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Abstract: Traffic congestion is a critical problem in urban areas, and understanding the relationship
between land use and congestion source is crucial for traffic management and urban planning. This
study investigates the relationship between land-use characteristics and congestion pattern features
of source parcels in the Second Ring Road of Xi’an, China. The study combines cell-phone data, POI
data, and land-use data for the empirical analysis, and uses a spatial clustering approach to identify
congested road sections and trace them back to source parcels. The correlations between building
factors and congestion patterns are explored using the XGBoost algorithm. The results reveal that
residential land and residential population density have the strongest impact on congestion clusters,
followed by lands used for science and education and the density of the working population. The
study also shows that a small number of specific parcels are responsible for the majority of network
congestion. These findings have important implications for urban planners and transportation
managers in developing targeted strategies to alleviate traffic congestion during peak periods.

Keywords: human mobility; congestion source analysis; land use; cell-phone data; machine learning

1. Introduction

With the growth of the population and motor vehicle ownership, multiple sections
of the urban road network in certain areas are often congested at the same time during
peak hours. In the United States (US), traffic congestion was estimated to additionally
cost drivers over 88 billion USD in the year of 2019 [1]. In China, at least 24% additional
travel time is required to commute during peak periods in major cities such as Beijing,
Shijiazhuang, and Chongqing [2]. Not only does traffic congestion cause direct economic
loss, but it also raises a series of negative environmental issues, such as anabatic carbon
emissions and deteriorative greenhouse effects [3]. The increasingly serious and extensive
traffic congestion affects the efficiency and safety of road travel, and traffic congestion has
gradually become a serious challenge to the sustainable development of large cities and
even small and medium-sized cities.

Wang et al. [4] found that vehicles on congested roads are not scattered from individual
parcels, but concentrated from some common source parcels. This finding reflects the
necessity of congestion traceability, i.e., by tracing the source of congestion and analyzing
various factors related to the source of congestion, adjustments can be made on the traffic
demand side by means of urban renewal or control to alleviate the congestion problem.

The main method of congestion traceability studies is to trace the source of traffic flow
causing road congestion by analyzing the traffic flow OD of the surrounding traffic area
and constructing a dichotomous network of road use to explore the relationship between
the source of congestion and the congested road [4–11]. Such congestion traceability traces
the source mainly to the traveler’s residence and departure traffic cell outside the road
system, and there are also studies that consider the few travelers causing congestion as
the source of congestion. Another type of congestion tracing involves simulating the
congestion propagation process within the traffic network [12] or based on the roadway
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segment importance [13] to identify the internal sources of congestion in the road system,
such as the roadway segments, intersections, or ramps where the congestion originates.

In this paper, on the basis of multiple sources of data such as cell phone signaling
data and POI data, congested road sections are identified and traced by road section travel
time and average speed of road sections, and congested road sections originating from
the same parcel are treated as a congestion group. This group is analyzed by spatial
clustering, and its congestion cluster characteristics are obtained. Finally, the relationship
between the land-use characteristics of the parcel and the characteristics of the congestion
group is explored by using XGBoost algorithm. This paper is based on a spatial clustering
analysis. In this paper, the relationship between the land-use characteristics and congestion
cluster characteristics of the retroactive parcels in Xi’an Second Ring Road is analyzed in
depth for 520 parcels, taking the traffic network and parcels in Xi’an Second Ring Road
during the morning peak on 20 July 2021 as an example, and the causes of congestion are
further explored.

The structure of this paper is as follows: Section 1 is the introduction; Section 2 is the
literature review, which gives an overview of congestion tracing and land-use analysis;
Section 3 is the data description, which introduces the data format used, data preprocess-
ing method, and selected cases; Section 4 is the source tracing and analyzing method,
which introduces the method framework, congestion tracing method, and XGBoost algo-
rithm; Section 5 takes a specific case as the research object to start the analysis; Section 6
summarizes the results of the whole paper and presents the shortcomings and outlook.

