
This is a repository copy of No street is an Island: Street network morphologies and traffic 
safety.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/202160/

Version: Accepted Version

Article:

An, Z. orcid.org/0000-0003-2577-761X, Xie, B. orcid.org/0000-0001-7641-5139 and Liu, Q.
(Cover date: September 2023) No street is an Island: Street network morphologies and 
traffic safety. Transport Policy, 141. pp. 167-181. ISSN 0967-070X 

https://doi.org/10.1016/j.tranpol.2023.07.023

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 
 

No Street is an Island:  1 

Street Network Morphologies and Traffic Safety 2 

 3 

ABSTRACT 4 

 5 

Network morphological analysis has emerged as a tool to quantify street network structures, 6 

providing a nuanced foundation for evaluating their impacts on traffic safety. Yet, there is a 7 

lack of disaggregate-level evidence on the spillover effects and spatial heterogeneity of these 8 

impacts. This research conducts a comprehensive, disaggregate-level, multi-scale examination 9 

on the overall impacts of street network morphologies on traffic safety. Our study focuses on 10 

the frequency of traffic injury collisions over a five-year period across more than 190,000 street 11 

links in Greater London. We characterise street-link morphologies at local (0 – 1 km), meso (0 12 

– 3 km), and city (0 – 8 km) scales using a spatial design network analysis. For each spatial 13 

scale, we apply extended auto-negative binomial models to examine the overall impact of 14 

street-link morphological characteristics on the injury collision frequency, considering both the 15 

link being investigated and other surrounding links determined by the spatial scale.  16 

We find significant spatial heterogeneity in the overall safety impacts of street-link 17 

morphologies. At the local scale, higher farness of a street link corresponds to an overall 18 

increase in injury collisions, whereas at the meso and city scales, it indicates an overall decrease. 19 

At the local and meso scales, higher betweenness of a street link is associated with an overall 20 

increase in injury collisions, but at the city scale, it correlates with an overall decrease. 21 

Independent of the spatial scale, a larger diversion ratio of a street link is linked to an overall 22 

decrease in injury collisions. These findings are similar to those on killed and seriously injured-23 

only collisions. Our findings suggest that encouraging compact street network structures, which 24 

aligns well with New Urbanism and the Compact City policy, may not necessarily be effective 25 

for an overall reduction in injury collisions across an entire city. 26 

 27 
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 30 
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 32 

1. Introduction 33 

Traffic collisions rank amongst the top ten killers worldwide. 1.3 million people are killed, and 34 

up to 50 million are injured as a result of traffic collisions each year (WHO 2018). Whereas 90% 35 

of road deaths transpire in low- and middle-income countries, high-income countries bear 60% 36 

of the economic losses stemming from traffic collisions (Chen et al. 2019). According to 37 

OECD's (2022) report, for example, there were 91,199 injuries and 1,516 fatalities resulting 38 
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from traffic collisions in 2020 in the UK. Despite these figures being relatively low compared 39 

to other countries, the economic costs incurred were still substantial – a staggering 1.5% of the 40 

UK's GDP in 2020, equivalent to 40.6 billion US dollars. Creating a safer traffic environment 41 

has therefore become a global policy issue and was proposed in the form of two targets in the 42 

United Nations' Sustainable Development Goals (UN 2016).  43 

Confronting the pressing challenge of traffic safety has profoundly shaped the evolution 44 

of planning philosophies. In particular, planning for safe street network structures has received 45 

substantial attention, since it potentially offers a long-term solution for traffic safety 46 

improvement over a wide population (Ewing and Dumbaugh 2009). In Europe, in response to 47 

the safety challenges arising from growing automobile use, the hierarchical street network 48 

gained popularity in the mid-20th century. This structure aims to separate through-traffic from 49 

local traffic to ensure safety in residential areas (MOT 1966). It organises streets into a 50 

hierarchy based on function, with local streets serving residential areas and higher-order roads 51 

connecting them to the broader urban network. The hierarchical street network thus features a 52 

tree-like structure, where arterial streets branch into collector streets, which further subdivide 53 

into local roads and cul-de-sacs. However, as the structure prioritises traffic efficiency in high-54 

order streets and limits connectivity between residential areas, it has been criticised for 55 

promoting car dependency, which in turn, potentially increases traffic exposure and risks in the 56 

city (Urban Design Group 2018).  57 

Amidst the critiques of the hierarchical street network, compact street network structures, 58 

which are integral to New Urbanism and the Compact City Policy, have been highlighted since 59 

the 1970s (Dieleman and Wegener 2004). Characterised by dense intersections and short block 60 

lengths, these structures aim to enhance network connectivity and prioritise active modes of 61 

transport. It is anticipated that by reducing individuals' exposure to motorised traffic, these 62 

compact networks can contribute to traffic safety improvements  (Stevenson et al. 2016). Yet, 63 

evidence supporting this still remains inconclusive (Wang et al. 2013, Zhang et al. 2015), and 64 

a major critique is that the increased compactness can potentially lead to an uptick in risky 65 

conflicts between different road users (Marshall and Garrick 2011). Within this context, it is 66 

essential to generate robust empirical evidence concerning relationship between street network 67 

structures and traffic safety, thereby informing more effective planning of safer street networks. 68 

Studies have been conducted to investigate the relationship between street network 69 

structures and traffic safety. Most of these studies are based on the visual classification of street 70 

networks (Gladhill and Monsere 2012, Marks 1957, Marshall et al. 2014). Through visual 71 

inspections, street networks in these studies were classified into non-overlapping patterns, such 72 

as the 'gridiron' and 'loops and lollipops' patterns. While such classifications seem to be 73 

straightforward, they are qualitative and subjective in nature; they tend to mask the disparities 74 

in network structures within the same pre-defined pattern and cannot effectively capture the 75 

complexity of street network structures. This challenges the generalisability and applicability 76 

of the findings.  77 

Recognising the need for a deeper understanding of the intricacies of street network 78 

structures, several studies have sought to apply morphological analysis for network structure 79 

quantification (Guo et al. 2017, Wang et al. 2013, Wang et al. 2018, Cooper 2017). They used 80 
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node-based morphological metrics to quantify how a specified street – represented as a node in 81 

a network graph –  is topologically and geometrically connected with other streets via the 82 

network. Network morphological quantifications are not independent of visual inspection 83 

approaches; instead, they serve as an extension, which provides more detailed and objective 84 

characterisations of street network structures. In these studies, the morphological metrics were 85 

predominately aggregated at the area level to quantify street network structures in each unit of 86 

analysis, and on this basis, the relationship between street network morphologies and area-level 87 

collision frequency is examined. 88 

Yet, existing studies on street network morphology-traffic safety relationships present 89 

three limitations. First, these studies segregate the entire street network into subnetworks by 90 

geographical units and compute morphological metrics based on these subnetworks. This 91 

overlooks the impact of cross-unit connections between streets at different spatial scales on 92 

traffic safety. Second, within a geographical unit, the collision frequency of each street and how 93 

each street is connected to other streets may differ. However, area-aggregated street 94 

morphologies and area-level collision frequency may obscure these differences. The applied 95 

aggregate-level analyses may thus be susceptible to ecological fallacy – the misassumption that 96 

a population-level average applies to each individual within the population (Portnov et al. 2007) 97 

– when investigating the safety impacts of street network morphologies. Third, these studies 98 

exclusively consider the direct impact of street network morphologies, focusing on their safety 99 

implications within each unit of analysis. However, the spillover impact, which refers to how 100 

the morphologies of a street network impact traffic safety in surrounding areas, have yet to be 101 

explored. This limits our understanding of street network structures' overall safety implications. 102 

This research aims to conduct a disaggregate-level, multi-scale examination on the overall 103 

impacts of street network morphologies on traffic safety. We examine five-year injury 104 

collisions of more than 190,000 street links in Greater London, UK. A street link is defined as 105 

a segment of roadway between junctions or any change in the function of the roadway. We 106 

perform a spatial design network analysis (sDNA) to characterise the street network 107 

morphologies at the street-link level using three metrics (farness, betweenness, and diversion 108 

ratio) at three spatial scales (local, meso, and city scales). This allows for the quantification of 109 

street network structures at various spatial scales, and facilitates conducting disaggregate-level 110 

analyses to reduce ecological fallacy. We apply extended auto-negative binomial (EANB) 111 

models to examine the impact of street-link morphologies on the injury collision frequency of 112 

the link investigated and other surrounding links. This enables us to capture the direct, spillover, 113 

and overall impacts of street network structures on traffic safety. Our research findings and 114 

approaches help support the design of street network structures for improving traffic safety. 115 

