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Abstract: Hereditary spastic paraplegia (HSP) is characterised by progressive lower-limb spasticity

and weakness resulting in ambulation difficulties. During clinical practice, walking is observed

and/or assessed by timed 10-metre walk tests; time, feasibility, and methodological reliability are

barriers to detailed characterisation of patients’ walking abilities when instrumenting this test.

Wearable sensors have the potential to overcome such drawbacks once a validated approach is

available for patients with HSP. Therefore, while limiting patients’ and assessors’ burdens, this

study aims to validate the adoption of a single lower-back wearable inertial sensor approach for

step detection in HSP patients; this is the first essential algorithmic step in quantifying most gait

temporal metrics. After filtering the 3D acceleration signal based on its smoothness and enhancing

the step-related peaks, initial contacts (ICs) were identified as positive zero-crossings of the processed

signal. The proposed approach was validated on thirteen individuals with HSP while they performed

three 10-metre tests and wore pressure insoles used as a gold standard. Overall, the single-sensor

approach detected 794 ICs (87% correctly identified) with high accuracy (median absolute errors

(mae): 0.05 s) and excellent reliability (ICC = 1.00). Although about 12% of the ICs were missed

and the use of walking aids introduced extra ICs, a minor impact was observed on the step time

quantifications (mae 0.03 s (5.1%), ICC = 0.89); the use of walking aids caused no significant differences

in the average step time quantifications. Therefore, the proposed single-sensor approach provides

a reliable methodology for step identification in HSP, augmenting the gait information that can be

accurately and objectively extracted from patients with HSP during their clinical assessment.

Keywords: hereditary spastic paraplegia; gait analysis; wearables; inertial sensor

1. Introduction

Hereditary spastic paraplegias (HSPs) are a group of heterogeneous neurodegenera-
tive disorders characterised by progressive lower-limb spasticity resulting in gait distur-
bance. This occurs as a result of their pyramidal tract dysfunction [1]. In some clinics,
the assessment of walking in people with HSP, as part of their routine in-clinic neurologic
examinations, is usually limited to a timed test, such as a 10-m walk, to estimate their gait
speed. A detailed and objective analysis of their gait pattern is usually not completed
due to challenges regarding time, feasibility, and reliance on complex gait lab assessments.
Therein, this is a missed opportunity to capture and fully characterise their gait pattern and
how this might change over time. Objective quantifications of the gait pattern of people
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with HSP may help with the monitoring of gait, making decisions regarding skeletal muscle
relaxants, and also the identification of biomarkers relevant to the disease [2].

Previous research that aimed to characterise gait in people with HSP primarily used
three-dimensional gait analysis [2–4]. Based on these studies, HSP can be described as
an overall reduced walking speed, cadence, stride length, and range of motion of the
distal segments when compared to healthy controls [4,5]. Such gait features can be used
to discriminate patients with HSP from patients with similar clinical characteristics, such
as patients with cerebral palsy [2], sporadic spastic paraplegia [3], and spastic diplegia [4].
Therefore, validated gait-related biomarkers identified via gait analysis have the potential
to be useful tools in predicting ambulatory natural history and clinical trial design and
evaluating the treatment efficacy of novel treatments in HSP to help characterise, develop,
and quantify the effect of treatment for these patients.

The parameters of stride characteristics appear clinically valid to reflect gait impair-
ment in HSP [6]. Compared to healthy participants, patients with HSP have markedly
higher stride times (13%), which have been shown to significantly correlate to the Spastic
Paraplegia Rating Scale (SPRS) values, i.e., to the severity of HSP and to the Falls Efficacy
Scale-International (FES-I) questionnaire, i.e., to the patient-reported fear of falling. A
longitudinal multicentre clinical study with eleven participants found that after a mean
interval of 14 months, there was a significant deterioration in the SPRS scores and gait
speed and a significant increase in the stride time [6]. Therefore, the incorporation of
objective gait measures into future clinical trial designs will help to characterise, develop,
and quantify the efficacy of novel treatments for these patients. To facilitate and encourage
the inclusion of such measurement tools, it is essential to reduce both the patients’ and
clinicians’ burdens.

