UNIVERSITYW

This is a repository copy of Diffusion-Jump GNNs:Homophiliation via Learnable Metric
Filters.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/202154/

Preprint:
Begga, Ahmed, Escolano, Francisco, Lozano, Miguel Angel et al. (1 more author) (2023)
Diffusion-Jump GNNs:Homophiliation via Learnable Metric Filters. [Preprint]

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose -
university consortium eprinis@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

arXiv:2306.16976v1 [cs.LG] 29 Jun 2023

Diffusion-Jump GNNs:
Homophiliation via Learnable Metric Filters

Ahmed Begga Hachlafi Francisco Escolano Miguel Angel Lozano
University of Alicante, Spain ~ University of Alicante, Spain ~ University of Alicante, Spain
ahmedbegga@gmail.com escolano.ua@gmail.com malozano@ua.es
Edwin R. Hancock

University of York, U.K.
edwin.hancock@york.ac.uk

Abstract

High-order Graph Neural Networks (HO-GNNs) have been developed to infer
consistent latent spaces in the heterophilic regime, where the label distribution is
not correlated with the graph structure. However, most of the existing HO-GNNs
are hop-based, i.e., they rely on the powers of the transition matrix. As a result,
these architectures are not fully reactive to the classification loss and the achieved
structural filters have static supports. In other words, neither the filters’ supports
nor their coefficients can be learned with these networks. They are confined,
instead, to learn combinations of filters. To address the above concerns, we propose
DIFFUSION-JUMP GNNS— a method relying on asymptotic diffusion distances
that operates on jumps. A diffusion-pump generates pairwise distances whose
projections determine both the support and coefficients of each structural filter.
These filters are called jumps because they explore a wide range of scales in order to
find bonds between scattered nodes with the same label. Actually, the full process is
controlled by the classification loss. Both the jumps and the diffusion distances react
to classification errors (i.e. they are learnable). Homophiliation, i.e., the process of
learning piecewise smooth latent spaces in the heterophilic regime, is formulated
as a Dirichlet problem: the known labels determine the border nodes and the
diffusion-pump ensures a minimal deviation of the semi-supervised grouping from
a canonical unsupervised grouping. This triggers the update of both the diffusion
distances and, consequently, the jumps in order to minimize the classification error.
The Dirichlet formulation has several advantages. It leads to the definition of
structural heterophily, a novel measure beyond edge heterophily. It also allows us
to investigate links with (learnable) diffusion distances, absorbing random walks
and stochastic diffusion. Finally, our experimental results outperform significantly
those of the state-of-the-art both in homophilic and heterophilic datasets. We are
very competitive for large graphs.

1 Introduction

The success of Graph Neural Networks (GNN5s) relies on their convolutional architecture [1][2][3].
Their aggregate and combine mechanism provides a significant degree of expressiveness. However,
in the heterophilic regime, such a mechanism (initially designed for homophilic graphs) results in the
over-smoothing issue (shadowing of the internal representations of the nodes, due to a non-selective
aggregation). In [4], three solutions are explored: (i) ego and neighbor embedding separation, (ii)
higher-order neighborhoods, and (iii) a combination of intermediate representations. The purpose of

Preprint. Under review.

these mechanisms is to enforce the internal representations of the node features so that the resulting
latent space becomes consistent (piecewise smooth), for instance, when the downstream task is
node-classification [5][6][7].

In this paper, we explore High-Order GNNs (HO-GNNs). One type of HO-GNNs results from
rewiring the edges in the graph. For instance, the method in [8] explores neighborhoods of several
orders (hops) selecting those orders who provide a high correlation between the node features.
GATs [3] are also a well-known rewiring method: the strength of each edge in the input graph is
given by a trainable weight. Such a weight is corrected if the concatenation of the node features
associated with the corresponding edge has a negative impact on node-classification. Diffwire [9]
is another trainable rewiring method. The basic idea of Diffwire is to estimate the commute-times
distance between each pair of nodes and use the distance matrix to mask the original adjacency matrix.
Other non-differentiable rewiring methods are mainly addressed to alleviate the over-squashing issue
(bottlenecks obstruct the message-passing process). A couple of recent examples are [10] and [11].

A second type of HO-GNNs are Deep/Sequential hop-based methods, i.e. those models that address
over-smoothing with a deep architecture. GGCNs [12] attenuate over-smoothing by performing edge
correction (corrected edge weights are learned from node degrees, and signed edges are learned from
node features). However, Shortest-Paths-MPNNs [13] and Ordered-GNNs [14] are more focused on
performing robust aggregations. Shortest-Paths-MPNNs compute the shortest paths between any pair
of nodes. Then, for each node, several separate aggregations are performed (each one for increasing
lengths of the shortest paths); then, the resulting embeddings are weighted. Ordered-GNNs rely
on a similar principle: for each node, the hierarchy of a tree rooted in that node is aligned with
the hops wrt this node in the graph. As neighboring nodes within k hops form a depth—k subtree,
aggregations for shallow sub-trees precede those for deeper ones. Interestingly, Ordered-GNNs
introduce a differentiable way of deciding the split point between sub-trees.

Finally, Shallow/Parallel hop-based methods explore several hop orders in parallel and then integrate
the resulting embedding (e.g. via concatenation). MixHop [15], FSGNNs [16] and DualNets [17]
compute several powers P*, k = 1,2, ..., K of the normalized adjacency matrix (transition matrix)
P = D 'A. Each power feeds a different GNN. The resulting embeddings are weighed and
concatenated for later discrimination. SIGN [18] is similar to MixHop but it precomputes the
aggregations P*X for the sake of scalability. More recently, the Simple Graph Convolution (SGG)
method [19] improves MixHop by learning polynomials of the transition matrix.

Finally, Generalized PageRank GNNs (GPR-GNNs)[20]learns jointly the best embedding of each
node feature and the best weight of each hop. This is very interesting, since the suitability of P*,
which is encoded by a weight ~z, influences the latent space of the features HY = fg(X) through a
learnable function feo(.). As a result the k—th embedding is H* = P*H?. This mechanism allows
GPR-GNN:ss to avoid over-smoothing and trade node and topology feature informativeness. However,
this strategy produces inconsistent results since GPR-GNNss are better suited for heterophilic graphs,
instead of being also useful for homophilic graphs.

Main Limitation of HO-GNNs. Most of the existing HO-
GNNs explore different powers of the normalized adjacency
matrix (transition matrix) P. In other words, they are com-
pletely hop-based. As a result, the HO-GNNs exploit the labels
of the semi-supervised learning process either to alleviate the
over-smoothing issue (in the sequential case [12][13] [14]) or
to weigh the importance of each hop order (in the parallel
case [15][16][17][18]). However, as the structure of the input
graph is static, the hops are static as well. Consequently, the
labels cannot be backpropagated to change the structure of the
hops, but only the relative importance of each hop or the extent
of its aggregation support.

Implications. As a result, dealing with heterophilic graphs goes
beyond the potential achievements of hop-based approaches
(see our Experiments in Section 5). Despite high-order hops
being able of connecting distant nodes with the same label, such
connections can be neither attenuated nor amplified for the sake
of the classification loss. In other words, the probability that

Figure 1: Hop-hierarchy (Top) vs
Jump-hierarchy (Bottom). Diffu-
sion distances contract the similar-
ity space due to structural forces.

a random walk links two nodes is an in-place coefficient, not

the realization of a probabilistic event. In this regard, parallel

HO-GNN s claim that the powers P* can be interpreted as a

bank of structural filters, i.e. a bunch of aggregators inspired by convolutional filters such as Gabor
receptive filds [15]. However, an expressive characterization of a structural filter requires that both its
support (specification of what edges have a non-zero coefficient) and its coefficients are learnable.

Our contributions. In this paper, we address the problem of learning a bank of expressive structural
filters as follows:

a) We re-formulate the problem of node-classification under heterophily in terms of a Dirichlet
problem, i.e. we have border nodes (training set) where the classification is optimal and
interior nodes (remaining nodes) where the resulting latent space (node embedding) must
be as harmonic (piecewise smooth) as possible, even when the labeling is far from being
harmonic over the graph.

b) We have a diffusion pump which generates asymprotic diffusion distances d(i,j) =
d'>°(i, j) between the nodes by learning the nontrivial top eigenvectors of P subject
to the labeling of the training set.