2. Traffic Safety Studies on Street Networks 116 

2.1. Visual Inspection of Street Network Structures 117 

Initial studies investigating the effects of street network structures on traffic safety date back to 118 

the 1950s. In his study, Marks (1957) utilised visual inspection to categorise the street network 119 

structures of subdivisions in Los Angeles, US, into two patterns: gridiron and limited access, 120 
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he found that the frequency of total collisions was eight times higher in the gridded subdivisions. 121 

It is important to note that in our paper, the term 'total collision' encompasses both injury and 122 

non-injury collisions unless otherwise specified. In their seminal work, Southworth and Owens 123 

(1993) provided a more comprehensive view of such classifications. They categorised US 124 

community street networks into five patterns: gridiron, interrupted parallel, incremental infill, 125 

loops and lollipops, and hybrid patterns. Subsequently, similar classifications have been widely 126 

adopted in traffic safety studies through the visual inspection of street network structures. 127 

Results reported in the literature suggest that the 'gridiron' pattern may be associated with a 128 

greater frequency of total collisions than other patterns, particularly the 'loops and lollipops' 129 

pattern (Gladhill and Monsere 2012, Rifaat and Tay 2009, Sun and Lovegrove 2013). However, 130 

some studies indicate that gridiron patterns may mitigate the severity of collisions (Rifaat et al. 131 

2012, 2011). 132 

2.2. Morphological Quantifications of Street Network Structures 133 

In recent decades, space syntax has emerged as a tool to quantify street network structures. 134 

Space syntax encompasses a range of techniques that leverage graph theory and morphological 135 

metrics to analyse spatial configurations of urban spaces. On this basis, traffic safety studies 136 

have sought to advance beyond the visual inspection approaches of network structures by 137 

investigating the extent to which road traffic safety is affected by street network morphologies. 138 

Amongst concepts developed in space syntax to characterise network morphologies, three – 139 

reachability, choice, and severance – have attracted notable attention in the existing traffic 140 

safety literature. Through the mediating roles of traffic exposure, traffic speed, and traffic 141 

conflicts, as we will discuss, street network morphologies characterised by these three concepts 142 

are potentially linked to traffic safety.  143 

Reachability denotes the ease with which a given location can be reached from, or reach, 144 

other locations in a network. Greater reachability for a street link is indicative of a greater 145 

potential for frequent visitation and ease in accessing other links in the network. This concept 146 

is commonly quantified using the closeness metric (Zhang et al. 2015, Mi et al. 2020), which 147 

calculates the average (topological or geometrical) distance between a given street link and 148 

links along the network's shortest paths. Two other metrics, namely, the integration metric and 149 

clustering coefficient, have also been applied to measure reachability. The integration metric 150 

can be viewed as a metric similar to closeness standardised by the number of street links in the 151 

(sub)network where the focused link is located (see, Guo et al. (2017) for details); the clustering 152 

coefficient calculates the ratio of the number of connections a given street link has to the total 153 

number of street links in the network (Zhang et al. 2015).  154 

The concept of reachability is intricately linked with traffic safety. First, street links with 155 

greater reachability at a large spatial scale (e.g., at a city scale) tend to attract more motorised 156 

traffic volume, which increases the exposure to traffic risks in such links (Jayasinghe et al. 157 

2015). In contrast, street links with greater reachability at a small spatial scale (e.g., at a 158 

neighbourhood scale) may encourage the use of active transport to travel to and from those 159 

links (Kang 2018), thereby reducing traffic exposure. Second, an increase in the reachability of 160 

a street link increases the likelihood of conflicts amongst road users in their surrounding areas 161 
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due to the rise in the number of junctions. This, in turn, can result in a higher incidence of 162 

collisions in these areas (Zhang et al. 2015). However, the need for frequent manoeuvres by 163 

drivers in these areas may result in lower driving speeds (Aarts and van Schagen 2006), thereby 164 

increasing reaction time in the event of a conflict, which helps reduce the occurrence and 165 

severity of collisions. 166 

Choice refers to how likely a given location is to be traversed on the shortest paths between 167 

each location pair in a network (Hillier et al. 1986). Therefore, the concept of choice focuses 168 

on through-movement flow in a network (Sarkar et al. 2018); a higher level of choice indicates 169 

a more centralised role of the focused street link in connecting other links in a network. The 170 

concept is commonly quantified using betweenness (Sarkar et al. 2018, Wang et al. 2018, 171 

Cooper 2017), which calculates the number of shortest paths between all other pairs of locations 172 

in the network that pass through the street link investigated. The concept of choice has the 173 

potential to influence traffic safety through its intermediary effect on traffic exposure. For 174 

example, since individuals tend to seek short-cuts to save cognitive and physical efforts as well 175 

as reduce expenses in travelling, street links with higher betweenness may experience greater 176 

traffic volume (Cooper 2017, Serra and Hillier 2019), which in turn, contributes to greater 177 

exposure to the risk of collisions. 178 

Severance characterises the extent to which between-location connections deviate from the 179 

shortest path. The concept can be quantified using the diversion ratio (Sarkar et al. 2018), which 180 

calculates the average ratio of the shortest path distance to the straight-line distance. There may 181 

be a complex relationship between street network severance and traffic safety. On the one hand, 182 

high levels of severance create barriers that limit travellers' ability to move directly between 183 

locations, requiring longer and more circuitous routes that lower travel efficiency. This, as a 184 

consequence, disrupts the concentration of traffic volume and human activities in streets with 185 

high-level severance and their surrounding areas (He et al. 2019), which may reduce collision 186 

occurrence. On the other hand, street links with a high level of severance tend to be associated 187 

with limited driving visibility around junctions in surrounding areas (Hills 1980), as a result of 188 

twisted connections between links in these areas. This potentially leads to the increased 189 

occurrence and severity of collisions (Das et al. 2018). 190 

The metrics used to measure reachability, choice, and severance in the existing traffic 191 

safety literature are predominately node-based morphological metrics. Such metrics treat a 192 

given street link as a node in a network graph, and on this basis, assess how it is connected to 193 

other links in the network. In contrast, graph-based metrics focus on the structural properties of 194 

an entire network. In this regard, Wang et al. (2013) used the meshedness coefficient, which 195 

gauges the number of bounded faces in a network, to measure the overall reachability of street 196 

links in the network (Buhl et al. 2006). 197 

2.3. Street Network Morphologies and Traffic Safety 198 

Studies on the street network morphology-traffic safety relationships were predominately 199 

conducted ecologically, with an exclusive focus on the direct impact of street network 200 

morphologies within specific geographical areas. Zhang et al. (2015) investigated the 201 

correlation between street network structures and the census-tract level frequency of total non-202 



6 
 

motorist-involved collisions in California, US. They considered three morphological metrics: 203 

farness (the reciprocal of closeness), betweenness, and the clustering coefficient. To model 204 

census tract collisions, the authors used the average values of farness and the clustering 205 

coefficient of street links in each census tract. The betweenness metric was aggregated at the 206 

census tract level by calculating 'the average difference between the relative [betweenness] 207 

centrality of the most central street and that of all other streets' (p. 38). The results suggested 208 

that census tracts with street networks, which was associated with smaller farness (i.e., a higher 209 

level of reachability), higher betweenness (i.e., a higher level of choice), and a larger clustering 210 

coefficient (i.e., a higher level of reachability), tended to indicate fewer non-motorist-involved 211 

collisions. Guo et al. (2017) examined the relationship between street network reachability and 212 

the frequency of pedestrian-vehicle injury collisions at the TAZ level in Hong Kong, China. 213 

The street network reachability of each TAZ was measured using the average integration metric 214 

of the street links. The results indicated that TAZs with a higher level of street network 215 

reachability were associated with an increased frequency of pedestrian-vehicle injury collisions. 216 

