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Figure 1: Detecting perceived challenge in a video game (Fallout 4) from physiological measures

ABSTRACT

Challenge is the core element of digital games. The wide spectrum

of physical, cognitive, and emotional challenge experiences pro-

vided by modern digital games can be evaluated subjectively using

a questionnaire, the CORGIS, which allows for a post hoc eval-

uation of the overall experience that occurred during game play.
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Measuring this experience dynamically and objectively, however,

would allow for a more holistic view of the moment-to-moment ex-

periences of players. This study, therefore, explored the potential of

detecting perceived challenge from physiological signals. For this,

we collected physiological responses from 32 players who engaged

in three typical game scenarios. Using perceived challenge ratings

from players and extracted physiological features, we applied mul-

tiple machine learning methods and metrics to detect challenge

experiences. Results show that most methods achieved a detection

accuracy of around 80%. We discuss in-game challenge percep-

tion, challenge-related physiological indicators and AI-supported

challenge detection to inform future work on challenge evaluation.
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1 INTRODUCTION

Digital games are a diverse medium that allows for a range of com-

plex, nuanced and subtle experiences. Amongst a range of mean-

ingful and eudaimonic player experiences [13, 14, 19], perceived

challenge [5, 12, 21, 54] is a complex and multi-faceted player ex-

perience that arises from one’s interaction with a game’s intrinsic

challenges at a particular skill level. It typically manifests itself

in three types: physical (performative), cognitive, and emotional

challenge, which is believed to exist independently from or jointly

with one another [5, 12, 14, 54] and can change dynamically with

time as the player progresses through a long game scenario with

rich game contents and designs [56]. With this fact, it is vital to

comprehensively and dynamically evaluate different types of chal-

lenge experiences, which would help to understand how different

challenges are perceived by players throughout the gameplay, and

further design games with specific challenge types and levels to

adapt to players’ skills, experiences, and motivation.

Players’ perceived experience of challenge in video games can

be assessed using the Challenge Originating from Recent Game-

play Interaction Scale (CORGIS). CORGIS is a validated tool that

allows for the subjective quantification of several types of perceived

challenge in video games, including the aforementioned cognitive,

performative, and emotional challenge [21]. However, due to the

discrete nature of the tool, the CORGIS does not allow for a con-

tinuous assessment of this experience ś because questionnaires

are administered after a game play session, the evaluation of chal-

lenge can only be done as an overall reflection of the entire session.

Physiological metrics, on the other hand, provide a continuous, real-

time, objective and quantitative assessment of player status. Such

measures have long been leveraged to analyze or detect various

experiences and in-game aspects, including game difficulty. Usually,

specific affective states and experiences, like boredom and anxi-

ety/frustration, can be mapped to the easy, normal and hard modes

of a game, respectively. With this mapping, various physiological

signals can be used to, first, detect specific emotions and then de-

termine the game’s difficulty level [8, 9, 18, 43, 49]. However, this

method is not ideally suited for digital games with emotional chal-

lenge, as the diverse and complex emotional experiences triggered

by emotional challenge do not perfectly align with the mapping

of ‘difficulty-emotion’. Considering that the process in which play-

ers make different efforts to overcome different challenges may

also lead to different challenge-related physiological responses,

we, therefore, argue in this paper that perceived challenge as a

player experience should be explored in conjunction with players’

physiological signals.

To investigate the potential of detecting a range of experienced

challenge from physiological signals, we first constructed three

game scenarios that cover the different challenge types and then

conducted an experiment to collect 32 participants’ physiological

signals (electrocardiography (ECG), electrodermal activity (EDA),

respiratory activity (RSP), electromyography (EMG) and skin tem-

perature (TEM)) while interacting with the game scenarios. Par-

ticipants’ in-game challenge experiences were collected at dis-

crete points throughout the game using the CORGIS questionnaire.

With 80 physiological features extracted, several machine learning

methods and metrics were applied to detect challenge experiences,

among which the majority achieved an accuracy of around 80%

(with the highest accuracy up to 85%) on challenge activation detec-

tion. Moreover, challenge-related features were selected and refined

with feature importance techniques. Finally, we conclude by dis-

cussing players’ perception of in-game challenge, challenge-related

physiological indicators and also AI-supported challenge prediction

to inform future work related to game challenge.

In this paper, we contribute a pipeline to detect in-game challenge

experience with physiological signals, which consists of three parts:

(1) An experimental study that examines players’ various types

of in-game challenge experience and also offers a novel

dataset1 for challenge detection. The dataset consists of

32 players’ physiological signals and their continuously re-

ported challenge experience of playing three game scenarios.

(2) The first attempt to comprehensively and dynamically detect

different types of perceived challenge based on physiological

measures by using multiple machine learning methods.

(3) A set of challenge-rated physiological features selected and

refined by feature importance techniques which could effec-

tively indicate different types of perceived challenge.

2 RELATED WORK

2.1 Challenge in digital games

Challenge deals with the obstacles that players have to overcome

and the tasks which they have to perform to make progress [1, 22,

59]. Overcoming different types of challenges requires different

abilities and efforts from the player. Physical challenge depends on

the skills such as speed, accuracy, endurance, dexterity and strength

of the player [16, 37, 59]. Cognitive challenge requires players to

use their cognitive abilities such as memory, observation, reasoning,

planning and problem solving [16, 59]. And emotional challenge

deals with tension within the narrative or difficult material pre-

sented in the game and can only be overcome with a cognitive and

affective effort from the player [12]. Research into emotional chal-

lenge has considered how this experience differs from other, more

traditional types of challenge [5], the diverse emotional responses

it evokes [5, 54], the required game design characteristics [5, 14], as

1The data of this paper is released at GitHub: https://github.com/XIEXurong/
ChallengeDetect.git.
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well as challenge-related psychological theories [14]. By resolving

the tension within the narrative, identifying with the characters,

and exploring emotional ambiguities, players encountering emo-

tional challenge would be put in a more reflective state of mind

and experience more diverse, impactful and complex emotional

experiences [5, 12, 21, 54ś56].

In digital games, emotional challenge may exist independently

or jointly with more traditional types of physical and cognitive

(functional) challenge [5, 12, 14, 54]. In the first work to introduce

emotional challenge, Cole et al. [12] suggest that emotional and

functional challenge appear to be, at least partially, mutually exclu-

sive. Bopp et al. [5] then explored the different game experiences

that could feature emotional and functional kinds of challenge. To

explore the tension between different types of challenge, Peng et al.

[54] investigated how emotional challenge shapes player experi-

ence (PX) when presented separately or jointly with functional

challenge. They show that adding emotional challenge to a game

period dominated by functional challenges affects the emotional

responses reported by the players [54]. In the latest work to in-

vestigate eudaimonic experiences, Cole and Gillies [14] suggests

that different types of challenge can exist independently of one

another, but practically they are inter-related and overlap at many

points. Although the boundaries of different types of challenge are

somehow blurred [22], it is important to note that digital games

rarely provide players with exclusively one type of challenge. In-

stead, they require players to overcome them simultaneously or

sequentially in a long-game scenario.

2.2 Challenge evaluation

Before emotional challenge research became a prominent direction

in games HCI, game challenge had long been evaluated or explored

as a similar concept to the łgame difficultyž. To offer a balanced level

of challenge, the difficulty of the game needs to be assessed and

adjusted to match the player’s abilities and preferences. For games

with static levels of difficulty (e.g. easy, normal and hard), challenge

levels are largely identified based on researchers or designers’ ex-

perience and the challenge balancing is done by directly altering

game design characteristics, such as interaction speed [16, 34, 36],

enemy agents [41], multi-tasks setting [34, 35], etc. However, such

approaches have several downsides, for example, as players’ skills

and preferences are not discrete and evolve with time, it is not

always possible to balance the difficulty of the game to keep the

player ‘in the zone’ at all times. To help address this issue, dynamic

difficulty adjustment (DDA) is used in digital games to continuously

adapt the game difficulty which is often inferred or calculated based

on the player’s in-game performance [2, 15, 20, 51, 57, 62, 65] or

their affective states (e.g. [48]). In both cases, these adaptations are

most commonly afforded by relatively traditional physical and/or

cognitive challenge [10, 18, 26, 27, 46].

Challenge as a player experience could be evaluated by gath-

ering subjective data from players using validated questionnaires.

Traditional physical or cognitive challenge has been considered

as a component involving several challenge-related items in some

questionnaires measuring broader PX [22]. With the efforts to bet-

ter define game challenges, more comprehensive questionnaire

tools have recently been developed to evaluate the wide range

of challenge experience, including emotional challenge. One such

tool for assessing perceived challenge is the Challenge Originating

from Recent Gameplay Interaction Scale (CORGIS) [21] ś a val-

idated questionnaire that differentiates and measures four types

of perceived challenge in digital games: cognitive, performative,

emotional, and decision making challenge. Unlike the Video Game

Demand Scale (VGDS) [6] that measures demand ś a conceptually

similar experience to challenge [24] ś the CORGIS assesses the ex-

perience of the player exclusively inside the game, while the VGDS

also covers the social aspects of gaming and other facets external

to the on-screen experience.

While questionnaires like the CORGIS and VGDS are well suited

for measuring retrospective recall of one’s overall gaming expe-

rience, these tools do not allow for a continuous assessment of

challenge that can be directly mapped to the different events inside

the game. For this, physiological measures are commonly employed

to evaluate various player experiences, among which many are tar-

geted at affective/emotional states related to game difficulty level

[3, 8, 9, 18, 43, 45]. Considering that a digital game which is too

easy or too hard could ultimately lead to boredom or anxiety, re-

spectively, flow and anxiety/frustration are often mapped directly

onto the difficulty levels of ‘easy’, ‘normal’ and ‘hard’ [9, 43]. With

such mapping, signals from various physiological measures, in-

cluding ECG, EDA, RSP, EMG and TEM have been used to first

detect a specific affective state and then adjust the difficulty of

the game accordingly. This method has been widely adopted in

biofeedback-controlled DDA in games dominated by traditional

physical or cognitive challenge, such as Pong [18, 43], Tetris [8, 9]

and first-person shooting games [49].

As many modern digital games offer richer and more complex

experiences, the aforementioned methods might not be suitable

for assessing the varied perceived challenge of players. Especially

considering that emotional challenge often appears jointly with the

more conventional types of physical and/or cognitive challenge,

leading to more diverse and complex emotional responses from

players. This makes the detection of perceived challenge difficult

and impractical if based solely on specific kinds of emotional re-

sponses. For example, if physiological signals indicate that a player

is anxious, it may be induced by a high level of physical or cognitive

game difficulty, or it may also be caused by emotional challenge

the player had encountered in the game, e.g. feeling worried about

the safety of a non-player character (NPC). Besides, how well a

player can overcome emotional challenge in a game cannot be as

easily quantified unlike the conventional physical or cognitive chal-

lenge experiences, where the performance of the player is assessed

based on their successful completion of a task. Hence, we argue that

challenge should be directly explored with physiological signals

to help understand how different challenge types are perceived by

players throughout the entire gaming session and further promote

real-time challenge adjustment for different players.

2.3 PX detection using machine learning
methods

Various machine learning and pattern recognition methods have

been used to detect PX from physiological signals. In general, ma-

chine learning models can learn a set of parameters to capture the
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PX pattern characteristics from statistical information of features

and labels of training data, and use these parameters to compute

the pattern distribution from features of test data. For example,

Chanel et al. [9] used an SVM (Support Vector Machine) to analyze

physiological data (GSR and EEG) from 20 people playing Tetris

on different difficulty levels. The SVM model obtained an accu-

racy of 53.33% on classifying three emotional states including bore-

dom, anxiety and engagement. With a multi-modal database that

contains peripheral physiological signals (ECG, EDA, RSP, EMG,

temperature), accelerometer signals, facial and screening record-

ings as well as player’s self-reported emotional experiences, Yang

et al. [64] investigated physiological-based emotion detection (both

valence-affect dimensional emotions and several categorical emo-

tions) by using multiple machine learning classifiers (Linear SVM,

radial basis function (RBF), SVM, Decision tree, Random Forest)

among which Linear SVM achieved the highest average accuracy.

