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 25 



Summary 26 

The Amazon Forest carbon sink is declining mainly as a result of land use and climate change1–27 

4. Here we investigate how changes in law enforcement of environmental protection policies may 28 

have affected the Amazonian carbon balance between 2010-2018 compared to 2019 and 2020, 29 

based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, and infraction notices 30 

related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from 31 

0.24±0.08 PgC y-1 2010-18 mean to 0.44±0.10 in 2019 and 0.52±0.10 PgC y-1 in 2020 (± 32 

uncertainty). The observed increase in deforestation were 82% and 77% (94% accuracy) and 33 

burned area of 14% and 42% in 2019 and 2020 compared to the 2010-2018 mean, respectively. 34 

We find that the number of notifications of infractions against flora decreased by 30% and 54% 35 

and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019-20 36 

were comparable to the record warm El Nino (2015-16) without an extreme drought event. 37 

Statistical tests show that the observed differences between 2010-18 mean and 2019-20 are 38 

unlikely to have arisen by chance. The changes in Amazonia’s carbon budget during 2019-20 39 

were mainly due to western Amazonia becoming a carbon source. Our results suggest that a 40 

decline in law enforcement led to increases in deforestation, biomass burning and forest 41 

degradation which increased carbon emissions and enhanced drying and warming of the Amazon 42 

forests. 43 

 44 

Introduction 45 

Amazonia hosts the largest tropical forest on the planet and has proven to be an important carbon 46 

sink in the recent past1–3. This carbon sink is declining, mainly due to increased tree mortality1 47 

as a result of deforestation and climate change4. The Amazon Forest represents around 50% of 48 

the global tropical rainforest and contains about 90 Pg C in above and below ground vegetation 49 

biomass10,11, which can be quickly released and thus result in substantial positive feedback on 50 



global climate12. Furthermore, deforestation and forest degradation reduce the forest´s capability 51 

to act as a carbon sink1–3,13. 52 

In the Amazon the relationships between ecosystem carbon and water cycles and climate are 53 

complex. Several studies have estimated that evapotranspiration is responsible for up to 50% of 54 

water recirculation in Amazonian precipitation. Hydrologically, Amazonia is one of the three 55 

main air upwelling regions in the tropics and rainfall in the whole basin averages about 2,200 56 

mm per year14. Large-scale human disturbance alters these ecosystem-climate interactions. In the 57 

last 40 to 50 years, human impact has increasingly affected Amazonia, resulting in a forest loss 58 

of around 18%, of which 14% has been converted mainly to agricultural land (89% pastures and 59 

10% crops)3.  60 

It has been widely reported that illegal deforestation rose 80% since 20197, compared to the 2010-61 

18 period as a result of changes in law enforcement policy. We analysed how these changes affect 62 

the Amazonian carbon balance and how they are linked to deforestation and fire feedbacks. 63 

Forest removal reduces evapotranspiration and rainfall while increasing temperature15–18. 64 

Additionally, regional deforestation followed by fires and selective logging causes degradation 65 

of adjacent forests, increasing vulnerability to fires13. Regional and global warming are 66 

synergistic and mutually reinforcing.  67 

We compared the mean Amazonian carbon balance over 9 years (2010-18)4 with the subsequent 68 

two years (2019 and 2020). In this recent period, there has been an intense reduction in public 69 

policies to control deforestation19. We used deforestation data analysis map to georeferenced 70 

carbon sources (limited to the Brazilian Amazon – PRODES), as well as fire spots incidence 71 

(Pan-Amazônia) and burned area, in addition to other parameters (see methods) to understand 72 

the main factors responsible for converting the Amazonia into a carbon source. 73 

 74 

Atmospheric carbon vertical profiles 75 



We performed 742 vertical profiles (VPs) from 2010 to 2020, using small aircraft over four 76 

Amazon sites, representing large upwind regions (Extended Data Fig. 1), where the VPs reflect 77 

the result of all carbon sources and sinks between the Brazilian Atlantic coast and the VP sites4. 78 

As in past studies, the VP sites were SAN (northeast region: 2.86° S 54.95° W), ALF (southeast 79 

region: 8.80° S 56.75° W), RBA (southwest region: 9.38° S 67.62° W), and in the northwest 80 

region TAB (northwest region: 5.96° S 70.06° W); from 2013 in TEF (3.39° S 65.6° W)4. The 81 

sampling frequency was approximately 2 times per month in each location, from 4.4 km height 82 

(a.s.l.) to close to the surface, and usually carried out between 12:00 and 13:00 local time. The 83 

CO2 and CO samples were analysed at INPE's LaGEE (Greenhouse Gas Laboratory), in São Jose 84 

dos Campos.  85 

To construct annual mean vertical profile enhancements (VP) for each site (Extended Data Fig. 86 

2), we subtracted the background concentration (bkg) for each flask (height), from each VP, and 87 

then calculated the monthly mean enhancement per height and per year. This study extends 88 

results and analysis of VP for the years 2019 and 2020. We present the weighted mean all-89 

Amazonia vertical profile (Figure 1) based on regions of influence for each site per year, which 90 

represents an advance over the previous study4 (see methods). The VP are a large scale indicator 91 

of ecosystem functioning and strongly related to the carbon budget. In Figure 1 we present the 92 

Amazonian annual mean VP from 2010 to 2020, comparing the years 2019 and 2020 to the 93 

previous 2010-18 mean. We observed net positive CO2 contribution to the atmosphere for the 94 

VP mean 2010-18 of 0.24 ppm. This indicates that Amazonia is a carbon source to the 95 

atmosphere, including all natural and anthropogenic processes of CO2 emissions and absorptions. 96 

This result is a direct indication of the regional source in the global carbon budget, though there 97 

are well known discrepancies from many studies using different methodologies (bottom-up, top-98 

down techniques, and a wide variety of global, regional and inversion models)1–4,13,20–24.  99 



Comparing the Amazonian mean VP in 2019 and 2020 with the mean for 2010-18, we observed 100 

an increase of 50% and 142%, respectively. This strong and rapid increase in concentration 101 

gradient represents a similarly strong increase in total carbon emissions and coincides with strong 102 

increases in deforestation. According to PRODES7, deforestation in the studied area4 (black line 103 

indicating the area delimitation in Figure 2, but limited to the Brazilian Amazon) increased by 104 

82% and 77% (94% accuracy) for the years 2019 and 2020 compared with the mean for 2010-18 105 

(Figure 2, Extended data Fig. 3a). For the same period and comparison, considering the whole 106 

Amazonia, burned area retrieved by MODIS (collection 6, see methods) increased 14% in 2019 107 

and 42% in 2020 (Extended data Table 1). Fire spots from INPE8 were used to map fire 108 

distribution in Amazonia and were underestimated compared with burned area (see methods). 109 

Fire spots increased 3% in 2019 and 22% in 2020 relative to the previous period (Extended Data 110 