Three studies applied area-aggregate node-based metrics to distinguish area-level street 217 

network patterns. Wang et al. (2018) considered the average relative betweenness of street links 218 

in each TAZ, a metric similar to that used by Zhang et al. (2015). Using this metric, the authors 219 

categorised TAZ network patterns in Shanghai, China, into four types: grid, irregular grid, 220 

mixed, and tree-like. The classification approaches were similar to those of Li and Wang (2017) 221 

for characterising adjacent street network patterns of meso-level units (the combination of street 222 

links and intersections) in Shanghai. These two studies indicated that areas with grid-pattern 223 

street networks were associated with fewer total collisions. Wang et al. (2013) considered the 224 

average closeness, average relative betweenness, and meshedness coefficient at the TAZ level 225 

in Florida, US. They visually classified four types of street network patterns and verified their 226 

classifications using morphological metrics. Inconsistent with the findings of Wang et al. (2018) 227 

and Zhang et al. (2015), Wang et al. (2013) found that TAZs with a grid street network pattern 228 

exhibited the highest frequency of total collisions, followed by those with mixed, loops and 229 

lollipops, and sparse types street network patterns.  230 

Two studies were conducted at the disaggregate street-link level. Cooper (2017) used the 231 

model constructed based on street-link betweenness to predict street-link traffic flows and 232 

traffic safety performance in Cardiff, UK. The study showed that betweenness highly correlated 233 

with both motorised (R = 0.90) and cycling (R = 0.78) annual average daily traffic. The model 234 

accurately predicted high-risk and low-risk links with success rates of 75% and 73%, 235 

respectively. In Sarkar et al.'s (2018) study, the authors examined the relation between street-236 

link morphologies and the severity of injury collisions in Greater London, UK. The results 237 

suggested that an increase in the betweenness of a street link may elevate the severity of injury 238 

collisions in that link, whilst an increase in the street-link diversion ratio tended to reduce the 239 

severity. While the use of disaggregate-level analyses in these studies helps reduce ecological 240 

fallacy, the lack of analyses on collision frequency and network morphologies' spillover impacts 241 

impedes a comprehensive understanding of the safety implications of street network structures. 242 



7 
 

3. Research Design 243 

3.1. Data 244 

We focused on street-link level injury collisions in Greater London over the period 2015–2019. 245 

We applied three types of data sets: (1) injury collision, (2) street network, and (3) 246 

neighbourhood socioeconomic and land use data sets. We extracted 2015–2019 injury collision 247 

data from STATS19, an open-access official database of road traffic collisions that resulted in 248 

injuries in Greater Britain. The data from STATS19, such as the geographical coordinates and 249 

severity of collisions, were initially obtained by the police at the scene of an accident or when 250 

the public reports an accident to a police station (DfT 2013). Local authorities validate the data 251 

obtained by the police before they are passed on to the UK Department for Transport for the 252 

final data integration. Similar to other national police-recorded databases, the number of injury 253 

collisions in STATS19 may be under-reported (Ward et al. 2002, Iacono and Levinson 2016). 254 

However, this database remains the most reliable and complete source of traffic accident 255 

statistics for Greater Britain (DfT 2022a). From 2015 to 2019, 126,347 collisions occurred in 256 

Greater London (Figure 1- A), which accounts for more than one-fourth of the total number in 257 

England. Among the recorded collisions, 12% resulted in severe injuries and fatalities. Our 258 

research focuses on the frequency of both total injury and killed and seriously injured (KSI) 259 

collisions at the street-link level.  260 

We acquired data on the 2017 street network in Greater London from Ordnance Survey 261 

(OS) OpenRoads, which contains a detailed street network of Great Britain. The dataset 262 

consisted of 198,880 street links within the Greater London boundary in 2017, only a proportion 263 

of private roads and short cul-de-sacs with limited motorised traffic were not included in OS 264 

OpenRoads (OS 2017). Given its comprehensiveness and high quality, this dataset has been 265 

widely used in the existing literature exploring street network structures in Great Britain 266 

(Venerandi et al. 2022, Beecham et al. 2022).  267 

We also considered street links (n = 62,159) situated outside Greater London but within 268 

an 8 km network distance (Figure 1-B) – the largest radius threshold we considered for 269 

measuring the morphological metrics – from each focused street link, for two reasons. First, we 270 

measured the morphological characteristics of a street link based on its connections with other 271 

links within specified radii. Including the street links located outside Greater London allowed 272 

for precise measurements of street-link morphologies. Second, we investigated three types of 273 

impacts of street-link morphologies on the frequency of total injury and KSI collisions: direct, 274 

spillover, and overall impacts. The direct impact refers to the impact of a street link's 275 

morphologies on the collision frequency of the link investigated; the spillover impact refers to 276 

the impact of a street link's morphologies on all other links situated within a given network 277 

radius surrounding the link. The overall impact corresponds to the sum of direct and spillover 278 

impacts. As detailed in subsection 3.4.2, calculating the spillover and overall impacts required 279 

the inclusion of morphological characteristics of street links outside Greater London in our 280 

models.  281 

We obtained the neighbourhood socioeconomic characteristics, such as population 282 
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density, population age composition, and average household income, at the super output area 283 

level from the 2011 UK Census. Neighbourhood land use data from 2017 were obtained from 284 

Geomni UKLand. This data set comprises nine categories of land use, including both man-285 

made and natural landscapes. We used the middle super output area (MSOA; n = 964)-level 286 

data for our main analysis and conducted sensitivity analyses using the lower super output area 287 

(LSOA; n = 2,252)-level data. The neighbourhood-level variables were used as covariates in 288 

estimating the safety impacts of street-link morphologies. The estimation, however, may be 289 

susceptible to the modifiable area unit problem (MAUP), which occurs when the aggregation 290 

of the covariates at different geographic scales affects the results. Using both MSOA- and 291 

LOSA-level data thus allowed us to examine the robustness of our results against the MAUP. 292 

 293 

 294 

Figure 1 The distributions of (A) injury collisions and (B) considered street links in Greater 295 

London. 296 

3.2. Street Network Morphologies 297 

We performed an sDNA to characterise street network morphologies at the street-link level 298 

(Cooper and Chiaradia 2020). In sDNA, street links are the unit of analysis for the theoretical 299 

planar graph model of a city. Unlike conventional space syntax and network analyses, sDNA 300 

enables the joint characterisation of topological and geometrical features of a network at various 301 

spatial scales, rendering it more relevant for planning practices. Owing to these features, sDNA 302 

has been applied in various fields, such as public health, transport, and housing studies, to better 303 

understand the role of street networks in shaping society (Donald et al. 2014, Grimaldi et al. 304 

2019). In light of the multiplicity of street network morphologies, we considered three concepts 305 

in sDNA, namely, unreachability, choice, and severance, to determine the applied 306 

morphological metrics, following our literature review. 307 

First, we measured the opposite of the concept of reachability, i.e., unreachability, using 308 

the  farness metric. This metric is defined as the average shortest distance between a street link 309 

and other links within a defined network radius. We did not use a measure of the reachability 310 

concept, namely the closeness metric. The reason is that the closeness metric is calculated using 311 
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the reciprocal of the farness metric, and thus it has an exponential distribution, which is difficult 312 

to handle statistically (Cooper et al. 2021). A higher farness value indicates that the street link 313 

investigated contains farther and fewer connections with other links (Zhang et al. 2015). Second, 314 

we quantified the concept of choice using the betweenness metric, which is determined by the 315 

weighted number of times a street link lies on the shortest path between other pairs of links 316 

within a defined network radius. A higher betweenness value suggests a more centralised role 317 

for a street link in connecting other links. Third, to measure the concept of severance, we used 318 

the diversion ratio, which is defined as the mean ratio of the shortest length to the crow flight 319 

distance between a street link and other links within the radius. A larger diversion ratio suggests 320 

that a street link contains more twisted connections with other links. We refer our readers to 321 

Appendix A for detailed mathematical calculations of the morphological metrics.  322 

We considered different spatial scales for calculating street morphological metrics. We 323 

applied three radii based on the Euclidean network distance: 0–1, 0–3, and 0–8 km. Following 324 

studies on street morphologies (Sarkar et al. (2018); Xiao et al. (2017)), we determined the size 325 

of these radius parameters based on the trip distance made by different modes of transport. 326 

According to the 2017 National Travel Survey for Great Britain, 1, 3, and 8 km correspond to 327 

the median distances of trips traversed by walking, cycling/bus, and car in Greater London, 328 

respectively (DfT 2022b). Therefore, the radii of 0–1, 0–3, and 0–8 km reflect the distance 329 

ranges of individuals' daily travels at spatial scales of 'local,' 'meso,' and 'city', respectively. 330 

We considered street links located within 8 km of Greater London when computing the 331 

morphological metrics to avoid spillover bias. In our main analyses, the shortest path for 332 

measuring the morphological metrics was determined based on the Euclidean distance (also 333 

known as the metric distance) along the network. The measured farness, betweenness and 334 

diversion ratio of street links are displayed in Figure 2, Figure 3, and Figure 4, respectively. 335 

We also used morphological metrics calculated based on angular distance for the sensitivity 336 

analysis, since some studies have suggested that these metrics may explain traffic volume better 337 

than metrics calculated based on Euclidean distance (Serra and Hillier 2019, Ciscal-Terry et al. 338 

2016, Jayasinghe 2017). 339 
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 340 

Figure 2 Farness of street networks at the link level. 341 

 342 

 343 

Figure 3 Betweenness of street networks at the link level. 344 
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 345 

 346 

Figure 4 The diversion ratio of street networks at the link level347 
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 348 