In addition to using traditional machine learning methods, Maier

et al. [45] applied an end-to-end deep learning CNN (convolutional

neural network) to estimate the state of boredom, stress, and flow

when playing Tetris on different difficulty levels based on 15.5

hours’ physiological signals (EDA and blood volume pulse). The

CNN model achieved an accuracy of 67.50% in recognizing high

flow vs low flow states and 49.23% in distinguishing the state of

boredom, stress, and flow. To adapt task difficulty based on auto-

mated affect recognition when playing Pong in a competitive mode,

Darzi and Novak [18] used an SVM algorithm to classify perceived

difficulty using 5 physiological responses (RSP, EDA, ECG, and 2

facial electromyograms). The SVM model achieved an accuracy of

84.3% on the perceived difficulty for two-class classification. As

a proof of concept, Darzi and Novak [18] also conducted a small

closed-loop study to demonstrate the technical feasibility of such

physiological-based real-time adaptation.

Although physical and cognitive challenge, usually assessed

through game difficulty, haswidely been detectedwith physiological-

based affective computing methods, little research has directly ex-

plored different challenge types and levels with physiological sig-

nals, especially with a focus on emotional challenge. Recently, to

explore the possibility of detecting a wider range of challenge types

based on physiological measures, Peng et al. [56] conducted a pri-

mary study using logistic regressionmodels to detect different types

of game challenges. A primary detection accuracy over 60% sug-

gests the potential for further development of a real-time challenge

measurement instrument. However, the study was limited to only

one game scenario and the challenge types were determined by

the researchers without a quantitative evaluation. Moreover, the

study analyzed only one dominant challenge type with each in-

game event, which largely limited the understanding of concurrent

and inter-related challenge experiences. With increasing interest

in defining and evaluating challenge experience, there is a need to

investigate the experience of perceived challenge comprehensively

and dynamically by combining quantitative, subjective challenge

evaluation metrics with AI-supported computational methods, thus

improving our understanding of how different types of perceived

challengemanifest themselves in real-time and for different in-game

scenarios.

3 EXPERIMENT

To explore the player experience of perceived challenge through-

out game play and to also collect data for challenge detection, we

designed and conducted an experiment. Specifically, we first con-

structed three game scenarios using a series of game quests from

Fallout 4 [63]. The game scenarios were sought after to cover an en-

tire spectrum of different game challenges. Then, the game events

of each scenario were segmented so as to locate valid data for the

following step. After a pilot study to refine experimental settings

and instructions, a total of 41 participants were recruited to play

the game scenarios during which their physiological signals (EDA,

ECG, EMG, RSP and TEM) were recorded. Upon completion of the

gaming session, they were asked to report on their overall challenge

experience and emotional responses to playing the game and after-

wards each participant was asked to recall their perceived challenge

experience every 30 seconds. All the collected data were prepared

for the analysis and detection of challenge in the next step.

3.1 Game scenarios

Fallout 4, an action roleplaying game (RPG), was chosen for this

study as it provides narrative-rich content, supports modification,

and has the potential for generating various types of perceived chal-

lenge [14, 54, 56]. Three game scenarios (A, B and C) were con-

structed with a series of Fallout 4 game quests2 by three authors

familiar with the game content and/or because of their expertise

in the field of player experience and challenge, in particular. The

constructed game scenarios were expected to meet the following cri-

teria: 1) each game scenario should be possible to complete within

one hour; 2) at least three types of challenge (physical, cognitive

and emotional) are present; 3) a certain type of challenge might

appear within different in-game scenes and different types of chal-

lenge might appear in a different order; and 4) the game events and

main characters that players meet should also be different within

different game scenarios.

3.1.1 Scenario A. Scenario A was constructed using theWar Never

Changes,Out of time, Reunions and Institutionalized quests. TheWar

Never Changes quest begins with players walking around inside a

house and interacting with their spouse, infant son (Shaun) and a

robot housekeeper (Codsworth). The player then talks to a person

and obtains the clearance to enter Vault 111. After a short period of

time inside their house, the player learns that nuclear detonations

have hit some nearby cities ś this prompts the player with their

spouse and son to rush toward Vault 111. Inside, each of them enters

a separate cryo pod. Then the player witnesses three unknown

figures shoot their spouse and take their son. When the player gets

out of the pod, the game progressed to the Out of Time quest during

which the player escapes from Vault 111, finds ruins all over the

world and learns from Codsworth that 210 years have passed. After

that, the player progresses to the Reunions quest to find Kellogg

who killed his spouse. In Reunions, the player needs to fight against

large amounts of guarding synths first and then talks to Kellogg to

learn that Shaun is living at the Institute ś an evil organization that

creates synths. After killing Kellogg, the player progresses to the

2Detailed walkthrough of the quests can be found at https://fallout.fandom.com/wiki/
Fallout_4_quests
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Institutionalized quest to find their son. In a room at the Institute,

the player encounters a scared and confused child who responds

that he is Shaun but keeps asking ‘Father’ to help. Then the ‘Father’

enters the room and tells that the child is just a synthetic Shaun

and he is the real Shaun. He is also the director of the Institute now.

Finally, the player needs to decide whether to join their son in the

Institute or leave their son.

3.1.2 Scenario B. Scenario B was comprised of the Fire Support,

Call to Arms and Blind Betrayal quests. In the Fire Support quest,

the player meets Paladin Danse, a commander of the Brotherhood

of Steel in a battle against a swarm of feral ghouls. From Danse, the

player learns that the Brotherhood is a just and united group and

then responds to assist them to find a transmitter. In Call to Arms,

the player follows Danse to an abandoned rocket silo to find the

transmitter. Along the way, the player fights alongside Danse. In

addition to encountering robbers and exploring the labyrinth-like

silo, they go through many battles with the Brotherhood’s biggest

enemy ś synths. Throughout the quest, Danse shows his resentment

towards the synths. The Blind Betrayal quest takes place when the

head of the Brotherhood, Elder Maxson, reveals to the player that

Danse is a synth himself and orders the player to execute Danse.

The player then confirms the news with Quinlan and locates Danse

with Haylen. When the player finds Danse hiding in a bunker, the

player then has a choice after talking to Danse about whether to

save or execute him. If the player decides to save Danse, they need

to convince Danse to escape with them. They then have to face

Maxson when leaving the bunker. Again, the player must talk to

Maxson to spare Danse, otherwise, Danse is executed by Maxson.

3.1.3 Scenario C. Scenario C was constructed from the Human

Error quest. Before playing, the player learns that a caravan person

has been killed in strange circumstances near a peaceful settlement

called Covenant and their task is to investigate what has happened.

In Human Error, the player begins by taking a SAFE test to enter

the Covenant. In Covenant, the player talks to Honest Dan who is

also an outsider of Covenant and agrees to help Dan to find Amelia

Stockton, a girl missing from the caravan. The player then looks for

information in Covenant by talking to the inhabitants, searching

their houses and cracking office terminals to get clues, etc. Finally,

the player learns that Amelia is hiding in a secret Compound, which

the player then reaches together with Dan. Inside Compound, the

player fights along with Dan against groups of scattered armed

guards at the labyrinth-like Compound and also learns that the

Compound are conducting cruel experiments to develop the SAFE

questionnaire. After killing all guards, the player finally meets a

doctor who is the person that the guards are trying to protect. The

doctor’s work is to reveal any hidden synths by perfecting the SAFE

test, even by killing real human residents. She argues that the girl

Amelia is most likely a synth infiltrator. The doctor then asks the

player to support her to continue the experiment. Dan interferes

with the conversation and disagrees with the doctor. The player

needs to choose whether to kill the doctor and release Amelia or to

support her and then kill Dan.

3.2 Game events

Although each game quest has a sequence of fixed tasks for players

to complete, players in our experiment still have the opportunity

to be involved in other trivial matters, such as encountering the

blank screen of quest transitions, reading instruction tips, seeking

help, exploring the open game world, etc. These matters may hap-

pen uncertainly in the game play and usually cause noise in the

physiological signals. To remove them from the analysis, for each

game scenario, a sequence of game events was segmented so as

to locate valid data of each player. Particularly, each game event

is a relatively independent in-game task that every player must

complete in the game, such as being involved in an unavoidable

fight, interacting with an important NPC, or searching for neces-

sary information. These game events were segmented by the first

author and Appendix A shows the list of the sequential game events

within each game scenario.

3.3 Participants and procedures

3.3.1 Pilot study. A pilot study with 5 participants was conducted

to refine the basic settings and instructions for each game scenario.

Basic settings of arm equipment, character skills, game difficulty, etc.

were kept at a normal level. Several instruction tips (see Appendix

A) were given to the players in a written form before progressing

to a specific game quest (each tip takes around 5 minutes to read).

3.3.2 Participants. For the main experiment, we recruited a total of

41 participants (19 male and 22 female, age𝑀=24.3, 𝑆𝐷=2.01) with

no experience with Fallout series prior to the experiment. Each par-

ticipant was randomly assigned to play one of three game scenarios

(A, B or C). In this experiment, participants used a mouse and a

keyboard to play the game on a PC with headphones (Figure 2-a).

During the session, they were only allowed to use basic commands

like moving, shooting, loading ammunition and restoring health, as

well as interacting with NPCs and other key objects of the quests.

Other advanced options like looting items, changing equipment

and upgrading skills were not allowed.

3.3.3 Procedure. Each participant signed a consent form prior to

playing the game. This was followed by an introduction to basic

game operations. Participants then wore physiological sensors and

went through a test period to familiarise themselves with the oper-

ations. Each participant had a rest period before starting the main

part of the experiment. These procedures lasted approximately 25

minutes.

When playing the game, participants first read the written in-

structions to learn the basic background information. During play-

ing, their physiological signals and gameplay screeningwere recorded

synchronously. An experiment facilitator was present in the room

outside of the participants’ field of sight to provide help if necessary.

After playing, participants removed the physiological sensors and

filled out survey scales measuring their overall challenge experi-

ence and emotional responses. To complete each scenario (A, B and

C), a player took on average 55, 50 and 40 minutes, respectively,

with the survey reporting overall challenge experience and emo-

tional responses adding another 15 minutes to the experiment time.

Participants who completed this part were rewarded with 30 USD.
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After playing the game, each participant was also trained (addi-

tional 5 minutes) to use the software developed by the authors for

collecting their retrospective in-game challenge experience, which

they had to fill out within two days after the completion of the

study. They were rewarded another 40-80 USD according to the

quality of their ratings.

3.4 Data collection

3.4.1 Physiological signals. Physiological signals, including ECG,

EDA, RSP, EMG, and TEM, were recorded at a sampling rate of

1000 Hz using Biopac’s MP150 system. For ECG, EDA and EMG,

disposable AgCl electrodes were used. Skin temperature was col-

lected by using the TSD202B of Biopac and RSP data was acquired

with a BioNomadix respiration transducer belt, also from Biopac.

Figure 2-b shows the placements of the various electrodes for phys-

iological recordings and Figure 2-c is an example of the recorded

physiological signals.

3.4.2 Overall player experience of each game scenario. Players’ ex-

perienced challenge of each game scenario was measured using

the CORGIS [21], which consists of 30 items (7-point Likert scale, 1

= strongly disagree and 7 = strongly agree) to evaluate cognitive,

emotional, performative (physical), and decision making challenge

types. Players’ diverse emotional responses were measured using

the Emotion Annotation and Representation Language (EARL) [60]

to rate 48 kinds of emotions (9-point Likert scale, 0 = not at all and

8 = quite a lot). These data were collected immediately after each

game scenario was completed.

3.4.3 Players’ in-game challenge ratings. To capture players’ per-

ceived challenge experience, participants were given two days to

reflect on their experience every 30 seconds by watching their game-

play screen recording post study. Participants used a rating software

developed by the authors to play a collection of short videos one

by one and answer a set of slightly modified CORGIS questions

("the game" in each item of the original CORGIS was changed to

"the game period"). The short videos (30 seconds for each video),

split from the gameplay screen recording, were assessed by the par-

ticipants answering the questions about their experience exactly

within the 30s game period. To facilitate data quality checking, for

each 30s video, the software automatically and randomly selected

one question from the CORGIS’s 30 items and repeated it in the

software’s question sets for participants to answer. If a player’s

answers to the repeated questions are inconsistent, it may indicate

that the rating is less reliable. In our experiment, answers that differ

by more than 2 points on the repeated questions are deemed in-

consistent, and a player’s rating data is judged invalid if they have

over 10% inconsistent answers across all the videos. The post-study

rating of scenarios A, B and C took 4.38 (SD = 1.15), 3.66 (SD = 0.90)

and 2.88 (SD = 0.82) hours respectively (calculated using valid data

from 32 participants).