¢) Given the diffusion distances d(i, j) we compute the jump hierarchy (see Figure 1). For a
node ¢ we have that ¢ € J? (k = 0) is the closest node wrt itself; j; € Ji1 (k = 1) are nodes
so that only j; is closer to node i than any of them, j> € J? (k = 2) are nodes so that only

the nodes in J! are closer to i than any of them, and so on. Each of the sets J k— ULZ‘I Jik,
where V are the nodes of the graph G = (V, E), is called a jump.

d) The edges Ey, = {(ix, jr) € V x V : iy, ji, € J*} define the support of the jump and the
coefficients c(iy, ji) = g(d(ir, 1)) are given by a function g(.) of the diffusion distances
(for example the neg-exponential). Then, the structural filter J* is a matrix with non-zero
coefficients only at Fy.

e) Each structural filter J* with k = 0,1, ..., K feeds a GNN parameterized by W* and the
resulting embedding H* = o(J*X W) is weighted by a learnable parameter oy, subject to

ZkK:o ai = 1. All the weighted embeddings are concatenated and feed a forward network
for classification.

In addition, we propose a novel metric called structural heterophily and we denote the process of
generating homophilic embeddings from heterophilic graphs as homophiliation.

This paper is organized as follows. In Section 2, we formulate semi-supervised learning in terms of a
Dirichlet problem. This allows us to measure heterophily in a structural way. Section 3 is devoted to
formulating the loss functions and explaining the dynamics of the optimization process. This is done
through the analysis of the main modules of our model. Section 4 provides more technical and formal
details of our model and establishes links with related inspiring formulations. Our experiments are
presented and discussed in Section 5. Finally, our conclusions and future work are summarized in
Section 6.

2 Heterophily as the Loss of Harmonicity

Node-classification under heterophily can be posed as the following semi-supervised learning
problem. Given an input graph, G = (V, E) with adjacency matrix A and node features X, there is a
node subset B C V' whose labels £(B) are known by the learner (border nodes). Similarly, the labels
£(U) of the remaining nodes, those in U = V' ~ B, are hidden (unknown nodes).

Given the graph Laplacian A, and a regularizer (minimizer of x” Ax := D iy (Xi — x;)?), we
have ¢* = arg min, /T A, where ¢* is the smoothest labeling of V' after propagating ¢(B) to £(U)
through the edges of the graph. A Dirichlet solver ensures that the labeling ¢* is Harmonic (the label
of a given unknown node is the average of those of its neighbors) subject to the labeling of the border

nodes ¢(B).

In the heterophilic regime, two neighboring nodes rarely share their labels. As a result, £*7 A¢* >>
u” Au, where u are the vectorized labels obtained by an alternative unsupervised learner. The

unsupervised learner typically assumes that the labels u are correlated with the topology of the graph
(homophily). In other words, heterophily can be posed in terms of how much harmonicity is lost wrt
the homophilic assumption.

The objective of a GNN is to learn a parametric function fo (A, X, ¢(B)) returning H, a matrix
(embedding) of latent representations (one row per node) so that the embeddings of either border
nodes or hidden nodes with the same label are grouped together. However, fo(.) does not necessarily
minimize ¢(H)T Ac(H), where ¢(.) contains the vectorized classification labels. We need to infer
a hidden graph G' = (V, E') where ¢(H)T Agc(H) is minimized. Actually, the edges E in the
hidden graph should link nodes with the same label, even if they are not in the same community.

Structural Heterophily. Given the above formulation we may characterize heterophily in a structural
way, namely as the departure from a structural unsupervised grouping. In particular, the ratio

N
~ uTAu

> 1 ,where / is the ground-truth labeling, Q)

is close to the unit if the graph is homophilic (the structure is completely correlated with the labels).
For R > 1 the graph is heterophilic. The larger the ratio the larger the heterophily.

We use the example in Figure 1 to illustrate how R works. We have two communities, V = A|J A
(left and right respectively). The white node belongs naturally to the right one A, and this is what
an unsupervised structural clustering detects: the Fiedler vector u = arg miny-o x11 xT Ax has
positive components (= +1) in A and negative components (=~ —1) in A.

The vector u is the smallest nontrivial eigenvector of A\ as well as the largest nontrivial eigenvector
of P. It has been argued that the top eigenvectors of P may be used to decompose the state space into
metastable subspaces [21]. In other words, each of the two graph communities in Figure 1 defines a
metastable state from which a random walker tries to escape (Section 4).

The average escape time is the inverse of the top nontrivial eigenvalue of P, i.e. the inverse of the
approximate spectral gap [22][23][24]. In our example, the spectral gap is very tiny so we can expect
large escape times (see more details in Section 5). In particular, the two states defined by the Fiedler
vector are very compact (they have low variability). As a result, all the pairs of nodes (i, j) inside
each community have very similar asymptotic diffusion distances [25] d*~°°(i, j) according to the
structural forces characterizing each metastable state.

Consequently, the jump hierarchy defines a succession of unstable states uy, us, . .. resulting from
the expansion from A: A C A; C Ay C They are unstable because their Dirichlet energies
ugAuk are greater than that of the unsupervised clustering (ground energy) u’ Au.

Last, but by no means least, if we label the white node as belonging to A instead of belonging to
A (i.e., we introduce heterophily), we also increase the Dirichlet energy wrt the ground energy, i.e.
(T Al > u” Au. Why? This is because the new Fiedler vector u, leading to the labeling ¢ does no
longer induce a step function but a hyperbolic tangent with a positive slope. This is consistent with
the increase of the spectral gap and the reduction of the escape time.

Therefore, one useful interpretation of heterophily in structural terms (departure from the ground
energy) is the fact that heterophily relaxes Dirichlet energies in such a way that it is possible to escape
from a community in a few jumps and then find nodes with the same label in other communities.
Therefore, paying attention to several jumps simultaneously increases the chance of aggregating
distant nodes with the same label, thus solving the heterophily issue.

3 Homophiliation: Losses and Modules

Homophiliation. Our computational model for node-classification under heterophily cannot only
rely on finding Harmonic labelings but also on transforming the matrix of node features X into a
piece-wise smooth embedding H. The rows in H associated with nodes with the same label must
be clustered together and these labels must be consistent with those of the border nodes ¢(B). Such
a process, i.e. the learning of fo(A, X, ¢(B)), results from solving the following optimization

Input Graph

Distance Matrix)ﬁ
Epoch 30 Epoch 100

»n

Structural Filters
J4 “

>

JS

Embedding

Figure 2: Homophiliation while the jumps and pairwise distances are learned. Top-Left: a heterophilic
graph. Center-Left: The current distance matrix D leads to a tridimensional weight distribution
c(i,j) = e~4®3). Yellow points denote the support Fj, = {(ix,jix)} of the filter J*. The filter
coefficients are given by the weights of the support Cj, = {c(i, ji)} Bottom-Left: graph used for
aggregation with this filter. In the right panel, we show the weight distribution (top), a couple of filters
(middle), and the resulting homophiliation (bottom) for some epochs. In particular, we show Hy,
H3 and Hygo. In each epoch e, all the embeddings {H"} contribute to identifying potential links
between scattered nodes with similar labels. If any of these links is wrong, the matrix of pairwise
distances D is updated.

problem:

Min £ = Tr[fs(A)TA fo(A)] + L({IF}, X, 4(B))
st. UTU =1
U= fy(A), D(i.j) = [VUy|| and J* =1 - exp (D) . @

where we have an interplay between the Dirichlet loss Tr[fo(A)T A fo(A)] and the classification loss
L.(Cross-Entrophy) as follows.

Diffusion Pump. Minimizing the structural heterophily so that R ~ 1 (Eq. 1)in G’ = (V, E') implies
learning Dirichlet energies close to the ground energy. However, in the heterophilic regime, we
cannot minimize ¢(H)T A g c(H) before discovering the optimal embedding H*. In the meanwhile,
the Dirichlet formulation allows us to learn the smallest nontrivial eigenvectors of /A as we do
in the unsupervised setting (e.g. the Fiedler vector). These eigenvectors will be in the columns
of U, but they do not have a free form. The notation U = fy(A) in the above optimization
problem goes beyond emphasizing the learnability of U. We also constrain the eigenvectors to be
projections/transformations of the adjacency matrix A.