3.3. Covariates 349 

We used two street-link-level covariates, namely, the length and function of street links. The 350 

function of street links was categorised into four types: (1) motorway/A road1; (2) B road2; (3) 351 

minor road; and (4) local roads (OS 2017), which respectively constituted 12%, 3%, 10%, and 352 

75% of street links in Greater London.  353 

The neighbourhood-level covariates were considered as follows (see Table 1 for a 354 

summary of the statistics). These covariates have been revealed as determinants of traffic safety 355 

and of the generation/attraction of traffic volume.  356 

• Socioeconomics: Population density, average household income, and percentage of 357 

households with children, work-age population, and white population (e.g., Kocatepe 358 

et al. (2017); Lee et al. (2014); Lee and Abdel-Aty (2018); Lee et al. (2018); Quddus 359 

(2008); Wang et al. (2016); Albalate and Fageda (2021)). 360 

• Land use: The total land area and the proportion of business/commercial, industrial, 361 

and recreational land uses (e.g., Pulugurtha et al. (2013); Xie et al. (2019a); Chen and 362 

Lym (2021)). 363 

We did not include traffic volume in our model estimation due to the influential role street 364 

network morphologies play in shaping trip generation and attraction (Kang 2017, Serra and 365 

Hillier 2019). Considering the potential mediating role of traffic volume in the relationship 366 

between street network morphologies and traffic safety, controlling for this variable may lead 367 

to an underestimation of street network morphologies' safety impacts. Instead, our analyses 368 

included a rich set of covariates that were closely related to trip generation and attraction. This 369 

approach allows for a more accurate assessment of the overall contribution of street network 370 

morphologies to traffic safety, thereby reducing the confounding effects of traffic volume. 371 

In Greater London, 13% of street links cross through more than one MSOA. We merged 372 

all the MSOAs crossed by a street and recalculated the neighbourhood-level covariates for the 373 

street link investigated. The size of the merged MSOAs may not significantly affect our results, 374 

as we controlled the total land area of the merged areas and used variables that measured 375 

densities and percentages. The same argument held when LOSA-level covariates were used. 376 

 377 

 378 

 379 

 380 

 381 

 382 

 
1 A roads refer to major roads designed to facilitate large-scale transport within or between areas (OS 
2017). 
2  B roads refer to roads designed to connect different areas and provide traffic distribution between 
higher- and lower-level roads in the network (OS 2017). 
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 383 

Table 1 Neighbourhood-level covariates. 384 

Neighbourhood-level covariates 
MSOA LSOA 

Min Max Mean SD Min Max Mean SD 

Land area (ha) 29.38 3520.10 231.55 278.81 1.00 3160.00 66.41 152.22 

Population density (n/ha) 2.86 248.67 69.39 43.24 1.16 1089.00 74.94 52.06 

Working-age population (%) 57.46 87.27 68.31 57.46 48.64 94.68 68.39 6.34 

White population (%) 6.14 96.19 62.52 6.14 3.54 98.16 62.62 20.00 

Households with children (%) 4.57 32.16 18.78 4.57 2.34 39.88 18.75 5.95 

Average household income (n) 22367 141363 46319 15410 20110 140661 46649 15850 

Business/commercial area (%) 0.00 88.97 10.19 0.00 0.00 41.38 5.58 0.02 

Industrial area (%) 0.00 41.81 3.51 0.00 0.00 80.00 3.12 8.10 

Recreational area (%) 0.00 51.42 10.01 8.82 0.00 69.74 8.51 12.07 

 385 

3.4. Model 386 

We proposed an EANB model to examine the direct, spillover, and overall impact of street-link 387 

morphologies on the frequency of total injury and KSI collisions at different spatial scales. The 388 

EANB model is an extension of the auto-negative binomial (ANB) model. This section 389 

elaborates on the rationale and the specifications of the ANB and EANB model.  390 

3.4.1. ANB Model 391 

An ANB model, developed by Besag (1974), can be established as follows (Eqs (1)-(3)): 392 

 ( ),Si Siy Negbin u r=  (1) 393 
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Here, yS is a 198,880×1 vector of the collision frequency of street links in our study area. 396 

ySi is assumed to exhibit a negative binomial distribution with an expected value uSi and a 397 

dispersion parameter r. XS denotes a 198,880×3 matrix of morphological metrics at a given 398 

scale of each street link in our study area; β is a vector of corresponding coefficients. C is a 399 

198,880×14 matrix of one and covariates, and κ is a vector of the coefficients.  is a vector of 400 

the residuals.  401 

The ANB model allows accounting for the potential global network autocorrelation via 402 

the introduction of a spatially lagged term WyA. Here,  is the global autocorrelation 403 
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parameter. yA refers to a 261,039×1 vector of collision frequency of all considered street links 404 

that involve not only the links in Greater London (the 198,880×1 vector yS) but also those 405 

located outside Greater London but within an 8 km network distance from the links investigated 406 

(the 62,159×1 vector yO). W is a 198,880×261,039 network distance-based weight matrix with 407 

the diagonal elements set as zero. The non-diagonal element of W (wij; i≠j) was determined by 408 

the inverse Euclidean distance (1/dij) through the shortest path between street links i and j, if dij 409 

is smaller than a cut-off value d0. We set up d0 in accordance with the spatial scale considered 410 

in the model (i.e., 1 km, 3 km, or 8 km). Otherwise, wij was set as zero. At each spatial scale, 411 

we evaluated the network global autocorrelation of street-link total injury and KSI collision 412 

frequency, using Moran's I index with the introduced weight matrix. Independent of types of 413 

collisions and spatial scales, we found positive network global autocorrelations (i.e., Moran's I 414 

> 0) of street-link collision frequency at the level of p < 0.001. This highlights the importance 415 

of accounting for the network global autocorrelation to reduce estimation bias. 416 

There was high-level multicollinearity between WyA and the explanatory variables. 417 

Therefore, we first regressed XS and C on WyA (Eq. (4)) and extracted the residual vector ν, 418 

based on the method of García et al. (2020). We then replaced WyA in Eq. (2) with ν (Eq. (5)). 419 

Therefore, ν is orthogonal to XS and C. 420 

 A S= + +Wy X λ Cζ ν  (4) 421 

 ( ) * * * *log S S= + + +u ν X β Cκ ε  (5) 422 

Glaser (2017) reviewed existing approaches for modelling spatial autocorrelation for 423 

count data. She classified these approaches into three categories: (1) autocorrelation models; (2) 424 

Bayesian autoregressive error models; and (3) models with lagged covariates. The ANB model 425 

falls into the first category and offers two advantages to our study. First, the ANB model, 426 

compared with Bayesian autoregressive error models that model global autocorrelation in the 427 

error terms, is more suitable when the dimension of the weight matrix W is large (also known 428 

as the 'Big m' problem, see Banerjee et al. (2003)). Few traffic safety studies explicitly 429 

considered the network global autocorrelation. The exceptional studies have predominately 430 

applied Bayesian autoregressive error models (Zeng and Huang 2014, Li and Wang 2017). 431 

However, these studies focused only on small-scale networks with a limited number of street 432 

links (n < 420). A key methodological barrier is that Bayesian inference may fail to converge 433 

owing to the large dimension and dense nature of matrix W (Musenge et al. 2013). By contrast, 434 

the ANB model allows us to partition W and then use linear algebra methods to obtain WyA 435 

prior to estimation, instead of using W directly. Second, introducing a spatially autocorrelated 436 

term of the dependent variable allows the ANB model to capture the autocorrelation effect of 437 

unobserved variables. By contrast, models with lagged covariates consider only the observed 438 

variables, which renders such models more susceptible to endogeneity. 439 

3.4.2. EANB Model 440 

Despite its computational flexibility, the ANB model centres on only the direct impact of each 441 
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street-link morphological metric on collision frequency. The direct impact refers to the impact 442 

of a street link's morphologies on the collision frequency of the link investigated. However, the 443 

indirect impact, also known as the spillover impact, is overlooked in the ANB model. The 444 

spillover impact refers to the impact of a street link's morphologies on all other links situated 445 

within a network radius surrounding the link. To address both direct and spillover impacts, we 446 

proposed the EANB model by introducing a spatially lagged term of a morphological metric as 447 

follows:  448 

 
( ) ( )log ;

,

s k k Sk k Ak S k k k k

Ak Sk Ok

−= + + + + +

 = 

u σ x Wx X ξ Cω

x x x

   
T

T T
 (6) 449 

Here, for a given spatial scale, WxAk is the spatially lagged term of the kth morphological 450 

metric. xAk is a 261,039×1 vector of morphological metric k for street links that involve not only 451 

the links in our study area (the 198,880×3 matrix xSk) but also those located outside Greater 452 