3.5 Results of the overall player experience

We excluded the data from 9 participants for the following reasons:

among which 2 stopped playing due to 3D dizziness, 2 refused to do

the post-study rating, 3 with invalid post-study retrospective data,

onewith irregular heart rate and onewhose EMG electrodes became

loose during the experiment. The final dataset was comprised of

the data from 32 participants (age𝑀=24.5, 𝑆𝐷=2.46; 10, 11 and 11

participants for the game scenario A, B, and C, respectively), which

was included in the analysis. None of them reported having fatigue

during play, measured by Simulator Sickness Questionnaire [39].

Table 1 shows the results of participants’ overall challenge ex-

perience and the high-scoring emotional responses for each game

scenario. The rating for each type of perceived challenge was calcu-

lated as the average score of all items for that particular type using

the CORGIS.

4 IN-GAME CHALLENGE EXPERIENCE

4.1 Data preparation

In our experiment, different participants played each game scenario

at different paces. Scenarios A, B and C took 54.3 (SD = 4.87), 49.3

(SD = 5.68) and 38.7 (SD = 9.03) minutes to complete, respectively.

For each game event (see Appendix A), both the time to start the

event and the time taken to get through the event differed between

individual players. To learn participants’ perceived challenge ex-

perience across game play, we watched each participant’s game

play screen recording and marked their start and end time of each

game event. Then we used the marked time stamp to locate each

participant’s challenge ratings for each game event. Particularly,

as most of the segmented events lasted more than 30 seconds, the

challenge experience with each event is indicated by the challenge

rating at the time median of the event (see Figure 3). This allowed

us to evaluate each participant’s challenge experience with each

game event. As the sample of players for each scenario was not

large enough for statistical analysis, we instead report on the novel

descriptive in-game challenge findings.

4.2 Descriptive analysis

Figures 4-a.1, 4-a.2 and 4-a.3 show the mean ratings of participants’

challenge experience for each game event in scenarios A, B and C,

respectively. Figures 4-b.1, 4-b.2 and 4-b.3 show example ratings of

different participants (Appendix B offers more detail on Figure 4).

4.2.1 Dynamical challenge experience. Figures 4-a.1, 4-a.2 and 4-a.3

show that different types of perceived challenge changes with

in-game events during game play. For example, in scenario A,

physical challenge (phyC) is low before event 4 when the player

stays at the house. It increases at event 5 and event 10 when the

player rushes toward or escapes the Vault. The highest phyC is

observed in events 14-16 when the player is involved in fighting

large amounts of synths. With emotional challenge (emoC), it is low

before event 6 and then increases to a medium level when the player

witnesses three unknown figures shooting their spouse and taking

their son in event 7. After that, emoC decreases and then increases

until finding the scared and confused child (the synthetic son) in

event 20 and talking to the ‘Father’ (the real son) in events 21-23.

Decision making (DM) challenge, on the other hand, is low almost

across the whole scenario until events 21-23, when the player is

faced with important decisions. Finally, cognitive challenge (cogC)

has small fluctuations and increases a little in event 2 when talking

and event 10 when looking for a path. The highest cogC level is
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Figure 2: (a) Experimental setting, (b) electrode placement, and (c) example of physiological signals.

Table 1: The Overall Challenge Experience and Emotional Responses for each game scenario.

Sce- Cronbach’s Cognitive Emotional Physical Decision-

nario 𝛼 Challenge Challenge Challenge Making High-scoring emotional responses

A 0.935 4.05 (1.06) 5.43 (0.89) 4.24 (1.89) 5.14 (1.03) anxiety, sadness, doubt, tension, shock

B 0.924 3.79 (1.03) 5.32 (0.66) 4.09 (1.34) 5.18 (0.86) trust, love, affection, courage, interest

C 0.933 4.88 (0.91) 5.70 (0.60) 5.22 (1.20) 5.51 (0.65) tension, anxiety, interest, courage, empathy

Figure 3: The challenge experience with each event is indicated by the challenge rating at the time median of the event.

achieved in event 18 when fighting against Kellogg ś the player

needs to find Kellogg inside the building.

4.2.2 Co-existing and independent types of experienced challenge.

Figures 4-a.1, 4-a.2 and 4-a.3 also show that with many game

events, different types of perceived challenge can co-exist

with each other. For example, in scenario A, cogC and phyC co-

exist in event 10 when escaping from the Vault and event 18 during

demanding fighting against Kellogg; emoC and DM co-exist in

event 23-a when joining the son and event 23-b when leaving the

son. In scenario B, cogC, emoC and DM nearly co-exist in events

14-15 and events 18-19-a during which the player needs to talk to

NPCs to get information and make choices; for event 19-b, two

participants decided to kill Danse directly and they reported high

levels of emoC and DM. In scenario C, for event 2 when answering a

set of psychological questions, cogC, emoC and DM co-exist; and for

events 10-14 during which the player is involved in searching and

fighting, cogC and phyC co-exist; cogC, emoC and DM co-exist in

events 16-18 when the player is involved in important conversations

and decision making; for event 19-b1, two participants decided to

kill Dan and they peaked at almost all four types of challenge.

Noting that some types of experienced challenge can also exist

in a relatively independent way, such as the emoC in event 7 of

scenario A, the phyC in event 1 of scenario B, the cogC in event 7

of scenarios B and C.

4.2.3 Individual rating differences. Figures 4-b.1, 4-b.2 and 4-b.3

show that although the basic settings of each game scenario

were the same, different participants rated quite different

levels of challenge experience with the same game event.

This may be due to the varied skill, experience with and motivation

in the game play between participants. Figure 4-b.1, for example,

shows that with event 7 of witnessing the death of the spouse

and the robbery of the son, participants reported different levels

of challenge experience. The maximum, minimum, median, first

quartile and third quartile for the rating of emoC with event 7

are: 5.89, 2.89, 5.00, 4.67 and 3.86 respectively. Another example,

as shown in Figure 4-b.2, with event 1 of fighting against a group

of feral ghouls, the maximum, minimum, median, first quartile,

third quartile and outlier for the rating of phyC are: 6.00, 3.20,

5.40, 6.00, 4.60 and 1.70 respectively. In this study, considering the

significant individual differences which may exist in understanding

the challenge, data of outliers are also included for the following

analysis and detection.

5 CHALLENGE DETECTION APPROACH

5.1 Data preparation

5.1.1 Physiological signal pre-processing. Signal pre-processing

was conducted with AcqKnowledge software of
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Figure 4: (a.1, a.2, a.3) The mean ratings with each event and (b.1, b.2, b.3) the example ratings of different participants.

Biopack3. Specifically, for ECG data, z-score normalization was

first applied to reduce individual differences by making each par-

ticipant’s data have unit variance and zero mean. Median filters

3Detailed information can be found at https://www.biopac.com/product/
acqknowledge-software/

of 200-ms and 600-ms width were used to remove baseline wan-

der caused by the participant’s movement or breathing [33]. Then,

R-wave peaks were detected by Pan-Tompkins QRS detector [53],

and the RR intervals (heart rate variability, HRV) were computed

as the time between two successive R-wave peaks. For EDA data,

baseline wander was removed by a high pass filter [61] with 0.02
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Hz. For RSP data, a band-pass filter with 0.1 Hz to 5 Hz was used to

remove unusual breathing cycles. Penh Analysis of Acqknowledge

was then used to detect respiratory circulation by setting the 65%

of exhalation volume as a threshold.

5.1.2 Feature extraction. A total of 80 physiological signal features

were extracted usingMatlab (these can be found in Appendix C). For

each kind of signal of each participant, z-score normalization was

applied first to reduce individual differences. Then, each frame of

physiological features was computed using signals inside a sliding

time window with 10-second width and 5-second shift (see Figure

5). Although there is still no consensus on the optimal size of the

time window with peripheral physiological analysis [64], the most

commonly used time windows are 60, 30 and 10s [42]. In this study,

to investigate the fine-grained dynamic physiological response in

greater depth, the time window was set to a 10s width. Further,

to avoid any possible failure to capture information between two

consecutive time windows, a 5s sliding shift was used.

With feature extraction, specifically, ECG time-domain features

were computed using the R-wave peak values, RR intervals, as well

as their first-order differences (Diffs) between two successive tokens.

To compute ECG frequency-domain features, the RR intervals were

re-sampled to 8Hz using a cubic spline interpolation [52]. Then, Fast

Fourier Transform-based method on 256 samples for each frame

(reset to 32-second window width) was applied and the frequency

bands were grouped into three ranges: very-low-frequency (VLF)

(0ś0.04 Hz), low-frequency (LF) (0.04ś0.15 Hz), and high-frequency

(HF) (0.15ś0.4 Hz) [33]. The power and power spectral density (PSD)

in these ranges were utilized as features. For RSP data, the same

time-domain features as ECG data were extracted. For TEM data,

the amplitudes and their Diffs were used. For EMG data, the signal

was first down-sampled to 32 Hz, followed by a 6-level wavelet

decomposition with Daubechies5 [11]. For EDA data, time- and

frequency-domain features [61] of low-frequency (LF) (0.02ś0.5 Hz),

high-frequency (HF) (0.5ś1 Hz), and very-high-frequency (VHF)

(>1 Hz) ranges were computed.

Finally, to remove the potentially noisy physiological periods

during game play, only the feature frames located in the game event

periods (marked by the start and end time of each game event) were

deployed for detection (this can be found in Figure 5).

5.1.3 Training labels. Participants’ perceived challenge ratings

were used as labels for model training. As Figure 5 shows, the phys-

iological feature samples were determined by the feature frames

and challenge ratings located in the game event periods. In this

study, 12,436 labeled data samples were determined over the 32

participants in total.

In the following detection work, we could directly use the chal-

lenge ratings of each data sample as a training label, and the model

would directly predict the challenge ratings for evaluation data.

However, with perceived challenge experience, the demonstrated

individual rating differences make the distributions of challenge

ratings for different participants rather different from each other.

This may make the averaged distribution represented by the trained

models significantly mismatch to that of the target participants. To

address this issue, we compute the mean 𝜇𝑦 and standard deviation

𝜎𝑦 for all challenge ratings ywithin each participant, and normalize

the training label of that player using the following formula

y
(norm)
train

=

ytrain − 𝜇𝑦

𝜎𝑦
. (1)

For evaluation, we invert the normalization for the predicted labels

to produce the predicted challenge ratings with original distribution,

which is computed as

ŷtest = ŷ
(norm)
test ∗ 𝜎𝑦 + 𝜇𝑦 (2)

for each participant.

5.2 Machine learning methods

As the first study to explore perceived challenge detection with

physiological signals, multiple widely used machine learning meth-

ods were applied and tested. We used regression models to predict

the challenge ratings using the physiological features introduced

in section 5.1.2. These methods include Linear Regression (LR),

K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Deci-

sion Tree (DT), Gradient Boosting Decision Trees (GBDT), Random

Forest (RF), and Deep Neural Networks (DNN) with different ar-

chitectures. The detailed model descriptions and configurations

are provided in Tables 14, 15 and 16 of Appendix D. Training and

evaluation of all the models are implemented using Matlab.

5.3 Challenge evaluation metrics

5.3.1 RMSE and MAE. To evaluate the machine learning models

for challenge detection, the widely used metrics Root Mean Square

Error (RMSE) and Mean Absolute Error (MAE) are computed be-

tween the true and predicted challenge ratings of evaluation data.

They reveal how far the predicted ratings are off from the true

ratings. For the 𝑖th challenge they are computed as

RMSE𝑖 =

√

√

√

1

𝑁

𝑁
∑︁

𝑛=1

(𝑦𝑛,𝑖 − 𝑦𝑛,𝑖 )2 (3)

MAE𝑖 =

1

𝑁

𝑁
∑︁

𝑛=1

|𝑦𝑛,𝑖 − 𝑦𝑛,𝑖 | (4)

where 𝑁 denotes the number of data samples for evaluation.

To determine whether a certain type of challenge has been acti-

vated, an additional 2-class classification metric is exploited for the

evaluation. This metric may facilitate a simpler and more discrete

understanding of challenge, which could be easily utilized in some

game challenge adjustment designs and applications.