Small body-mounted devices, such as inertial measurement units (IMUs), are ideal
tools to complement and/or replace three-dimensional gait analysis, which requires special-
ist gait laboratories. These wearable monitoring systems typically contain accelerometers,
gyroscopes, and magnetometers and allow the accurate measurement of motion during
various activities that are not constrained to a confined laboratory. Moreover, IMUs are
quick to set up and affordable. IMUs placed on both feet of participants have shown
promise in the measurement of mobility and provide clinically valid parameters that reflect
mobility impairment in patients with HSP [6,7]. To further limit the burden on patients
and clinicians, approaches exploiting the adoption of a single IMU device located on the
pelvis are usually preferred to extract mobility outcomes [8]. Lower-back single-sensor
algorithms have been proposed in healthy cohorts [9–11] and adapted for patients with
different diseases, including multiple sclerosis, stroke, Parkinson’s disease, and hemipare-
sis and for older adults [12–14]. Generally, a sound technical validation is recommended
when algorithms tailored for a given cohort are then adopted in patients characterised
by different walking impairments [15,16]. However, to the authors’ knowledge, to date,
similar lumbar single-sensor approaches have not been validated in patients with HSP. This
is especially necessary due to the acceleration pattern heterogeneity that is present in this
cohort as a result of their various movement impairments. This also highlights the need for
ad-hoc methodological developments and more extensive clinical validation [17].

Focusing on foot-to-ground event identification, which represents the first essential
step in the quantification of most gait metrics, the aim of this study was to assess the
validity of a single-sensor approach compared to a reference wearable multi-sensor system.
As the foot-to-ground event represents the first essential step in the quantification of most
gait metrics, this work focuses on the identification of individual steps (i.e., foot-to-ground
event detection) and quantifying their duration (i.e., the interval between events from the
ipsi- and contralateral foot) in patients with HSP. Considering that step identification using
a single-sensor approach can be particularly challenging in the presence of walking aids,
the impact of their adoption was also assessed in our study.
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2. Materials and Methods

2.1. Participants

This study was approved by the Yorkshire and Humber—Sheffield Research Ethics
Committee (Ref: 19/YH/0221). A convenience sample of 13 participants was selected
from those who currently undergo an instrumented gait analysis assessment as part of
their standard clinical care in the dedicated Hereditary Spastic Paraplegia and Ataxia
clinics at the Sheffield Teaching Hospitals Foundation, NHS Trust, UK. The participants’
characteristics can be found in Table 1. Three clinical rating scales were used: SPRS,
which rates functional impairment in pure spastic paraplegia, with 0 being no dysfunction
and 52 being most severe dysfunction; Modified Ashworth Scale (MAS, assessing muscle
spasticity for eight muscles, where 0 refers to no increase in muscle tone and 4 refers to
the affected part(s) rigid in flexion or extension; if 1+ was assigned, this was scored as 1.5);
and the Scale for the Assessment and Rating of Ataxia (SARA, assessing ataxia symptom
severity, ranging from 0 “no ataxia” to 40 “most severe ataxia”). Participants were included
if they had a definitive diagnosis of HSP (with a confirmed genetic mutation in a known
HSP-associated gene), were over 18 years old, were able to perform at least one 10-metre
walk test with or without assistance, and had a shoe size 36 European Union (EU) (3 UK) or
above. Participants showing any significant comorbidities affecting their walking abilities
(i.e., recent surgery, significant lower-limb injuries) or not exhibiting floor clearance during
the swing phase of their gait cycle were not included in the study.

Table 1. Anthropometric patients’ characteristics and their clinical characteristics.

Parameter Mean ± SD/Median (Quartile 1, Quartile 3)

Age (years) 54 ± 15
Height (cm) 177 ± 7
Body mass (kg) 83 ± 17
Spastic Paraplegia Rating Scale (SPRS) 19.5 (14.8, 22.0) *
Modified Ashworth Scale (MAS) 8.0 (6.0, 12.0)
Scale for the Assessment and Rating of Ataxia
(SARA)

10.0 (2.0, 11.8)

Gender 3 females, 10 males
SPG mutation SPG4: 3 patients

SPG7: 9 patients
Other: 1 patient

* n = 12 as a score not available for one patient.