We learn the eigenvectors U because it is key to computing diffusion distances between the nodes.
In the following, we will replace d(i, j) by D(, j) when we need to emphasize the matrix nature of
the pairwise distances. Each pairwise distance D(¢, j) comes from the norm of VU;; = U;. — U;.
(row-difference). As we will detail in Section 4 , || VU, || approximates the asymptotic diffusion
distance between two nodes ¢ and j. Herein, we focus on the fact that nodes belonging to the same
sub-structure (e.g. cluster or community) have similar distances. Back to Figure 1, if ¢ and 5 belong to
the same community, two random walks placed in ¢ and j have similar escape probabilities. Therefore,
we build a hierarchy of escape probabilities to characterize the respective reachability of any node
wrt a given one. Interestingly, the hierarchy induced by hops is isotropic wrt each node whereas the
hierarchy induced by escape probabilities is anisotropic. This latter hierarchy is built by specifying

binary projection matrices IT¥ which select the pairs of distances that support the creation/update
each structural filter J*.

Exploration by Parallel Jumping. The diffusion pump triggers the creation of K + 1 structural
filters {J°, J!,... JX} derived from their respective jumps J*. Each filter J* has its support
Ej = {(ix, jx)} and its coefficients c(iy, j) = e~ %) We illustrate this process in Figure 2
over a heterophilic graph. At any epoch, the optimizer creates a distance matrix D and weighs it:
C = exp[—D]. The result is a weight distribution (middle-left). Each yellow point in the weight
distribution belongs to the jump J*. Consequently, the yellow points denote the edges of the filter
support E, and they are projected in the adjacency matrix below the distribution. The coefficients
¢(ig, ji) of the filter are the heights of the yellow points. Finally, the edges in the graph depicted
below the distribution are exactly those of the filter support. Neighbor aggregation wrt this filter J*X
will be constrained to that graph and these weights.

The right panel in Figure 2 shows the evolution of the weight distribution (top), some filters (center),
and the status of the homophiliation process (bottom). The optimization process is initially dominated
by the diffusion pump since random weight distributions are explored first. As a result, scattered
nodes with similar labels can be potentially aggregated: we start to implicitly build the hidden graph
G’ = (V, E’). The probability of aggregating distant nodes is leveraged by the fact that, during the
first epochs, most of the K + 1 filters J* have a random nature independently of k, the filter order.
Escape probabilities are relaxed during this exploration stage.

Classification Loss. Each filter, J* becomes the aggregator of a naive GNN ¢ (J*XW*) which
generates an embedding H*. This embedding is weighted by a learnable parameter oy, and con-
catenated with the remaining embeddings to feed a classification layer. Therefore, as soon as the
structural filters discover interesting bonds for minimizing L., the weights W* of all the GNNs, the
filters’ coefficients, and the distance matrix will become more and more stable. At some point in
the optimization process, the Dirichlet loss will be stabilized and the exploration stage ends. Later
on, the classification loss will refine the almost-homophilic global embedding H. As a result, the
embeddings of either border nodes or hidden nodes with the same label are grouped together in the
latent space (for instance, see the column of Epoch 100 in Figure 2).

4 Methodological Details

4.1 Network Architecture

DIFFUSION-JUMP GNNS are neural networks fo (A, X, ¢(B)) resulting from the optimization
problem stated in Eq. 2. The interplay between the Dirichlet loss and the classification loss is
described above. In this Section, we give some technical details about the architecture of the network.

Diffusion pump. The pump is responsible for generating and updating the matrix of pairwise
diffusion distances D. For the generation, we solve any of the following equivalent problems:

Tr[UT AUT] Max Tr(UTAUT)

Min = 22 1 _ it ALl
T UTDUT] Tr[UTDUT] ’

3)
both s.t. UTU = I, where U,,,, = fp(A), n = |V|. Since D is the diagonal degree matrix, we
have /A := D — A. As a result, the Min problem approximates the p smallest nontrivial eigenvectors
of the normalized Laplacian A = D 12AD-1/2 = 1 - A, where A := D~ 1/2AD~1/2 js
the normalized adjacency. Equivalently, the Max problem approximates the p largest nontrivial
eigenvectors of the transition matrix P := D! A. Note that A and P have the same eigenvectors
and also that if X is an eigenvalue of P then 1 — X an eigenvalue for A. Note also, that we use
"approximates" instead of "finds". This is due to the limitations of Stochastic Gradient Descent (SGD)
when solving the Trace-Ratio problems [26][27][28] in Eq. 3. In this regard, we have the following
results with practical implications:

Theorem 4.1 (Fiedler Environments). The SGD solution of the Trace-Ratio Min problem in Eq. 3
can be posed in terms of Min Tr[UT (A — pD)U] under orthonormality constraints. This leads to
AU = p*DU, i.e. to the orthogonal eigenfunctions of the normalized Laplacian A associated with
p*. However, p* is not necessarily an eigenvalue of A, but an approximation of the Fiedler value

Ao:Te>0 :|he — p*| < e Asa result, the p columns w; of U satisfy: 36 >0 : ||p2 — w|| <6,
where ¢o denotes the Fiedler vector. Then, we obtain what we call a Fiedler environment.
Corollary 4.2 (Asymptotic Diffusion Distances). The norm of VU;; := U;. — Uj;. (row-difference)
is proportional to the approximate commute time between nodes i and j, which is d(i, j)'™°°, where
d(i,j) = ||VUsj||. Therefore, the matrix D relies on Euclidean distances.

We proof both results in Appendix A: Formal Results with Practical Implications. We also give
there practical evidence of the need of solving Trace-Ratio problems in an SGD context, instead of
solving the original Trace problem in Eq. 2. We also justify the convenience of conditioning U to
A, U = fy(A). Actually, this setting is inspired in how the LINKX method [29] exploits the graph
topology.

Jumps and Filters. The bank of learnable structural filters {J°, J, ... J K } is the core of the
high-order exploration. Each filter J* has a support Ey, = {(ix, jx) € V x V : iy, jx € J*} with the
pairs of nodes (edges of the filter) belonging to the jump J*. In Eq. 2, this is implicitly defined with
the expression J¥ = II* . exp (—D), where I1¥ is a {0, 1}"*" projection matrix defined, for k& > 0,
as follows:
koo oo | 1=TI*"1(4,5) if j € Idx[topk~'(i

" (i, j) = { 0 07 othe[rwise) @
with TI° = T and topk~1(i) = {d(i,j1), ..., d(i, ji)}, where d(i, 5;) < d(i, ji+1) for j;, 5101 €V
andl = 1,2,...,k — 1. Then, Idx[topk —!(i)] are the sorted positions of the distances wrt the node 1,
i.e. the distance ranks. In this way, the product J* = II¥ - exp (—D) is derivable wrt D as in [30].
Alternatively, we could also rely on the topK network [31].

Individual GNNs. Each structural filter J* feeds a vanilla GNN which obtains a partial embedding
H* = o(J*XW¥). The GNN also receives the n x F matrix of node features X, and x; denotes
the transpose of the i—th row of X. Since J¥ = II¥ - exp (—D), then, for a given node i, its
aggregation is given by x; = Y, e~ %"7)x; instead of being x; = P*x; as in MixHop [15] or
X; = (Z & B PF) x; as in Simple Graph Convolution (SGG) [19]. As the asymptotic diffusion
distances are approximations of commute times (Theorem 4.1), our aggregation works as a kernel
depending on learnable Euclidean distances.

Combining GNNs. Each partial embedding H* = o(J*XW*) is weighted by a learnable parameter
ag, where all the o, form a convex combination. Then, we concatenate all the weighted embeddings
to form the global embedding H := ||X_ a,, H* = ||[K_; a0 (J*XW*). Since H feeds an MLP in
order to minimize the classification loss L. as in MixHop, the global embedding tends to retain the
best partial embeddings for each node.