Fig. 3c & 4a). There was a 693% increase in wood exports25 and a 58% increase corn and 68% 111 

soybean plantation area26 in 2019-2020, compared with 2010-18 (the soy moratorium is still in 112 

force). The cattle population increased by 13% in the Amazonia27 and decreased by 4% in the 113 

Brazilian territory excluding the Amazonia (Extended Data Fig. 5a,b), indicating the 114 

deforestation drivers. See methods for the methodology details and uncertainty.  115 

After the revision of the Forest Code in 201228, which granted a large amnesty to past deforesters, 116 

deforestation in Brazilian Amazonia has risen gradually culminating in 2021 with the highest 117 

annual rate since 20067. This upsurge in deforestation rates along with higher carbon emissions 118 

coincides with a decline of federal environmental agencies in charge of law enforcement in the 119 

region, especially after 2018, when field notifications and judgments resulting in fines paid 120 

reached the lowest number on record over the last decade (Figure 3). From 2010 to 2018, an 121 

annual mean of 4734 infraction notices were filed in the Amazonia for violations against flora 122 

(mostly illegal deforestation). In 2019 notices fell to 3331 and in 2020 to 2193 representing a 123 



reduction of 30% and 54%, respectively. In addition, the annual mean of judgments and the 124 

respective number of fines paid up to the subsequent year dropped by 74% and 89%, respectively. 125 

 126 

Environmental law enforcement 127 

Brazil's past success in curbing illegal deforestation in the Amazon has been credited to a 128 

combination of public and private policies29. Chief among them were the expansion of protected 129 

areas30, the implementation of the DETER7 system providing near-real time monitoring of 130 

deforestation and strengthening of law enforcement under the Action Plan for the Prevention and 131 

Control of Deforestation in the Legal Amazonia (PPCDAm)31. A decline of 84% in deforestation 132 

rates took place from 2004 to 2012 (Extended Data Fig. 3a). However, the more stringent law 133 

enforcement produced a backlash. In 2012, rural lobbies pressed and succeeded to relax the 134 

Forest Code in the national congress, which granted amnesty for 58% of all illegal deforestation 135 

prior to 2008 and suspended the collection of environmental fines, in addition to providing 20 136 

years for landowners to comply with Forest Code rules28. Illegal loggers, miners and land 137 

grabbers intensified their actions, encouraged by the action limitation of IBAMA employees to 138 

seize and/or destroy the equipment of the offenders32. The resulting sense of impunity, in addition 139 

to attempts to roll back conservation gains, has increasingly influenced the rise of deforestation 140 

since 2012 and its acceleration from 2018 onwards19. In 2019, the annual deforestation rate 141 

reached 10,129 km2, the highest since 2008 (Extended Data Fig. 3a,b) raising international 142 

concerns. The increase in deforestation was stimulated by the public stance of the Brazilian 143 

government against forest law enforcement and the environmental agencies themselves, which 144 

the ex-president Bolsonaro called as “industry of fines”32.  145 

The past decline in deforestation rates in the Amazonia was the consequence of a wide variety of 146 

actions and policies, such as fines, embargoes, arrests and destruction of equipment, but also 147 

initiatives as soybean moratorium, during the first phases of the PPCDAm33–35. From 2004 to 148 



2008, the average annual number of infraction notices for crimes against the flora, mostly 149 

deforestation but also other forms of native vegetation suppression, increased by 36%, whereas 150 

the average annual deforestation rate fell by 18% in relation to that of the previous period (2000-151 

2003). In the following years, satellite-based refinements to detect offenders and characterize 152 

environmental damages – both crucial to effective environmental inspection and accountability 153 

– were implemented through geotechnologies developed by the National Institute of Space 154 

Research (INPE). From 2004 to 2011, over 52 thousand fines were issued alongside sanctions 155 

directed to decapitalize offenders such as embargoes and seizures in the Legal Amazonia.  156 

After the revision of the Forest Code in 2012, driven by economic factors such as commodity 157 

prices and exchange rates that affected the profitability of agricultural exports, there was a slow 158 

return to increased deforestation33. From 2012 to 2018, 32.3 thousand fines were applied, 159 

however, the total deforestation during this period was 44,057 km2 (Figure 3). In phase IV of 160 

PPCDAm, which should take place between 2016-2020, the strategy to avoid deforestation 161 

should be through “market instruments”, including programs such as payment for ecosystem 162 

services (PES)36. As a result, deforestation rates in 2019-20 increased by 80% compared to the 163 

2010-18 period, accelerating the slow growth trend started in the previous decade. During this 164 

period there was a 50% reduction in fines and the dismantling of environmental policies37 165 

(Extended Data Fig. 3a,b). The decrease in fines took place in the ten municipalities with the 166 

highest deforestation rates between 2019 and 2020, as a consequence of the removal of the federal 167 

environmental inspection strategy focused on priority municipalities, which was successful in 168 

previous years (Supplementary Fig. 1). 169 

 170 

The Impacts on Amazonian Carbon Fluxes 171 

We compared the changes in Amazonia carbon flux and balance during the years 2019 and 2020 172 

related to the mean from 2010 to 2018 as reported in the previous study4. We calculated total 173 



carbon flux (FCTotal) using a column budget technique (see methods). FCTotal is the sum of all 174 

natural and anthropogenic carbon sink and sources between the coast and aircraft vertical profiles 175 

sites4. Using identical methods, CO was used to determine the fraction of FCTotal arising from 176 

biomass burning (FCFire), where we used a mean ratio CO:CO2 specific for each site (see 177 

methods). The residual between total carbon and fire flux is designated Net Biome Exchange 178 

(NBE). The FCNBE includes photosynthesis, respiration, decomposition and other non-fire 179 

anthropogenic emissions. Decomposition can come from natural process but also from land use 180 

change and degradation38 (all emissions following fire). From 2010 to 2018 the mean FCTotal was 181 

0.09±0.03 gC m−2 d−1 (± all results show uncertainty calculated by Monte Carlo error 182 

propagation, see methods), equivalent to 0.25±0.08 PgC y-1, considering Amazonian area of 183 

7,256,362 km2. In 2019 the calculated FCTotal indicated an enhancement of 89% in total carbon 184 

emissions (0.17±0.04 gC m−2 d−1; 0.44±0.10 PgC y-1) and in 2020 a greater increase of 122% 185 

(0.20±0,04 gC m−2 d−1; 0.52±0.10 PgC y-1) relative to the 2010-18 mean (Figure 4a,b).  186 

The statistical tests to compare the differences between the two periods of 2010-18 (9 years) and 187 