2. Literature Review
2.1. Tracing the Source of Congestion

The study of congestion traceability in road traffic systems has undergone a certain
developmental history. Initially, Wang et al. [4] considered the traveler’s residence as a
static congestion source, but this approach could only provide very limited information.
Currently, the main congestion traceability research method is to first estimate the travel OD
matrix, assign the travel demand to the road network, and then construct a dichotomous
network model of road use to locate the top 80% of parcels contributing to congested road
traffic as source parcels according to the congestion status of the road network [4,6–9].
Wang et al. [6,9] started to trace the dynamic congestion source, i.e., the departure place
within a certain time period as the congestion source. Meanwhile, congestion tracing
research has been extended from tracing microscopic roadway congestion sources to macro-
scopic regional congestion sources [8]. Depending on the transportation system under
study, Wang et al. [5,7] elaborated the data and methods required for traceability, which can
use mobile cellular call detail records (CDRs), cellular signaling data, radiofrequency iden-
tification (RFID) data, and metro card data to estimate travel demand, assign traffic flows
on the basis of the travel OD matrix and the corresponding road network, locate the major
congestion sources, construct a road use dichotomous network to explore the relationship
between congestion sources and road sections, and finally propose congestion optimization
methods on this basis. For macro-regional congestion traceability, Wang et al. [8] proposed
to select the source parcels with the largest proportion as the city-wide congestion sources
according to the travel time delay caused by each source.

Furthermore, many other scholars have promoted research in other directions of
congestion traceability, arguing that travelers are the sources of congestion, and alleviating
congestion by changing the path choice of travelers. For example, He et al. [10] estimated
the travel demand in two networks using Beijing metro card data and San Francisco
CSD, considered a small fraction of travelers experiencing severe congestion as congestion
sources, and proposed a hybrid path selection model combining shortest path selection
and least cost path selection for congestion sources. When congestion occurs on highways
or expressways, some scholars conducted separate studies on their congestion sources
considering the closed nature and special features of the roads themselves. For example,
Li et al. [11] obtained OD data of regional freeways from toll station and entrance ramp
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data, and then defined entrance ramps, which play a major contribution to freeway section
traffic, as the main vehicle source of freeway bottlenecks.

2.2. Land Use

The land-use characteristics include socioeconomic attributes and spatiotemporal
correlation and heterogeneity, in addition to the traditional 5D model (density, diversity,
design, destination accessibility, and transit stop distance). In contrast, traffic-related
studies are richer and more diverse, including traffic volume [14–18], travel behavior
characteristics [19,20], and other traffic phenomena due to travel, such as congestion and
emissions. Models to study the relationship between the two are currently dominated by
various types of regression models and machine learning algorithms.

Many studies have shown that land use has a close relationship with traffic congestion.
For example, Zhang et al. [21] extracted POI and real-time traffic data from an electronic
map of Beijing’s Fourth Ring Road area and identified major traffic congestion areas by
cluster analysis; the results showed that a high proportion of commercial land use had
a significant impact on traffic congestion, while a linear regression analysis found that a
reasonable ratio of land-use types could effectively reduce congestion time. Qin et al. [22]
extracted urban built environment features from public streetscape images and POI data,
and then proposed a multigraph convolutional network structure to model the spatial
dependence between traffic congestion on road networks. Bao et al. [23] explored the spa-
tiotemporal relationship between traffic congestion and the built environment. The study
found that congestion before the weekend may be more severe and have a more lasting
impact on satellite cities, and then confirmed the positive impact of public transportation
in alleviating traffic pressure. Shen et al. [24] investigated the interaction between land
use and parking utilization in alleviating congestion in residential areas of Xi’an in 2017
and found that the imbalance between land use and parking facilities led to long-distance,
cross-regional traffic, and that the difference in the availability of parking spaces between
supply and demand was the main cause of traffic congestion during commuting periods.
Schoeman and Schoeman [25] aimed to develop a practical assessment and development
approach for evaluating the impact of land-use planning on traffic generation, emissions,
and environmental factors in residential areas, with the objective of informing detailed
planning and decision-making processes for selecting preferred development scenarios and
guiding stakeholder actions. Yap et al. [26] investigated the impact of land-use patterns
on traffic congestion in Kuala Lumpur, revealing that a high proportion of commercial
land use contributes significantly to the occurrence of traffic congestion, emphasizing the
importance of appropriate land-use planning to mitigate congestion. Rahman et al. [27]
analyzed the causes of urban traffic congestion in US cities using a structural equation
modeling framework at the mesoscale, revealing the complex nature of congestion and
identifying factors such as population size, income and employment agglomeration, trans-
portation infrastructure, mode choice behaviors, community structures, urban density, and
socioeconomic factors as key influences, providing insights for policy interventions.