London but within an 8 km network distance from the links investigated (the 62,159×1 matrix 453 

xOk). XS(-k) is the matrix obtained after eliminating column k (i.e., xSk) from matrix XS. σk is the 454 

residuals for the model where we regressed all explanatory variables in Eq. (6) on WyA, 455 

following Eqs.(4)-(5). α, φk, δk, ξk, and ωk are parameters (coefficients) to be estimated; τk 456 

denotes residuals. In each EANB model, our parameters of focus were φk and δk, which were 457 

used in calculating the direct and spillover impact of morphological metric k on collision 458 

frequency; all variables but such a metric and its spatially lagged term were treated as controlled 459 

variables. Therefore, we estimated 18 EANB models, as we considered three morphological 460 

metrics, three spatial scales, and two types of collisions. 461 

The average direct and spillover impact of morphological metric k of street link i (xSki) on 462 

collision frequency at a given spatial scale are given by Eq. (7) and Eq. (8), respectively.  463 
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In these two equations, n=198,880 is the number of street links investigated. (W)n*, (C)n*, 466 

and (XS(-k))*n respectively denote the nth row of matrix W, C, and XS(-k). wij is the element of the 467 

ith row and jth column of the weight matrix W. The direction of the direct impact of the 468 

morphological metric k is therefore determined by the direction of the coefficient φk  associated 469 

with xSk, whereas the direction of the spillover impact is determined by the direction of the 470 

coefficient δk associated with the spatially lagged term WxAk. On this basis, we calculated the 471 

overall impact of a street-link morphological metric on the overall frequency of collisions by 472 

summing the direct and spillover impact of the corresponding metric. 473 

We tested the potential multicollinearity of EANB models through the variance inflation 474 

factor (VIF; best if < 5), and found no high-level multicollinearity, which could have comprised 475 

our statistical inferences. We adopted the White HC1 robust standard error to manage potential 476 

heteroscedasticities (MacKinnon and White 1985). Two sensitivity analyses were conducted. 477 
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First, we applied angular distance-based metrics to street network morphologies. Second, we 478 

used LOSA-level contextual covariates to examine the robustness of our estimations against 479 

the potential modifiable area unit problem.  480 

4. Results 481 

We first examined the ANB model for total injury collision frequency (Table 2). For model 482 

fitness, McFadden's R-squared values ranged from 0.368 to 0.384, while a McFadden's R-483 

squared value exceeding 0.2 indicates good model fitness (McFadden 1979).  484 

For the estimation of the input variables, the global network autocorrelation parameter 485 

exceeded zero (range: 0.08 to 0.14) at a significance level of 0.0001, regardless of the models. 486 

This indicates that the effect of street-link features on total injury collision frequency may be 487 

positively autocorrelated along the network.  488 

The EANB models revealed significant correlations between street-link morphologies and 489 

total injury collision frequency (Table 2). Street-link farness at the local and meso scales 490 

presented a positive correlation with the total injury collision frequency of the link investigated. 491 

In contrast, no significant correlation was found between street-link farness at the city scale and 492 

the total injury collision frequency of the link investigated. This means that the direct impact of 493 

street-link farness on the total injury collision frequency of the link itself presents spatial 494 

heterogeneity (Table 3 and Figure 5). The coefficients for the spatially lagged terms of street-495 

link farness were negative, suggesting that the increased farness of a street link at a given scale 496 

may have a spillover impact that contributes to fewer total injury collisions in other surrounding 497 

links determined by the same spatial scale (the same network radius) (Table 3 and Figure 5). 498 

At each considered spatial scale, street-link betweenness was positively associated with the 499 

total injury collision frequency of the link investigated, whereas the coefficients for spatially 500 

lagged terms of betweenness were negative. These results indicate that, at a given spatial scale, 501 

an increase in a street link's betweenness may have a direct impact leading to more total injury 502 

collisions in the link investigated, but a spillover impact contributing to fewer total injury 503 

collisions in other surrounding links determined by the same spatial scale. Independent of the 504 

spatial scale, the street-link diversion ratio was negatively correlated with the total injury 505 

collision frequency of the link investigated, and the coefficients for its spatially lagged terms 506 

were negative. This indicates that, regardless of the spatial scale at which the diversion ratio 507 

was measured, its direct and spillover impacts may decrease the total injury collision frequency 508 

of the street link investigated and other surrounding links determined by the same spatial scale, 509 

respectively (Table 3 and Figure 5). 510 

We computed the overall impact of street-link morphologies measured at a given scale on 511 

total injury collision frequency, taking into account both the link being investigated and its 512 

surrounding links determined by the same spatial scale (Table 3 and Figure 5). At the local 513 

scale, higher farness of a street link corresponded to an overall increase in the frequency of total 514 

injury collisions, whereas at the meso and city scales, it was associated with an overall decrease. 515 

At the local and meso scales, higher betweenness of a street link was associated with an overall 516 

increase in the frequency of total injury collisions, but at the city scale, it correlated with an 517 
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overall decrease. Independent of the spatial scale, a larger diversion ratio of a street link was 518 

linked to an overall decrease in the frequency of total injury collisions. 519 

Next, we investigated the EANB models for the KSI collision frequency (Table 4). The 520 

McFadden R-squared value (range: 0.424 to 0.431) suggested good model fitness. The global 521 

network autocorrelation parameter was significantly greater than zero (range: 0.57 to 0.97). The 522 

estimation results of the morphological metrics and their spatially lagged terms showed a 523 

pattern similar to those of the total injury collision frequency model. However, inconsistent 524 

with the findings reported previously, at the meso scale, higher street-link farness was 525 

associated with an overall increase in KSI collision frequency (Table 5 and Figure 6). 526 

For our sensitivity analyses using the angular distance-based morphological metrics, each 527 

metric's direction of direct and spillover impacts remained unchanged, and the model fitness 528 

remained highly similar (the McFadden R-squared ranged from 0.342 to 0.377 for the model of 529 

total injury collision frequency, and ranged from 0.449 to 0.455 for the model of KSI collision 530 

frequency). However, we found that the overall impact of meso-scale farness was no longer 531 

negative  (Appendix B). When we used LSOA-level neighbourhood covariates, our estimation 532 

results remained fairly consistent with the direction and significance of the street-link 533 

morphological metrics and their spatially lagged terms (results are not shown for brevity). This 534 

suggests that our findings are relatively robust against the MAUP. 535 

 536 
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Table 2 Results of the EANB models on total injury collision frequency. 

Focused Variables 

Spatial Scale 

Local (1 km) Meso (3 km) City (8 km) 
Coef. (Robust SE) Coef. (Robust SE.) Coef. (Robust SE) 

Global Network Autocorrelation 1.376E-1 (3.661E-3) *** 1.097E-1 (2.996E-3) *** 7.812E-2 (2.983E-3) *** 

Farness 4.634E-3 (1.332E-4) *** 2.103E-4 (5.132E-5) *** -2.645E-5 (2.945E-5) 
Spatially Lagged Farness -6.515E-4 (3.491E-5) *** -1.052E-4 (5.594E-6) *** -2.710E-5 (1.107E-6) *** 

McFadden R-squared 0.384 0.379 0.368 

Global Network Autocorrelation 1.121E-1 (2.779E-3) *** 1.018E-1 (2.559E-3) *** 1.059E-1 (2.887E-3) *** 

Betweenness 6.344E-5 (1.764E-6) *** 2.016E-6 (3.487E-8) *** 7.301E-8 (1.242E-9) *** 

Spatially Lagged Betweenness -6.616E-5 (2.778E-6) *** -5.830E-7 (4.607E-8) *** -3.159E-8 (1.570E-9) *** 

McFadden R-squared 0.383 0.379 0.367 

Global Network Autocorrelation 1.330E-1 (3.416E-3) *** 1.049E-1 (2.982E-3) *** 6.950E-2 (3.061E-3) *** 

Diversion Ratio -1.326E+0 (4.124E-2) *** -2.965E+0 (6.193E-2) *** -1.062E+1 (1.383E-1) *** 

Spatially Lagged Diversion Ratio -3.098E-1 (1.599E-2) *** -1.692E-1 (8.789E-3) *** -1.094E-1 (4.946E-3) *** 

McFadden R-squared 0.384 0.379 0.368 

Note. *
 p<0.01, ** p<0.001, *** p<0.0001.  

 

 

Table 3 Impacts of street-link morphologies on total injury collision frequency. 