Homophilic Branch. One limitation of our method is that setting a small value for the hyperparameter
K is not enough to deal with homophilic graphs. For this reason, we have added an extra GNN
(the homophilic branch) that works as follows: H7? = o(AXW#B). Therefore we concatenate

H := HlaggH"B, where Zf:o ap, +agp = 1. See the optimal learned coefficients in Figure 3.

4.2 Inspiring Methods

We conclude this Section by reviewing some links with very inspiring methods in the literature.
For instance, our Dirichlet formulation is inspired by classical graph-based semi-supervised methods.
In particular, the work in [32] addresses the problem of propagating known labels ¢(B) to unknown
nodes u € U. Let Y be an x ¢ matrix where Y (¢, j) = 1 means that node ¢ € B has label j and
Y (i, j) = 0 otherwise. Then, we have the following result:

Theorem 4.3 (Dichilet label propagation [32]). The optimal label of each node i is given by y (i) =
argmax;<. F(4,7), where F = (I — aP) 'Y, being P the transition matrix and o + = 1.
In addition, F minimizes 1 (Tr[FTAF) + 1>, [|[Fi. — Y4.||?), where p > 0 is a regularization
parameter satisfying « = 1/(1 4 p).

Consequently, the diffusion pump in our model is governed by a similar equation: Eq. 2. We
sketch the proof of the above theorem and its relationship with absorbing random walks [33] and
semi-supervised image segmentation [34] in Appendix A.

Finally, another important source of inspiration was the design of escape probabilities in terms
of diffusion equations. Actually, there is a substantial body of theory linking spectral clustering,
random walks, diffusion distances, and metastable states [35][25][24] to be analyzed also in the same
appendix. Herein, we only highlight the following result:

Theorem 4.4 ([24]). Given a probability function in Boltzmann form p(x) = e~ U™ in a given
latent space X, the random walk with transition matrix P converges to the stochastic differential
equation X(t) = —VU(x) + v/2wW(t), where w denotes Brownian motion. Also, the potential time
scales describing the expected time of passage between clusters rely on the potential function U (x).

S Experiments and Discussion

Experimental settings.Table 1 presents the re-

SUItS Obtained by eaCh mOdel on the Standard 036 0.22 0.1 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.06 "
small-medium datasets [36] [37] [38]. Toen- | o o :
sure consistency, we used the same 10 random

splits (48%/32%/20%) provided by [37], along ™
Wlth the best Conﬁguratlon for each mode]‘ We actor{0.09 0.09 0.09 0.09 0.09 00 0.0 00 0.0 00 00 0.0 00 009
place the code at https://anonymous.4open.
SClenCe/r/lefuslon— JumP—GNNS—SEEQ/. The squirrel 1 0.05 0.16 0.15 0.14 0.08 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.0 0.11
above COHﬁgurathl’lS were extracted from Tat)le citeseer{10.18 0.18 0.15 0.15 0.15 0.0 00 0.0 00 00 0.0 00 0.0 017
1 [39] and Tables 3,]0’ and 11 in [29] Overall, pubmed{0.19 0.2 0.14 0.14 014 00 00 00 00 00 00 00 00 019
our model Outperformed all others or achieved cora{026 04 014 00 00 00 00 00 00 00 00 00 00 02
a close second place, demonstrating strong com-
petitiveness. We assessed the degree of struc-
tural heterophily using our metric R. Specif-
ically, we examined two heterophilic regimes:
R < 8 indicating low structural heterophily, and R > 8 indicating high structural heterophily.

wisconsin10.23 0.21 0.15 0.14 0.14 00 00 00 00 00 00 00 0.0 013

0.51 0.18 0.07 0.06 0.08 0.0 00 0.0 00 00 00 00 0.0 0.09

chameleon0.09 0.16 0.16 0.15 0.08 0.08 0.09 0.09 00 0.0 00 0.0 00 0.09 05

Figure 3: Optimal attention for each jump.

Table 1: Node-classification accuracies. Top three models are coloured by First, Second, Third.

TEXAS WISCONSIN CORNELL ACTOR SQUIRREL ~ CHAMELEON CITESEER PUBMED CoRrA
HOM LEVEL 0.11 0.21 0.30 0.22 0.22 0.23 0.74 0.80 0.81
R 18.37 6.90 6.03 209.58 20.62 8.30 5.78 7.64 7.36
NODES 183 251 183 7,600 5,201 2,277 3,327 19,717 2,708
EDGES 295 466 280 26,752 198,493 31,421 4,676 44,324 5,278
CLASSES 5 5 5 5 5 5 7 3 6
GGCN [40] 84.86 £4.55 86.86+3.29 85.68+6.63 37.544+1.56 55.17+1.58 77.144+1.84 77.14+1.45 89.154+0.37 87.95+1.05
GPRGNN [41] 7838 +£4.36 82.94+4.21 80.27+8.11 34.63+122 31.61+1.24 46.58+1.71 77.134+1.67 87.544+0.38 87.95+1.18
H2GCN [4] 84.86 £7.23 87.65+4.89 82.70+5.28 3570+1.00 36.48+1.86 60.11+2.15 77.11+1.57 89.49+0.38 87.87+1.20
GCNII [42] 77.57+3.83 80.39+340 T77.86+3.79 37444130 3847+1.58 63.86+3.04 77.33+1.48 90.154+0.43 88.37+1.25
GEOM-GCN [37] 66.76 £2.72 64.51 £3.66 60.54£3.67 31.59+1.15 38.15+0.92 60.00+£2.81 78.024+1.15 89.95+0.47 85.35 £ 1.57
PAIRNORM [43] 60.27 £4.34 48.43+6.14 5892+3.15 27.40+1.24 50.44+£2.04 62.74+2.82 73.59+1.47 87.53+0.44 85.79+1.01
GRAPHSAGE [2] 82.43+6.14 81.18+5.56 75.95+5.01 234+0.99 41.61+0.74 5873+1.68 76.04+1.30 88.45+0.50 86.90+1.04
GCN [1] 55.14 £5.16 51.76 £3.06 60.54+5.30 27.324+1.10 53.43+2.01 64.82+2.24 76.50+1.36 88.42+0.50 86.98+1.27
GAT[3] 52.16 £6.63 49.41+4.09 61.89+505 27.444+0.89 40.72+1.55 60.26+2.50 76.55+1.23 87.30+1.10 86.33 +0.48
MLP 80.81+£4.75 85.29+6.40 81.89+6.40 36.53+0.70 28.77+£1.56 46.21+2.99 74.024+1.90 75.69+2.00 87.16+0.37
CGNN[44] 71.35+£4.05 7431+£726 66.22+7.69 35954+0.86 29.24+1.09 46.89+1.66 76.91+1.81 87.70+0.49 87.10=+1.35
MixHop [15] 77.84+£7.73 7588+490 73.51+6.34 32224234 43.80+£1.48 60.50+2.53 76.26+1.33 85.31+0.61 87.61 £ 0.85
FSGNN(8-HOP) [16] 87.30+£5.29 87.84+3.37 87.84+6.19 35.754+0.96 74.10+1.89 7827+1.28 77.40+1.90 77.40+1.93 87.93+1.00
GRAFF [39] 88.38 £4.53 88.83+329 84.05+6.10 37.11+1.08 58.72+0.84 71.08+1.75 77.304+1.85 90.04+0.41 88.01 £1.03
LINKX [29] 74.60 £8.37 7549+572 77.84+581 36.10+1.55 61.81+1.80 68424138 73.194+0.99 87.86+0.77 84.64+1.13
ACMII-GCN++ [45] 88.38 £3.43 88.43+3.66 86.49+6.73 37.094+1.32 67.40+221 74.76+220 77.12+1.58 89.71+0.48 88.25+0.96

ORDERED GNN [14] 86.22+4.12 88.04+3.63 87.034+4.73 +1.00 6244+1.96 72284229 77.31+1.73 90.15+0.38 88.37+0.75
ASGC [19] 85.14 £3.06 86.06+3.75 86.2243.58 36.33£0.79 5838+£1.08 73.16+1.07 66.86+0.86 78.72+0.88 77.52+%1.61

