HDR
regime, the amplitude of QV is the same as eV but has a different loca-
tion in the buffer layer, in which the effects of QV are overcome by tur-
bulent diffusion, thus revealing negligible effects to overall flow
predictions. Previous models15,34,41,44,45 chose to neglect the QV contri-
butions, and it is also not included here as well.

The closure model for the viscoelastic stress work is well
founded37,44,49 and is presented as

eVij ¼
�p

2k
f ðCmmÞNLTij: (34)

Masoudian et al.15 confirmed the model capabilities within 5% accu-
racy for all DR regimes via a probability density function study. The
viscoelastic closure in the k transport is

eVkk � eV ¼ �p

2k
f ðCmmÞNLTkk: (35)

The viscoelastic contribution to the dissipation transport equation, EV,
is modeled in the same manner as previous models,15,34,39 with a ratio
of the viscoelastic stress work and turbulent timescale

EV ¼ Ce1eV

Tt
: (36)

The transverse viscoelastic stress work, eVv2 , in the transport of v2 can
be simply deduced from the current model for NLTij, viz.,

eVv2 ¼ CV2
v2

k
eV ; (37)

so that the transport equation of v2 can be recast as

Uj
@v2

@xj
¼ @

@xj
�s þ

�t
rk

� �
@v2

@xj

" #
þ kf � 6eþ CV2e

V

 � v2

k
: (38)

The production term above, kf, reduces monotonically for increas-
ing DR. Given that k increases with DR, there must be a substantial
reduction in the redistribution term, f. Modifications of the fluctu-
ating pressure field represent implicit polymer effects which limit
pressure–strain redistribution and hence the production of turbu-
lent shear stress. Limited closure models are available for the visco-
elastic contributions to pressure–strain in turbulent viscoelastic
flows. Leighton et al.35 first produced a closure proportional to the
rapid pressure–strain term [first term on RHS of Eq. (24)], with
some viscoelastic quantities. In their RSM, the closure required an
additional damping function and was later found to completely
relaminarize the flow at HDR.46 Iaccarino46 proposed a modifica-
tion to the production term to account for the implicit effects of
the polymer chains, with an effective rate of production, Pk � eV ,
where eV represents the energy transfer via polymer stretching.
The closures developed in the model were shown to perform
poorly, with excessive damping in the log-layer.15 Masoudian
et al.15,34 modeled v2 ad hoc by recasting the production term, kf,
to include viscoelastic effects via kf ð1� gÞ, where g are some visco-
elastic quantities. The difficulty with this closure is for when g> 1
in any part of the flow domain, the pressure term becomes negative
and causes complete flow relaminarization or code instability, as
remarked in Refs. 34 and 52. Later, slight improvements are made
to the closure parameters,34 although the same functional form is
maintained.

Here, a simple ad hoc closure is proposed, which recasts the pro-
duction term constant, C2 ! C2

1þCV3f ðCkkÞ
ffiffiffiffi
L2
p , where CV3 is a constant

coefficient. Figure 4 displays a priori DNS results for the function
1

1þf ðCkkÞ
ffiffiffiffi
L2
p for cases 7, 10, and 11. There is a reasonable proportionality

with DR which ensures the reduction of turbulent production via
implicit near wall polymer effects, leading to Reynolds streamwise
stress increase and anisotropy. The predictions on the Reynolds nor-
mal stresses are highlighted in the results section. The transport equa-
tion of f is recast as

f � L2t
@2f
@xj@xj

¼ 1
Tt

2
3
ðC1 � 1Þ � ðC1 � 6Þ v

2

k

� �

þ C2

1þ CV3f ðCkkÞ
ffiffiffiffiffi
L2
p Pk

k
: (39)

FIG. 3. A priori analysis of NLTþyy [Eq. (32)] in fully developed channel flow with
DNS data for LDR (case 7), IDR (case 10), and HDR (case 11).
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C. Closure for span-wise Reynolds stress

The w02 term requires a closure model for viscoelastic effects
as predictions are important in the production of streamwise
vorticity. The functional form of the Newtonian model30 is given
by

w02 ¼ fd
2

u02 þ v02

 �

; (40)

and

fd ¼ min max
3
2
v2

k

� �1=2

; 0:3

 !
; 1:0

" #
: (41)