 Direct Impact 
 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness 2.944E-3 (2.943E-3, 2.944E-3) 1.336E-4 (1.336E-4, 1.336E-4) -1.680E-5 (-1.680E-5, -1.680E-5) 
Betweenness 4.030E-5 (4.030E-5, 4.030E-5) 1.281E-6 (1.281E-6, 1.281E-6) 4.638E-8 (4.638E-8, 4.638E-8) 
Diversion Ratio -8.426E-1 (-8.150E-1, -8.701E-1) -1.883E+0 (-1.632E+0, -2.135E+0) -6.746E+0 (-4.997E+0, -8.495E+0) 

  Spillover Impact  

 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness -3.101E-4 (-3.101E-4, -3.101E-4) -1.395E-4 (-1.395E-4, -1.395E-4) -9.361E-5 (-9.361E-5, -9.361E-5) 
Betweenness -3.163E-5 (-3.163E-5, -3.163E-5) -7.762E-7 (-7.762E-7, -7.762E-7) -1.093E-7 (-1.093E-7, -1.093E-7) 
Diversion Ratio -1.477E-1 (-1.464E-1, -1.489E-1) -2.244E-1 (-2.235E-1, -2.253E-1) -3.787E-1 (-3.781E-1, -3.792E-1) 

  Overall Impact  

 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness 2.634E-3 (2.633E-3, 2.634E-3) -5.898E-6 (-5.896E-6, -5.899E-6) -1.104E-4 (-1.104E-4, -1.104E-4) 
Betweenness 8.677E-6 (8.677E-6, 8.677E-6) 5.046E-7 (5.046E-7, 5.046E-7) -6.295E-8 (-6.295E-8, -6.295E-8) 
Diversion Ratio -9.902E-1 (-9.575E-1, -1.023E+0) -2.108E+0 (-1.850E+0, -2.366E+0) -7.125E+0 (-5.361E+0, -8.889E+0) 
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Figure 5 Summary of street-link morphologies' impacts on total injury collision frequency. 
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Table 4 Results of the EANB models on KSI collision frequency. 

Focused Variables 
Spatial Scale 

Local (1 km) Meso (3 km) City (8 km) 
Coef. (Robust SE) Coef. (Robust SE.) Coef. (Robust SE) 

Global Network Autocorrelation 9.665E-1 (4.085E-2) *** 8.567E-1 (3.767E-2) *** 6.081E-1 (3.679E-2) *** 

Farness 4.672E-3 (2.160E-4) *** 2.771E-4 (9.729E-5) ** 4.191E-5 (5.802E-5)  
Spatially Lagged Farness -7.687E-4 (5.698E-5) *** -1.102E-4 (1.063E-5) *** -2.191E-5 (2.168E-6) *** 

McFadden R-squared 0.431 0.429 0.424 

Global Network Autocorrelation 7.921E-1 (3.403E-2) *** 8.287E-1 (3.605E-2) *** 7.486E-1 (3.771E-2) *** 

Betweenness 6.683E-5 (2.950E-6) *** 2.027E-6 (6.493E-8) *** 7.371E-8 (2.368E-9) *** 

Spatially Lagged Betweenness -6.820E-5 (4.676E-6) *** -3.778E-7 (8.504E-8) *** -1.894E-8 (3.032E-9) *** 

McFadden R-squared 0.431 0.429 0.424 

Global Network Autocorrelation 9.433E-1 (3.936E-2) *** 8.405E-1 (3.779E-2) *** 5.679E-1 (3.729E-2) *** 

Diversion Ratio -1.262E+0 (6.918E-2) *** -2.717E+0 (1.154E-1) *** -9.557E+0 (2.668E-1) *** 

Spatially Lagged Diversion Ratio -3.786E-1 (2.700E-2) *** -1.903E-1 (1.680E-2) *** -9.036E-2 (9.674E-3) *** 

McFadden R-squared 0.431 0.429 0.424 

Note. * p<0.01, ** p<0.001, *** p<0.0001.  

 

 

Table 5 Impacts of street-link morphologies on KSI frequency. 

 Direct Impact 
 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness 3.682E-4 (3.682E-4, 3.682E-4) 2.184E-5 (2.184E-5, 2.184E-5) 3.303E-6 (3.303E-6, 3.303E-6) 

Betweenness 5.267E-6 (5.267E-6, 5.267E-6) 1.598E-7 (1.598E-7, 1.598E-7) 5.810E-9 (5.810E-9, 5.810E-9) 

Diversion Ratio -9.945E-2 (-9.909E-2, -9.982E-2) -2.141E-1 (-2.107E-1, -2.176E-1) -7.532E-1 (-7.289E-1, -7.775E-1) 

  Spillover Impact  

 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness -4.561E-5 (-4.561E-5, -4.561E-5) -1.832E-5 (-1.832E-5, -1.832E-5) -9.513E-6 (-9.513E-6, -9.513E-6) 

Betweenness -4.080E-6 (-4.080E-6, -4.080E-6) -6.321E-8 (-6.321E-8, -6.321E-8) -3.247E-9 (-8.247E-9, -8.247E-9) 

Diversion Ratio -2.247E-2 (-2.244E-2, -2.249E-2) -3.163E-2 (-3.161E-2, -3.165E-2) -3.929E-2 (-3.928E-2, -3.929E-2) 

  Overall Impact  

 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness 3.226E-4 (3.226E-4, 3.226E-4) 3.523E-6 (3.523E-6, 3.523E-6) -6.210E-6 (-6.210E-6, -6.210E-6) 

Betweenness 1.187E-6 (1.187E-6, 1.187E-6) 9.656E-8 (9.656E-8, 9.656E-8) -2.437E-9 (-2.437E-9, -2.437E-9) 

Diversion Ratio -1.219E-1 (-1.215E-1, -1.223E-1) -2.458E-1 (-2.422E-1, -2.493E-1) -7.925E-1 (-7.680E-1, -8.170E-1) 
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Figure 6 Summary of street-link morphologies' impacts on KSI collision frequency. 

 

5. Discussions  429 

5.1. Discussions on Principal Findings 430 

This research investigated the extent to which street network morphologies at the link level may 431 

affect traffic safety. Our findings reveal that at a specified spatial scale, street-link morphologies, 432 

including street-link farness, betweenness, and the diversion ratio, are significantly correlated 433 

with the overall frequency of total injury and KSI collisions, considering both the link being 434 

investigated and its surrounding links determined by the same spatial scale.  435 

First, for total injury and KSI collisions, higher farness of a street link at the local scale 436 

corresponded to an overall increase in collision frequency at the same scale. However, higher 437 

farness at the city scale had the opposite impact, resulting in an overall decrease in collisions at 438 

that scale. At the meso scale, the overall safety impact of street-link farness depended on the 439 

severity of collisions. Higher farness of a street link at the meso scale was associated with an 440 
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overall decrease in the frequency of total injury collisions at that scale, but an overall increase 441 

in the frequency of KSI collisions. Existing studies conducted at the area level and an exclusive 442 

spatial scale presented mixed findings regarding the relationship between street network 443 

farness/closeness and traffic safety (Zhang et al. 2015, Guo et al. 2017). Our findings provide 444 

a broader picture of this issue by uncovering the spatial heterogeneity of such a relationship. 445 

Our findings show that this identified spatial heterogeneity can be largely ascribed to the 446 

disparity in the direct impact of street-link farness across spatial scales. The reason is that, 447 

independent of spatial scale, an increase in the street-link farness had a spillover impact that 448 

contributed to fewer collisions in the street links surrounding the investigated link. By contrast, 449 

increased street-link farness at the local and meso scales might have a direct impact leading to 450 

more collisions of the link investigated, whereas there was no significant relation between city-451 

scale street-link farness and the collision frequency of the link investigated. 452 

The positive spillover impact of higher street-link farness on traffic safety may be because 453 

there tend to be fewer junctions in areas surrounding street links with higher farness, which 454 

reduces the potential for conflicts between road users in these areas (Zhang et al. 2015). The 455 

negative direct impact of higher street-link farness on traffic safety may be attributable to the 456 

fact that the intensity to which street-link farness moderates motorised and non-motorised 457 

traffic volumes varies by the spatial scale. The farness metric reflects the difficulty with which 458 

a street can be reached via a network. The local and meso scales (0 – 3 km) correspond to the 459 

median distance of trips made on foot and by cycling. Therefore, higher farness of a given street 460 

at these two scales may increase physical barriers to walking and cycling to this street (Kang 461 