2.3. Research Gap and Potential Contributions

Existing studies have not conducted in-depth analysis on the source characteristics of
congestion, and most of them used CSD (cellular signaling data) together with GPS (global
positioning system) data for congestion tracing. In this paper, on the basis of CSD, POI
(point of interest) data, and LUA (land-use allocation) data, we comprehensively analyze
the relationship between the land-use characteristics and congestion patterns of the source
parcels in the Second Ring Road of Xi’an, and further explore the causes of congestion.

The main purposes of this paper are as follows: (1) the relationship between land-use
features of congestion source parcels and network congestion pattern features is further
explored; (2) using the spatial cluster analysis technique, congested road sections traced to
the same parcel are treated as a congestion pattern and their network-pattern clusters are
obtained; (3) using the XGBoost algorithm, the land-use features of parcels in numerical



Sustainability 2023, 15, 9328 4 of 15

vector format are used as independent variables and congestion pattern features in categor-
ical format as dependent variables, and the relationship between them is analyzed. Our
research findings provide critical insights into understanding the factors contributing to
traffic congestion and offer valuable guidance for developing more effective urban traffic
management policies. They may also serve as a useful reference for other researchers
interested in exploring the relationship between congestion and land use.

3. Data
3.1. Data Description

CSD, POI, and LUA data are employed in this study from a transportation and urban
planning perspective. These data sources offer valuable insights into the travel behavior
patterns of individuals, the spatial distribution of various activities, and the allocation
of land for different purposes within an urban area. By integrating and analyzing these
datasets, this study aims to achieve significant advances in tracing the source of congestion.
Specifically, CSD can provide information on travel patterns, origin–destination flows, and
congestion hotspots. POI data can help identify areas with high activity levels and potential
traffic generators. LUA data can provide insights into the spatial distribution of different
land uses, including residential, commercial, and industrial areas. By analyzing these
datasets collectively, this study can uncover the underlying causes of congestion, identify
key contributing factors, and propose targeted strategies for mitigating traffic congestion in
urban areas.

(1) LUA describes the information within the study area, such as land use, POI, resident
population, commuter population, and road network density. These data can all
be downloaded from the Open Street Map (OSM) [28] and Autonavi development
platforms [29].

(2) The CSD are provided by “Smart Footprint” company, which is affiliated with China
Unicom, one of the largest telecom operators in China. It records anonymous people’s
travel trajectory in the way of road nodes. Data attributes include anonymous ID,
monthly trip number, path ID, path node sequence, path node number, time passed
by node pair, next path node number, and month (partition field) (Table 1).

Table 1. User travel trajectory table.

Notion Description Example

Uid Anonymous ID *** 92
moi_id Month trip number 1

route_id Route ID 1
rn_seq Route node sequence 16
rn_id Route node ID 35,857,550
time Time taken to pass through the node pair 650

is_end Is the end point? N

mode Mode of transportation
(1—road, 2—railway, 3—airplane, 4—metro, 0—other) 1

next_rn_id Next route node ID 35,858,257
***: anounymous hiding.

3.2. Case Selection

The research area of this study is within the Second Ring Road of Xi’an with
139,936 sections. The study area is divided into 680 parcels on the basis of their properties
and the road network, and 520 effective parcels are obtained after screening, which is
demonstrated in Figure 1. Meanwhile, this study uses the CSD passing through Xi’an
Second Ring Road, selecting the morning peak (7:00–9:00 a.m.) on 20 July 2021 as the
target period. The reason for choosing this day is that it rained heavily, and the congestion
was obvious.
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3.3. Data Preprocess

Due to the generation mechanism of CSD and the errors in track matching, there are
invalid data in the dataset. These types of data will have a certain adverse impact on the
subsequent congestion identification process. Therefore, we set up some rules to identify
and remove them. In this study, invalid data included duplicates and error records.