DJ-GNN 92.43 +£3.15 92544370 87.03+1.62 36.93+0.84 73.48+£1.59 8048+1.46 77.50+1.33 89.19+0.32 88.43+0.91

Low Structural Heterophily. For these datasets, we list their optimal number of jumps (hyperpa-
rameter K): WISCONSIN (K = 5), CORNELL (K = 5), CITESEER (K = 5), PUBMED (K = 5)
and CORA (K = 5)) we find that a few jumps are enough for achieving or improving the SOTA.
However, not all jumps are equally important. For instance, WISCONSIN and CORNELL rely mostly
on the first two jumps (see Figure 3), while the remaining datasets rely on the homophilic branch (no
jump). Actually, CITESEER, PUBMED, and CORA are the datasets with the smallest edge heterophily
(HoMm LEVEL). In addition, we are the second best method only in CORNELL (87.03 (ours) vs 87.84
(FSGNN(8-HOP)) and we are very competitive in CITESEER (77.50 (ours) vs 78.02 (GEOM-GCN)).
In the first case, FSGNN(8-HOP) uses a fully supervised split (60%/20%/20%) whereas we use the
more severe semi-supervised split. For CITESEER, we note that the GEOM-GCN method relies on

the geometry of the latent space. In this regard, CITESEER is the dataset with the lowest structural
heterophily (R = 5.78), i.e. the geometry of the latent space is a fair representation of the topology
of the graph. As a result, adding jumps may complicate that geometry: actually, the most important
branches are J° and the homophilic branch (no jump). Finally, in PUBMED, our method is slightly
improved by ORDERED GNN (89.19 vs 90.15).

High Structural Heterophily. For these datasets [46] [47], we also list their optimal number of
jumps (hyperparameter K): TEXAS (K = 20), SQUIRREL (K = 8), CHAMELEON (K = 12)
and ACTOR (K = 3). Our best result is for TEXAS (R = 18.37), where we significantly improve
the SOTA (92.43 (ours) vs 88.38 (ACMII-GCN++, which is a multi-channel GCN with adaptive
channel mixing)). In SQUIRREL, we are slightly outperformed by FSGNN(8-HOP) (73.48 vs 74.10)
due, again to their use of a full supervised split (60%/20%/20%). We are very competitive in this
dataset because the SQUIRREL graph is very dense and we only need K = 8 jumps to achieve good
results. We are also the best model in CHAMELEON (whose structural heterophily is the smallest in
this set): we obtain 80.48 vs the second-best model FSGNN(8-HOP) that achieves 78.27 (again with
a split of 60%/20%/20%).

Parallel (Shallow) vs Sequential (Deep). Our method is Parallel (multi-branch shallow GNN) and
its performance is the best or it is very competitive in small-medium datasets. There is one exception.
In the PUBMED dataset, where we obtain 89.15, we are slightly outperformed by ORDERED GNN
with only 5 layers (90.15) because this dataset is very homophilic. This also happens with GCNII
which explores 2 to 26 layers. We can conclude that deep methods have a good performance in
homophilic datasets but such a performance decays significantly in heterophilic ones.

Table 2: Node-classification accuracies in large graphs. Top three models are coloured by First,
Second, Third.

PENNY94 ARXIV-YEAR OGBN-ARXIV

HOM LEVEL 0.47 0.21 0.66

NODES 41,554 169,343 169,343
EDGES 1,362,229 1,166,243 1,166,243
CLASSES 5 5 40
MLP 73.614+0.40 36.70 £0.21 55.91 4+ 0.15
GCN 82.474+0.27 46.02+£0.26 59.61 4+ 0.23
GAT 81.563+0.55 46.05 £ 0.51 60.27 4 0.21
MixHopr 83.47+0.71 51.81 £0.17 OOM
LINKX 84.714+0.52 56.00 £ 1.34 55.31 4+ 0.81
DJ-GNN 84.84 +£0.34 49.21 +0.20 63.23 £0.12

We have also tested our model in Very Large Graphs (see Table 2). In this regard, we note that
the memory requirements of our method — O(nQ), where n is the number of nodes —, force us to
decouple the diffusion pump from the jump exploration. We first learn the matrix of pairwise diffusion
distances in an unsupervised way. Later, we use it in a static way to minimize the classification loss.
Despite that limitation, we obtain a very competitive performance both for PENN94 (84.84 vs 84.71
with LINKX) and OGBN-ARXI1V (63.23 vs 60.27 with GAT). However, our performance decreases
in ARXIV-YEAR which is more heterophilic than the others: memory limitations force us to use only
K = 3 hops for the three datasets.

Finally, we extend our experimental results in Appendix B: SBM Analysis and Appendix C: Experi-
mental and Computational Details.

6 Conclusions and Future Work

In this paper, we propose DIFFUSION-JUMP GNNS, a multi-branch GNN architecture that addresses
the heterophily issue from a structural perspective. Firstly, we define node-classification in terms of
a Dirichlet problem. This allows us to define a new measure of heterophily: structural heterophily.
Having this measure in mind, we formulate a loss function that governs the interplay between the two
main components of our architecture: the diffusion pump (which generates diffusion distances) and
the parallel jumps (which drive the exploration of links between nodes with similar labels). The
most important contribution of our model is that the diffusion distances, and consequently the jumps

and the structural filters derived from them, are fully learnable. Our experiments show that our model
outperforms the SOTA or it is very competitive. Finally, our future work includes: a) scalability, in
terms of memory and b) automatic jump selection.

Broader Impact. This research contributes to improving the reliability of graph learners in the
heterophilic regime. Besides the well-known social benefits concerning the detection of malicious
nodes in social networks, we consider the application of our learnable structural filters to fairness.

References

(1]

(2]

3

—

[4

—_

[5

—

[6

—_

(7]

[8

—

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, 2017.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua Bengio.
Graph Attention Networks. International Conference on Learning Representations, 2018.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, 2020.

Meng Liu, Zhengyang Wang, and Shuiwang Ji. Non-local graph neural networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(12):10270-10276, 2022.

Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai Koutra.
Graph neural networks with heterophily, 2021.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
volutional networks. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
1725-1735. PMLR, 13-18 Jul 2020.

Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, and Dongmei Zhang. Make heterophily graphs
better fit gnn: A graph rewiring approach. arXiv preprint arXiv:2209.08264, 2022.

Adridn Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. DiffWire: Inductive
Graph Rewiring via the Lovdsz Bound. In The First Learning on Graphs Conference. PMLR, 2022.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio’, and Michael Bronstein.
On over-squashing in message passing neural networks: The impact of width, depth, and topology, 2023.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the same coin:
Heterophily and oversmoothing in graph convolutional neural networks. In Xingquan Zhu, Sanjay Ranka,
My T. Thai, Takashi Washio, and Xindong Wu, editors, IEEE International Conference on Data Mining,
ICDM 2022, Orlando, FL, USA, November 28 - Dec. 1, 2022, pages 1287-1292. IEEE, 2022.

Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest path networks for graph property
prediction. In The First Learning on Graphs Conference, 2022.

Yunchong Song, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Ordered GNN: Ordering message
passing to deal with heterophily and over-smoothing. In The Eleventh International Conference on
Learning Representations, 2023.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyun-
yan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional architectures via
sparsified neighborhood mixing. In international conference on machine learning, pages 21-29. PMLR,
2019.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Improving graph neural networks with simple
architecture design, 2021.

10

[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]
[34]

[35]

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Not all neighbors are friendly: Learning to choose
hop features to improve node classification. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, CIKM ’22, page 4334-4338, New York, NY, USA, 2022.
Association for Computing Machinery.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Benjamin Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. In ICML 2020 Workshop on Graph Representation
Learning and Beyond, 2020.

Sudhanshu Chanpuriya and Cameron N Musco. Simplified graph convolution with heterophily. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph
neural network. In International Conference on Learning Representations, 2021.

Wilhelm Huisinga, Sean Meyn, and Christof Schiitte. Phase transitions and metastability in markovian and
molecular systems. The Annals of Applied Probability, 14(1):419-458, 2004.

B. J. Matkowsky and Z. Schuss. Eigenvalues of the fokker—planck operator and the approach to equilibrium
for diffusions in potential fields. SIAM Journal on Applied Mathematics, 40(2):242-254, 1981.

Peter Hinggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: fifty years after kramers. Rev.
Mod. Phys., 62:251-341, Apr 1990.