2.2. Walking Protocol

Each participant was asked to perform a 10-metre walking test along a clear hospital
corridor, where the start and end of the walkway were marked with lines of tape on the
ground. The patients began the test standing with their toes behind the first line and
when instructed, they walked the length of the walkway at their usual walking pace and
stopped walking when the second line was cleared with both feet. The tests were repeated
three times and the participants were allowed to take rest as needed. One participant was
only able to perform the 10-metre test twice due to fatigue.

2.3. Measurement Systems

The participants were asked to simultaneously wear two systems: a multi-sensor
system (INertial module (IMU) with DIstance Sensors and Pressure insoles, INDIP [18,19])
and a single IMU device (DynaPort MM+, McRoberts, The Hague, The Netherlands,
dimensions: 106.6 × 58 × 11.5 mm, size: 55 g, sampling frequency 100 Hz) placed on the
lower back via an elastic Velcro strap. The INDIP included two plantar pressure insoles
(PIs, 16 force resistive sensing elements, fs = 100 Hz, manufacturer 221e S.r.l., Abano Terme,
Italy), which were fitted inside the patient’s shoes and used as a reference system to validate
the gait events extracted from the single lower back IMU. To be able to synchronise the
data captured with the two systems (INDIP and DynaPort MM+), in addition to a common
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timestamp vector, an IMU from the INDIP system was also placed on the lower back. The
two IMUs (IMU INDIP and IMU DynaPort MM+) were rigidly fixed together using a
3D-printed case (Figure 1). The magnitude of the gyroscope signal was calculated for each
of the two lumbar sensors and, using the cross-correlation between these two signals, the
delay was used to synchronise the data.

tt

𝐼𝐶ூ 𝐼𝐶ூ𝐼𝐶ூ 𝐼𝐶ூெ
𝐴𝐶𝐶ோ

Figure 1. Adopted experimental setup for the validation of a single lower-back IMU (DynaPort MM+)

for step detection in patients with hereditary spastic paraplegia. Pressure insoles were inserted into

participants’ shoes to provide reference initial contacts. For data synchronization, an additional IMU

unit (as part of the INDIP system) was rigidly fixed to the DynaPort MM+.

2.4. Data Processing

The reference foot–ground initial contacts (ICPI) were identified from the PIs using a
cluster-based approach [20]. Specifically, a first derivative approach was used to identify
rising minima, which were used as reference points. Then, for each possible ICPI , a sub-
group of three rising minima was selected, corresponding to the activation of neighbouring
sensors. An ICPI corresponded to the third rising minimum of the subgroup [20].

The ICs for the IMU DynaPort MM+ (ICIMU) were calculated based on the detection
of positive zero-crossings identified from the lower back 3D acceleration based on the
peak enhancement procedure proposed by Paraschiv-Ionescu et al. [21]. The acceleration
resultant (ACCR) was calculated as:

ACCR =
√

AccAP
2 + AccML

2 + AccV
2 (1)

The acceleration resultant was then resampled based on the smoothness of the signal.
The smoothness was defined as the root mean square of the resultant signal, including
samples 100–600. The first 100 samples and the final samples were discarded to remove
the gait initiation and gait termination phases of the walking bout. The signal was re-
sampled at 40 Hz. However, when the smoothness was above 8 m/s2, the signal was
resampled at 60 Hz and, if the 10-metre walk duration was greater than 3 min, the signal
was resampled at 20 Hz. The resampled data were then filtered to further smooth the data
using a linear Savitzky–Golay filter (order = 7, frame length = 21). The data were then
detrended and low-pass filtered (FIR filter, n = 120 coefficients, Fc = 2–3 Hz), as described by
Paraschiv-Ionescu et al. [21]. To further improve the signal-to-noise ratio and enhance the
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step-related peaks, the signal was then smoothed and differentiated using the continuous
wavelet transform (cwt, scale 10, gauss2 wavelet), followed by a linear Savitzky–Golay
filter (order = 5, frame length = 11) [17]. From the filtered acceleration signal, all the positive
zero-crossings were selected as ICIMU (Figure 2).