5.3.2 Challenge activation detection: five 2-class classifications. The

challenge activation detection is a 2-class classification for each

challenge to detect whether the challenge experience is activated

to a medium level. Based on the challenge ratings we used, each

challenge with a rating equal to or higher than 4 is regarded as

activated. This produces four 2-class classifications for all four

challenge types. We also added the fifth 2-class łchallengež label

denoting łNo Challengež, which is activated when all four challenge

types have ratings less than 4. The proportions of the activated

(positive) class of cogC, emoC, phyC, DM and No Challenge in all

data are (41.2%, 30.4%, 34.9%, 23.0%, 39.7%).

For the 2-class classification, the evaluation data is separated into

four parts: True Positive (TT), True Negative (TN), False Positive
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Figure 5: Physiological feature samples were determined by features frames and challenge ratings located in the game event

periods.

(FP), and False Negative (FN). The accuracy is hence computed as

Acc2−𝑐 =

𝑇𝑇 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. (5)

and the 2-class F1 score of the activated (positive) class is computed

as

𝐹12−𝑐 = 2
Pre ∗ Rec

Pre + Rec
(6)

where Pre =
𝑇𝑃

𝑇𝑃+𝐹𝑃 and Rec =
𝑇𝑃

𝑇𝑃+𝐹𝑁 denote the precision and

recall of the activated (positive) class respectively.

6 RESULTS OF DETECTION

6.1 Performance of evaluation

6.1.1 10-folds cross validation. We employed 10-folds and leave-

one-participant-out cross validation methods for evaluation in this

section. In the 10-folds cross validation, the whole dataset with

12,436 labeled data samples were equally and randomly split into

10 subsets. We trained the models 10 times. For each time we used

1 subset as the evaluation data and the other 9 subsets as the train-

ing data. Finally, each subset was used for evaluation once. The

evaluation results of all 10 subsets were averaged for each challenge.

The performance of different machine learning models described

in section 5.2 and Appendix D in 10-fold cross validation for all

challenges is shown in Table 2. For each machine learning model,

e.g., the LR1, all results in different metrics are generated by the

same trained model. Four main trends are presented in the Table:

(1) The machine learning models using the label normalization

method introduced in section 5.1.3 by equation (1) and (2)

achieve the average performance in RMSE and MAE as low

as 0.84 and 0.61 respectively. These results imply that, in

the best case, the predicted challenge rating may have the

error of ±0.84 on average and ±0.61 as the median. Evaluat-

ing by challenge activation detection, the average detection

accuracy over all challenges is up to 85.1%. All the models sig-

nificantly outperform both the random selection with accura-

cies of 50% and the constant model with accuracies of 66.2%,

where the constant model simply predicts the class with

the highest proportion for each challenge. In addition, we

also train models without using label normalization, which

produce much worse results than those shown in Table 2

with label normalization.

(2) For the performance on each challenge as well as for all chal-

lenge types, the feed-forward DNN models using residual

connection outperform most other models. Moreover, the

multi-task learning (MTL) for DNN training using the ad-

ditional task of challenge activation detection consistently

improves the performance and yields the best model denoted

by łDNN4ž (detailed configuration can be found in Table 16

in Appendix D). However, the deeper DNN (9-hidden-layer)

has no advantage over the 5-hidden-layer models while hav-

ing a much larger number of parameters. Meanwhile, with

higher interpretability than the black-box DNN model, the

Random Forest model produces a sufficiently good perfor-

mance similar to that of DNN4.

(3) In general, the performance difference among different chal-

lenge types is not significant. Specifically, comparing the

RMSE and MAE among different challenges, detecting the

rating level of cogC and emoC is relatively easier (with lower

RMSE and MAE) than phyC and DM. With the challenge

activation metric, detection for cogC and DM are relatively

easier (with higher Acc2−𝑐 ). Using this metric, the detection

of ‘No Challenge’ has the worst performance.

(4) Most of the models produce standard deviations (Std) smaller

than 0.02 in RMSE and MAE over the 10 subsets.

Figure 6 shows examples of predicting challenge ratings using

the DNN4 for each challenge type. We randomly select 50 samples

from the fifth subsetand predict the ratings using the models trained

with the other subsets. These samples are not sequential and are

from different participants. Here, the ratings predicted by the DNN4

(the blue points) yield a good fit to the true ratings (red points) for

all four challenges.

6.1.2 Leave-one-participant-out cross validation. The 10-fold cross

validation shows the in-domain challenge detecting performance

when all target participants are seen in the training data. However,

when in practice, the target participants could be new users unseen

in the training stage. The leave-one-participant-out cross validation

is similar to this, in which the data of each participant was treated

as an evaluation set once, while the data of the other 31 participants

was used for training. Therefore, the evaluation data at each time

was totally out-of-domain and unseen in the training data. Finally,

the evaluation results of all 32 participants were averaged for each

challenge type.
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Table 2: Average performance of 10-fold cross validation over all challenges for different machine learning models with

label normalization method introduced in section 5.1.3 by equation (1) and (2). The Acc2−𝑐 and 𝐹12−𝑐 are metrics of challenge

activation detection. Std denotes standard deviation; Chal denotes Challenge; noC denotes No Challenge. The configurations of

different models are provided in Tables 14, 15 and 16 of Appendix D.

Metric Chal LR1 LR2 KNN SVM DT GBDT RF NN DNN1 DNN2 DNN3 DNN4 DNN5

RMSE

cogC Mean 0.92 0.87 0.86 0.83 0.91 0.77 0.76 0.89 0.81 0.77 0.77 0.74 0.76

Std 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.03

emoC Mean 0.91 0.88 0.88 0.84 0.89 0.75 0.76 0.89 0.81 0.77 0.78 0.75 0.76

Std 0.02 0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.02 0.02 0.01 0.02 0.01

phyC Mean 1.23 1.19 1.18 1.13 1.27 1.09 1.08 1.17 1.09 1.03 1.04 1.00 1.03

Std 0.02 0.03 0.02 0.03 0.03 0.02 0.04 0.03 0.03 0.04 0.03 0.01 0.03

DM Mean 1.06 1.05 1.03 1.02 1.06 0.91 0.91 1.04 0.94 0.90 0.90 0.87 0.89

Std 0.02 0.02 0.02 0.03 0.02 0.03 0.04 0.02 0.02 0.02 0.03 0.04 0.03

Avg Mean 1.03 1.00 0.99 0.96 1.03 0.88 0.88 1.00 0.91 0.87 0.87 0.84 0.86

Std 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03

MAE

cogC Mean 0.72 0.67 0.64 0.64 0.68 0.59 0.59 0.70 0.63 0.58 0.59 0.56 0.57

Std 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02

emoC Mean 0.72 0.67 0.66 0.64 0.67 0.57 0.59 0.70 0.62 0.58 0.59 0.56 0.57

Std 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01

phyC Mean 0.95 0.89 0.84 0.83 0.93 0.81 0.82 0.90 0.80 0.75 0.74 0.71 0.72

Std 0.01 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.02

DM Mean 0.81 0.79 0.73 0.72 0.77 0.68 0.68 0.79 0.68 0.65 0.64 0.62 0.63

Std 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02

Avg Mean 0.80 0.75 0.71 0.71 0.76 0.66 0.67 0.77 0.68 0.64 0.64 0.61 0.62

Std 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Acc2−𝑐 (%)

cogC Mean 79.8 82.8 82.4 82.9 82.1 85.8 87.2 81.5 84.2 85.3 85.6 86.8 86.1

Std 0.9 0.7 0.6 1.0 1.2 1.3 0.7 1.4 1.3 0.6 1.0 0.9 1.3

emoC Mean 81.1 81.9 82.7 82.9 82.0 84.7 84.3 81.8 83.7 84.4 85.0 85.1 85.6

Std 0.9 0.8 0.7 0.7 1.1 0.9 1.0 0.6 1.0 0.7 0.6 1.1 0.9

phyC Mean 79.1 81.5 80.9 81.1 79.1 83.1 82.7 80.8 82.5 84.1 84.0 85.1 84.6

Std 1.1 1.1 1.0 1.1 1.3 0.7 1.7 1.2 1.2 1.1 0.8 0.5 0.7

DM Mean 83.5 84.4 84.2 83.6 83.8 86.2 85.7 83.6 85.2 86.1 86.5 87.3 87.3

Std 1.2 0.8 0.9 1.1 1.1 0.7 1.0 1.1 0.9 1.2 0.8 1.1 0.5

noC Mean 71.6 78.4 77.4 75.1 77.8 79.8 78.0 75.3 78.1 80.1 80.6 81.4 81.0

Std 1.3 0.9 0.8 0.8 1.6 1.4 1.3 1.8 1.7 1.4 1.0 1.1 0.9

Avg Mean 79.0 81.8 81.5 81.1 81.0 83.9 83.6 80.6 82.7 84.0 84.3 85.1 84.9

Std 1.1 0.9 0.8 1.0 1.3 1.0 1.1 1.2 1.2 1.0 0.8 1.0 0.9

𝐹12−𝑐 (%)
Avg Mean 63.8 70.1 69.1 66.7 68.3 73.3 72.0 66.7 70.9 73.2 74.1 75.6 75.5

Std 2.2 0.9 0.6 1.3 1.1 1.3 1.5 2.0 1.0 1.2 1.1 0.9 0.7

The performance of different machine learning models for all

challenge types in leave-one-participant-out cross validation is

shown in Table 3. For each machine learning model, e.g., the LR1, all

results in different metrics are generated by the same trained model.

We observed different trends from the 10-folds cross validation:

(1) Consistent performance degradation is obtained compared

to themodels in 10-folds cross validation. This may be caused

by the high mismatch between training and test data. We

expect this degradation can be alleviated using additional

data collected from a larger sample.

(2) Different models have different performances evaluated by

different metrics. Especially, the simple methods, for exam-

ple, Linear Regression1 produces relatively good results in

all metrics and achieves the best average accuracy of chal-

lenge activation detection. This may be due to the overfitting

of the more complex model, such as the DNN models. The

Random Forest model achieved the best results across all

metrics.

(3) With the various performance among different challenge

types, we observe a similar trend to the 10-folds cross valida-

tion case, except that the challenge activation detection for

cogC is harder (with lower Acc2−𝑐 ) than emoC, phyC and

DM.

(4) The results have much larger Stds over different participants

than those in 10-folds cross validation. This implies the high

variability among participants. This variability among dif-

ferent participants is shown in Table 4 using the results ob-

tained from Random Forest model in leave-one-participant-

out cross validation.
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Figure 6: Examples of prediction to the challenge ratings by DNN4 with lab normalization for each challenge in 10-fold cross

validation. 50 samples are randomly selected from the fifth subsets and predicted by the model trained with the other subsets.

The red points denote the true ratings and blue points denote the predicted ratings.

Figure 7 shows examples of predicting challenge ratings using

Random Forest for each challenge type. For each challenge type,

200 sequential samples are selected from different participants and

predicted by the model trained using other participants’ data. It

shows that the predicted ratings for emoC and phyC fit the true

ratings well. The prediction for DM has a trend with a significant

positive correlation to the true ratings. Nevertheless, only a weak

correlation was obtained by the predicted trend for cogC compared

to the true ratings. This is consistent with the fourth trend discussed

above that the cogC has lower Acc2−𝑐 than emoC, phyC and DM.

6.2 Feature importance

To investigate the ability and importance of different physiological

features for representing challenge information, we adopt Linear-

Regression-based feature selection and Random-Forest-based fea-

ture selection. In Linear-Regression-based feature selection, we

train a Linear Regression model using all data with 80 features

from 32 participants. The physiological features with interception

are used as input features, namely x = [x, 1]𝑇 . We select 44 most

important features by keeping only the features with significant co-

efficients (p < 0.05) for at least one challenge. They are shown in the

upper part of Figure 8. The trained model interceptions for the cogC,

emoC, phyC, and DM are (0.40, 0.14, 0.02,−0.35), which represent

the normalized ratings on zero point (also the average point due to

the z-score) of physiological features. The other coefficient values

represent the increments of the corresponding normalized chal-

lenge ratings based on the interception when the related features

increase by 1.