Boaz Nadler and Meirav Galun. Fundamental limitations of spectral clustering. In Proceedings of the
19th International Conference on Neural Information Processing Systems, NIPS’06, page 1017-1024,
Cambridge, MA, USA, 2006. MIT Press.

Boaz Nadler, Stéphane Lafon, Ronald R. Coifman, and Ioannis G. Kevrekidis. Diffusion maps, spectral
clustering and eigenfunctions of fokker-planck operators. In Proceedings of the 18th International
Conference on Neural Information Processing Systems, NIPS’05, page 955-962, Cambridge, MA, USA,
2005. MIT Press.

Huan Wang, Shuicheng Yan, Dong Xu, Xiaoou Tang, and Thomas Huang. Trace ratio vs. ratio trace for
dimensionality reduction. In 2007 IEEE Conference on Computer Vision and Pattern Recognition, pages
1-8, 2007.

Yanggqing Jia, Feiping Nie, and Changshui Zhang. Trace ratio problem revisited. /[EEE Transactions on
Neural Networks, 20(4):729-735, 2009.

T. T. Ngo, M. Bellalij, and Y. Saad. The trace ratio optimization problem. SIAM Review, 54(3):545-569,
2012.

Derek Lim, Felix Matthew Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Prasad Bhalerao,
and Ser-Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong simple
methods. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pages
2083-2092. PMLR, 2019.

Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, and Tomas Pfister.
Differentiable top-k with optimal transport. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 20520-20531.
Curran Associates, Inc., 2020.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Scholkopf. Learning
with local and global consistency. In S. Thrun, L. Saul, and B. Scholkopf, editors, Advances in Neural
Information Processing Systems, volume 16. MIT Press, 2003.

Peter G. Doyle and J. Laurie Snell. Random walks and electric networks, 2000.

L. Grady. Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(11):1768-1783, 2006.

Marina Meild and Jianbo Shi. A random walks view of spectral segmentation. In Thomas S. Richardson
and Tommi S. Jaakkola, editors, Proceedings of the Eighth International Workshop on Artificial Intelligence
and Statistics, volume R3 of Proceedings of Machine Learning Research, pages 203-208. PMLR, 04-07
Jan 2001. Reissued by PMLR on 31 March 2021.

11

(36]

(371

(38]

[39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

[53]

[54]

[55]

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al Magazine, 29(3):93, Sep. 2008.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. CoRR, abs/2002.05287, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. CoRR,
abs/1909.13021, 2019.

Francesco Di Giovanni, James Rowbottom, Benjamin P. Chamberlain, Thomas Markovich, and Michael M.
Bronstein. Graph neural networks as gradient flows: understanding graph convolutions via energy, 2022.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the same coin:
Heterophily and oversmoothing in graph convolutional neural networks. CoRR, abs/2102.06462, 2021.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph
neural network. In International Conference on Learning Representations, 2021.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolu-
tional networks. CoRR, abs/2007.02133, 2020.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns, 2019.

Takenori Yamamoto. Crystal graph neural networks for data mining in materials science. Technical
report, Research Institute for Mathematical and Computational Sciences, LLC, Yokohama, Japan, 2019.
https://github.com/Tony-Y/cgnn.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang, and
Doina Precup. Revisiting heterophily for graph neural networks, 2022.

Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of facebook networks. CoRR,
abs/1102.2166, 2011.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. CoRR, abs/2005.00687,
2020.

Alan Edelman, Tomds A. Arias, and Steven T. Smith. The geometry of algorithms with orthogonality
constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303-353, 1998.

Zhigiang Xu, Xin Cao, and Xin Gao. Convergence analysis of gradient descent for eigenvector computation.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence, IICAI’18, page
2933-2939. AAAI Press, 2018.

Jing An, Lexing Ying, and Yuhua Zhu. Why resampling outperforms reweighting for correcting sampling
bias with stochastic gradients. In International Conference on Learning Representations, 2021.

Huaijun Qiu and Edwin R. Hancock. Clustering and embedding using commute times. /IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(11):1873-1890, 2007.

A. K. Chandra, P. Raghavan, W. L. Ruzzo, and R. Smolensky. The electrical resistance of a graph captures
its commute and cover times. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of
Computing, STOC ’89, page 574-586, New York, NY, USA, 1989. Association for Computing Machinery.

Boaz Nadler, Stéphane Lafon, Ronald R. Coifman, and Ioannis G. Kevrekidis. Diffusion maps, spectral
clustering and reaction coordinates of dynamical systems. Applied and Computational Harmonic Analysis,
21(1):113-127, 2006. Special Issue: Diffusion Maps and Wavelets.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro Li6.
Directional graph networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
748-758. PMLR, 18-24 Jul 2021.

Sudhanshu Chanpuriya and Cameron N Musco. Simplified graph convolution with heterophily. In Alice H.

Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

12

[56]

(571

(58]

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Z. Yang,
Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. CoRR,
abs/1912.01703, 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

13

7 Appendix

7.1 Appendix A: Formal Results with Practical Implications

For the sake of clarity, in this appendix we develop the key concepts of the theorems stated in the
paper instead of providing detailed proofs. Our emphasis here is on the practical implications of each
result. For more details, we refer the reader to the cited papers.

The Trace Ratio Problem. Min U7 AU is achieved by V,,x, whose p columns are given by
the eigenvectors of the p smallest eigenvalues \; < Ay < ... < A, of the Laplacian A. Then,
Tr[VIAV] = Ay + ... +)\, when the graph G = (V, E) with adjacency matrix A is connected.
However, V does not necessarily minimize Tr[VIDV]. As a result, we have that

Tr[UT AUJ < Tr[VTAV] < Ao+ .+ A

* = Mi _ 5
P NUTU=IHUTDU] = Tt[VIDV] = dy +... + d, ’)

where d; < dy < ... < d, are the sorted degrees. As a result, we have the following bounds:
Ao+ ...+ < Ao+ .+ ©)

dpy1+ ... +dy =P = di+...+dy

The definition of p* plays a key role in the original trace-ratio optimization. Following [28], such a
problem is formulated in scalar terms, i.e. in terms of finding

p* = arg Uqu{iJn:I f(p) :== Tr[UT AU — pTr[UTDU] . @)
Actually, for p* we have have that
Mingry_1Tr[UT (A — p*D)U] = 0. ®)
Therefore, the trace-ratio problem can be solved by alternating two updating steps:

U : Given p, apply the Lanczos method to obtain the p largest eigenvalues of the transition
matrix P — pD (the smallest of /A — pD) and their associated eigenvectors U.

T[UT AUJ

p : Given the current eigenvectors U, update p = TOTDU]

In the above process, the update of U ensures the orthogonality constraint.

The Trace Ratio and SGD. However, solving the trace-ratio problem through gradient descent

drives us to a different solution from the eigenvectors of A — p*D. For instance, consider the
T
Dirichlet loss Lp = %. Then, its gradient (supposing that the orthogonality is enforced by a

complementary loss) is given by:
2AU — 2pDU
VLp i= ———————
b Tr[UTDU]
Therefore, VLp = 0 implies AU = p*DU, where p* — 0 is the asymptotic value of the trace ratio.
As a result, we have that the optimal U satisfy AU = p*U, i.e. the gradient descent converges to
the (orthonormal) functions of the normalized Laplacian A associated with the value p*. However,

as p* is not necessarily an eigenvalue of A, but it is close to the Fiedler value Ay, we denote U as a
Fiedler environment. It is an environment since the p columns u.; are mutually orthonormal and

close to the Fiedler vector ¢» insofar their Dirichlet energies p; = u. jTAu;j satisfy |[Ag — p;‘| <€
with ¢ — 0 (Theorem 4.1).

In our experiments, we have chosen the trace-ratio formulation because:

©))

a) It leads an implicit normalization of the gradient V£ p, namely Tr[U7DU].

b) The gradient is more structured when we apply the constrain U = fy(A), where A is the
adjacency matrix.

Regarding a), our implicit normalization alleviates the problem of landing in local minima due to the
orthonormalization constraint (that we also enforce in the global loss). As noted [48], constraints of

14

the form U7'U = I define a Riemannian manifold and the trace problem s.t. them is not geodesically
convex. In [49] this is addressed by introducing a Riemannian gradient and retraction normalization.