2019-20 (2 years) showed the difference with 95% CI (Welch t-test p= 0.024). Considering the 188 

uncertainties for the means, these differences are not so clear, but it is unlikely that the observed 189 

differences in the means have arisen by chance. The statistical significance of this inference is 190 

modest due to the relatively short time period for the perturbed state of the system. Furthermore, 191 

considering during the period 2010-18 there were 2 extreme drought events (2010, 2015/2016), 192 

and removing these 2 drought events, the mean became 0.11±0.09 PgC y-1, and comparing with 193 

2019-20 (0.44±0.10 PgC y-1; 0.52±0.10 PgC y-1) the anomaly becomes even more evident (p= 194 

0.003). Applying the statistical tests in the western Amazonia (region 2, see Extended Data Fig. 195 

6), the post-2018 period shows similar results as whole Amazonia (p= 0.049; p=0.007, 196 

respectively), showing that the most important changes in the Amazon occur on the western side. 197 

Statistical tests are summarized in Supplementary Tables 1 and 2.  198 



Amazonia total carbon emissions in 2019 and 2020 were comparable to carbon losses during the 199 

extreme El Nino event of 2015/16 (Figure 4b), during which the rate of growth of atmospheric 200 

CO2 was one of the highest ever measured39–41. In 2019, climatological conditions do not explain 201 

the increases in deforestation by 82%, in burned area by 14%, and in carbon emissions by 89%, 202 

since the observed precipitation and temperature were within the variability for the period 2010-203 

18 (Extended data Fig. 7b) and during wet season, a weak El Niño (maximum +0.7 indices 204 

/warm) was observed (Extended data Fig. 7a). In 2020 during the dry season a moderate La Nina 205 

(maximum -1.3 /cold)42 was observed and also in the anomaly precipitation by INMET 206 

(Extended Data Fig. 7a and Supplementary Fig. 2). The resultant of 122% increase in carbon 207 

emissions in 2020 is the combination of increases of 77% in deforestation and 42% in burned 208 

area, and a 12% reduction in the annual precipitation. The reduction was mainly during wet 209 

season (January, February and March loss of 26%) and the temperature in the same period 210 

increased by 0.6˚C (Extended data Table 1 and Extended data Fig. 7b). Precipitation reduction 211 

during the wet season impacts carbon emissions mainly in the dry season, when water availability 212 

for the forest is lower. Figure 2a, b and c present the strong increase in deforestation in 2019 and 213 

2020 in some Brazilian Amazonia regions. Figure 4 (CFTotal) and Extended Data Fig. 8 (FCFire 214 

and NBE) show the seasonality and interannual variability in carbon emissions, where Fig. 4b 215 

shows the similar magnitude in carbon emissions for 2019 and 2020, but without the extreme 216 

drought conditions (Extended data Table 1 and Extended data Fig. 7b). Seasonal carbon fluxes 217 

integrated across Amazonia show that the increase happens mainly during the dry season in both 218 

years (Fig. 4a) from July to November.  219 

To increase the number of samples for the statistical analysis about the differences between the 220 

period 2010-18 and 2019-20, we considered the monthly mean total carbon flux from July to 221 

November for all years, since the anomaly appears during this period (Fig. 4a, Supplementary 222 

Table 1 and 2). Considering all years (45 samples) the anomaly was significant for the whole 223 



Amazonia and for the western region by the Welch t-test (p= 0.018, p= 0.022, respectively), and 224 

also by Tukey test, Wilcoxon test and Kruskal Wallis test (see Supplementary Table 2).  225 

Fire emissions calculated by our method (FCFire) show a mean 2010-18 emission rate of 226 

0.15±0.01 gC m−2 d−1 (0.40±0.03 PgC y-1) with 8% and 4% increases during 2019 and 2020, 227 

respectively (Extended Figure 8a,c). The larger increases in total carbon emissions across 228 

Amazonia during these years come mainly from NBE, where the mean 2010-18 (FCNBE) was  229 

-0.06±0.03 gC m−2 d−1 (-0.15±0.09 PgC y-1), in 2019 was +0.01±0.04 gC m−2 d−1 and 2020 was 230 

+0.05±0.04 gC m−2 d−1, representing near carbon neutrality for forest (excluding fire) for the last 231 

2 years of this time series. As we are using a fixed CO:CO2 ratio for each site and we know that 232 

the driest forest will be more flammable, we need to consider the possibility that a fraction of fire 233 

emissions may also have been incorporated into the NBE, as we observe its variability from 234 

month by month and year by year, depending on climate conditions4.  Uncertainties and 235 

variability in CO:CO2 ratios used to calculate FCFire may help explain the discrepancy between 236 

the near-absence of FCFire anomalies in the 2019-2020 period and the clear anomalies in fire hot 237 

spots and burned area. The fact that NBE represents the largest increase indicates that the forest 238 

carbon sink was lower than the emissions from natural and anthropogenic process (deforestation 239 

and degradation). Regardless of whether it is enhanced respiration, decomposition or fire 240 

associated with deforestation and degradation, our FCTotal results show that Amazonia is emitting 241 

more carbon, amplifying the consequence of global climate4. 242 

The impacts in the four studied sub-regions on the carbon fluxes were related to the increase in 243 

deforestation. At SAN, in the northeast, the region 36% deforested until 2018, showed increases 244 

in deforestation of 67% and 45% in 2019 and 2020, respectively, relative to the 2010-2018 245 

period, where we observed reduction of 42% in precipitation during the wet season peak of 246 

January, February and March (JFM) of 2019 and an annual increase of 78% in FCTotal emissions. 247 

In 2020, there was less impact in precipitation resulting in similar carbon emissions to the 2010-248 



18 mean. In the southeast region (ALF) historically 29% deforested, increases in deforestation 249 

of 80% and 87% were observed in 2019 and 2020, respectively. Burned area decreased 34% in 250 

2019 and FCTotal was similar to the mean of 2010-18, but increased 53% in 2020. The southwest 251 

region (RBA), historically 17% deforested, was nearly carbon neutral during the period 2010-18, 252 

and continued to be in 2019, but in 2020 total carbon emissions (FCTotal) were positive. 253 

Deforestation increased 81% in 2019 and 76% in 2020 relative to 2010-18, and burned area 254 

decreased in 2019. Precipitation was 41% less during the wet season of JFM and temperature 255 

warmed by 0.8˚C. These represent increases in climate stress to the forest. The least human-256 

impacted northwest region (TAB_TEF), currently 15% deforested, exhibited a near neutral 257 

carbon budget for the period 2010-18, but in 2019 became a carbon source with FCTotal increasing 258 

more than tenfold and fivefold in 2020. The main reason was that NBE became a carbon source. 259 

In 2019 and 2020, deforestation increased by 95% and 73% relative to the previous period with 260 

reductions of 23% in precipitation during JFM in 2019 and 42% during 2020, and temperature 261 

also increased by 0.5˚C for the same period. The detailed analyses for each of the four sites 262 

related to the fluxes (Total, NBE and Fire), climatological conditions and changes in the 2019 263 

and 2020 compared with 2010-18 period are presented in Supplementary Information 1 and 264 