In Random-Forest-based feature selection, we train a Random

Forest model using all data and normalized labels. The importance

of a feature is computed as the increase on MSE when permuting

the values of the feature for the data without being selected in

training a tree [17]. Then, we sort the features by their importance

values and keep the first 20 features for each challenge type. Finally,

we select 34 features in total. They are shown in the lower part of

Figure 8.

Table 5 shows the top 10 important features for each challenge

selected by the twomethods. Further, 24most important features are

obtained by the intersection between selections of the two models,

which are shown by red boxes in Figure 8. Figure 8 also shows the

importance of different physiological channels. Considering both

selection methods, the ECG and EMG are the two most important

channels. Finally, we train the machine learning models to view

the performance of the selected features, which is shown in Table

6. Compared to the corresponding models in Tables 2 and 3 using

all 80 features, the selected features obtain similar results and even

shows slight improvement on some metrics.

7 DISCUSSION

Perceived challenge is a key player experience that arises from one’s

interaction with a game’s intrinsic challenges at a particular skill

level. As the player progresses through the game, this experience

can change dynamically with time, based on the in-game content

and with skill acquisition/mastery on the player’s behalf. Therefore,

it is important to be able to assess this experience in real-time to

balance game difficulty or to adjust the in-game content to match

the player’s skills and to cater to the individual preferences and

differences between players.

In this paper, we propose a novel pipeline to assess in-game chal-

lenge experience using physiological measures. To do so, we first

conducted an experimental study and found that players’ perceived

challenge changes could fluctuate over time, co-existing with one
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Table 3: Average performance of leave-one-participant-out cross validation over all challenges for different machine learning

models. Label normalization is applied to all the models. The Acc2−𝑐 and 𝐹12−𝑐 are metrics of challenge activation detection. LR

denotes Linear Regression; DT denotes Decision Tree; RF denotes Random Forest; noC denotes No Challenge. The configurations

of different models are provided in Tables 14, 15 and 16 of Appendix D.

Metric Chal LR1 LR2 KNN SVM DT GBDT RF DNN4

RMSE

cogC Mean 0.91 1.11 0.95 0.94 1.09 1.00 0.90 0.92

Std 0.27 0.28 0.26 0.27 0.32 0.28 0.27 0.27

emoC Mean 0.91 1.13 0.97 0.96 1.08 1.01 0.91 0.93

Std 0.25 0.28 0.26 0.26 0.27 0.28 0.27 0.26

phyC Mean 1.20 1.44 1.27 1.22 1.39 1.30 1.17 1.23

Std 0.33 0.36 0.35 0.33 0.35 0.35 0.32 0.35

DM Mean 1.08 1.32 1.15 1.13 1.26 1.17 1.09 1.11

Std 0.33 0.35 0.34 0.35 0.34 0.33 0.33 0.35

Avg Mean 1.03 1.25 1.09 1.06 1.20 1.12 1.02 1.05

Std 0.29 0.32 0.31 0.3 0.32 0.31 0.3 0.31

MAE

cogC Mean 0.74 0.89 0.77 0.76 0.89 0.82 0.75 0.75

Std 0.23 0.23 0.22 0.23 0.27 0.24 0.23 0.23

emoC Mean 0.75 0.91 0.80 0.79 0.86 0.82 0.75 0.77

Std 0.22 0.23 0.23 0.22 0.22 0.23 0.22 0.22

phyC Mean 0.97 1.13 0.99 0.96 1.10 1.03 0.94 0.97

Std 0.28 0.3 0.29 0.28 0.29 0.29 0.27 0.29

DM Mean 0.86 1.05 0.91 0.88 0.98 0.93 0.86 0.87

Std 0.28 0.29 0.29 0.3 0.29 0.28 0.29 0.3

Avg Mean 0.83 1.00 0.87 0.85 0.96 0.90 0.82 0.84

Std 0.25 0.26 0.26 0.26 0.27 0.26 0.25 0.26

Acc2−𝑐 (%)

cogC Mean 77.8 74.2 76.2 77.0 74.2 76.0 77.3 77.1

Std 22.3 20.0 22.3 22.0 20.6 21.1 22.7 22.4

emoC Mean 80.6 75.9 78.9 79.7 77.1 79.0 80.1 80.0

Std 16.3 17.3 16.6 16.3 16.1 16.1 17.1 16.2

phyC Mean 77.2 74.0 75.6 76.7 74.1 76.6 78.8 77.0

Std 13.5 14.3 15.5 15.2 15.1 13.6 13.3 14.6

DM Mean 81.3 77.5 79.9 80.2 78.4 79.9 81.0 80.5

Std 15.4 16.5 16.4 16.6 17.3 16.1 15.9 16.0

noC Mean 71.3 72.9 69.5 71.3 72.7 72.4 70.7 71.5

Std 20.4 16.7 19.3 18.4 17.8 18.1 20.0 18.8

Avg Mean 77.6 74.9 76.0 77.0 75.3 76.8 77.6 77.2

Std 17.6 16.9 18.0 17.7 17.4 17.0 17.8 17.6

𝐹12−𝑐 (%)
Avg Mean 37.3 38.7 36.3 36.8 38.5 39.6 38.0 34.8

Std 21.6 18.5 20.8 20.4 17.9 19.9 21.2 17.4

another and displaying significant differences between individual

players. We then detected different types of challenge experience

based on 32 players’ physiological measures and their continuously

reported challenge experience by using multiple machine learning

methods. Our results show that the majority of these methods can

achieve an accuracy of around 80% on challenge activation. Finally,

by adopting feature importance techniques, a set of 24 challenge-

rated physiological features were selected and refined to indicate

different challenge types.

Generally, we hope that the pipeline would inspire game re-

searchers, designers and developers in the field of human-computer

interaction to view challenge as an important player experience.

The pipeline also suggests that challenge experience could be prac-

tically assessed through physiological sensing methods. With this

pipeline, it is possible to explore perceived challenge in digital

games more thoroughly in future studies to understand how players

perceive different game challenges and to develop novel biofeed-

back game interactions based on challenge prediction. First, we

propose to establish datasets towards the wide spectrum of chal-

lenge types. A specific dataset may comprise multimodal user data,

such as physiological signals like EEG, EDA, EMG etc., as well

as more continuous or discrete user data including other player

experiences. These data may be induced by various challenge struc-

tures as well as different difficulty modes, involving users with

varied skill levels, motivations and backgrounds. Second, akin to

our pipeline, more sophisticated and advanced AI-based models

and methods should be explored to compute and predict perceived

challenge, for instance, by employing AI and mathematical tech-

niques to model the temporal aspects of how perceived challenge

develops over time. Moreover, considering that emotional concepts
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Table 4: Performance for different participants using Random Forest model in leave-one-participant-out cross validation. Each

column shows the result of one participant.

Scenario Metric Participants

A

RMSE 1.04 0.95 0.87 0.74 1.01 0.55 0.70 0.71 1.02 1.03

MAE 1.35 1.14 1.15 0.87 1.21 0.76 0.89 0.83 1.22 1.22

Acc2−𝑐 85.1 60.8 87.8 68.2 62.7 95.2 94.8 91.6 83.7 83.1

𝐹12−𝑐 23.6 22.0 27.8 29.4 23.6 38.7 19.7 22.5 27.4 25.4

B

RMSE 1.12 0.95 0.98 0.92 0.92 0.63 0.80 0.76 0.80 0.40 0.37

MAE 1.32 1.17 1.21 1.07 1.19 0.75 0.95 0.93 0.99 0.54 0.

Acc2−𝑐 58.3 66.0 59.5 63.7 81.8 65.8 62.6 73.4 81.1 90.6 98.1

𝐹12−𝑐 32.2 38.1 29.0 40.3 27.5 31.8 26.2 19.9 18.2 94.5 59.5

C

RMSE 0.70 0.78 0.62 0.78 0.68 1.09 0.55 0.94 0.81 1.21 0.95

MAE 0.86 0.93 0.85 1.00 0.87 1.38 0.65 1.23 0.97 1.48 1.13

Acc2−𝑐 99.6 81.4 93.7 77.1 70.1 78.1 87.5 83.2 71.0 55.6 70.9

𝐹12−𝑐 99.8 61.0 37.5 68.6 44.0 17.3 72.6 26.8 45.5 20.9 43.3

Figure 7: Examples of prediction to the challenge ratings by Random Forest for each challenge in leave-one-participant-out

cross validation. For each challenge type, 200 sequential samples are selected from different participants and predicted by

the models trained with the other participants. The red curves denote the true ratings and blue curves denote the predicted

ratings. The magenta curves are the predicted ratings smoothed by a median filter such that the predicted trends are shown

more clearly.

that have been extensively used in affective gaming tend to offer

some ambiguity, the proposed pipeline may also assist in bridg-

ing the gap between challenge-related game design elements and

complex emotionally-charged player experiences. For instance, it is

believed that when playing modern digital games with emotional

challenge, players would first encounter the emotional challenge,

which is then thought to lead to complex and diverse emotional

experiences.

7.1 In-game challenge perception

The descriptive results of the experimental study demonstrate that

it is possible to discern players’ perceived challenge experience

dynamically as it changes with time and that challenge can be per-

ceived with significant individual differences. We also observed

that different types of challenge experience can co-exist or mani-

fest themselves relatively independently. These descriptive findings
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Figure 8: Upper: significant coefficients of selected features for Linear Regression. Lower: importance of selected features by

Random Forest. The physiological channel IMP denotes the importance of the physiological channel computed by summing

the absolute importance values (or significant coefficients) of the selected features in that channel. The features in red boxes

are the intersection between the two selections.

Table 5: The top-10 important features for each challenge type selected by sorting the absolute significant coefficient (COEF)

and importance (IMP) values of Linear Regression (LR) and Random Forest (RF), respectively.

cogC emoC phyC DM

LR

Top-10 features COEF Top-10 features COEF Top-10 features COEF Top-10 features COEF

ECG RR Power VLF -0.31 TEM Diff Amp MAV 0.62 RSP Diff Amp Std -0.44 EMG RMS -0.42

ECG RR Power TP 0.30 TEM Diff Amp MAD -0.60 RSP Diff Amp MAD 0.43 EMG Total Power 0.38

ECG Diff RR MAD 0.16 EMG RMS -0.29 ECG RR Power TP 0.31 ECG RR Power TP 0.30

EMG Total Power 0.13 EMG Total Power 0.29 ECG RR Power VLF -0.31 ECG RR Power VLF -0.29

EDA HF Frq Power -0.09 EDA VHF Time SAV -0.14 EMG 6-Band Power 0.25 EDA VHF Time SAV -0.21

EMG 7-Band Power% -0.06 TEM Amp Mean 0.12 EDA VHF Time SAV 0.20 ECG Diff R Std -0.13

TEM Diff Amp Mean -0.06 EDA HF Frq SAV 0.12 EDA HF Time SAV 0.19 EDA VHF Frq Power Std 0.11

ECG RR Mean -0.05 ECG Diff R Std -0.11 EDA LF Frq Power -0.17 EMG 1-Band Power -0.09

EMG 1-Band Power% -0.05 EDA HF Time SAV -0.11 EMG 1-Band Power% 0.15 EMG 7-Band Power% -0.08

EMG 1-Band Power -0.05 ECG RR Power TP 0.10 RSP Period Mean -0.13 RSP Diff Amp MAV 0.08

RF

Top-10 features IMP Top-10 features IMP Top-10 features IMP Top-10 features IMP

TEM Amp Mean 2.21 TEM Amp Mean 6.12 RSP Period Mean 2.73 TEM Amp Mean 2.58

ECG R Mean 1.52 RSP Amp Mean 1.79 TEM Amp Mean 1.65 EMG 6-Band Power 1.70

RSP Amp Mean 1.44 TEM Diff Amp Mean 1.70 EMG 6-Band Power 1.57 ECG R Mean 1.59

EMG 7-Band Power 1.38 EMG 6-Band Power 1.52 RSP BPM 1.57 EMG 5-Band Power 1.34

TEM Diff Amp Mean 1.25 ECG R Mean 1.47 EMG 7-Band Power 1.43 RSP Amp Mean 1.27

RSP BPM 1.20 ECG RR Power HF 1.41 RSP Amp Mean 1.42 EMG 7-Band Power 1.23

EMG 2-Band Power 1.19 ECG RR PSD HF 1.35 EMG 6-Band Power% 1.38 EDA HF Frq Power Std 1.23

ECG BPM 1.18 EMG 7-Band Power 1.32 ECG R Mean 1.36 RSP Period Mean 1.16

EDA LF Frq Power Std 1.09 RSP BPM 1.31 EDA VHF Frq Power Std 1.20 EDA HF Frq Power 1.07

ECG RR Power HF 1.08 EMG 5-Band Power 1.25 ECG RR PSD HF 1.16 RSP BPM 1.06
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Table 6: Performance of the Linear Regression1, Random Forest, and DNN4 models with label normalization as in Tables 2 and

3 using the selected features.