𝐴𝐶𝐶ோ = ට𝐴𝑐𝑐ଶ + 𝐴𝑐𝑐ெଶ + 𝐴𝑐𝑐ଶ

tz
ffi

ff

tz 𝐼𝐶ூெ

Figure 2. (a) Right reference initial contacts based on pressure signals (normalised units [n.u.])

of the right insole, (b) Left reference initial contacts based on pressure signals (normalised units

[n.u.]) of the left insole, (c) Reference initial contacts based on the pressure insoles, as shown in (a,b),

displayed on the resultant acceleration signal [m/s2] of the lumbar IMU of the INDIP system,

(d) Resultant acceleration [m/s2], filtered resultant acceleration [m/s2], and the initial contacts based

on the zero-crossings of the filtered signal.

2.5. Statistical Analysis

2.5.1. Performance Metrics Based on Initial Contact Detection

Using the ICPI and a tolerance window of 0.5 s [22] centred on them, the ICIMU were
labelled as true positives (TP), false positives (FP), and false negatives (FN); the additional
ICIMU events detected outside the tolerance windows were labelled as FPs. The following
performance metrics were then calculated for each participant and test:

Sensitivity =
TP

TP + FN
(2)

Positive Predicted Value (PPV) =
TP

TP + FP
(3)

F1 = 2 × PPV × Sensitivity

PPV + Sensitivity
(4)
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2.5.2. Accuracy

Considering the TP ICs detected for each participant and the walking test, the differ-
ences between the ICIMU and ICPI were calculated for each detected i-TP IC to establish
the relevant time error:

eIC,i = ICIMU,i − ICPI,i, i = 1, . . . , TP (5)

To evaluate how eIC,i propagated on the step time values (T), which were determined
by the duration between two consecutive ICs, the reference (TPI) and IMU-based (TIMU)
step time values were assessed for the n detected steps during the recorded walking tests:

eT,j = TIMU,j − TPI,j, j = 1, . . . , n (6)

Moreover, considering all the ICs detected with the IMU-based approach (i.e., TP, and
FP), errors in the average step time (T) were determined for each k-walking test:

eT,k = T IMU,k − TPI,k, k = 1, . . . , 38 (7)

The median error (me), median absolute error (mae), and interquartile range
errors (iqre) were quantified for eIC, eT , and eT to assess their relevant bias, accuracy, and
precision [23], respectively.

For both the step time (T) and average step time (T), the relative errors (e%) were
quantified as:

e%T,j =

∣

∣

∣

∣

∣

TIMU,j − TPI,j

TPI,j

∣

∣

∣

∣

∣

× 100, (8)

e%T,k =

∣

∣

∣

∣

∣

T IMU,k − TPI,k

TPI,k

∣

∣

∣

∣

∣

× 100. (9)

The relevant accuracy and precision were established as median and interquartile
range relative values: mae% and iqre%. A Shapiro–Wilk test showed that the step time was
not normally distributed and, therefore, non-parametric tests were used to compare the
estimations obtained with the two systems.

2.5.3. Reliability

As with the accuracy, the reliability was calculated based on a comparison of the
ICs identified by both systems (i.e., including only true positive ICs). Furthermore, the
reliability was calculated based on the average step time for each walking test for each
participant in order to define the reliability of each test.

To assess the reliability between the systems, the intraclass correlation coefficient
(ICC2,1) estimates and their 95% confidence intervals (CI) were calculated based on a
single rater, absolute agreement, two-way random-effects model [24–27]. Values less
than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.9 indicated poor,
moderate, good, and excellent reliability, respectively [24]. A Wilcoxon signed-rank test
(non-parametric data) was performed to define the significant differences based on a
comparison of both systems. Finally, for the average step time, a Bland–Altman plot,
calculation of the limits of agreement (LOA), and the correlation between eT and the
reference average step time were assessed.

2.5.4. Effect of Using Walking Aids

For all the above-mentioned metrics, to gain insight into the effect of the use of walking
aids, the cohort was divided into two subgroups depending on whether they completed
the 10-metre walk test with (n = 7, three participants used one stick or cane, two used
two crutches, and two used a rollator) or without a walking device (n = 7). One participant
indeed completed one walking test with one stick, while the other two 10-metre tests
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were completed without a walking aid. Therefore, this one participant was part of both
groups. The differences between the two subgroups (walks with or without a walking
aid) were defined with the Mann–Whitney U test (non-parametric test). Given the reduced

sample size, the effect size (r) for non-parametric tests was computed as r = |z|√
N