The damping function, fd, was introduced to ensure the correct
asymptotic behavior of the components parallel to the wall so that
u02 / y2 and w02 / y2. This was achieved by setting the damping
function to a constant value of fd0 ¼ 0:3 until yþ � 10 given the DNS
data.56 Above this yþ value, the damping function is modeled as a
function of v2=k. For turbulent viscoelastic flow, w02 reduces in the
near wall for increasing DR, in a similar fashion to v02 . This near-wall
reduction is approximated with the same ad hoc closure derived in
Subsection III B, viz.,

f Vd ¼ min max
3
2
v2

k

� �1=2

;
0:3

1þ CV3f ðCkkÞ
ffiffiffiffiffi
L2
p

 !
; 1:0

" #
: (42)

Figure 5 displays a priori analysis of w02 [Eq. (40)] in fully developed
channel flow with DNS data of Newtonian56 and case 7. General
trends are captured well, with the near-wall reduction through the ad
hoc closure, along with the overall reduction away from the v2

component.

IV. SUMMARY OF THE PRESENT MODEL

The governing equations with complete closure models that were
developed in Secs. III are summarized below:

Continuity equation

@Ui

@xi
¼ 0: (43)

Momentum transport equation

Uj
@Ui

@xj
¼ � @P

@xi
þ @

@xj
ð�s þ �tÞ

@Ui

@xj
� 2

3
dij þ Nij

� �
k

 

þ �p
k

f ðCkkÞCij � dij

 �!

; (44)

where the eddy viscosity is

�t ¼ Clv
2Tt; (45)

and the normal Reynolds stress distribution term is

Nij ¼ 1� 3
2
v2

k

� �
dij
3
� ninj

� �

þ 2� f Vd
2þ f Vd

� 1
2
v2

k

 !
ð2titj þ ninj � dijÞ; (46)

with

f Vd ¼ min max
3
2
v2

k

� �1=2

;
0:3

1þ CV3f ðCkkÞ
ffiffiffiffiffi
L2
p

 !
; 1:0

" #
: (47)

The wall-normal vector, ni, and the normalized direction of mean vor-
ticity, ti, are given by Eqs. (13) and (16), respectively.
Conformation tensor transport equation

Uk
@Cij

@xk
�Mij � NLTij ¼ �

1
k

f ðCkkÞCij � dij
� 	

; (48)

with

FIG. 4. A priori analysis of the ad hoc function 1
1þf ðCkk Þ

ffiffiffi
L2
p in fully developed channel

flow with DNS data for LDR (case 7), IDR (case 10), and HDR (case 11).

FIG. 5. A priori analysis of w02 [Eq. (40)] in fully developed channel flow with DNS
data of Newtonian and case 7.
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NLTij ¼ CV1
�t
�0

Mkk titj þ CV2
v2

k
ninj

� �
: (49)

Turbulent kinetic energy transport equation

Uj
@k
@xj
¼ @

@xj
�s þ

�t
rk

� �
@k
@xj

" #
þ Pk � eV

 �

� e; (50)

where Pk ¼ u0iu
0
j Sij and

eV � eVkk ¼
�p

2k
f ðCmmÞNLTkk: (51)

Dissipation transport equation

Uj
@e
@xj
¼ @

@xj
�s þ

�t
re

� �
@e
@xj

" #
þ Ce1ðPk � eVÞ � Ce2e

Tt
: (52)

Wall normal Reynolds stress transport equation

Uj
@v2

@xj
¼ @

@xj
�s þ

�t
rk

� �
@v2

@xj

" #
þ kf � 6eþ CV2e

V

 � v2

k
: (53)

Turbulent redistribution transport equation

f � L2t
@2f
@xj@xj

¼ 1
Tt

2
3
ðC1 � 1Þ � ðC1 � 6Þ v

2

k

� �

þ C2

1þ CV3f ðCkkÞ
ffiffiffiffiffi
L2
p Pk

k
: (54)

The Newtonian coefficients are given by Pecnik and Iaccarino,30 and
the viscoelastic coefficients are tuned for each system, which are all
given in Table II.