However, our main gain in performance is achieved when we address b) via the joint effect of
normalization and U = fy(A). In our preliminary experiments, we compared the gradient when
applying the constraint U = fy(A) vs the one when doing only U = fy(I). Discarding the biases,
and the non-linearities in both cases, we have U = AW vs U = W. For simplicity, we consider the
gradient wrt a single column, i.e. we analyzeu = Aw vsu =w

2(A — pD)(Aw)
Tr[(Aw)TD(Aw)]

2(A — pD)w
TriwTDw)|

VE'Dﬁ = VLpg:= (10)
Given a random initialization of w, this vector plays the role of a random projector of the rows
in A. Following, the Johnson-Lindenstrauss Lemma, w = Aw tends to replicate the structure
of the adjacency. Actually, if the entries of w; ~ AN(0,1) then, those of the projection satisfy
w; ~ N (0, df), where d; is the degree of node i. As a result, if we have ¢ well-defined communities
in the graph G = (V, E') with adjacency matrix Aw, then the projection W is near piecewise constant
(actually the norm of the i—th row is preserved: || A;.|| = ||[W||). As aresult, the projection W is more
structured than w and this is propagated and even amplified during gradient descent. In addition, the
normalization of VL7, , is stronger than that of VLp o.

Overall, when evaluating the performance in SQUIRREL and CHAMELEON using only U = fy(I)
(i.e. using VLp) we only obtain 41.38 £ 2.98 and 58.48 + 4.69. However, using U = fy(A)
(gradient Vﬁ’Dﬁ) leads to 73.48 4= 1.59 and 80.48 + 1.46 respectively.

Finally, a detailed impact of the two above formulations in the variance of the SGD as in [50] is
beyond the scope of this paper.

Assymptotic Diffusions. As explained above, optimizing the Dirichlet loss leads to Fiedler en-
vironments, i.e. the rows U;. contain the p nearly orthogonal eigenvectors with eigenvalues
v =1> 7 > ... > ~, Following [25], the diffusion distance D;(i,j) at time ¢ between
two nodes ¢ and j is defined spectrally as:

1
Di(i,j) =) G Pt = p(k, t5))* = T*|U;, = U3 |I?, (11
k

where 7(k) := dj/vol(G) are the components from the stationary probability distribution
lim; 00 p(4,t]i) = =, i.e. the eigenvector U, corresponding to 3 = 1. In the above equa-
tion, U* denote the true eigenvectors of the transition matrix P, and I" := diag(~y1,72, . . .,7p) is the
diagonal matrix with the corresponding eigenvalues. Thus, Eq. 11 can be explained in the following
terms:

a) D?(i,j) compare the probabilities that two random walks (one starting in 4 and another one
in j) reach any other node % in time ¢.

b) The spectral interpretation relies on the spectral theorem applied to the transition matrix
P = UAU*". Asaresult, P! = UT*U*T = 3" AU ULT, withn = |V).

However, since determining what is the correct diffusion time is very hard (it is usually a hyper-
parameter in some GNNGs), we are interested in the asymptotic diffusion distance D? , __. Qiu and
Hancock [51] determined that

> D5 =)
t=0 T

:2]—_77"

(U - Uy (12)

i.e. eigenvalues {1 — ~,-} of the normalized Laplacian A are used instead of those of P. Actually, the
right side of the above equation is the well-known commute times [52] distance CT(%, j). Note that
such a distance is dominated by the Fiedler value and vector: A2 = (1 — 72) and U%, respectively.
This fact simplifies the interpretation of our approximate diffusion distance as follows:

a) Our approximated eigenvectors, contained in the p columns of U have eigenvalues (Dirichlet
energies) p;: close to p* (the optimal trace ratio achieved by the Dirichlet loss).

15

b) Theorethically, we have that the smallest pjﬁmm satisfies Ay < pjfmm. Therefore, if we order p:
in ascending order, then we obtain

'] p

. 1 .
P HIEDY - (U,; — U,;)* = CT(, §) . (13)
t=0 r=1""

¢) However, in the heterophilic regime (where the labels break the structure) we usually have
A2 < py. . See for instance the Fiedler environments obtained for SBMs in Figure 4 and
the discussion below (Appendix B). As a result, in practice we have

p
d'7(i,5) ==Y _ (Ui = Upj)® = |U;, — Uy||* = aCT(i, j) where a < 1. (14)

r=1

This proofs Corollary 4.2.

Escape Probabilities. Approximating commute times distances is very convenient for our jump-
based analysis, since it is well known that the escape probability is related to the commute times
distance [33]: pese = m Escape probabilities are actually dependent on the spectral gap
(approximated by the Fiedler value A;). This is illustrated in the very first Figure of this paper
(Figure 1), where a random walker tries to escape from the community A. A classic result [35] shows
that the probability that a random walk started in its asymptotic (t — oo) distribution 7 is transitioning

cut(A,A - .
vto(l(,éi) L, where cut(4, A) = > icAjea Cij (inthe

fromi € Atoj € Ain one step is pese(A, A) =
Figure we have that cut(4, A) = 1).

Therefore, as d*>°(i, j) = aCT(4, j), with a < 1 our jump-hierarchy is closer to that of the escape
probability than choosing CT(4, j) as asymptotic diffusion distance. In addition, we are sensitive to
the spectral gap since the Fiedler environment contains approximations of the Fiedler vector, and the
spectral gap is approximated in turn by the Dirichlet energy of the Fiedler vector.

Clustering and Metastable States. Minimizing the Dirichlet loss in conjunction with the classifi-
cation loss (see Eq 2) leads to a trade-off between two clustering problems. On the one hand, we
infer a piecewise-smooth latent space. On the other hand, we simultaneously try to preserve the
structure of the input graph as much as possible. In both cases, we try to find metastable states. A
metastable state is a concept borrowed from dynamical systems but basically, it is an equilibrium
state in a random process (for instance the one defined by a random walk that tries to escape from
a community in Figure 1). Metastable states are also characterized by wells in potential functions
U(x), where x is a state and its probability is given by the Boltzmann distribution p(x) = =Y,
Then, the characteristic relaxation processes and time scales of a given space are usually described by
a Stochastic Diffusion Equation (SDE):

x(t) = —VU(x) + V2w (t) (15)

where w denotes Brownian motion. In the above equation, we have a drag term (the gradient) that
drives the process to a deep well, and a random term (the Brownian motion) that allows us to escape
from local minima. During this process, we find different time scales: fast scales while we are moving
through a given well, and slow scales when we try to escape from it. For instance, escaping from the
right community in Figure 1 takes a long time which depends on the difference between the potential
at the well U (X,,,s,) and that of the saddle point U (X4,) [24]. This time is in turn the inverse of
the spectral gap, i.e. there is a spectral interpretation of the SDE. Such interpretation comes from the
analysis of the Fokker-Planck equation:

Op(x,t) =V - [Vp(x,t) + p(x,) VU (x)] , (16)

This equation leads to the pdf of the SDE and it has a spectral interpretation. More precisely, the eigen-
vectors of P converge to the eigenfunctions ¥ (x) of the Fokker-Planck equation as follows [24][53]:
VI(x):= AU - V.- VU = —p¥(x) , (17)

where A = V - V is the Laplacian and p the eigenstates (eigenvalues). As a result, we may use the
Fiedler vector to characterize the separation between two clusters. The steepest the Fiedler vector,

the better the separation (Theorem 4.4). Interestingly, the third eigenvector V may not work well as
a state separator when we have different spatial scales, as we will see in Appendix B.