Duplicate data: In this study, we encountered two types of duplicate data, those
related to time and those related to location fields. Due to the erratic nature of wireless
signals, it is possible for a phone to switch from one base station to another in just 1 s,
resulting in multiple locations being recorded for the same time period. To address this
issue, we identified these instances and kept the first recorded location while discarding
the others. Additionally, when a user remains stationary or moves within a small area,
multiple consecutive and identical location records are generated due to periodic position
updates. To mitigate this, we retained the first and last location records while discarding
the intermediate ones.

Error records: When the users’ path tracks are too short or the information is too
scarce, we deemed these kinds of data as errors.

4. Source Tracing and Land-Use Analysis
4.1. Methodology Framework

This paper aimed to identify the congested road sections and trace their source by
analyzing multiple sources of data, considering the morning peak CSD of 20 July 2021.
The methodology framework is shown in Figure 2. First, the road network is matched
with the travel track table and grid table to obtain the travel track matrix. Then, due to
the problem of the data source, when using vehicle GPS data, we can judge the congestion
by the traffic flow and capacity. However, when mobile data are used, it is on a human
scale; thus, it is difficult to judge congestion by traffic flow and infrastructure capacity.
Thus, the driving time and average speed of road sections are used to identify congested
road sections and trace their source through the selected vehicle tracks. The identified
congested road sections originating from the same parcel are treated as a congestion group,
and the congestion cluster of the group is obtained through spatial clustering analysis.
These congestion cluster characteristics are used as the dependent variables in analyzing
the relationship between land-use characteristics and congestion cluster characteristics
using the XGBoost algorithm. Overall, this paper provides a comprehensive analysis of the
causes of congestion and their relationship to land-use characteristics.
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4.2. Congestion Traceability Method

Define P as the set of all parcels; (A, B) is the set of all travel OD from parcel A to parcel
B, qab is the travel quantity from grid a (a ∈ A) to grid b (b ∈ B), rab is the path that qab goes
through, rl

ab (rl
ab ∈ rab) is the set of travel paths that pass through road 1, and Ql a is the

traffic flow of the first section. The contribution of each parcel to the traffic flow of the road
in the selected time segment is as follows:

COl(A) =
P

∑
S=1

∑
rl

ab

qab (1)

By calculating the total congestion contribution of each parcel, this study locates
the global congestion source at the regional level and ranks the congestion contribution.
Beginning with the parcel that has the highest congestion contribution, the contribution
is accumulated successively. When the cumulative contribution reaches 15% of the total
travel volume, the parcel that participates in the accumulation is defined as the urban
congestion source.
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4.3. Clustering Method

To investigate the spatial similarity of congestion clusters, this study treats congested
road segments traced to the same parcel as a congestion group. The distribution of these
groups is stored as a 0–1 matrix, and spatial clustering is performed using the k-means
method. The optimal number of categories K is determined using the elbow method,
which identifies the turning point of inertia (sum of squares within the group) as the best
K value. Using this method, we identify the congestion clusters of the congestion groups,
as described below:

Define K as the number of categories; X = {x1, x2, . . . , xi, . . . , xn} is the dataset con-
taining n D-dimensional data points, and C = {ck, i = 1, 2, . . . K} represents the K divisions
organized into data objects by k-means clustering algorithm. Each division represents a
class ck, and each class has a category center µi. Because Euclidean distance has better
applicability and efficiency in application, it is selected as the criterion of similarity and
distance judgment, and the sum of squares of distances from each point in the class to
cluster center µk is calculated.

J(ck) = ∑
xi∈Ck

‖ xi − µk ‖2 (2)

The objective of clustering is to minimize the sum of all kinds of total distance squares

J(C) =
K
∑

k=1
J(ck), and the objective function is as follows:

J(C) =
K

∑
k=1

J(ck) =
K

∑
k=1

∑
xiCk

Pxi −mkP2 =
K

∑
k=1

n

∑
i=1

dkiPxi −mkP2, (3)

where dki =

{
1, xi ∈ ci
0, xi /∈ ci

.