V. NUMERICAL PROCEDURE

In order to examine the viscoelastic turbulence model against the
DNS data cases within Table I, a finite volume Cþþ code and

configuration case file were developed within OpenFOAM.60 The
computational domain was introduced in the governing equations
(Fig. 1). The full domain is reduced based on axial symmetry with a
half-channel and one quadrant of the square duct simulated, with a
symmetry plane at y ¼ h � 1, and y ¼ z ¼ h � 1, respectively, where
h is the duct half-height. For all cases, the pressure gradient is fixed in
the streamwise direction such that dP

dx � DP
Dx ¼

hswi
Rh
, where hswi is the

average wall shear stress, Rh ¼ Ah=Ph is the hydraulic radius, Ah is the
cross-sectional area of the geometry, and Ph is the “wetted” perimeter.
In channel and square duct flows, Rh ¼ 4h2=4h ¼ h and
Rh ¼ 4h2=8h ¼ h=2, respectively.

The non-uniform mesh consists of 75 and 75� 75 transverse
cells for channel and square duct flow, respectively, with approxi-
mately 10 cells located inside the viscous sub-layer. The resultant
mesh independence yields mean velocity predictions within 0.1% error
for drag reduction predictions, similarly, in Ref. 34.

Many leading DNS studies carried out9,14,61 require an artificial
diffusion term, j@2Cij=@

2xk, in the transport of Cij to stabilize the sharp
near-wall gradients, where j is an artificial numerical diffusivity con-
stant coefficient. The DNS data apply a value of j=hus � Oð10�2Þ,
which is known to affect mean flow data. A parametric study of a tur-
bulent viscoelastic model found that j � 10�3–10�5 ensures gradients
are smoothed out sufficiently to not have large effects on mean velocity
calculations.52 A series of LDR (case 7) simulations are run with ranging
j values 10�2 � 10�6. Table III highlights variations in the magnitude
of key field values DR%, Uþmax; k

þ
max; NLT

þ
max, based on j@2Cmm=@x2k .

The results show convergence on j ¼ 10�5, which is applied for all
resulting simulations in this study. At solid walls, the following bound-
ary conditions are imposed:Uw; kw; fw; v2w ¼ 0; a Neumann condition

for Cij;w , and Pw; and ew ¼ 2�sð@
ffiffi
k
p

@xi
Þ2. All cases listed in Table I are run

with the Pressure-Implicit with Splitting of Operators (PISO) solver
until a steady state is reached (residuals 10�5). The simulations were
run on a ASUS ZenBook UX430U laptop with Intel Core i7 processor
and 8 GB of RAM, which took roughly 1–5min to complete a Case.

VI. RESULTS AND DISCUSSION

Following the numerical procedure proposed in Sec. V, the
model performance is assessed against DNS data for fully developed
channel flow and square duct flow as listed in Table I. The model vis-
coelastic coefficients in Table II are tuned for both channel flow and
square duct flow.

A. Fully developed channel flow

The viscoelastic coefficients described in Table II are tuned for
cases 7, 10, and 11 in Table I for channel flow to both minimize the

TABLE II. List of coefficients associated with the Newtonian model, along with the
viscoelastic coefficients tuned for channel and square duct flow.

Coefficient Value

Newtonian:
Cl 0.22
rk 1.0
re 1.3
Ce1 1:4½1þ 0:045

ffiffiffiffiffiffiffiffiffi
k=v2

q
�

Ce2 1.92
C1 1.4
C2 0.3
CL 0.23
Cg 70.0
Viscoelastic: (Channel/square duct)
CV1 0.14/0.42
CV2 0.65/0.55
CV2 0.07/0.02

TABLE III. Sensitivity study of j with LDR (case 7).