16

Dirichlet Label Propagation. As we mentioned in the main paper, our Dirichlet formulation is
inspired by classical graph-based semi-supervised methods. The work in [32] poses the problem of
propagating known labels £(B) to unknown nodes v € U. Let Y be a n X ¢ matrix where Y (¢, j) = 1
means that node ¢ € B has label j and Y (4, j) = 0 otherwise. Then, the optimal label of each node 4
is given by y (i) = arg max;<. F(4, j), where

F=31—-aP) ", (18)

being P the transition matrix and v+ 3 = 1. The n X ¢ matrix F works as a basic node representation
(not exactly a latent space) since each of is ¢ rows is stochastic. However, its construction exploits
the powers of P as follows:

t—

—

F(t) = (aP)"'Y + (1 -0a)) (aP)'Y. (19)
=0
and
F = lim F(t) = (1-a)(I- aP)t. (20)

In addition, we also noted that F is also the solution of the Dirichlet problem:
. 1 T 2
Min Lq = (Tr[F AF]—|—uzi:HFi: - Y,) . (21)

where 11 > 0 is a regularization parameter satisfying « = 1/(1 + p). The proof is obtained by setting
the gradient to zero:

VLgp = F-PF+uF-Y)
1
- F- PFr- " v
14+ p 1+p
= F—-aoPF-8Y=0, (22)

which leads to Eq. 19.

Concerning the relationship of this formulation with absorbing random walks [33], the main idea is
to extend the n x n transition matrix P so that:

a) We include an upper block with the p x p identity matrix I. This block represents the p
absorbing states, where p = |¢(B)|. Then the n x p block R encodes the prior probabilities
of reaching an absorbing state from a non-absorbing one.

b) The absorbing probabilities are given by B := (I,x,, — P)"'R..

Finally, the random-walker version [34] is quite similar to the above one, but reorganizes the Laplacian
matrix (Theorem 4.3).

7.2 Appendix B: SBM Analysis

The following experiment aims to illustrate the interplay between our novel measure of structural
heterophily R and the extent of the spectral gap. We also show the Fiedler Environments and
how they are influenced by the classification loss (labels). For each heterophilic regime, we show
both the corresponding pairwise distance matrix (diffusion map) and the resulting homophiliation.
We have depicted in Figure 4 the main ingredients of our approach as a means of illustrating some
technical details introduced in Appendix A. In particular, when analyzing SBM graphs under structural
heterophily we observe several interesting phenomena.

Original vs Learned. Instead of precalculating the eigenvectors, as in Directional GNNs [54], we
learn them. Our learned (approximate) eigenvectors are relatively close to the Fiedler vector (in
terms of how they discriminate the two classes). This is what we call Fiedler Environments but, in
a semi-supervised setting, i.e. the learned eigenvectors are reactive both to the Dirichlet loss and
to the classification loss. Despite being noisy, the vectors in the Fiedler Environments are able of
partitioning a class when needed (especially for high values of R).

Diffusion Map. Our pairwise distances are also reactive to semi-supervised classification. However,
the Dirichlet loss tends to flatten the intra-communities distances as much as possible. Flattening

17

Input Graph R =1

Pairwise Distance

Embedding

\

% ?k&' vy, m‘““‘"*@%h s BB
o S %o ﬁ& “
gz, p e Bo
l(%"% ‘?f”% % e P) e B e $ i
ey, T om o ‘ ¥ % %

Figure 4: Structural Heterophily in SBMs. Left: The original homophilic graph (First row), its
p = 3 eigenvectors (Second row), the pairwise distance matrix (Third row), and the resulting
embedding. The remaining columns to the right have the same structure for increasing levels of
structural heterophily. Note the evolution of the Fiedler Environments and the homophiliations. In all
cases, we use K = 10 jumps.

is a mechanism to enforce intra-community diffusion in the homophilic regime. In the heterophilic
regime, however, the diffusion map enforces exploration via high-order jumping (see lateral steps in
the blue region and the loss of the red peak in the small community).

Embedding. We can also see how the embedding is affected by structural heterophily. When we
have a structural cluster with nodes of two classes, the respective embeddings are correctly separated,
but the margin of this separation decreases as ‘R increases. This can be seen in graphs that have high
R > 1, where it is common to find subclusters of nodes that belong to the other classes.

Figure 5: Interplay between heterophily and the spectral gap ﬁ. Left: Results wrt structural
heterophily. Right: Results wrt node homophily.

18

Interplay between R and the gap. Finally, we extend the experiments of [55] by incorporating a third
axis in addition to variate p and ¢. This new axis is the structural heterophily. We proceed as follows.
We generate four basic SBMs attending to increasing spectral gaps: ﬁ € {0.2,0.5,0.67,0.98}.
For each basic SBM we have generated six levels of increasing structural heterophily R. In parallel,
we also generate six levels of increasing node homophily as a means of complementing structural
heterophily.

We show our results in Figure 5:

a) Small Gaps help. Our method is based on spectral clustering, which means that keeping the
gap low factor is key. This helps our method to choose whether to jump outside the cluster
looking for a node with the same label (Heterophilic regime) or to stay and only look around
(homophilic regime). This common case is supported by our method without problems.

b) Low/Medium Structural Heterophily. If the structure is quite correlated with the label
and the spectral gap is not too high, our method is able of achieving good results even when
the structure is noisy.

¢) Large Gaps lead to oversmoohing. Our worst performance is achieved when the inter-class
message passing is massive. This leads to oversmothing due to the high connectivity of the
graph. This high connectivity cannot be controlled by our pump (see the blue dots).

We have also performed the same experiment, but changing the structural heterophily measure to
node homophily, in order to display the difference between both. Note that our measure fails when
the spectral gap is large. This happens because the Dirichlet energy in a near-complete graph is
minimal. This lack of structure leads R to consider that all the nodes are in the same cluster, i.e. is
no heterophily).

7.3 Appendix C: Experimental and Computational Details

In this section, we provide details about the datasets (see Table 3) and all the parameters and
configurations of our experiments (see Table 4 in order to better clarify the architecture and the results.
DIFFUSION-JUMP GNNS is implemented in PyTorch [56], using PyTorch Geometric [57] and ogbn
datasets [47]. For reproducibility, code, and instructions are available on our GitHub with all the
selected configurations and logs. We have also included the computational (See Figure 6) in order to
clarify the derivability of topk in PyTorch.

Table 3: Statistics of the datasets used in our experiments.

DATASET AvG D DENSITY NODEH CrLASSH
TEXAS 1.77 0.0090 0.07 0.001
WISCONSIN 2.05 0.0080 0.17 0.094
CORNELL 1.62 0.0080 0.11 0.047
ACTOR 3.94 0.0005 0.16 0.011
SQUIRREL 41.73 0.0080 0.09 0.025
CHAMELEON 15.85 0.0070 0.10 0.062
CITESEER 2.73 0.0008 0.71 0.627
PUBMED 4.49 0.0002 0.79 0.664
CORA 3.89 0.0014 0.83 0.776
PENNO4 3.89 0.0014 0.33 0.776
OGBN-ARXIV 7 0.0004 0.66 0.444
ARXIV-YEAR 7 0.0004 0.22 0.272

In the following Table 4, we include the hyperparameters that have yielded the best results during the
experimentation phase. It is worth noting that the experiments were conducted using the same 10
random splits as in [58], training during 700 epochs and utilizing early stopping.

19

Figure 6: The Computational Graph for K = 3 jumps. All branches depend on the diffusion pump
(top-left) except H B (the Homophily Branch, top-right).

Table 4: Best hyperparameters for our datasets.

DATASET HIDDEN CHANNELS DROPOUT LR WEIGHT DECAY K/#JUMPS
TEXAS 64 0.2 0.03 0.0005 20
WISCONSIN 64 0.5 0.03 0.0005 5
CORNELL 128 0.5 0.03 0.001 5
ACTOR 16 0.2 0.03 0.0001 3
SQUIRREL 128 0.5 0.003 0.0005 8
CHAMELEON 128 0.35 0.003 0.0005 12
CITESEER 128 0.5 0.003 0.0005 5
PUBMED 128 0.3 0.01 0.0005 3
CORA 128 0.5 0.002 0.0005 5
PENNO4 16 0.5 0.001 0.0001 3
OGBN-ARXIV 128 0.3 0.01 0.0005 3
ARXIV-YEAR 128 0.2 0.003 0.0005 3

20

	Introduction
	Heterophily as the Loss of Harmonicity
	Homophiliation: Losses and Modules
	Methodological Details
	Network Architecture
	Inspiring Methods

	Experiments and Discussion
	Conclusions and Future Work
	Appendix
	Appendix A: Formal Results with Practical Implications
	Appendix B: SBM Analysis
	Appendix C: Experimental and Computational Details