4.4. XGBoost Methods

XGBoost, i.e., extreme gradient boosting, is an optimized distributed gradient boosting
library, which aims to be efficient, flexible, and portable. XGBoost is a massively parallel
boosting tree tool, which has many advantages compared with traditional methods. First,
it is the fastest and best open-source toolkit available for boosting trees, being more than
10 times faster than the usual toolkit. Secondly, missing values in data are regarded as
a new data type, thus not having a great impact on the model. Thirdly, compared with
other machine learning methods, it combines regularization techniques with tree models
and uses quantile loss functions for fitting, thus achieving better prediction accuracy.
At the same time, it is more interpretable because it is able to model and visualize the
relationship between features and targets thanks to the tree model. Lastly, compared with
linear regression, it has the advantage that it cannot only handle nonlinear relations, while
also being more robust to outliers. This is because linear regression is sensitive to outliers,
whereas XGBoost uses square loss functions and quantile loss functions, which are more
robust in these cases.

CART is an implementation method of decision tree, which is called the classification
and regression tree. It is widely used in data mining and machine learning and can be
applied to tasks such as binary classification, multiclassification, and regression analysis.
As a data-driven machine learning model, XGboost uses the CART regression tree model
as its tree model construction process.

Given dataset D = {(xi, yi) : i = 1, 2, L, n, xiRp, yiR}, where n is the number of sam-
ples, each sample has P characteristics. The model can be expressed as

yi =
k

∑
t=1

ft(xi) ft ∈ F, (4)
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where k is the number of trees, ft is a function in the function space F, yi is the predicted
value, xi is the i-th data input, and F is the set of carts that are possible.

The objective function of XGBoost is shown below.

Xobj =
n

∑
t=1

l(y, y) +
K

∑
k=1

q( fk), (5)

where
n
∑

t=1
l(y, y) is used to measure the difference between the predicted score and the

real score;
K
∑

k=1
q( fk) is the regularization term, and the regular term expression is q( fk) =

gT + l 1
2

T
∑

j=1
w2

j , where T is the number of leaf nodes; g is used to control the number of leaf

nodes; l makes sure that the number of leaves is not too big.
XGBoost uses a gradient lifting strategy, which preserves the existing model and adds

a new regression tree to the model one at a time. The iterative process is as follows:
y0

i = 0

y1
i = f1(xi) = y0

i +

yt
i = yt−1

i + ft(xi)

f1(xi) (6)

Substituting Equation (6) into Equation (5), we can get

tt =
n

∑
i=1

l(yi, yt−1
i + ft(Xi)) + q( ft) (7)

To find a solution that minimizes the target function, XGBoost approximates it by
using the Taylor second-order expansion of the target function at ft = 0.

tt =
n

∑
i=1

[l(yi, yt−1
i + ft(Xi)) +

1
2

hi f 2
t (Xi)] + q( ft) (8)

5. Case Study
5.1. Case Design

The research scope of this paper is the Second Ring Road in Xi’an, with 139,936 sections.
On the basis of the main road network and the nature of the parcels, the study area was
divided into 680 parcels, and 520 effective parcels were obtained after screening.

In the process of road section congestion recognition, the average speed of all road
sections in the road network was ranked from low to high, and the road section with the
speed in the top 10% was identified as a collection of congested road sections. The threshold
was 36 km/h.

In this study, the XGBoost method under the Python environment was constructed
using the Scikit-learn package. The dataset was randomly divided into a training subset and
a test subset, accounting for 70% and 30% of the total data, respectively. In addition, when
modeling the XGBoost method, important parameters were calibrated, namely, max_depth
of the tree and min_child_weight of leaf knot number. To capture the best combination
of two important parameters, we used a grid search. The optimal prediction model had
max_depth = 3 and min_child_weight = 3.