K DR% Uþmax kþmax NLTþmax j@2Cmm=@x2k

10�6 18.26 21.68 4.39 7.96 0.34
10�5 18.26 21.68 4.39 7.96 3.35
10�4 18.14 21.64 4.39 7.95 31.0
10�3 17.01 21.48 4.40 7.75 292
10�2 14.73 21.16 4.51 6.76 1170
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reported DR% and capture polymer-induced flow features. Transverse
profiles of the mean streamwise velocity are plotted in Fig. 6, with the
corresponding DNS data, current model predictions, and available
RSM predictions.49 The functions labeled are the laminar sub-layer
relation, UþLam ¼ yþ; the Newtonian log-law, UþNewt ¼ 2:5 ln ðyþÞ
þ5:5; and Virk’s maximum drag reduction asymptote, UþMDR
¼ 11:7 ln ðyþÞ � 17:0. In the laminar sub-layer, the velocity profiles
collapse on the linear distribution, as they should. Further away from
the wall, the mean velocity of LDR, IDR, and HDR increases, with the
logarithmic profile shifting upward, captured especially well in the
buffer layer where polymers and turbulent vortices predominantly
interact. The upward shift of the logarithmic profile can be interpreted
as a thickening of the buffer layer in agreement with the experimental
and numerical findings of Ptasinski et al.7 and Li et al.9 The current
model predictions improve markedly in the buffer layer compared
against the RSM study,49 where they require a damping function
within the NLTij closure model to minimize the over-prediction in this
region. The current model also has the capability to predict the mean
velocity of various friction Reynolds numbers, from low (Res0 ¼ 180)
to high (Res0 ¼ 1000) as can be viewed in Fig. 6(b).

Figure 7 displays the corresponding model predictions of the
root mean square normal Reynolds stresses and Reynolds shear stress,
which are compared with the DNS data and available RSM predic-
tions49 with cases 7, 10, and 11. It is well known that streamwise veloc-
ity fluctuations increase slightly with DR, while the transverse,
spanwise, and shear components monotonically decrease.
Furthermore, the peak locations shift away from the buffer layer which
is consistent with the logarithmic layer in the mean velocity profile.
The model is in good agreement with the DNS for low, intermediate,
and high DR—being capable of capturing the suppression of trans-
verse and spanwise turbulent intensities which is inherent to turbulent
DR with dilute polymer solutions. The current model urms predictions
show good improvement compared to the RSM,49 especially in the
buffer layer in which their results predict a large decrease in the

streamwise velocity fluctuations. This discrepancy is accounted for in
the current model by attenuation of the production term in the pres-
sure–strain. The current model overpredicts LDR and underpredicts
HDR slightly for urms, respectively. It should be noted that this under-
prediction is arguably somewhat fictitious: in the experiments of
Ptasinski et al.,7 urms increases monotonically for LDR and IDR, with
a dip for HDR, but still above the Newtonian line, as shown in the cur-
rent model predictions. Conversely, their corresponding DNS results
over-predict those peak values. Figure 8 displays the transverse profiles
for the mean turbulent kinetic energy for low and high friction
Reynolds number and DR (cases 1 and 12). The model demonstrates
accurate predictions of the general trends observed in the DNS data,
surpassing the performance of previous anisotropic models in captur-
ing the increase in the peak of k with increasing viscoelasticity.

Transverse profiles of the mean polymer extension, Ckk=L2, are
shown in Fig. 9 for IDR (case 10) and compared against DNS data and
the most recent isotropic v2 � f model34 for FENE-P fluids. The poly-
mer extension has most physical impact in a region in the buffer layer
and inner log layer (yþ � 30� 150), in which the NLTkk term domi-
nates (see Fig. 2). The predictions match well with the DNS and show
similarity with the previous model in which the NLTkk term in the cur-
rent modeling is derived (NLTkk ¼ CV1

�t
�0
MkkÞ.

B. Square duct flow

To assess the performance of the current model against the DNS
data in fully developed square duct flow in Table I (cases A and B), the
viscoelastic coefficients are first tuned for case 7 in channel flow to cal-
ibrate theNLTxx term, and compared against the mean polymer exten-
sion and shear stress predictions. Figure 10 displays the transverse
profiles of NLTxx and corresponding predictions of Cxx and Cxy. The
peak location and magnitude are captured well for NLTxx against the
DNS data in Fig. 10. The effect of the NLTxx predictions for capturing
Cxx is displayed in Fig. 10(b), which shows a good trend with the DNS

FIG. 6. Transverse profiles of the mean streamwise velocity, Uþ: (a) Res0 ¼ 395: LDR (case 7), IDR (case 10), and HDR (case 11); (b) Res0 ¼ 180, 590, and 1000.
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data. The Cxy component depends on NLTxx predictions with a v2=k
scale, also displaying a good general trend with the DNS data.