Extended Data Table 1. A summary figure is presented in Extended Data Fig. 9. Seasonal 265 

variability of studied parameters and carbon fluxes and VP for the 4 sites are presented in 266 

Supplementary Fig. 3 and Extended Data Fig. 2, respectively.  267 

Deforestation and global warming have been accompanied by reduced precipitation and warmer 268 

temperatures that have made the dry season drier, hotter, and longer4.  This shift promotes stress 269 

conditions in the forest18. These conditions imply a strong stress for the trees, providing an 270 

imbalance between photosynthesis and respiration, increasing the flammability of the trees, 271 

which produces an intensification of degradation in these regions, as fire penetrates into 272 

remaining forests areas. This process appears to have intensified since 2018, when deforestation 273 



increased by 80% and, as a consequence of the reduction of public policies, we observed a 50% 274 

reduction in fines. We estimate that carbon emissions doubled in the years 2019 and 2020, 275 

compared to the previous study (2010-18)4, as a consequence of these changes, but in 2020 also 276 

due to a climatic stress condition during the wet season peak (26% lower precipitation and 0.6 277 

˚C higher temperature) which could also represent an additional cause of carbon emission. 278 

To evaluate changes in Amazonia carbon emissions over the 11-year time series (Figure 4), we 279 

split them into two five-year groups: 2010-14 and 2016-20. Comparing the two periods for the 280 

entire Amazonia, we observe a 50% increase in total carbon emissions (FCTotal 0.21±0.09 PgC y-281 

1 and 0.31±0.08 PgC y-1, for 2010-14 and 2016-20, respectively), and a 31% reduction in carbon 282 

sink (FCNBE -0.15±0.10 PgC y-1 and -0.10±0.09 PgC y-1, respectively) and an increase of 16% in 283 

fire emissions (FCFire. 0.36±0.04 PgC y-1 and 0.42±0.04 PgC y-1, respectively). This increase in 284 

the last 5 years demonstrates the importance of public policies to prevent deforestation, 285 

degradation and fire. Zero deforestation in the Amazonia and forest restoration will be very 286 

important to reduce this climate stress on the forest, which is amplified by global climate change, 287 

resulting in a decrease in carbon sink ability, as well as impact on the water cycle. 288 

 289 
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  401 

Figure 1 | Amazonia Annual Mean Vertical Profiles.  Amazonia annual means vertical profile 402 

for each year (2010-2020), constructed from vertical profile monthly mean (each height was 403 

subtracted by the background) producing (VP). 2015 and 2016 are not plotted because of 404 

missing data at some sites.  The mean for each height using the 4 sites is reproduced by the same 405 

methodology used for the Amazonia mean flux, separating Amazonia in 3 regions (see methods 406 

and Extended data Fig. 6a). The thick black line represents the 2010-2018 Amazonia mean 407 

vertical profiles, the thick red line the 2019 mean and blue thick line the 2020 mean.  VP annual 408 

mean for each site and each year are show in Extended Data Fig 2. 409 

 410 

Figure 2 | Amazon deforestation map. Deforestation area (km2) maps limited to the Brazilian 411 

Amazonia in grid cells of 0.25˚x0.25˚, from PRODES7. Mean deforestation area per grid cell 412 

between 2010-18 (left); Absolute deforested area in 2019 (centre); Absolute deforested area in 413 

2020 (right). Deforestation maps are given in grid cells were the increment (left) or the absolute 414 

deforested area (centre, right), are composed by polygons higher than 0.0625 km2, and are shown 415 

in deforested km2 per grid cell. 416 

Figure 3 | Environmental law enforcement and accountability for crimes against the 417 

Amazon Forest. a) number of infractions against flora issued by IBAMA and deforestation alerts 418 

by INPE in support of IBAMA´s environmental field operations (Deter-Modis and Deter-B). b) 419 

number of administrative judgments of infraction notices against flora and the number of fines 420 



paid by the following year from the judgment (see methods). Monetary values were adjusted for 421 

inflation and converted to USD using a rate of R$ 5 (Brazilian Reais) per U.S.$ 1. 422 

 423 

Figure 4 | Amazonia carbon flux 2010-20. a) Seasonal Amazonia total carbon flux (FCTotal). 424 

Black line for 2010-18 mean, where grey bands denote the standard deviation of the monthly 425 

mean. Red line shows the seasonal FCTotal for 2019 and blue line for 2020. b) Annual mean 426 

Amazonia total carbon flux blue bar and the ONI classification in the background showing El 427 

Niño and La Niña42 (see Extended Data Fig. 7a and methods). 428 
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 456 

Data Availability  The CO2 VP data that support the findings of this study are available from 457 

PANGAEA Data Archiving, at https://doi.org/10.1594/PANGAEA.926834 for data from 2010-458 

18 and for data 2019 and 2020 it is available at https://doi.org/10.1594/PANGAEA.949643. 459 

 460 

Methods 461 

 462 

Sites, air sampling and analysis  Here we are reporting the results from measurements at the 463 

four Amazonian aircraft vertical profile sites of the CARBAM project (SAN: 2.86° S 54.95° W; 464 

ALF: 8.80° S 56.75° W; RBA: 9.38° S 67.62° W; in 2010-2012 for TAB: 5.96° S 70.06° W; and 465 

since 2013 for TEF; 3.39° S 65.6° W) for 2019 and 2020, in addition to the measurements 466 

between 2010 and 2018 detailed at Gatti et al.4. Our samples were done typically twice per month, 467 

resulting in approximately 742 vertical profiles over these 11 years, in a descending spiral profile 468 

from 4,420 m to 300 m above sea level (a.s.l.). In 2015 the data collection flights were stopped 469 

in April at all sites, returning in November at RBA. In 2016, profiles were performed only at 470 

RBA and ALF. The VPs were usually taken between 12:00 and 13:00 local time. Air samples 471 

were analysed by a non-dispersive infrared analyser for CO2 and by gas chromatography with 472 

https://doi.org/10.1594/PANGAEA.949643


HgO reduction detection for CO. The detailed analytical and sampling methods were presented 473 

in previous studies4,43. We defined the Amazon study area similarly to Gatti et al.4, according to 474 

subregions from Eva et al.44 and biomes from Olson et al.45, where the studied area in the 475 

Amazonia was determined considering forest ecosystems sub-regions: Amazônia stricto sensu, 476 

Guianas, Andes and Gurupi, with a total area of 7,256,362 km2 4. 477 

 478 

Annual Mean Vertical Profiles  The annual mean VP for each site was calculated starting 479 

with individual profiles where for each altitude (sampled flask) the CO2 concentration was 480 

subtracted from the correspondent background (bkg), then averaging first to monthly and later to 481 

annual mean by height (Extended Data Fig. 2).  To calculate the annual mean Amazonia vertical 482 

profile, we apply the same method used to obtain the mean Amazonia flux. To scale for the whole 483 