5.2. Case Result

After preprocessing the data and identifying congestion, we obtained the road con-
gestion conditions during morning rush hour throughout the study period, as shown in
Figure 3. The distribution of congestion sections was discrete overall, while it was continu-
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ous and dense along the First Ring Road, Second Ring Road, Third Ring Road, and Xi’an
Ring Road. Additionally, congestion severity in the southern part of the network was lower
compared to other directions, and there was no continuous congestion over long distances.
Notably, congestion on the Xi’an Ring Road was more continuous and longer compared to
other roads. This suggests that many ring roads bear more traffic volume and resulting
congestion than other roads.
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After identifying the congested road segments in the previous step, we analyzed the
vehicle source within the research range. The analysis showed the main vehicle sources
of the congested roads during the morning rush hour, as depicted in Figure 4 (average
number of vehicle sources in 15 min). As shown in the figure, the vehicle source parcels in
congested sections were widely dispersed, with the majority of them contributing only a
small amount of vehicle flow. Conversely, the sources that significantly contributed to the
main vehicle flow were limited in number and mostly located in residential areas between
the First and Second Ring Roads.
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The distribution of congestion on the road network was modeled using binary vectors,
with each variable representing a road section. A value of 1 indicated congestion, while
a value of 0 represented no congestion. Each vector represented a congested network
sourcing to one parcel. In other words, it reflected the congested roads on the network
related to this parcel. Then, k-means spatial clustering analysis was carried out to find the
similarity of the spatial distribution. The elbow diagram is shown in Figure 5. As can be
seen from the figure, when the category was 8, the downward trend became significantly
slower. According to the distribution of congestion sections in different congestion maps,
the congestion maps were divided into eight clusters.
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Figure 5. Elbow chart.

Statistical analysis was conducted on the categories of the congestion chart, and the
quantity relationship of congested roads and corresponding sources of the eight clusters is
shown in Figure 6. The horizontal axis represents the average number of congested roads
within a given cluster, while the vertical axis represents the number of sources of congestion
within that same cluster. The figure provides insight into the relationship between the
number of parcels and the number of congestions on the network. Specifically, it shows
the distribution of the number of parcels responsible for the number of congestions they
generate on the network. From the diagram, it can be observed that, as the number of
congested roads within a cluster increased, there was a corresponding decrease in the
number of sources that contribute to the congestion. In other words, there was a negative
natural logarithm correlation between the number of congested roads and the number of
sources of congestion within a cluster. The results indicate that a small number of specific
parcels were responsible for the majority of network congestion, while the vast majority of
parcels did not contribute to congestion on the network.
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There were some samples of the spatial distribution of congestions of the eight clusters
in Figure 7. Sequence order was based on congested road magnitude within the cluster,
with fewer roads first and more roads last. As shown in Figure 7a, the congested sections
were sparsely distributed, with only a small number of congested sections scattered on the
Xi’an Expressway and central axis. As shown in Figure 7b, the congested sections were
sparsely scattered in the south of the road network, mainly concentrated in the First Ring
Road, Second Ring Road, Central Axis Road, and Xi’an Ring Highway. Most of them existed
in the form of “point” congestion, with few congestion points gradually expanding in the
form of “lines”. There was no large-scale congestion in the form of a “network”. As shown
in Figure 7c, most of the congested sections were scattered and sparsely distributed on the
road network, with less distribution in the southeast direction, mainly concentrated on the
Second and Third Ring Roads. As shown in Figure 7d, the congested sections were scattered
and sparsely distributed in the southeast of the road network, mainly concentrated on the
First Ring Road, Second Ring Road, and Third Ring Road. As shown in Figure 7e, the
congested sections were scattered and sparsely distributed in the southeast and northeast
of the road network, mainly concentrated on the First Ring Road, Second Ring Road, and
Xi’an Ring Road. As shown in Figure 7f, compared with the previous categories, the
congested sections of this category were more densely distributed on the road network,
mainly concentrated on the ring roads and radial road around the expressway. As shown
in Figure 7g, the congested sections were densely distributed in the road network, mainly
concentrated in the First Ring Road, Second Ring Road, Third Ring Road, and Xi’an Ring
Road. Congestion was relatively dense and concentrated, with the congestion on the
ring roads being particularly severe, forming contiguous linear congestion. As shown in
Figure 7h, the congested sections were distributed in the northeast of the road network,
mainly concentrated on the ring and radial roads, forming contiguous regional congestion.
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5.3. Correlation between Land Use and Congestion Patterns