Figure 11 displays the y–z plane contour profiles of NLTxx and
NLTv2 ¼ NLTyy þ NLTzz for case B. There is a symmetry exhibited
about the y¼ z line for both fields, as it should, owing to the com-
plete NLTij closure model. The magnitude of NLTxx in the square
duct peaks along the central line, y ¼ z ¼ 1, at a similar location
consistent with channel flow data in Fig. 10. The peak and mean val-
ues decrease consistently, with a small second peak y=h ¼ 0:4, as the
duct corner is approached. This behavior is concurrent with the tur-
bulent shearing activity or wall shear stress in the DNS findings.20

The NLTv2 term maintains a similar structure to the NLTxx term but
with a shifts away from the wall, where polymer shear is most active,
along with a reduced magnitude of about 10 owing to the v2=k
scaling.

Figure 12 displays transverse profiles of the mean streamwise
conformation tensor, Cxx, at various locations along the z-axis:
z=h ¼ 1, 0.7, and 0.4. The predictions against the DNS data at the cen-
terline (z=h ¼ 1) are similar to those exhibited within channel flow as
discussed previously. Away from the centerline, for cases z=h ¼ 0:7
and 0.4, there is a shift of the mean value of Cxxð� 200Þ which moves
closer to the wall, at locations y=h � 0:35 and y=h � 0:2, respectively.

FIG. 7. Transverse profiles of the root mean square normal Reynolds stresses,
ffiffiffiffiffiffiffiffi
u0i u
0
i

q
, and Reynolds shear stress, u0v0 : (a) LDR (case 7), (b) IDR (case 10), and (c) HDR

(case 11).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 095116 (2023); doi: 10.1063/5.0159668 35, 095116-12

VC Author(s) 2023

 08 N
ovem

ber 2024 16:21:58

pubs.aip.org/aip/phf


The behavior for z=h ¼ 0:4 also exhibits an increased near-wall and
centerline peak. The overall trends are captured well with the DNS,
which is a direct result of the NLTxx modeling and results previously
discussed from Fig. 11.

Figure 13 displays the y–z contour profiles of the in-plane veloc-

ity ~V
þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVþÞ2 þ ðWþÞ2

q
, and mean streamwise velocity Uþ, for

Newtonian flow and case B. Figures 13(a) and 13(b) have the in-plane

velocity vectors imposed for ~V
þ
, and the bottom panels show addi-

tional white contour lines on Uþ for improved visuals. On the center-
line (z=h ¼ 1), there is a shift in the mean velocity logarithmic profile
from Newtonian to polymeric flow, which is consistent with the

channel flow predictions. The polymeric flow exhibits bending of the
mean velocity contour lines, with a shift away from the wall near the
centerline, and a shift toward the wall near the duct corner, which can
be visualized with the gray arrows in Fig. 13(d). The in-plane velocity

magnitudes, ~V
þ
increase from Newtonian to polymeric flow, espe-

cially along the symmetry line y¼ z and in the near wall regions
(z=h � 0:05). The locations of the mean streamwise vorticity, marked
with a dot in Figs. 13(a) and 13(b), move further away from the walls
and displacing toward the center. This behavior is concurrent with the
DNS findings20 for turbulent polymeric square duct flow and are a
result of the current modeling of second normal Reynolds stress differ-
ences from the polymer-induced flow. To compare quantitatively with
the available DNS data, Fig. 14 displays the transverse profiles of Uþ

along locations along the z axis at different locations: z¼ 1, 0.7, and

FIG. 8. Transverse profiles of the mean turbulent kinetic energy, kþ.

FIG. 9. Transverse profiles of the mean polymer extension, Ckk=L2, for IDR (case
10), compared with the most recent isotropic v2 � f model.

FIG. 10. Transverse profiles of (a) NLTþxx and (b) Cxx and Cxy for LDR (case 7).
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0.4, similarly with previous figures. The model performs well against
the DNS data capturing the shift away from the buffer layer, whilst
also featuring the drop in magnitude for z¼ 0.4 at the centerline,
owing to the effects of secondary flow on mean flow previously
discussed.