Amazonia, we separated Amazonia in 3 regions (Extended Data Fig. 6a). To compose the VP 484 

Region 1 (SAN + ALF) the weighted mean concentration of CO2 minus bkg was produced for 485 

each height, proportional to the respective areas. The compose the VP Region 2 (RBA + TAB: 486 

for the years 2010 to 2012; RBA + TEF: for the years 2013 to 2018), it was reproduced the same 487 

procedure used for Region 1. And for Region 3, the remain Amazonia area, not covered by the 488 

vertical profile’s regions of influence, were used the same concentrations minus bkg from Region 489 

2. To compose the VP for Amazonia it was produced the weighted mean for each height CO2 490 

concentration considering the 3 regions and producing the weighted mean. 491 

 492 

Carbon fluxes estimation  We used a column budget technique to estimate carbon total fluxes, 493 

which consists of the difference between CO2 mole fraction measured in the vertical profile and 494 

the estimated background mole fraction (∆CO2) considering the travel time of air parcels along 495 

the trajectory from the coast to the site (eq. M1), following the methodology in Miller et al.46, 496 

Gatti et al.47, D’Amelio et al.48, Gatti et al.43, Basso et al.,49,50 and Gatti et al.4.  497 



𝐹𝑥 =  ∫ ∆𝑋𝑡(𝑧)4.4𝑘𝑚(𝑎𝑠𝑙)𝑧=0(𝑎𝑔𝑙) 𝑑𝑧                                                                                                                   M1 498 

To apply in eq. M1 we converted mole fractions [µmol CO2 (mol dry air)-1, i.e. ppm] to 499 

concentrations (mol CO2 m-3) using the density of air, where temperature (T) and pressure (P) 500 

were measured during the vertical profiles or and for situations where weren’t, it were calculated 501 

T, P using the equation derived for temperature and pressure based in all measured T and P 502 

relating to height for each site4. To estimate the travel time t of air-masses from the coast to each 503 

sample site, we used back-trajectories for each altitude of the vertical profile, where 13-day 504 

backward trajectories are derived from the online version of the HYSPLIT model51,52. 505 

Our background mole fraction estimates were calculated according to the methodology described 506 

by Domingues et al.53, using the geographical position of each air-mass back-trajectory when it 507 

intersects two virtual limits: 1) a latitude limit, from the Equator southwards at 30° W, and 2) a 508 

line from the Equator to the NOAA Global Monitoring Laboratory (NOAA/GML) observation 509 

site at Ragged Point, Barbados (RPB). Based on the atmospheric air circulation pattern over 510 

Amazonia we could relate the position where an air mass crosses the virtual line with the 511 

concentrations measured at remote sites in the Atlantic—RPB, Ascension Island, UK (ASC) and 512 

Cape Point, South Africa (CPT)—from NOAA/GML to determine the background53. 513 

Carbon fire fluxes were estimated based on eq. M2, where FCO is the total CO flux and is 514 

calculated identically to CO2 fluxes according to eq. M1; and to isolate the CO from biomass 515 

burning process, we subtract the ‘natural’ CO flux from the total CO flux. FCOnatural, arising from 516 

direct soil CO emissions, and mainly CO from oxidation of volatile organic compounds (VOCs), 517 

such as isoprene that is emitted from the forest according to the methodology described at Gatti 518 

et al.4. We also used fire emission ratios calculated by site (CO:CO2, in units of parts per billion-519 

ppb CO per ppm CO2) from measured CO concentrations from clearly identifiable plumes in the 520 

VPs during the dry season (ALF CO:CO2 = 53.4 ± 9.9 (2σ variability); SAN CO:CO2 = 55.5 ± 521 

14.7; RBA CO:CO2 = 73.2 ± 15.1; and TAB_TEF CO:CO2 = 71.6 ± 17.2 ppbCO : ppmCO2
4. 522 



NBE represents the result of emissions and uptake from all processes in the influenced area for 523 

a specific VP, monthly and annual mean, excluding fire C emissions (NBE = total − fire). 524 

FCFire
 = RCO2:CO (FCO – FCO

Natural)                                                                                                          M2 525 

To scale for the whole Amazonia carbon fluxes was applied the same procedure as for Amazonia 526 

VP and described in eq. 3 and 4. 527 𝐹𝐶𝑟𝑒𝑔𝑖𝑜𝑛1 = (𝐹𝐶𝑆𝐴𝑁∗𝐴𝑟𝑒𝑎𝑆𝐴𝑁)+(𝐹𝐶𝐴𝐿𝐹∗𝐴𝑟𝑒𝑎𝐴𝐿𝐹)𝐴𝑟𝑒𝑎𝑆𝐴𝑁+𝐴𝑟𝑒𝑎𝐴𝐿𝐹                                                                                   M3 528 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐴𝑚. = (𝐹𝐶𝑟𝑒𝑔.1 ∗ 𝐴𝑟𝑒𝑎𝑟𝑒𝑔.1) + (𝐹𝐶𝑟𝑒𝑔.2 ∗ 𝐴𝑟𝑒𝑎𝑟𝑒𝑔.2−𝑟𝑒𝑔.1) + (𝐹𝐶𝑟𝑒𝑔.2 ∗ 𝐴𝑟𝑒𝑎𝑟𝑒𝑔.3)             M4 529 

 530 

Fluxes Uncertainty Analysis by Monte Carlo error propagation  We estimated our fluxes 531 

uncertainties by error propagation using Monte Carlo randomization running 1000 iterations. The 532 

considered uncertainty for each step of flux calculation (M1) were: CO2 measurements 533 

uncertainty by our analytical system is around 0.03 ppm. For background (BKG) uncertainties 534 

we considered that mole fraction uncertainties from ASC, CPT and RPB come from the standard 535 

deviation of the residuals to fit CO2 smooth curve, according to Gatti et al.4,43. We assumed 536 

uncertainties of back-trajectory travel times are normally distributed with a standard deviation of 537 

σ = 0.2 days for SAN, σ = 0.6 days for RBA and TAB, and σ = 0.4 for ALF and TEF. In addition, 538 

to calculate the carbon fire emissions and NBE, it was considered the uncertainty from CO:CO2 539 

ratio and CO fluxes. For fluxes from fire, we used the standard deviation of emission ratios at 540 

each site and account for the CO flux uncertainties (estimated as for the CO2 fluxes), and 541 

considered the uncertainty in natural CO emission of 25%. 542 

To calculate the uncertainty for each vertical profile flux, from 1000 iterations using Monte Carlo 543 

randomization error propagation. To produce the monthly mean flux, taking into account the 544 

variability between the fluxes within the same month, we applied the pooled standard deviation 545 

to each month throughout the year to account the uncertainty of each monthly mean within the 546 



annual mean flux. For the whole period of 9 and 2 years we used quadratic mean as eq. M554, 547 

where n is the number of years. 548 

�̅�𝑞 = √∑ 𝑥𝑖2𝑛                                                                                                                                   M5 549 