Model
Cross Selection

RMSE MAE
Challenge-Act-Detect

Validation Method Acc2−𝑐 (%) 𝐹12−𝑐 (%)

Linear

10-folds

Linear Regression 1.03 0.80 78.9 63.7

Regression1
Random Forest 1.03 0.81 79.0 63.6

Intersection 1.03 0.81 78.9 63.6

Random
Linear Regression 0.88 0.67 83.4 71.5

Forest
Random Forest 0.85 0.65 84.3 73.3

Intersection 0.86 0.66 83.8 72.3

DNN4

Linear Regression 0.84 0.61 85.1 75.5

Random Forest 0.81 0.59 85.6 76.7

Intersection 0.82 0.60 85.4 76.1

Linear

Leave-one-

Linear Regression 1.02 0.82 77.7 37.2

Regression1

-participant-

Random Forest 1.02 0.83 77.8 37.7

-out

Intersection 1.02 0.82 77.8 37.6

Random
Linear Regression 1.01 0.82 77.6 37.9

Forest
Random Forest 1.01 0.82 77.8 38.3

Intersection 1.01 0.82 77.7 38.1

DNN4

Linear Regression 1.06 0.84 77.5 36.2

Random Forest 1.06 0.85 77.1 35.2

Intersection 1.06 0.85 77.2 35.2

highlight the importance of measuring players’ challenge experi-

ence dynamically, comprehensively and on an individual basis.

The results of our experiment highlight significant correlations

(measured by Pearson’s correlation coefficient) between some types

of reported in-game challenge experience. Specifically, a strong and

positive correlation between emotional challenge (emoC) and de-

cision making (DM) (r = 0.783, p < 0.01) challenge is prominent in

all three game scenarios. One reason may be that there is a lack

of discriminant validity with the two types of challenge due to

their conceptually overlapping characteristics in digital games [21].

There is also a possibility that the three game scenarios in our ex-

periment have some comparable emoC and DM characteristics. It

is noteworthy that the two types of challenge have their unique

contribution in building up game challenge. As shown in our ex-

periment, emotional challenge often happens in conjunction with

some kind of moral decision, however, this is not always the case.

For example, in event 7 of scenario A when participants witnessed

the death of their spouse without being able to act upon it in the

game, they reported a high level of emoC but a low level of DM.

We also observed a moderate and positive correlation between

cognitive (cogC) and physical challenge (phyC) (r = 0.536, p < 0.01).

The correlation may be attributed to the co-existing challenge prop-

erties of the game itself. For example, in the game scenarios A and

C, when players fight against synths/armed guards, they need to

engage their cognitive efforts to progress or to adopt some fighting

strategies. In our experiment, emoC and phyC also show a moder-

ate but negative correlation with each other (r = - 0.420, p < 0.01).

This could be because, in the selected game scenarios, the physical

challenge of fighting and emotionally challenging narrative aspects

of the game are often presented separately from one another. Even

though it is rare that these two kinds of activities can be found

simultaneously in games, in general, as game design evolves, we

believe that it is possible for physical challenge to co-exist with

emotional challenge in ways other than employing emotionally

complex narratives.

Another interesting observation we made looking at the data of

players’ overall challenge experience was that the levels of emoC

and DM were significantly higher than those of phyC (scenario A

and B) and cogC (scenario A, B and C) (see Table 1). However, this

phenomenon could hardly be observed from the data of players’ per-

ceived in-game challenge (see Figure 4). With some in-game events,

the phyC ratings were higher than those of emoC. This could be

because physical challenge is able to induce hedonic player experi-

ence that focuses on momentary pleasures. Emotional challenge,

on the other hand, is a type of eudaimonic player experience [13]

which focuses on players’ intrinsic need of fulfilment, meaning and

long-term importance [47]. In our experiment, most events related

to phyC took place midway through the game scenario, so it is

possible that these experiences did not have a lasting effect on our

participants throughout their whole game play.

7.2 Challenge-related physiological indicators

By using feature importance techniques, a set of challenge-rated

physiological features effectively indicated different types of chal-

lenge experience. The Random Forest based selection mainly high-

lighted the important features without providing information on the

effects. Meanwhile, the Linear Regression based selection showed

the features’ positive/negative effects for each challenge type. There-

fore, the intersection subset of refined 24 important features are

considered to be meaningful in answering the question of how the

physiological signal reflects the perceived challenge types. This

may not be the exact subset of the most important features, but it
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suggests that the selected features are likely to be important, and

vice versa. For instance, although the łTEM Diff Amp MAVž and

łTEM Diff Amp MADž features have unusually significant effects

on emotional challenge when using Linear Regression, they have

relatively low importance when using the Random Forest approach.

Hence, these unusual effects are likely to be not reliable.

We also verified if the selected features were able to achieve

similar results to the application of all 80 features. This finding

contributed to the interpretability and analyzability of the models.

As a simple example: the features łRSP BPMž and łRSP PeriodMeanž

have significant positive and negative effects on physical challenge,

respectively, as shown in the top part of Figure 8. This is consistent

with the common experience that extensive physical activity may

lead to shortness of breath. Furthermore, the negative effects of

the łEMG Entropyž feature on emotional and physical challenge

types suggest a relatively heterogeneous distribution (compared to

the average state) of frequencies on EMG channel. Meanwhile, the

coefficients of łEMG 6-Band Power%ž show the opposite effect on

these two challenge types on the high-frequency EMG band. The

positive/negative effects between emotional challenge and decision

making is consistent with the relatively high correlation between

ratings of these two challenges. Moreover, the łECG RR Meanž and

łEDA HF Frq Powerž features have a unique negative effect on

cognitive challenge.

With these primary challenge-related physiological indicators,

we hope that future work focusing on a deeper analysis and an

investigation of the important features will allow for an exploration

of challenge experience using neuro-scientific methods. For ex-

ample, further exploration of the activation mechanism of users’

peripheral nervous system when encountering different types of

challenge. The results also provide evidence that more compact and

fast models for challenge detection could be used in the future and

might signify the possibility of using only parts of the physiological

channels for challenge detection.

7.3 AI-supported challenge detection

To explore challenge detection using physiological signals, we have

compared the effectiveness of multiple widely used machine learn-

ing methods (LR, KNN, SVM, DT, GBDT, RF, DNNs) to detect dif-

ferent types of perceived challenge. Both 10-folds and leave-one-

participant-out methods were employed for giving implications in

multi-aspects. Results of the challenge detection show that differ-

ent machine learning models with label normalization are able to

achieve the accuracy (ACC2−𝑐 ) of around 80% for the prediction per-

formance, which is superior to results of the random selection and

constant model. This suggests the feasibility of our tested pipeline

for detecting challenge with physiological measures, including data

collection, feature and label processing, as well as the applications of

machine learning methods. These results are an important first step

in demonstrating the potential of using these detection methods in

future applications of real-time challenge detection and dynamic

challenge/difficulty adaptation techniques.

In our study, although the results of 10-folds cross validation

show that DNN with 5-hidden-residual-MTL performed best, meth-

ods with leave-one-participant-out cross validation cater more to

the application of predicting different types of challenge of a new

player. In this case, if a future study or application has a training

dataset similar to our study, the simple model of linear regression

and random forests should be appropriate methods as they offer

the best combination of performance, interpretability, and model

simplicity, both with full features and when using only the most

significant features. More complicated models may encounter the

problem of overfitting with limited user data. On the other hand,

the results of 10-folds cross validation in this study may present

us with an ideal prediction vision with large amounts of user data

in the future. This means that if a larger data sample could be col-

lected as training data, the DNN model should have the potential

to achieve good performance (e.g., with ACC2−𝑐 ≥ 85%) in both

the 10-folds and leave-one-participant-out cases.

In the setting of 10-fold cross validation method, detection per-

formance for all challenge types is sufficiently good yet the perfor-

mance diversity among different challenge types is not significant,

as shown in both Table 2 and Figure 6. With performance vary-

ing between different challenge types in leave-one-participant-out

method, a similar trend to the 10-folds method can be observed

in Table 3, except that the challenge activation detection for cogC

becomes harder than the other three challenges. A similar pattern is

shown in Figure 7 where only a weak correlation is obtained by the

predicted trend for cogC compared to the true ratings. Considering

the proportion of positive class (with rating ≥ 4) of cogC is the

largest (41.2%) among all challenges, this performance degradation

for cogC is not likely to be caused by overfitting. A possible reason

is the connection between cognitive challenge and the cognitive

abilities of individual players, which could result in a mismatch be-

tween training and test participants larger than in other challenge

types in the setting of leave-one-participant-out method.

Last but nonetheless an important point, the different results

produced by the 10-folds and leave-one-participant-out cross vali-

dation highlight the non-negligible differences between individual

players. We expect this mismatch to be alleviated if the participant

number of training data is increased. Nevertheless, we consider

certain methods for dealing with individual differences to be impor-

tant and useful, for example, the semi-supervised or unsupervised

adaptation methods widely used to reduce a mismatch between

target and source domains in the fields of machine learning and

pattern recognition.

7.4 Limitations and future work

One limitation of our work is that the current methodologies focus

on the dynamical detection of a wide range of challenge experiences

ś some temporal and contextual information about how a certain

type of challenge develops over time has not been included in the

modeling. Additionally, in our study, the segmentation of game

events left out some minor details that, in our opinion, are not

important when creating any type of challenge. These details, for

example, seeking help or wandering around the open game world,

may also influence the construction of and the development of

challenge experience. Therefore, for modern digital games with

multiple and complex challenge types, it is critical to shape or

model challenge experience alongside the game progression. This

would be helpful for understanding how challenge changes as the

game progresses as well as understanding eudaimonic and other
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player experiences related to game challenge, such as the palette of

high-scoring emotional responses reported in this study.

The second limitation is the inherent bias of physiological sig-

nals. For example, heart rate (HR) and EDA measurements allow

for an evaluation of player arousal, which increases their feasibil-

ity in commercial game production situations [23]. In our study,

when evaluating players’ experience of challenge, their reactions

or responses largely occurred in high arousal states, which may fa-

cilitate the detection of challenge activation. This could also be one

of the reasons that in many physiological-based affective gaming

works, several types of high arousal emotions are often targeted

as the most performative models. Despite this bias, physiological

sensing has been a prominent fixture in games user research (GUR)

since the late 1990s [58]. One of the reasons might be that: łThe

role affective technologies [...] play in the gaming industry is certain

to create some new and exciting user experiencesž [28]. In this regard,

physiological-based challenge detection should share the same mo-

tivation with affective gaming in using biofeedback techniques to

enhance game interaction [50, 58].

Another limitation was related to the three game scenarios se-

lected from a single game, which may have limited the generalis-

ability of the results as different challenge types may manifest them-

selves in multiple ways. For example, cognitive challenge requires

the player to use their memory, attention, reasoning, planning and

problem solving. One or more of these abilities may present them-

selves in different ways in different digital games to provide cogni-

tive challenge. Therefore, we propose that future research should

explore more game scenarios in other types of games with different

challenge structures. Moreover, the potential relationships between

perceived challenge and other eudaimonic and meaningful player

experiences could be explored to provide further insights into how

to balance challenge types and levels to provide a preferable player

experience. In addition, other continuous gameplay data demon-

strating the players’ in-game performance could be used alongside

the physiological metrics to strengthen the evaluation of different

types of perceived challenge.

8 CONCLUSION

This study investigated the potential of detecting in-game perceived

challenge from physiological signals. In this first study of its kind

that evaluates different types of perceived challenge dynamically,

objectively and individually, we conducted an experiment to collect

physiological signals (EDA, ECG, EMG, RSP and TEM) from 32

players who played through three different game scenarios. Players’

perceived challenge was continuously assessed using the CORGIS

questionnaire at discrete points in the game. With 80 physiological

features extracted, several machine learning methods and metrics

were applied to detect four types of perceived challenge of players.