Figure 15 displays the mean local normalized wall shear stress,
�sw=hswi, along the wall (y¼ 0) for Newtonian flow and case B. There
is an increase in the near-wall vicinity and decrease near the centerline
for �sw=hswi from Newtonian to polymeric flow, which matches well

with the DNS data. This is a result of the varying secondary flow fea-
tures and shift in the vorticity away from the wall, as discussed previ-
ously and can be visualized by the gray arrows in Fig. 13(d).

VII. CONCLUSION

The main conclusions of this work are summarized below:

(1) A novel open-source anisotropic k� e� v2 � f model is pre-
sented for turbulent viscoelastic duct flow with dilute polymeric
solutions described by the FENE-P constitutive model. The tur-
bulence model for channel and square duct flow of Newtonian
fluids30 is adapted to incorporate the polymeric terms within
the governing equations. The non-linear terms that require clo-
sure are developed with simple and sophisticated models based
on a priori analysis with independent DNS data in fully devel-
oped channel flow at friction Reynolds number Res0 ¼ 395, for
low, intermediate, and high drag reduction.

(2) The NLTij term, which accounts for the interaction between
fluctuating components of the conformation tensor and the
velocity gradient tensor, is newly modeled with the mean flow
direction, ti, and wall-normal, ni, present in the Newtonian
model. This is based on the natural streamwise alignment of the
mean polymer stretch and the transverse component primarily
responsible for polymer shear. The implicit polymer effects on
pressure–strain increase the magnitude of the streamwise
Reynolds stress component, which is assessed with a simple ad
hoc closure accounting for the reduced near-wall production of
turbulent kinetic energy. The same closure model is adapted for
the span-wise Reynolds stress for predictions of polymer-
enhanced secondary flow via second normal stress differences.

(3) The model performs well against DNS data in channel flow
from low to high friction Reynolds numbers
(Res0 ¼ 180� 1000) with a range of rheological parameters

FIG. 11. Contour profiles of (a) NLTþxx and (b) NLT
þ
v2 , in square duct flow (case B).

FIG. 12. Transverse profiles of the mean streamwise conformation tensor, Cxx, in
square duct flow (case B) along locations of the z axis.
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(Wis0 ¼ 25� 1000; L2 ¼ 900� 3600; b ¼ 0:9) and captures
low, intermediate, and high drag reduced flow features—including
mean streamwise velocity, Reynolds shear stress and all normal
stresses (or turbulent kinetic energy), and the conformation
tensor field. The model capabilities are extended for square
ducts (or any regular polygon) due to the symmetric modeling
of the closures, which can predict the mean streamwise velocity,
secondary flow features associated with second normal

Reynolds stress differences, the spatial variation of the confor-
mation tensor field, and mean wall shear stress, against DNS
data at intermediate friction Reynolds number and drag reduc-
tion (Res0 ¼ 366; L2 ¼ 900; Wis0 ¼ 36).

(4) The model does not contain any dependence on friction veloc-
ity (e.g., Wis0 ), which is important to avoid flow stagnation or
code instability. The simple closure models adapted and numer-
ically inexpensive method are advantageous for further

FIG. 13. Contour profiles of (a) and (b) in-plane velocity ~V
þ
with velocity vectors imposed, and (c) and (d) mean streamwise velocity Uþ with white contour lines at spacing

Uþ=25 for improved visuals. (a) and (c) Newtonian and (b) and (d) case B. The gray arrows in (d) are to visualize the warped isolines for polymeric flow.
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developments of 3D codes in more complex geometries.
Accessible codes and models are crucial for the advancement
and improvement of turbulent viscoelastic models, and an
OpenFOAM Cþþ code package is developed and freely avail-
able on GitHub.
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FIG. 14. Transverse profiles of the mean streamwise velocity, Uþ, in square duct flow (Newtonian and case B) along locations of the z axis. The black dotted lines are theory
lines as shown in Fig. 6. (a) z=h ¼ 1 and (b) z=h ¼ 0:4 and 0.7.

FIG. 15. Profile along the wall (y¼ 0) of the mean local normalized wall shear
stress, �sw=hswi, in square duct flow (Newtonian and case B).
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