On the basis of the main road network and properties of the parcels, 520 effective
parcels were obtained after screening, as shown in Figure 8. Six variables extracted by Ar-
cGIS were used: (1) road density, (2) working population density, (3) residential population
density, (4) office area density, (5) science, education, and cultural service area density, and
(6) main land-use nature. The descriptive statistics of the variables are provided in Table 2.
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Table 2. Description of parcel characteristics.

Variable Description Ratio/Average

Road density Continuous (m/1000 m2) 11.68
Working population density Continuous (people/km2) 7.50

Residential population density Continuous (people/1000 m2) 13.57
Office area density Continuous (units/km2) 99.53

Density of science areas Continuous (units/1000 m2) 36.96
Main land-use nature Discrete (see Figure 8)

Taking the property of the land parcel as the input independent variable and the
category of congestion cluster as the input dependent variable, the top 10 important
indicators affecting the classification were obtained as shown in Table 3.

Table 3. Top 10 important indicators.

Characteristic Weight

Nature of the land (residential land) 0.141731
Residential population density 0.134664

Number of science and education areas 0.114573
Working population density 0.101248

Nature of land (transportation land) 0.097864
Office space density 0.086793

Road density 0.077864
Nature of land (industrial land) 0.070127

Nature of land (public administration land) 0.067659
Nature of land (commercial land) 0.066427

The analysis of the factors that contribute to congestion clusters revealed that resi-
dential land and residential population density had the strongest impact, with correlation
values of 0.141731 and 0.134664, respectively. This finding is consistent with the understand-
ing that morning peak traffic trips are predominantly commuting trips, with individuals
traveling from their place of residence to their workplace. As such, the attributes of both
the residential and the work locations played a significant role in determining the location
and intensity of congestion clusters.

The amount of land used for science and education, and the density of the working
population were also factors significantly influencing congestion clustering, with correlation
values of 0.114573 and 0.101248, respectively. This suggests that the location of educational
institutions and workplaces also played an important role in determining the concentration
of traffic flow during peak periods.

On the other hand, public management land and economic and commercial land
were factors with the weakest influence on congestion clusters, with correlation values
of 0.067659 and 0.066427, respectively. This can be attributed to the fact that traffic flow
associated with these types of land use was relatively low and, therefore, had less of an
impact on the overall clustering of congestion.

Overall, these findings highlight the importance of considering the relationship be-
tween land use and traffic flow when developing strategies to mitigate traffic congestion in
urban areas. By taking into account the factors that contribute most significantly to conges-
tion, urban planners and transportation managers can develop more targeted solutions to
alleviate traffic flow during peak periods.

6. Conclusions

This research article investigated the characteristics of congestion sources and their
relationship with land use in the Second Ring Road of Xi’an. The authors used CSD,
POI, and LUA data and employed spatial cluster analysis and the XGBoost algorithm to
comprehensively analyze the congestion patterns and land-use features of source parcels.
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The results revealed that a small number of specific parcels were responsible for the majority
of network congestion, while the vast majority of parcels did not contribute to congestion
on the network.

The findings indicated that residential land and residential population density had
the strongest impact on congestion clusters, followed by science and education land and
working population density. When comparing different types of land use, such as public
management land and economic and commercial land, it was observed that they had
the least significant impact on congestion. In other words, these types of land use had
a relatively weaker influence on the occurrence of traffic congestion when compared to
other factors. The authors suggest that urban planners and transportation managers should
consider the relationship between land use and traffic flow when developing strategies to
mitigate traffic congestion in urban areas.

In future research, it would be beneficial to investigate the temporal patterns of
congestion and their relationship with the land use. Additionally, the authors suggest
that further research could explore the impact of other factors such as transportation
infrastructure and public transit systems on congestion patterns. The findings of this study
provide important insights into the factors that contribute to traffic congestion and can
inform the development of more effective strategies to manage traffic flow in urban areas.
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