, where z

is the standardised z-score based on the adopted test as calculated in SPSS, and N is the
number of total observations on which z is based. The thresholds were 0.1, 0.3, and 0.5, as
recommended by Cohen [28,29] for small, medium, and large effect sizes, respectively. All
the statistical analyses were performed using SPSS version 26 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Initial Contact Detection—Performance Metrics

The data from a total of 38 walking tests were processed; 788 reference ICs were
detected (i.e., ICPI), while the single-sensor approach identified 794 ICs. Among them,
694 ICs were identified as true positives, 94 as false negatives, and 100 as false positives.
Among the various walking tests, the analysis of the IC detection showed a median F1 score
of 0.94 [IQR: 0.86, 0.97], with a sensitivity of 0.94 [IQR: 0.82, 0.96] and a positive predicted
value of 0.94 [IQR: 0.88, 1.00].

Of the total 38 tests that were performed, 19 tests were performed without a walking
aid and 19 were performed with a walking aid. The two subgroups contributed differently
to the above overall errors, as shown by the IC detection performances shown in Figure 3a.
However, no significant differences were found in the explored performance metrics when
comparing the tests in which walking aids were used to the tests in which no walking aids
were used (Figure 3a).

ff

ff

−

−
ff

−

𝐼𝐶ூெ 𝐼𝐶ூ
ff

− 𝐼𝐶ூெ𝐼𝐶ூ
ff ff

𝑒்

Figure 3. Comparison of patients with and without a walking aid for (a) different performance

metrics (sensitivity, positive predictive value, and F1 score) and (b) absolute errors [s] in the initial

contact detection. * shows a significant p-value. Boxplots (minimum, lower quartile, median, upper

quartile, and maximum) are used to display values obtained from the different walking tests. Outliers

are also shown.
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3.2. Initial Contact Detection—Accuracy

Overall, a −0.03 s IC bias (i.e., me) was observed, while mae and iqre were 0.05 s
and 0.08 s [0.02–0.10 s], respectively. In the tests without walking aids, 307 TP ICs were
identified, while 387 TP ICs were identified for the tests in which a walking aid was used.
The tests with a walking aid (me: −0.04 s, mae: 0.05 s, iqre: 10 s [0.02–0.12 s]) had significantly
higher absolute errors (U = 66,157.5, p = 0.01) with a small effect size compared to the tests
without a walking aid (me: −0.02 s, mae: 0.05 s, iqre: 0.06 s [0.02–0.08 s], Figure 3b).

3.3. Initial Contact Detection—Reliability

The ICIMU had an excellent agreement with the ICPI , with 95% confidence intervals
ranging within excellent agreement (ICC2,1 = 1.00, 95% CI = 1.00–1.00) across all the
participants. Based on the Wilcoxon signed-rank test, a significant difference was found
between the estimates from the two approaches (z = −9.79, p < 0.001, r = 0.37), since ICIMU

detection was anticipated (on average 33.7 ms) compared to the reference ICPI . The use of
walking aids differently affected the IC detection, which was further anticipated when a
walking aid was used (on average 43.6 ms, CI: 35.1–52.0 ms) compared to non-walking aid
participants (on average 21.6 ms, CI: 12.3–30.8 ms, U = 68,622.5, p < 0.001).

3.4. Step Time Accuracy

In total, 596 steps were concurrently identified by both systems; a Wilcoxon signed-
rank test showed that the single-sensor approach provided step time values that were
statistically equivalent to those quantified with the reference one (Z = 1.260, p = 0.208,
r = 0.05). Bland–Altman plots of eT are shown in Figure 4; the errors located farther apart
from the LOA belonged to patients presenting the highest disability scores in at least
one clinical scale. The reference step durations for the patients using walking aids were
significantly longer (mean: 0.84 s, CI: 0.81, 0.87 s) than those observed in the other patients
(mean: 0.58 s, CI: 0.57, 0.60 s, U = 74,406.5, p < 0.001). Although no statistical difference
was observed in eT between the two groups (U = 43,612, p = 0.802), higher accuracy and
precision were observed for the participants that did not require walking aids (maeT : 0.04
s, iqreT : 0.07 s) compared to walking aid users (maeT : 0.08 s, iqreTe: 0.09 s; U = 56,520.5,
p < 0.001, Figure 5a). Conversely, there was no significant difference in the step time relative
errors when exploring the effect of using a walking aid (Figure 5a).