2017, Kang 2018, Helbich 2017). As a consequence, there may be more motorised traffic 462 

conditions in street links with higher farness, thereby resulting in the less satisfactory traffic 463 

safety performance of such links. Compared with these two scales, motorised modes may 464 

account for larger shares of trips at the city scale (i.e., 0 – 8 km). While as destinations, street 465 

links with higher city-scale farness obstruct the use of non-motorised modes in short-distance 466 

trips, such links may also be less attractive to motorised long-distance trips due to the increased 467 

travelling time and costs (Jayasinghe et al. (2015), which contributes to less hazardous traffic 468 

conditions in these street links. 469 

Our results suggest that, overall, smaller farness of a street link indicates a safer traffic 470 

environment at the local scale, but a riskier traffic environment at the city scale. Therefore, 471 

changing farness of a given street link or the average farness of links in a network, which can 472 

be achieved by modifying street network compactness, may be useful for improving traffic 473 

safety. For example, planners can decrease street-link farness by de-densifying street networks 474 

near a target street link, which would increase the distance between the link and the other links 475 

to which it connects. In recent decades, promoting street network compactness, which aligns 476 

well with the New Urbanism and the Compact City policy, has been seen as a proactive solution 477 

to improving traffic safety. However, we argue that such a street network structure may not 478 

necessarily be effective for an overall reduction in injury collisions across an entire city. While, 479 

according to our findings, a more compact street network structure may indeed help mitigate 480 

traffic risk at a small local spatial scale, it contributes to increased traffic risks overall when 481 
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considering large spatial scales. Our argument is partially aligned with that of Ewing and 482 

Hamidi (2015), which suggests that increasing urban compactness may lead to more total injury 483 

collisions at the county level. Nevertheless, considering the benefits of compact street networks 484 

for public health and the quality of life (Xie et al. 2019b, Remali et al. 2015), it may be too 485 

hasty to conclude that street networks need to be largely de-densified. Instead, we highlight that 486 

a comprehensive assessment should be conducted ex-ante for planning projects involving the 487 

change in street farness.  488 

Second, higher betweenness of a street link at the local and meso scales was associated 489 

with an overall increase in total injury/KSI collision frequency at the corresponding scale. In 490 

contrast,  higher betweenness of a street link at the city scale correlated with an overall decrease 491 

in total injury collision/KSI frequency at the same scale. Inconsistent with the existing literature 492 

(Wang et al. 2018, Guo et al. 2017, Mukherjee and Jain 2021, Zhang et al. 2015), our findings 493 

reveal a spatial heterogeneity in the overall impact of street-link betweenness on traffic safety. 494 

By definition, the betweenness metric quantifies the extent to which a street is passed through 495 

via the shortest paths between street pairs in a network. Hence, street-link betweenness is 496 

positively associated with traffic volumes in the street investigated (Jayasinghe et al. 2015, 497 

Serra and Hillier 2019), as travelling via links with higher betweenness provides travellers with 498 

more possibilities to take shortcuts, thereby increasing the expected utility for the route choice 499 

(Henry et al. 2019, Sevtsuk 2021). Street links with higher betweenness may thus result in 500 

greater exposure to motorised traffic and the risk of collisions; this explains our results 501 

regarding the negative direct impact of increased street-link betweenness on traffic safety. 502 

Along the same line, holding total traffic volumes in a network constant, street links with lower 503 

betweenness may experience fewer traffic volumes, which helps explain the observed positive 504 

spillover impact of increased street-link betweenness on traffic safety.  505 

However, it is unclear why there are differences in the direction of overall impacts of 506 

street-link betweenness across spatial scales. We speculate that this may be attributable to the 507 

non-linear relationship between traffic volumes and collision frequency (Qin et al. 2006). Qin 508 

et al. (2006) reveal that as traffic volumes increase, the number of collisions increases sharply 509 

but then slows down to reach a stable level. Street links with high betweenness at the city scale 510 

are typically urban arterials with heavy traffic (Figure 3). Therefore, compared to the other 511 

scales, an increase in street-link betweenness at the city scale may contribute to a smaller direct 512 

impact, due to the saturation effect of traffic volumes on collision frequency. This may explain 513 

the underlying reason for the observed overall impact of higher street-link betweenness at the 514 

city scale, which contributes to an overall decrease in the frequency of injury collisions at the 515 

same scale. 516 

Our findings suggest that ceteris paribus, an increase in the average betweenness of street 517 

links may benefit overall traffic safety at the city scale. To achieve this, it is important to focus 518 

on the entire (sub)network, as an increase in the betweenness of one street link may come at the 519 

expense of a decrease for others in the (sub)network. Within this context, a city-scale street 520 

network structure with more links parallel to arterials with high-level betweenness helps 521 

achieve an increase in the average betweenness of street links in the network, and may thus be 522 
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desirable for its traffic safety performance. This can be achieved through reconfiguring existing 523 

street links or building new ones. For new construction projects, questions for the planners are 524 

how to ensure the safety benefits derived from increased betweenness are not cancelled out by 525 

the decrease in average city-scale farness of street links, which had a negative overall safety 526 

impact at the city scale. 527 

Third, at each considered spatial scale, an increased diversion ratio of a street link 528 

presented direct and spillover impacts contributing to fewer total injury/KSI collisions of the 529 

investigated street link and other surrounding links determined by the spatial scale. As a result, 530 

an increase in the diversion ratio of a street link at a given spatial scale was associated with a 531 

reduced overall number of injury/KSI collisions at the same spatial scale. This suggests that a 532 

street link with more twisted connections in the network may contribute to a safer traffic 533 

environment. One explanation for our finding is that a larger diversion ratio reflects a higher 534 

level to which street links deviate from the most direct path, thereby decreasing the travelling 535 

efficiency. Ceteris paribus, street links with a larger diversion ratio tend to be less attractive to 536 

travellers as a destination, thus resulting in less traffic in such links. The twisted local network 537 

surrounding a street link with a large diversion ratio may also increase cognitive difficulties in 538 

route navigation (Donald et al. 2014). Consequently, this disrupts the concentration of 539 

economic activities and traffic volume, as well as high-speed driving in these areas (Kang 2017, 540 

He et al. 2019), rendering these areas less exposed to a risky traffic environment. 541 

Fourth, Euclidean distance-based and angular distance-based morphological metrics 542 

exhibited similar results and performance in explaining the frequency of total injury and KSI 543 

collisions. While some studies indicate that angular distance-based metrics outperform 544 

Euclidean distance-based ones in explaining traffic volume (Serra and Hillier 2019, Jayasinghe 545 

2017), our findings suggest that this may not apply to their traffic safety implications. A 546 

plausible reason, as we previously outlined, is that traffic exposure is not the only influential 547 

factor linking street network morphologies and traffic safety; traffic speed and traffic conflicts 548 

also play crucial mediating roles in this relationship. Given the dominance of physical distance-549 

based approaches in current planning practices, it is notable that Euclidean distance-based 550 

morphological metrics, with their robust explanatory power on injury collision frequency, could 551 

continue to play a pivotal role in street network planning for traffic safety improvement. 552 

5.2. Discussions on Methodologies 553 

Apart from our empirical findings, we believe that the EANB model employed is of wide 554 

applicability in understanding the relationship between street network patterns and traffic safety. 555 

In general, applying large-scale street networks is desirable for investigating such a topic, as it 556 

increases data representativeness, thus ensuring the transferability of the results. Nevertheless, 557 

these networks pose significant challenges in modelling global network autocorrelations and 558 

spillover impacts using classical Bayesian autoregressive approaches owing to the 'Big m' 559 

problem. As demonstrated in our study, for a network comprising over 190,000 street links, the 560 

EANB model can still estimate the autocorrelation effect and spillover impacts of street-link 561 
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features in an acceptable time frame, whilst simultaneously yielding a desirable model fitness.  562 

We also notice that the integrated nested Laplace approximation approach (Illian et al. 563 

2012) allows the researchers to use the popular Bayesian analysis framework in the estimation 564 

of network autocorrelations and spillover impacts for a relatively large network (see, Gómez-565 

Rubio et al. (2021)). While this approach has garnered increasing attention in recent years for 566 

big-data modelling, it focuses on models that can be expressed as latent Gaussian Markov 567 

random fields. It is thus limited by the use of a dense network weight matrix (Gómez-Rubio 568 

2020). By contrast, EANB models provide a more flexible manner for constructing network 569 

weights, for example, using inverse distance squared decay functions. Against this backdrop, 570 

the EANB model allows location-specific distance decay functions identified using real-world 571 

travel data (Chen and Fractals, 2015) to be applied in future studies to establish network weights. 572 

5.3. Strength and Limitations 573 

We used high-quality data, applied innovative statistical approaches, and conducted sensitivity 574 

analyses to examine the relationship between street network morphology and traffic safety. To 575 

the best of our knowledge, our research is the first to conduct a comprehensive disaggregate-576 

level assessment on the direct, spillover, and overall impacts of street network morphologies 577 

on injury collision frequency across spatial scales. The empirical findings, as we have discussed, 578 

offer in-depth insights into the relationship between street network structures and traffic safety, 579 

especially in high-income European cities characterised by dense street networks and large 580 

motorised traffic volumes. While the generalisability of our findings to other contexts is 581 

uncertain, the proposed methods and analytical framework allow for more robust and 582 

comprehensive analyses for such a relationship.  583 

Nevertheless, our research presents several limitations. First, similar to most existing 584 

studies, we did not consider graph-based morphological metrics, such as the robustness of street 585 

networks, which may affect traffic safety-related elements (e.g., traffic volume, see Scott et al. 586 