Additional source of uncertainty is the sampling height limitation to 4.4 km. Along the way of 550 

air masses trajectory that can vary from 2 to 9 days mean time until to the sampling sites, 551 

convective process can represent loss of carbon sources and sink surface contributions. 552 

Comparing the background concentration and the top of vertical profiles is one way to verify the 553 

possible loss of information. Supplementary Fig. 4 shows the seasonal dispersion along the time 554 

series for the differences between the top of VP (>3.8 to 4.4 km) and the background. According 555 

to the method we use, the flux is obtained by the difference between of the measured CO2 556 

concentration in the VP and the background concentration and considering the travel time in the 557 

integration. Observing the Supplementary Fig. 4 it is clear that during the dry season is the period 558 

in which the loss of information is larger to positive (VP > bkg), because during burning season 559 

(peak of dry season) the top of VP starts with higher CO2 and CO concentration due to convective 560 

processes promoted by biomass burning. 561 

Another possible source of uncertainty is related to moisture in the samples. NOAA/GML have 562 

found that CO2 concentration is artificially reduced when air samples with high water vapor (> 563 

1.7%) are pressurized in PFP flasks to 2.7 bar, as a result of condensation55.  A preliminary study 564 

using vertical profiles near Manaus (Amazonas state) compared PFP samples measured for CO2 565 

at LAGEE to onboard measurements from a trace gas flight analyser (Picarro model G2401-m) 566 

and found depletions in PFP CO2 nearly similar to those from the Baier et al study. This influence 567 

is likely greater near the surface, as humidity increases at lower altitudes.  Thus, the true CO2 568 

below the boundary layer (~1.2km from surface) may be higher than measured, which means 569 

that current fluxes may be underestimated. However, this effect will be present in both periods 570 

(2010-18 and 2019-2020), not affecting their comparison. 571 



 572 

Statistical Analysis in Total Carbon Fluxes  We applied parametric (Welch t-test and Tukey 573 

test) and non-parametric (Wilcoxon test and Kruskal-Wallis test) tests to compare and determine 574 

whether the annual and monthly total fluxes for 2019-2020 are significantly different from the 575 

2010-2018 total fluxes period in the Amazonia. We also applied the statistical tests separating 576 

Amazonia in Region 1 and Region 2 (Extended Data Figure 6), since we observed new regions 577 

with intense deforestation in Region 2. First, we verified the normal distribution and the number 578 

of samples to decide the recommended test to be used in the statistical analysis, them before the 579 

test of comparison (parametric or non-parametric) we verified the distribution of the variable 580 

(Supplementary Table 1). Before to be applied the test of comparison (parametric or non-581 

parametric) it was necessary to verify the distribution of the variable, for this we applied the 582 

Shapiro-Wilk (shapiro.test), Anderson-Darling (ad.test) and Kolmogorov-Smirnov (ks.test) tests. 583 

Monthly and annual fluxes for all years from 2010 to 2020 were evaluated, considering and 584 

removing the drought years (2010, 2015 and 2016). It was also considered only the monthly 585 

fluxes from July to November of the time series, with and without the drought years. The normal 586 

distribution of the total flux was confirmed in all cases in which the null hypothesis was accepted, 587 

that is, when p-value > 0.05. For all cases whose normal distribution was confirmed, the variance 588 

test was performed to ensure that the variance was equal for all samples (p-value > 0.05, 589 

Supplementary Table 2). Satisfied these two conditions, the parametric tests were performed. All 590 

test results were obtained with 95% of confidence, as shown in Supplementary Table 1 and 2. 591 

 592 

Missing data imputation  The missForest algorithm was applied to fill in the missing data for 593 

total and Fire C monthly fluxes at ALF, SAN, RBA and TAB_TEF sites, which occurred due to 594 

sampling and laboratory logistics issues. This non-parametric missing value imputation 595 

algorithm is based on the random forest methodology56,57 and was implemented in R language58 596 



using the missForest package59. The known monthly data were used to adjust the missForest 597 

parameters (number of iterations, number of trees, number of variables randomly sampled in 598 

each division and others) for each site. Monthly variables (temperature, precipitation, burned 599 

area, EVI, GRACE and VPD) were used in the imputation method for total C flux (FCTotal) and 600 

fire C flux (FCFire)4. These calculations were performed 1000 times, and the results are 601 

incorporated in the mean values for the missing months (Supplementary Fig. 5). The normalized 602 

RMSE was less than 0.0045 for all sites and fluxes. The RMSE values were 0.0041, 0.0060, 603 

0.0027 and 0.0021 gC m-2 d-1 for total fluxes and 0.0008, 0.0019, 0.0004 and 0.0001 gC m-2 d-1 604 

for fire fluxes in ALF, SAN, RBA and TAB_TEF, respectively. NBE missing data was obtained 605 

subtracting the Fire C fluxes from the Total C Fluxes. These RMSE values were used in the 606 

uncertainty calculation for the months with missing fluxes. 607 

 608 

Regions of influence  We define regions of influence as those areas covered by the density of 609 

back-trajectories integrated over all vertical profiles and altitudes (up to 3500 m) for each site 610 

integrated on an annual (Extended data Fig. 1) and a quarterly basis (Supplementary Fig. 6)4,60. 611 

Here we used the same regions of influence from Gatti et al.4, for the period between 2010-18, 612 

and were calculated new areas for 2019 and 2020, which were estimated using Hysplit trajectory 613 

model52,61 to calculated individual back-trajectories for each sample for each vertical profile and 614 

all flights between 2010 and 2018 at a resolution of 1 hour using 1˚x1˚ Global Data Assimilation 615 

System (GDAS) meteorological data. For each site, all the back-trajectories in a quarter (January-616 

March, April-June, July-September, October-December) or annually were binned, and the 617 

number of instances (at hourly resolution) that the back-trajectories passed over a 1˚x1˚ grid cell 618 

was counted to determine the trajectory density in each grid cell up to an altitude of 3,500 m 619 

a.s.l.. In the annual regions of influence were excluded the grid cells with the lowest 2.5% 620 

trajectory density distribution. The mean annual regions of influence were determined by 621 



averaging the nine annual regions of influence for each site, by the sum of the number of points 622 