It is inspiring that most methods achieved detection accuracy of

around 80%, which highlights the potential for further exploration

of real-time challenge measurement with physiological signals.

Moreover, a set of challenge-related features were also selected

and refined with feature importance techniques, which aim to help

understand perceived challenge using objective player data and also

inform future physiological-based studies of challenge as player

experience.
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A GAME EVENTS

A.1 Game Events of Scenario A

The description of events and instruction tips of scenario A are

given in Table 7.

A.2 Game Events of Scenario B

The description of events and instruction tips of scenario B are

given in Table 8.

A.3 Game Events of Scenario C

The description of events and instruction tips of scenario C are

given in Table 9.

B CHALLENGE RATINGS

B.1 Challenge Ratings of Scenario A

The challenge ratings of each event in scenario A are given in Table

10.

B.2 Challenge Ratings of Scenario B

The challenge ratings of each event in scenario B are given in Table

11.

B.3 Challenge Ratings of Scenario C

The challenge ratings of each event in scenario c are given in Table

12.

C PHYSIOLOGICAL FEATURES

The 80 extracted physiological features are given in Table 13.

D MACHINE LEARNING METHODS

The model descriptions and configurations are given in Table 14-16.
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Table 7: Game Events of Scenario A

Quest Event Description of Events and Instruction Tips

Tips Read a brief instruction to learn the background of the main story of Fallout 4.

War 1 Walk around inside the house and interact with the house’s objects and goods, such as bottles,

Never boxes, their spouse and infant son Shaun, and the robot housekeeper Codsworth.

Changes 2 Talk to Vault-Tec rep, a person who states that they are qualified to enter the nearby Vault 111.

3 Interact with Shaun and chat with the spouse for a while.

4 Learn from the television that nuclear detonations have abruptly hit some nearby cities.

5 Rush toward Vault 111 with their spouse and son, and enter the Vault just moments before a nuclear

detonation.

6 Follow the vault’s scientist and enter a cryo pod, with the spouse and Shaun entering another.

7 Witness three unknown figures open the spouse’s pod and a mysterious man shoot the spouse with

a pistol and take their son.

8 Fall out of the cryo pod, struggle to feet and then open the spouse’s cryo pod and vow to find Shaun.

Out of 9 Progress through the hallways of the hault and open several doors.

Time 10 Find the way to escape the vault and kill several radroaches.

11 Take the elevator to get out of the vault and reach the ground level.

12 Retrace the path back to home and find ruins all over the world.

13 Meet the robot Codsworth and talk to learn that 210 years have passed since nuclear detonation.

Tips Read an instruction to learn that there is a big evil-force called Institution and they aim to

create synths to control the destroyed world.

Learn that it is Kellogg who kills the spouse and the player is about to find Kellogg.

Reunions 14 Fight against the synths guarding for Kellogg’s building.

15 Fight against the synths and automated turrets guarding for Kellogg’s building.

16 Fight against the synths and energy weapons guarding for Kellogg’s building.

17 Talk to Kellogg and be told that Shaun is being held by the Institute but out of reach.

18 Fight against Kellogg and his synth bodyguards.

Institution 19 Follow a greeting voice of a hidden speaker named "Father" and take an elevator to enter a special

-alized room of Institute.

20 Find a scared and confused child in the room and then talk to the child. The child says that he is

Shaun but keeps asking "Father" to help.

21 See an old man named "Father" enters the room and know that the child is just a synthetic Shaun.

"Father" says he is the real Shaun and also the director of the Institute now.

22 Talk to "Father" and listen to him to talk about the details of his kidnapping by the Institute.

23-a Be persuaded to join the Institute and finally agrees to join. (5 participants chose this)

23-b Be persuaded to join the Institute but finally disagrees to join. (5 participants chose this)
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Table 8: Game Events of Scenario B

Quest Event Description of Events and Instruction Tips

Tips Read a brief instruction to learn the player’s life experience of Vault 111.

Learn that there is a big evil-force called Institution and they aim to create synths to control

the destroyed world.

Learn that there is another force of Brotherhood of Steel whose aim is to eliminate synths.

Fire 1 Assist several soldiers to fight against a group of feral ghouls.

Support 2 Talk to the soldiers’ commander, Paladin Danse, know that Danse work for Brotherhood of Steel

and agrees toassist them to get a transmitter.

Call to 3 Follow Danse to walk.

Arms 4 Follow Danse to walk, listen Danse to speak and may also fight against some wildlife on the way.

5 Talk to Danse to learn the crime of synths in an abandoned rocket silo.

6 Find the lab control terminal to unlock a door in the way.

7 Crack the password on the terminal to unlock the door.

8 Fight alongside with Danse against synths from the unlocked room.

9 Fight alongside with Danse against the fire power of synths’ weapon systems.

10 Find the equipment to restore the power supply to the silo.

11 Crack the password on the terminal to restore the power to the silo.

12 Fight alongside with Danse against synths from the bottom of the silo.

13 Fight alongside with Danse against synths to get the transmitter.

Blind 14 Talk to Elder Maxson, be told Danse is a synth and be ordered to execute Danse.

Betrayal 15 Talk to Proctor Quinlan and be confirmed that Danse is a synth.

16 Talk to Scribe Haylen. Haylen says that Danse is a good friend. Be told where Danse is hiding.

17 Fight against three robots before meeting Danse.

18 Talk to Danse until making the important decisions to spare or execute Danse.

19-a1 Decide to spare Danse and convince Danse to escape. (9 participants chose this)

19-a2 Talk to Maxson and listen Danse to describe his loyalty to the Brotherhood.

19-a3-c Decide to spare Danse and persuade Maxson to spare Danse. (7 participants chose this)

19-a3-d Decide to request Maxson to execute Danse. (2 participants chose this)

19-b Decide to and execute Danse. (2 participants chose this)
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Table 9: Game Events of Scenario C

Quest Event Description of Events and Instruction Tips

Tips Read a brief instruction about the player’s life experience of Vault 111.

Learn that there is a big evil-force called Institution and they aim to create synths to control the

destroyed world.

Learn that human residents are very scared of synths as it is very hard to distinguish synths from

real human beings.

Learn that a caravan person have been strangely killed near a peaceful settlement called Covenant.

Get the task to enter the Covenant to investigate what has happened to the caravan.

Human 1 Talk to the guard person of Covenant and know that a SAFE test must be passed to enter Covenant.

Error 2 Take the SAFE test by answering a serious of psychological questions.

3 Talk to Honest Dan who is also an outsider of Covenant. Agree to help Dan to investigate Covenant

to find Amelia Stockton, the missing girl of the caravan.

4 Search information in Covenant by talking to the residents and searching their houses, etc.

5 Read pieces of information on a public terminal or/and talk to the robot.

6 Search information in Covenant by talking to the residents and searching their houses, etc.

7 Crack the password on the terminal to unlock a private office terminal.

8 Read important information on the office terminal. Know that the girl, Amelia Stockton, is hided in

a secret place called Compound.

9 Talk to Dan and share the searched information with him.

10 Fight along with Dan against the armed guards at the Compound.

11 Search information at the Compound and may also fight against some armed guards on the way.

12 Fight along with Dan against the armed guards at the Compound.

13 Find way to enter more inside and search more information.

14 Fight against some armed guards on the way and know that they are fighting to protect a doctor.

15 Read some important information. Know that the Compound are doing some cruel experiments to

develop the SAFE questionnaire.

16 Talk to the doctor who explains her and others’ hatred of synths.

17 Learn that the doctor tries to reveal hidden synths who infiltrated the populace by perfecting the

SAFE test, even by killing real human beings. Learn that the caravan people were killed because

the Covenant thinks Amelia in the caravan is most likely a synth infiltrator.

18 Be asked whether to support the doctor to continue the experiment. Dan joins the talk and says he

does not agree to continue the experiment.

19-a Disagree with the doctor and release Amelia. (9 participants chose this)

19-b1 Agree with the doctor and kill Dan (2 participants chose this).

19-b2 Look around and operate the doctor’s terminal.
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Table 10: Challenge Ratings of Scenario A. Abbreviations: cogC = cognitive challenge, emoC = emotional challenge, phyC =

physical challenge, DM = decision making

Time Consuming Ratings’ Mean Ratings’ Standard deviation

Event (seconds) cogC emoC phyC DM cogC emoC phyC DM

1 177.30 (69.57) 1.85 2.42 1.40 1.64 0.95 0.75 0.63 0.91

2 135.30 (19.04) 2.84 2.72 2.16 2.20 1.03 1.03 1.21 1.24

3 88.70 (10.66) 1.94 2.78 1.46 1.82 0.90 0.78 0.67 0.76

4 36.60 (4.52) 3.25 3.49 3.58 1.92 1.36 1.24 2.00 1.03

5 140.00 (18.63) 2.95 3.33 3.50 1.94 1.23 1.10 1.94 1.03

6 212.80 (48.02) 2.75 2.63 1.80 1.74 1.30 1.05 0.83 1.06

7 71.00 (1.26) 2.78 4.20 1.90 1.92 1.07 0.82 0.92 1.27

8 64.20 (21.55) 2.85 3.61 2.12 2.18 0.79 1.13 1.44 1.57

9 105.40 (74.81) 3.14 2.59 2.44 1.54 1.11 0.94 1.81 0.59

10 351.00 (68.50) 3.39 2.31 3.80 1.56 0.88 0.92 1.65 0.64

11 93.80 (12.07) 2.13 2.44 1.48 1.42 0.96 1.19 0.48 0.63

12 116.60 (49.68) 2.78 2.63 2.06 1.42 1.13 1.00 1.11 0.52

13 213.30 (73.97) 2.81 3.02 1.74 2.14 1.27 0.85 1.01 0.34

14 41.70 (14.70) 3.45 2.18 5.72 1.28 1.16 1.11 0.87 0.43

15 40.60 (14.24) 3.68 2.26 5.74 1.48 1.61 1.10 1.30 0.63

16 39.80 (22.80) 3.41 2.23 5.60 1.34 1.31 1.05 1.13 0.41

17 85.10 (27.12) 3.28 2.67 2.84 2.42 1.26 1.09 1.76 1.35

18 81.30 (19.91) 4.12 2.41 5.96 1.94 1.12 1.28 1.28 1.18

19 91.67 (9.42) 3.06 2.67 1.64 1.42 0.91 1.14 0.71 0.61

20 60.60 (5.68) 3.06 3.86 1.92 2.60 0.83 0.77 0.96 1.36

21 138.00 (29.97) 3.01 3.32 1.72 2.48 0.77 1.01 0.93 1.54

22 279.67 (96.81) 2.57 3.31 1.44 2.73 1.06 0.87 0.66 1.76

23-a 105.00 (40.37) 2.96 4.00 1.64 3.44 0.81 0.50 0.79 1.59

23-b 102.00 (25.81) 2.87 3.96 1.36 4.28 1.19 1.39 0.54 1.06
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Table 11: Challenge Ratings of Scenario B. Abbreviations: cogC = cognitive challenge, emoC = emotional challenge, phyC =