(2006)). Future studies could benefit from applying multilevel analyses to combine both node- 587 

and graph-based metrics in their models. Nevertheless, the modifiable area unit problem must 588 

be prioritised owing to the involvement of graph-based metrics. Second, we partially explained 589 

our findings based on the moderating role of street network morphologies in shaping traffic 590 

volumes. In the absence of high-resolution traffic volume data at the street-link level, we cannot 591 

confirm the hypothesised mechanisms. As such, a multistage estimation strategy (see, e.g., An 592 

et al. (2021)) could be applied in future studies to compare the change in the effect of street 593 

network characteristics on traffic safety in models with and without traffic volume variables; 594 

the results could help understand the interrelationship between street network morphologies, 595 

traffic volume, and traffic safety. Thirdly, our EANB models lacked control for temporal 596 

covariates, such as weather conditions, potentially introducing endogeneity concerns, 597 

notwithstanding the satisfactory goodness of fit in our estimations. To tackle this concern, 598 

future studies should highlight the development of statistical models capable of managing both 599 

network and temporal autocorrelation within a big data context. 600 
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6. Concluding Remarks 601 

We conducted a comprehensive, disaggregate-level, multi-scale examination on the impacts of 602 

street network morphologies on traffic safety. We focused on five-year traffic injury collision 603 

frequencies of more than 190,000 street links in Greater London. We characterised street-link 604 

morphologies at local (0 – 1 km), meso (0 – 3 km), and city (0 – 8  km) scales using a spatial 605 

design network analysis. For each spatial scale, we applied extended auto-negative binomial 606 

models to examine the overall impact of street-link morphological characteristics on the injury 607 

collision frequency, taking into account both the link being investigated and other surrounding 608 

links determined by the spatial scale. We found significant spatial heterogeneity in the overall 609 

safety impacts of street-link morphologies. At the local scale, higher farness of a street link 610 

corresponded to an overall increase in total injury collisions, whereas at the meso and city scales, 611 

it indicated an overall decrease. At the local and meso scales, higher betweenness of a street 612 

link was associated with an overall increase in total injury collisions, but at the city scale, it 613 

correlated with an overall decrease. Independent of the spatial scale, a larger diversion ratio of 614 

a street link was linked to an overall decrease in total injury collisions. These findings were 615 

similar to those on KSI-only collisions. We suggest that encouraging compact street network 616 

structures, which aligns well with New Urbanism and the Compact City policy, may not 617 

necessarily be effective for an overall reduction in injury collisions across an entire city.  618 

  619 
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Appendix A  

We used three metrics, namely, farness, betweenness, and the diversion ratio to measure street network morphologies at the 

street-link level.  

Farness for a given street link x is defined as: 

 ( ) ( )( )Farness ,
xy R

x d x y n


=   (1) 

where Rx denotes the set of street links in the network radius from link x, and y represents a street link within Rx. n denotes 
the total number of street links within the network radius from link x. d(x,y) represents the shortest distance along the 
network between links x and y. 

Betweenness for a given street link x is defined as: 

 ( ) ( )Betweenness , ,
xy N z R

x OD y z x
 

=    (2) 

where N is the set of street links in the global network system (see, Figure 1-B), and y denotes a street link within N. Ry 

denotes the set of street links in the network radius from link y, and z represents a street link within Ry. In sDNA, the 
function OD() is set to 1 if x is on the first shortest path between y and z, set to 1/2 if x = y ≠ z or x = z ≠ y, set to 1/3 if x = 
y = z, and set to 0 otherwise. According to sDNA's user manual (Cooper 2021), the contributions of 1/2 to OD(y,z,x) reflect 
the end links of shortest paths which are traversed half as often on average, as journeys begin and end in the link centre on 
average. The contributions of 1/3 represent origin self-betweenness. 

The diversion ratio for a given street link x is defined as: 

 ( ) ( ) ( )( )Div , ,
xy R

x d x y CFD x y n


=   (3) 

where Rx denotes the set of street links in the network radius from link x, and y represents a street link within Rx. n denotes 
the total number of street links within the network radius from link x. d(x,y) represents the shortest distance along the 
network between links x and y, whereas CFD(x,y) represents the crow flight distance (straight-line distance) between links 
x and y. 
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Appendix B 

Impacts of angular-distance based morphological metrics on total injury collision frequency. 

 Direct Impact 
 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness 1.341E-3 (1.341E-3, 1.341E-3) 7.739E-4 (7.739E-4, 7.738E-4) 7.570E-4 (7.570E-4, 7.570E-4) 

Betweenness 3.787E-5 (3.154E-5, 3.154E-5) 6.410E-7 (6.410E-7, 6.410E-7) 4.516E-8 (4.516E-8, 4.516E-8) 

Diversion Ratio -1.010E+0 (-9.662E-1, -1.054E+0) -1.717E+0 (-1.533E+0, -1.901E+0) -4.652E+0 (-3.864E+0, -5.439E+0) 

  Spillover Impact  

 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness -1.573E-4 (-1.573E-4, -1.573E-4) -2.726E-5 (-2.726E-5, -2.726E-5) -1.370E-1 (-1.369E-1, -1.371E-1) 

Betweenness -3.154E-5 (-3.787E-5, -3.787E-5) -1.690E-7 (-1.690E-7, -1.690E-7) -4.522E-2 (-4.521E-2, -4.523E-2) 

Diversion Ratio -1.591E-5 (-1.591E-5, -1.591E-5) -7.551E-8 (-7.551E-8, -7.551E-8) -5.014E-2 (-5.013E-2, -5.015E-2) 

  Overall Impact  

 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness 1.184E-3 (1.184E-3, 1.184E-3) 7.466E-4 (7.467E-4, 7.466E-4) -1.362E-1 (-1.361E-1, -1.363E-1) 

Betweenness 6.327E-6 (-6.327E-6, -6.327E-6) 4.719E-7 (4.719E-7, 4.719E-7) -4.522E-2 (-4.521E-2, -4.523E-2) 

Diversion Ratio -1.010E+0 (-9.662E-1, -1.054E+0) -1.717E+0 (-1.533E+0, -1.901E+0) -4.702E+0 (-3.914E+0, -5.490E+0) 

 

Impacts of angular-distance based morphological metrics on KSI collision frequency. 

 Direct Impact 
 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness 2.825E-4 (2.825E-4, 2.825E-4) 1.006E-4 (1.006E-4, 1.006E-4) 8.645E-5 (8.645E-5, 8.645E-5) 

Betweenness 6.136E-6 (4.194E-6, 4.194E-6) 8.279E-8 (8.279E-8, 8.279E-8) 5.793E-9 (5.793E-9, 5.793E-9) 

Diversion Ratio -1.175E-1 (-1.169E-1, -1.180E-1) -1.994E-1 (-1.968E-1, -2.020E-1) -5.339E-1 (-5.226E-1, -5.453E-1) 

  Spillover Impact  

 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness -4.305E-5 (-4.305E-5, -4.305E-5) -3.585E-6 (-3.585E-6, -3.585E-6) -2.086E-2 (-2.086E-2, -2.086E-2) 

Betweenness 4.184E-6 (-6.136E-6, -6.136E-6) -7.322E-9 (-7.322E-9, -7.322E-9) -9.169E-3 (-9.169E-3, -9.170E-3) 

Diversion Ratio -9.610E-7 (-9.610E-7, -9.610E-7) -5.082E-10 (-5.082E-10, -5.082E-10) -1.566E-3 (-1.566E-3, -1.566E-3) 

  Overall Impact  

 Local (95% CI) Meso (95% CI) City (95% CI) 
Farness 2.394E-4 (2.395E-4, 2.394E-4) 9.700E-5 (9.700E-5, 9.700E-5) -2.077E-2 (-2.077E-2, -2.078E-2) 

Betweenness 1.942E-6 (-1.942E-6, -1.942E-6) 7.547E-8 (7.547E-8, 7.547E-8) -9.169E-3 (-9.169E-3, -9.170E-3) 

Diversion Ratio -1.175E-1 (-1.169E-1, -1.180E-1) -1.994E-1 (-1.968E-1, -2.020E-1) -5.355E-1 (-5.241E-1, -5.469E-1) 
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