A total of 38 walking tests were performed by the participants, and for each walking
test, the relevant average step time was calculated. The median T IMU based on the 38 tests
was 0.71 s [IQR: 0.60 s, 0.80 s], and the median TPI was 0.67 s [IQR: 0.57 s, 0.82 s]. The
median absolute error maeT was 0.03 s, iqreT : 0.05 s [0.01 s, 0.06 s], and the median relative
error was mae%T = 5.09% and iqre%T = 7.96% [1.48%, 9.44%].

Of the total 38 tests that were performed, 19 tests were performed without a walking
aid and 19 were performed with a walking aid. There were no significant differences
in either the absolute or relative errors when exploring the effect of using a walking aid
(Figure 5b).

3.5. Step Time Reliability

The average step times calculated from the IMU had excellent agreement with the
average step times calculated from the PIs, with 95% confidence intervals ranging within
excellent agreement (single measures, ICC2,1 = 0.899, 95% CI = 0.815–0.946) across all the
participants. Based on the Wilcoxon signed-rank test, no significant differences were found
between the estimates from the two systems (Z = −0.920, p = 0.357). Overall, the bias and
limits of agreement were −0.01 s ± 0.26 s. A heteroskedastic distribution was observed,
based on a negative statistically significant correlation between the average step time
difference and the reference step time values (ρ = −0.601, p <0.001). The Bland–Altman plot
comparing the average step time errors in the tests performed with and without a walking
aid is shown in Figure 6.
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ff𝑒் 𝑚𝑎𝑒்𝑖𝑞𝑟𝑒் 𝑚𝑎𝑒் 𝑖𝑞𝑟𝑒்
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ff

ff

𝑒𝑇
ff

Figure 4. Bland–Altman plots for step time error values (eT) calculated between IMU-based and

reference step durations. Errors are assessed for each detected step (n = 596) and patients. Bias

(continuous lines) and limit of agreements (dashed lines) are also shown. Values identified for steps

performed by patients using walking aids are shown with squares; circles are used otherwise. The

different colours indicate the disability severity based on the three clinical scales (colour-coded

based on the relevant bar shown on the right): Spastic Paraplegia Rating Scale (SPRS), upper panel;

Modified Ashworth Scale (MAS), middle panel; Scale for the Assessment and Rating of Ataxia

(SARA), lower panel.

ff
−

−

ff 𝜌 −

𝑇ത 𝑇തூெ𝑇തூ 𝑒 ത்

Figure 5. Boxplots (minimum, lower quartile, median, upper quartile, and maximum) of the absolute [s]

and relative [%] errors for step time (a) and the average step time (b) duration distributions in patients

with and without a walking aid are shown. Outliers are also shown. * shows a significant p-value.
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−

−

ff 𝜌 −

𝑇ത 𝑇തூெ𝑇തூ 𝑒 ത்Figure 6. Bland–Altman plot for average step time (T) error between T IMU (single-sensor approach)

and TPI (reference pressure insole, reference): eT . Errors are assessed for each participant and
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different participants.

4. Discussion

The aim of this study was to assess the validity of using a single inertial sensor
placed on the lower back compared to a reference system in identifying individual steps
and quantifying their duration in patients with HSP while walking. The use of such a
validated single-sensor approach during the in-clinic assessment of gait could augment the
clinical assessment and gait monitoring of HSP patients. Excellent agreement was found
between the single-sensor approach and the reference system, confirming the usability of
the proposed approach in patients with HSP.

Since patients with HSP usually show a reduced walking speed due to spasticity in the
lower limbs [1], weakened step-related peaks are expected in the lower-back acceleration
signals [12]. Therefore, adopting an approach that uses different filters based on the peculiar
feature of a given signal, while improving the signal-to-noise ratio and enhancing steps-
related peaks, enabled excellent initial contact detection (mean F1 score of 0.94) in the
analysed study cohort. The performances of the method presented in this study are indeed
similar to those found in a previous validity study with people with HSP [30] where the
stride time was instead estimated from the data measured by two IMUs placed on the feet
and compared to the data from a pressure sensitive walkway while patients performed
10-metre walking tests. The performance metrics were similar to those observed in [30],
with F1 score values of 0.94 ± 0.00 (current study: 0.94 [IQR: 0.86, 0.97]), where ten HSP
patients (60% walking aid users) with similar age (58 ± 7 years) and SPRS scores (19.0 ± 7.5)
were included. Therefore, the single-sensor approach used in the current study, which
further limits patients’ burdens, has similar validity to a system consisting of two IMU
sensors placed on the feet when used in an HSP cohort. Similar to [30], the highest step
duration errors were observed in patients showing higher disability scores.