(frequency) within each grid cell integrating all vertical profiles in the year and then averaging 623 

all nine years60. 624 

 625 

Precipitation, temperature, GRACE, EVI, burned area and VPD data  We used the quarterly 626 

regions of influence maps as spatial weighting functions for all studied parameters to determine 627 

how each parameter influenced the carbon flux, following Gatti et al.4 628 

We used the databased GPCP (http://eagle1.umd.edu/GPCP_ICDR/GPCP_Monthly.html), 629 

version 1.3 for precipitation analysis (described by Huffman et al.62), which contains daily data 630 

since 1996 with a resolution of 1° × 1° latitude–longitude. 631 

For temperature we used 2-m temperatures from ERA-5 that are monthly means of daily means 632 

since 1959 and were used with a resolution of 0.25° × 0.25° latitude–longitude, obtained from 633 

the European Centre for Medium-Range Weather Forecasts (ECMWF; 634 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means 635 

?tab=overview)63.  636 

We used the gridded monthly global water storage/height anomalies (equivalent water thickness) 637 

relative to a time-mean, derived from GRACE (Gravity Recovery and Climate Experiment) and 638 

GRACE-FO and processed at JPL (Jet Propulsion Laboratory) using the Mascon approach 639 

(Version2/RL06), with 0.5° × 0.5° resolution64,65.  640 

The VPD product is a measure of the indirect vapour pressure deficit in kPa (resolution of 2.5 641 

arc-minute) of monthly means of temperature and humidity, provided by Climatic Research Unit 642 

(CRU) CRU Ts4.066. The dataset was resampled to a 1ºx1° spatial resolution using the monthly 643 

mean. 644 

Evaluation of burned area was obtained from the Moderate Resolution Imaging 645 

Spectroradiometer (MODIS) Collection 6 MCD64A1 burned area product67. The related 646 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means


uncertainty estimated as 4-5.5%68. Collection 6 provides monthly tiles of burned area with 500 647 

m spatial resolution over the globe. The algorithm uses several parameters for detecting burned 648 

area from the Terra and Aqua satellite products, including daily active fire (MOD14A1 and Aqua 649 

MYD14A1), daily surface reflectance (MOD09GHK and MYD09GHK), and annual land cover 650 

(MCD12Q1)69–71. The burned area product was resampled to 1x1° spatial resolution. 651 

The Enhanced Vegetation Index (EVI) is a vegetation index that aims to highlight the fraction of 652 

photosynthetically active radiation (fPAR) from terrestrial vegetation targets. In general, high 653 

positive values show a higher proportion of fPAR, and therefore, greater biomass. The EVI 654 

product used was the MANVI: MODIS multiangle implementation of atmospheric correction 655 

(MAIAC) nadir-solar adjusted vegetation indices for South America, generated by in spatial 656 

resolution of 1 km and temporal resolution of 16 days72.  657 

 658 

Validation of temperature data The ERA5 was validated using thirty-five automatic 659 

meteorological field stations for temperature data from the INMET (National Institute of 660 

Meteorology, Brazil), covering the period between 1979 and 2018, respectively. In our study, the 661 

least-squares regression analysis was carried out by using the ERA5 data as the dependent 662 

variable and the automatic meteorological field stations as the independent variable. The ERA5 663 

dataset explained 49 to 98% of the temperature variability captured by the automatic 664 

meteorological field stations. The RMSE varied ±0.4˚C to ±1.84 ˚C (see Supplementary Fig. 7). 665 

 666 

Deforestation  The procedures to retrieve deforestation as a geographic data built by 667 

PRODES/INPE7,73,74 based on historical series of LandSat images provides deforestation annual 668 

increments in the Brazilian Amazon. Detailed information of PRODES methodology is available 669 

and can be accessed74. The where the accuracy is 93.5%75. We adopted the data period between 670 

2010 and 2020. Using QGIS software it was generated a grid cell of 0.25° x 0.25° for the entire 671 



Brazilian Amazon which was filled with absolute values of deforested area of deforestation 672 

calculated for each cell and in each year of the series. The mean area of deforestation was 673 

calculated for the period within 2010-2018 inside each grid’s cell. Absolute annual deforestation 674 

for 2019 and 2020 were also calculated with the same methodology. Both, the mean or the 675 

absolute values of deforestation were calculated in each study site of the measured VPs 676 

considering the sum of all cell values completely enclosed in each site. 677 

 678 

Fire spots  Fire spots in Pan-Amazonia between 2010 and 2020 and burned area in Brazil´s 679 

Amazon were retrieved from INPES´s "Queimadas" wildfire monitoring program8. The number 680 

of fire spots detected per year in the grid cells and the overall means were calculated for each 681 

study site using QGIS software. "Fire spots" refer to fire pixels detected in the daily afternoon 682 

images of the MODIS sensor on board the AQUA NASA satellite since 2002 using the 683 

"Collection 6" algorithm that provides world-wide coverage of active vegetation fires76–78. Fire 684 

spots represent an under sampling of the actual fire extent in the vegetation since the monitoring 685 

miss most understory low-temperature fires as well as those occurring under cloudy skies and 686 

between consecutive satellite overpasses. However, relying on a stable sensor and proven 687 

algorithms, the data is an excellent indicator of temporal and spatial tendencies of fire 688 

occurrences76. Counts of fire pixel are indicators that allow the comparison of occurrences for 689 

periods and areas of interest; since they are detected by satellites and thus limited by cloud cover, 690 

image acquisition time and dense tree canopy, they are not an absolute measure of the total fire 691 

impact. The INPE fire products use the same NASA active fire detection algorithms and source 692 

data79, adding a filter to remove fixed heat sources such as specific industries. Validation studies 693 

indicate less than 1 % of false detections in Amazonia8 and 3% in Indonesia80. The procedures 694 

retrieved fire spots from Queimadas Project (INPE) between 2010 and 2020. The absolute 695 

number of fire spots registered per year between 2010 and 2020 was calculated in each study 696 



site, using QGIS software. Also calculated were the mean values of fire spots in the period 697 

between 2010 and 2018 in each study site. 698 

 699 

Environmental law enforcement and accountability for illegal deforestation  We set up and 700 

systematized a comprehensive database for the Amazon encompassing all available records of 701 

infractions notices and administrative judgments between 2010 and 2020. IBAMA field 702 

inspection and judgments data between 2010 and 2020 were obtained from the Brazilian Open 703 

Data Portal9. We removed duplicate records by applying a composite primary key encompassing 704 

the columns "seq_auto_infracao", "num_auto", "ser_auto", "cpf_cnpj", "valor_auto", 705 

"quant_area" and "num_processo" and filtered data for the states of the Legal Amazon: Acre, 706 

Amapá, Amazonas, Pará, Rondônia, Roraima, Tocantins, and Mato Grosso and Maranhão. We 707 

used only infraction notices and fines related to crimes against the flora (basically illegal 708 

deforestation but also other forms of native vegetation suppression and associated crimes). The 709 

infraction notice informs citizens, companies, or institutions about committed acts violating 710 

administrative rules or the law, which are subject to penalties such as fines, seizures, and 711 

embargoes after due administrative judgments. The periods described in the text are related to 712 

the PPCDAm Phases I to IV31,81. The Brazilian government program for payment for ecosystem 713 

services (PES), not implemented can be found at MMA homepage81.  714 

 715 

Amazonia crops area, cattle production and wood exportation  We obtained and systematized 716 

the information about Amazonia crops (soybean and corn) area production, cattle production and 717 

wood exportation for the Amazon using available official data from Brazilian government. 718 