physical challenge, DM = decision making

Time Consuming Ratings’ Mean Ratings’ Standard deviation

Event (seconds) cogC emoC phyC DM cogC emoC phyC DM

1 56.91 (11.84) 3.47 2.41 4.94 2.22 1.59 0.82 1.47 0.83

2 121.18 (22.01) 3.79 2.84 2.93 2.67 1.04 0.83 1.32 1.14

3 64.91 (5.96) 3.38 2.67 2.84 2.04 0.95 0.81 0.86 0.93

4 162.36 (51.64) 3.50 2.80 4.09 2.15 0.96 0.72 1.09 0.72

5 46.00 (11.58) 3.27 2.79 2.49 2.58 0.99 0.82 1.01 0.69

6 62.00 (29.77) 4.09 2.65 3.47 2.22 1.28 0.84 1.16 0.81

7 116.36 (53.00) 4.97 2.78 3.51 3.09 1.35 0.87 1.34 1.19

8 50.64 (14.70) 3.92 2.57 4.95 1.95 1.07 0.70 0.59 0.80

9 29.64 (6.06) 3.65 2.73 4.49 2.05 1.06 0.78 0.82 0.82

10 52.36 (14.32) 4.16 2.67 3.67 2.87 1.15 0.77 1.07 1.15

11 56.00 (40.50) 4.43 2.81 3.55 2.60 0.84 0.74 1.26 1.11

12 48.09 (11.41) 3.90 2.56 4.87 2.44 1.14 0.67 0.96 0.82

13 24.09 (3.82) 3.83 2.37 4.80 2.13 1.01 0.70 0.66 0.80

14 128.55 (12.69) 3.87 4.00 3.04 3.40 0.85 0.86 1.04 1.18

15 159.91 (27.61) 3.90 4.09 2.87 3.87 0.97 1.02 1.03 0.99

16 105.09 (23.63) 3.45 3.90 2.56 3.44 0.99 1.00 0.80 0.99

17 26.45 (6.93) 3.79 2.80 4.56 2.25 1.02 0.78 1.13 0.74

18 137.82 (42.76) 3.80 4.37 2.71 3.95 0.98 0.89 0.73 0.79

19-a1 73.33 (10.80) 3.78 4.11 2.91 3.84 0.84 0.95 1.22 1.27

19-a2 61.00 (45.91) 3.75 4.42 2.71 3.36 1.05 0.52 0.59 1.12

19-a3-c 155.44 (9.95) 3.70 4.06 2.54 3.69 1.01 1.14 0.52 1.30

19-a3-d 110.29 (7.50) 4.86 5.28 3.05 6.30 0.23 0.72 0.21 0.70

19-b 45.50 (9.00) 2.55 4.72 1.80 4.70 1.00 1.28 0.20 0.70

Table 12: Challenge Ratings of Scenario C. Abbreviations: cogC = cognitive challenge, emoC = emotional challenge, phyC =

physical challenge, DM = decision making

Time Consuming Ratings’ Mean Ratings’ Standard deviation

Event (seconds) cogC emoC phyC DM cogC emoC phyC DM

1 48.27 (17.24) 3.73 3.05 3.38 3.55 1.45 1.15 1.66 1.48

2 158.27 (12.13) 4.26 4.58 3.75 4.64 1.58 1.16 1.73 1.27

3 77.36 (16.53) 4.04 3.59 3.55 4.09 1.69 1.40 1.57 1.80

4 171.45 (141.46) 4.22 3.02 3.65 3.15 1.32 1.19 1.72 1.47

5 31.91 (11.56) 4.15 3.03 3.27 3.22 0.92 0.90 1.55 1.54

6 220.45 (120.80) 3.69 2.96 3.51 2.80 1.64 1.21 1.46 1.31

7 76.18 (59.81) 5.01 3.11 3.96 3.42 1.26 1.04 1.69 1.40

8 99.18 (66.21) 4.42 3.09 3.33 2.78 1.57 0.96 1.71 1.60

9 34.00 (19.70) 3.68 3.10 3.22 2.96 1.75 1.48 1.64 1.46

10 30.36 (20.48) 4.22 2.80 5.93 2.84 1.17 1.10 0.73 1.61

11 75.27 (49.79) 4.47 2.99 5.71 2.33 0.98 1.30 1.01 1.25

12 43.64 (29.39) 4.67 2.79 5.69 2.69 1.23 1.02 0.65 1.45

13 86.91 (67.12) 4.61 3.55 4.09 2.76 1.29 1.54 1.81 1.70

14 86.82 (65.08) 4.33 3.04 4.75 2.58 1.17 1.16 1.98 1.65

15 62.91 (50.03) 4.43 3.48 4.02 2.53 1.79 1.40 1.97 1.40

16 92.64 (36.01) 3.98 4.34 3.24 3.75 1.66 1.53 1.59 1.63

17 54.55 (23.78) 4.18 5.07 3.95 4.29 1.57 1.30 1.80 1.95

18 53.36 (18.35) 4.36 5.18 4.22 4.89 1.71 1.20 1.92 1.56

19-a 47.25 (7.81) 4.03 4.44 3.68 3.60 1.42 0.52 1.56 1.61

19-b1 22.00 (1.00) 4.09 4.67 6.30 4.20 1.36 1.78 0.30 2.80

19-b2 96.00 (15.00) 3.77 2.61 2.70 1.30 0.05 0.06 1.70 0.30
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Table 13: The 80 extracted physiological features. Abbreviations: Std = standard deviation, MAD = mean absolute deviation,

MAV = mean absolute value, TP = total power or PSD of {VLF,LF,HF}, LF or HF norm = LF or HF
total power or PSD of {LF,HF}

, Band power% =

Band power
Total power

, Entropy = -
∑

Band power% log Band power%, RMS = root mean square, SAV = sum absolute value.

ECG

Time

HR BPM (Bit Per Minute)

R Mean, Std, MAD

Diff R Mean, Std, MAD, MAV

RR (HRV-) Mean, Std, MAD

Diff RR Mean, Std, MAD, MAV

Frequency (HRV-)

RR power VLF, LF, HF, TP, LF/HF, LF norm, HF norm

RR PSD VLF, LF, HF, TP, LF/HF, LF norm, HF norm

TEM
Amplitude Mean, Std, MAD

Diff Amplitude Mean, Std, MAD, MAV

RSP Time

Amplitude Mean, Std, MAD

Diff Amplitude Mean, Std, MAD, MAV

Period Mean, Std, MAD, BPM (Breath Per Minute)

Diff Period Mean, Std, MAD, MAV

EMG Wavelet decomposition 1-7 Band power, Total power, 1-7 Band power%, Entropy, RMS

EDA
Time LF SAV, HF SAV, VHF SAV

Frequency
LF SAV, LF power, LF power Std, HF SAV, HF power, HF power Std,

VHF SAV, VHF power, VHF power Std
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Table 14: Machine learning models and configurations

Model Description Configuration

Linear Regression1 (LR1) (linear+squared) Linear Regression model uses a lin-

ear function of input features x to

predict the label y ∈ R4, which

is the challenge ratings in this pa-

per. This is written as ŷ = w𝑇 x. To

estimate the parameters w, mean

square error (MSE) between the pre-

dicted and true labels of the training

data is minimized.

Both of the linear and squared

terms of the physiological fea-

tures are used and can be writ-

ten as x = [x2, x, 1]𝑇 . We train

one Linear Regression model

for each challenge.

Linear Regression2 (LR2) (Gaussian kernel) This model is similar to the Linear

Regression1 but Gaussian kernel [4]

is employed for the input features.

In this case, the prediction function

of Linear Regression becomes

ŷtest = ytrain (K(xtrain, xtrain) +

𝜆I)−1K(xtrain, xtest), where

K(x1, x2) is the Gaussian ker-

nel function and the (𝑖, 𝑗)th

element of it is computed as

exp(−𝛾 ∥x1𝑖 − x2𝑗 ∥
2).

We simply set 𝜆 = 0.01 and 𝛾 =

1
𝐷∗𝜎𝑥

where 𝐷 is the number of

input features and 𝜎𝑥 denotes

the global standard deviation of

training data over all features.

K-Nearest Neighbors (KNN) KNN model simply predicts the

challenge ratings for each data sam-

ple in test set by using the average

challenge ratings over its 𝑘-nearest

data samples in training set. We

normalize all data by z-score using

mean and variance of training data

and compute the euclidean distance

to find the 𝑘-nearest neighbors.

We set 𝑘 = 3 for 10-folds

cross validation. For leave-one-

participant-out cross validation

we set 𝑘 = 10, as a larger 𝑘 may

reduce overfitting.

Support Vector Machine (SVM) SVM regression model predict the

challenge ratings by ŷ = w𝑇 x

and finds the parameters w by

argminw
∥w∥2

2 such that |ytrain −

w𝑇 xtrain | ≤ 𝜖 .

We use the Gaussian kernel

function similar to that used

by Linear Regression2 for in-

put features. We train one SVM

model for each challenge.
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Table 15: Machine learning models and configurations (continued from Table 14)

Model Description Configuration

Decision Tree (DT) The Decision Tree model used in

this paper is based on the Classifi-

cation and Regression Trees [44]. It

is a binary tree where each node se-

lects the pair of feature and splitting

threshold that generate the mini-

mum MSE.

The splitting stops when the MSE drops

below 10−6 or it results in leaf nodes

having less data samples than 20. We

train one Decision Tree model for each

challenge.

Gradient Boosting Decision Trees (GBDT) GBDT model [25] is an ensemble of

Decision Trees, of which each tree is

trained to minimize the MSE by pre-

dicting the negative shrunken gra-

dient derived from the ensemble of

the previously trained trees.

For each tree, the maximum splitting

number is 10 and the minimum data

samples of a leaf node is 10. The learn-

ing rate for gradient shrinkage is 0.5

and 100 trees are trained. We train one

GBDT model for each challenge.

Random Forest (RF) Random Forest [7] is an ensemble

of Decision Trees where each tree

is trained with random selected fea-

tures and random selected training

data.

For each tree, we set the feature selec-

tion rate to 1
3 , the training data selec-

tion rate to 0.75, and the minimum data

samples of a leaf node to 3. We train

one Random Forest model for each chal-

lenge.

Neural Network (NN) (1-hidden) NN model commonly consists of a

stack of hidden layers followed by

an output layer. Each hidden layer

consists of nonlinear operation fol-

lowing an affine transform. The out-

put layer consists of an affine trans-

form to predict the 4 challenge rat-

ings.

This is a conventional shallow DNN set-

ting with one 200-dimensional hidden

layer using a Sigmoid nonlinear opera-

tion. The network are trained to mini-

mize the MSE using Adam [40] with ini-

tial learning rate 0.01, which will be de-

cayed by the factor of 0.5 for annealing.

In order to alleviate over-fitting, we set

the coefficient of L2-penalty to 0.0001

and use 10% of the training data as de-

velopment set for tuning the learning

rate. We set the minibatch size to 80 for

10-folds cross validation. For leave-one-

participant-out cross validation a larger

minibatch size seems to reduce overfit-

ting, thus we set this to 80 sequences

of successive samples with maximum

length of 5.

Deep Neural Network1 (DNN1) (5-hidden) The DNN refers to Neural Network

with multiple hidden layers [31].

In this model, we use five hidden lay-

ers where each layer consists of a

ReLU function [29] followed by batch-

normalization [38] and dropout [32] op-

erations with 90% retention as the non-

linear operation. The output layer con-

sists of an affine transform to predict the

4 challenge ratings, following a stack

of 64-dimensional Affine, ReLU and

batch-normalization operations. Other

settings are the same as the NN model.
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Table 16: Machine learning models and configurations (continued from Table 15)

Model Description Configuration

DNN2 (5-hidden+residual) Residual connection

[30] in DNN is an

additional connection

between two layers

with a relative short

path.

Residual connection with one hidden layer

connecting the output of the first and fourth

hidden layers is employed in this model.

Other settings are the same as the DNN1

model.

DNN3 (9-hidden+residual) - This model is configured similar to the

DNN2 model except for using nine hidden

layers and an additional residual connec-

tion connecting the output of the fifth and

eighth layers.

DNN4 (5-hidden+residual+MTL) Apart from the MSE, we

use multi-task learning

(MTL) to minimize two

additional objects.

We add four output layers with the same

structure as the first one, but have 7-

dimensional final-affine-transform followed

by Softmax function. Furthermore, we add

one similar output layer with 5-dimensional

final-affine-transform and Sigmoid function,

to łpredictž the four rating level classifica-

tions and five challenge activation classifica-

tions respectively during training. The train-

ing labels of these additional task are four

one-hot vectors for the 7-class tasks and five

0/1 values for the 2-class tasks for each data

sample. The 2-class tasks are described in

sections 5.3.2. The labels of 7-class tasks are

generated by dividing each challenge rating

into seven discrete levels by rounding the

rating to the nearest integer 𝑙 ∈ {1, ..., 7}.

For simplification, we minimize the MSE be-

tween true and predicted labels for these ad-

ditional tasks. In the evaluation stage, only

the first (original) output layer producing

challenge ratings are used to compute the

evaluationmetrics introduced in section 5.3.

DNN5 (9-hidden+residual+MTL) - This model is configured similar to the

DNN4 model except for using nine hidden

layers and an additional residual connec-

tion connecting the output of the fifth and

eighth layers.
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