As expected, the performance metrics of the algorithms declined when applied to the
data from patients using a walking aid, but not significantly. The lowest F1 scores (<0.7)
were observed in two participants using bilateral walking aids (one used two crutches
and the other used a rollator) and showing either long step time (>1 s) or high step time
variability. The lower positive predicted values observed in the tests performed by patients
using a walking aid indicate that more ICIMU were estimated than those that were actually
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performed. Extra ICIMU , based on zero-crossings in the acceleration signal, could exist due
to extra accelerations caused by the movement of the aid.

The detection of initial contacts is the first algorithmic step required to quantify various
spatio-temporal parameters, such as cadence, step symmetry, gait variability, step time,
stride time, etc., which should provide additional clinical value for assessing the disease
progression in HSP, especially overcoming what could be mainly derived from subjective
observational gait analysis [2] and even in-clinic timed walking tests. Overall, the proposed
approach detected delayed foot-to-ground contacts (0.03 s, bias) compared to the reference
events. Such delays were even more prominent when people used a walking aid (bias of
0.04 s vs. 0.02 s for the non-walking aid users). These results are expected and aligned with
the findings from previous studies where a single-sensor approach was adopted in healthy
participants or people with conditions affecting their mobility [31,32]. The absolute error in
the IC detection was significantly higher in the tests in which the patients used a walking
aid compared to the tests in which the patients did not use a walking aid, suggesting that
the errors in identifying an IC with an IMU significantly increased when the patients used
a walking aid. However, this difference between the groups was no longer present when
the average step time over the walking tests was compared. Further caution should be
used when comparing longitudinal data in which patients started adopting a walking aid
as a consequence of disease progression.

While the step time can discriminate between patient groups and exhibits a consistent
relationship with the measures of severity and lower-extremity function, it is not yet clear
what constitutes a clinically meaningful change [33]. Therefore, future work to establish
the clinical importance of longitudinal changes in the step time should consider whether
the difference is within the error boundaries of the proposed approach.

The limitations of this study included the small cohort size. The results presented
here are based on 13 patients with a wide range of HSP severity. As HPS is a group of
heterogeneous neurodegenerative disorders underpinned by over 80 different genetic
alleles, different patterns of gait impairment can exist with a spectrum of severity and
rates of progression. It was not surprising that this spectrum of the gait phenotype became
apparent within our current data, with one of the participants displaying longer step times
(>1.5 s) compared to the other participants (<1 s). Without a larger clinical validation, it is
unclear if this participant was an outlier. Longer step times could indeed occur due to the
use of walking aids since the patient is able to lean on the assistive device, which allows a
longer duration of the lifting of their foot (i.e., the swing phase). Future research should
look into the effect of the severity of the disease on the error but also whether there are any
genotype–gait phenotype associations. Moreover, since increased trunk movements can be
observed also in the early phases of the disease [34–37], the adoption of a lower-back sensor
will grant the possibility to collect additional trunk information to further characterise
mobility in people with HSP.

5. Conclusions

Based on these results, the use of the proposed methodology and a lower-back single-
sensor (IMU) approach provides reliable step duration data when objectively quantifying
people with HSP while timed walking tests are performed during their in-clinic examina-
tions. No significant differences were found between the participants who did and did not
use a walking aid when calculating the average step time. Nevertheless, mean differences
and limits of agreement for the step time errors reported here should be considered when
interpreting the findings to rule out the presence of a systematic error.

Our proposed approach has the advantage of minimizing both the patients’ and
assessors’ burdens whilst enabling future studies of in-clinic longitudinal gait assessments
to characterise gait modifications associated with HSP. Moreover, this approach will help
the development of predictive models of ambulatory natural history, support clinical trial
design, and provide outcome measures to evaluate the efficacy of novel treatments in HSP.
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