Harvest area of soybean and corn were obtained from IBGE (2022)26. Wood exportation data 719 

came from Ministry of Industry, Foreign Commerce and Services (MDIC, 2022)25. Cattle 720 



production inside and outside Amazonia were produced by Amazon Deforestation Monitoring 721 

Project (PRODES/INPE, 2022)27. 722 
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 824 

Extended Data Fig. 1 | Regions of Influence. Annual mean regions of influence based on back 825 

trajectories density, calculated by Hysplit trajectory model for each flask, on each vertical profile 826 

along all studied years (2010 to 2018) for the sites SAN (2.9° S 55.0° W), RBA: 9.4° S 67.6° W; 827 

2010-2012 for TAB: 6.0° S 70.1° W; and from 2013 for TEF; 3.4° S 65.6° W) (see Methods).  828 

 829 

Extended Data Fig. 2 | Annual mean ΔVPs per site. Annual mean ΔVPs for each site ALF, 830 

RBA, SAN and TAB_TEF for the time series (2010–2020), constructed from the VP year mean, 831 

where the background was subtracted from each height, each flask (see methods). The black thick 832 

line represent the 2010-2018 Amazonia mean vertical profiles, the red thick line 2019 mean and 833 

blue thick line 2020 mean. 834 

 835 

Extended Data Fig. 3 | Amazonia’s Deforestation and fire spots time series.  a) Deforestation 836 

limited to the Brazilian Amazonia classified as Legal Amazon (km2) by PRODES / INPE7 since 837 

2000 to 2020; b) Annual infraction notices without geographic coordinates (gray bar) and with 838 

geographic coordinates (orange bar), blue line represents the embargoes and green line represents 839 

seizures, applied by IBAMA for crimes against flora at Legal Amazonia; c) Fire spots limited to 840 

the Brazilian Amazonia classified as Biome Amazonia by BD Queimadas/ INPE8 since 2000 to 841 

2020. 842 

 843 

Extended Data Fig. 4 | Spatial fire spot distribution. Fire spots in Pan-Amazonia are given in 844 

grid cells 0.25˚x0.25˚ and were retrieved from INPE’s "Queimadas" wildfire monitoring 845 

program8. a) 2019 anomaly compared with the mean fire spot per grid between 2010-18; b) 2020 846 

anomaly compared with the mean fire spot per grid between 2010-18. c) Fire spots detected at 847 



Amazonas state from 2010-20. Black line mean 2010-18, grey band denotes the standard 848 

deviation of the monthly mean, red line the 2019 monthly mean, blue line the 2020 monthly 849 

mean. d) Fire spots detected at Roraima state from 2010-20. 850 

 851 

Extended Data Fig. 5 | Amazonia crops area, cattle and wood exportation.  Increase 852 

replacement of the forest by soybean, corn, beef, wood commerce as a consequence of 853 

deforestation. a) Evolution of harvested area of soybean (black line), corn (dashed line)26, and 854 

wood exportation (blue line)25. b) Cattle production evolution inside (black line) and outside 855 

Amazonia, i.e. in others Brazilian states (blue line)27. (a) and (b) were built using official data 856 

from Brazilian government. 857 

 858 

Extended Data Fig. 6 | Annual mean carbon Fluxes FCTotal, NBE and FCFire. a) Separation 859 

of three different areas inside the Amazon Mask (7,256,362 km2, purple line) using mean annual 860 

influence regions of all years (2010 to 2018). Region 1: Combined ALF and SAN regions of 861 

Influence, Region 2: Combined RBA and TAB (2010-12) and TEF (2013-18) to compose regions 862 

of Influence 2 and excluding Region 1 for the quantification and composing Amazonia △VP; 863 

Region 3: the remaining area outside regions 1 and 2 and inside the purple line. b) The annual 864 

mean carbon fluxes total (FCTotal), net biome Exchange (NBE) and fire (FCFire) were calculated 865 

according to the regional distribution shown on the map a).  866 

 867 

Extended Data Fig. 7 | El Nino / La Nina episodes (ONI) and seasonal precipitation and 868 

temperature. a) Warm (red) and cold (blue) periods based on a threshold of +/- 0.5oC for the 869 

Oceanic Niño Index (ONI) [3 month running mean of ERSST.v5 SST anomalies in the Niño 3.4 870 

region (5oN-5oS, 120o-170oW)], based on 30-years base periods updated every 5 years42. b) 871 

Seasonal monthly Amazon mean precipitation mean 2010-18 (solid light blue line), temperature 872 



(solid brown line).  Grey bar is the standard deviation for the monthly means 2010-18 and dashed 873 

line for P and T 2019 and dotted line for P and T 2020. 874 

 875 

Extended Data Fig. 8 | Amazonia carbon Fire and NBE flux 2010-20. a) Monthly means for 876 

Amazonia Fire carbon flux (FCFire). Black line for 2010-18 mean, where grey bands denote the 877 

standard deviation of the monthly mean. Red line 2019 and blue line 2020. b) Annual mean 878 

Amazonia total carbon flux (see methods). 879 

 880 

Extended Data Fig. 9 | Amazonia results overview.  Summary of Total carbon flux (white 881 

box), Fire carbon flux (red box), Net Biome Exchange (green box) and deforestation per site 882 

(orange box). The boxes are all related to the mean 2010-18 and 2019 pink arrow and 2020 blue 883 

arrow for all fluxes (gC m-2 d-1) and deforestation (km2). 884 

 885 

Extended Data Table 1 | Summary results for all sites. Summary for the 4 sites and for the 886 

whole Amazonia presenting the results for total carbon flux (FCTotal), fire carbon flux (FCFire), 887 

net biome exchange (FCNBE), deforestation (*only for Brazilian Amazon), Fire spots, Burned 888 

area, annual accumulated precipitation, wet season peak mean precipitation (months January, 889 

February and March: JFM), dry season peak mean precipitation (months August, September, 890 

October: ASO), annual temperature, wet season peak mean temperature (JFM) and dry season 891 

peak mean temperature (ASO). For each site and parameters are presented the mean for the years 892 

2010-2018, the mean for 2019 and 2020. Considering the 11-year time series, the results of the 893 

first 5 years mean (2010-2014) and the last 5 years mean (2016-2020) to observe the trends in 894 

changes for carbon flux, on the climatological parameters, deforestation, burned area and fire 895 

spots. For the four sites the parameters are weighted mean based on region of influence, and for 896 

the whole Amazonia the parameter’s mean are absolute. 897 


