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Abstract

Modal parameter estimation of operational structures is often a challenging task when
confronted with unwanted distortions (outliers) in field measurements. Atypical observations
present a problem to operational modal analysis (OMA) algorithms, such as stochastic
subspace identification (SSI), severely biasing parameter estimates and resulting in misiden-
tification of the system. Despite this predicament, no simple mechanism currently exists
capable of dealing with such anomalies in SSI. Addressing this problem, this paper first
introduces a novel probabilistic formulation of stochastic subspace identification (Prob-SSI),
realised using probabilistic projections. Mathematically, the equivalence between this
model and the classic algorithm is demonstrated. This fresh perspective, viewing SSI
as a problem in probabilistic inference, lays the necessary mathematical foundation to
enable a plethora of new, more sophisticated OMA approaches. To this end, a statistically
robust SSI algorithm (robust Prob-SSI) is developed, capable of providing a principled and
automatic way of handling outlying or anomalous data in the measured timeseries, such as
may occur in field recordings, e.g. intermittent sensor dropout. Robust Prob-SSI is shown
to outperform conventional SSI when confronted with ‘corrupted’ data, exhibiting improved
identification performance and higher levels of confidence in the found poles when viewing
consistency (stabilisation) diagrams. Similar benefits are also demonstrated on the Z24
Bridge benchmark dataset, highlighting enhanced performance on measured systems.
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1. Introduction

The characterisation of structural dynamic systems remains to be a key feature of
modern engineering practice. Modal analysis is an established field of system identification
that is frequently employed across industry and research to practically analyse (linear)
dynamic systems with a view to recover estimates for the underlying invariant (modal)
properties. These are familiar to the dynamicist as the natural frequencies, damping ratios
and mode shapes. The availability of this modal information helps facilitate more informed
decision-making throughout the entire lifecycle of engineering structures.

Subspace identification algorithms have gained increasing attention in the modal analysis
community [1], predominantly due to their ability to deal with a considerable number of
inputs and outputs. Stochastic subspace identification (SSI) is a prominent method capable
of estimating a linear time-invariant state-space model from correlated sequences of observed
data, using traditional linear algebra techniques. Once recovered, an eigen-decomposition
of the state-space model yields the desired modal properties. Frequently appearing in both
academic and industrial literature, SSI (and its many algorithmic variants [2, 3]) continues
to be employed as reliable means of operational modal analysis (OMA) [1, 4–7]. In this
particularly paper, we focus attention to covariance-driven stochastic subspace identification
(Cov-SSI). Schematically, the Cov-SSI procedure is shown on the left hand side of Figure 1
and described in full in Section 2.2.

Despite the success of OMA algorithms, a typical weakness lies in their handling
of atypical observations and non-Gaussian noise. In practice, in situ monitoring can
often produce imperfect data containing unwanted features that may present a problem
to OMA algorithms, severely biasing parameter estimates and inevitably leading to the
misidentification of a system. These features arise due to the low level of excitation,
the inherent stochastic nature of the forcing or from unpredicted events that are often
independent of the system being measured. In the case of OMA, these ‘events’ refer to
practically encountered scenarios in testing such as sensor drop-out or partial detachment.

This misidentification problem is also true of Cov-SSI. Unlike classical approaches to
data analysis, where data may be pre-processed to remove outliers and ‘cleaned’ prior to use,
such an approach cannot easily be applied to Cov-SSI due to its dependency on sequential
data, as required for the Hankel matrix formation. This poses a significant dilemma.
During application of SSI, any outliers remain present during the analysis, distorting the
measurement of the response and ultimately affecting the identification procedure. Despite
this discernible predicament, no simple mechanism currently exists capable of dealing with
such anomalies in SSI.
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Figure 1: Schematic of the the existing methodology, SSI, and the proposed methodology, Robust Prob-SSI,
including an example of the observed relative improvement to identification performance from robust
Prob-SSI.

Addressing this problem, this paper introduces a novel probabilistic formulation of
SSI, referred to as Prob-SSI, realised using the theory of probabilistic projections [8]
and latent variable models. This new formulation is achieved through substitution of

3



canonical correlation analysis (CCA) (i.e. the singular value decomposition (SVD)) with
probabilistic CCA [8] within the SSI procedure. This fresh perspective, viewing SSI as a
problem in probabilistic inference, now lays the appropriate mathematical foundation to
enable a plethora of new SSI-based OMA algorithms, constructed using more sophisticated
probabilistic and hierarchical techniques.

To that end, the authors also present the first of many new algorithms constructed
on this unique model - a statistically robust SSI algorithm (robust Prob-SSI) capable of
providing a principled and automatic way of handling a-typical observations in multi-output
timeseries responses. As will be demonstrated, when confronted with ‘corrupted‘ data, this
new approach to modal identification appears to outperform traditional SSI, exhibiting
improved pole consistency and increased confidence; attributes reflected in the subsequent
consistency diagrams. This new proposed methodology is shown on the right hand side
of Figure 1 and discussed in Section 4. Further investigation and application to the well-
documented Z24 Bridge benchmark is also conducted, with results highlighting similar
benefits to identification performance.

1.1. Related Work

The application of probabilistic methods in modern engineering practice, coupled with
the demonstrative value associated with quantifying and harnessing uncertainty through
probabilistic analysis, has led to a general shift across many engineering disciplines to
adopt probabilistic tools and operate within more probabilistic frameworks. In the realm of
structural dynamics, this is most evident in the areas of SHM [9], digital twins [10] and
more increasingly in the field of system identification. The ability to reformulate engineering
operations probabilistically not only simplifies their inclusion into probabilistic frameworks
but can often provide an opportunity to improve existing methods, by means previously
unattainable using a deterministic approach.

Probabilistic (and Bayesian) approaches to modal analysis are now becoming increasingly
popular within the dynamics community [11]. The inclusion of uncertainty, in its various
forms1, has proven increasing useful; aiding the automatic selection of consistent poles in
stabilisation diagrams [12, 13], quantifying the uncertainty over the modal properties [14–17]
and by providing an alternative foundation upon which new methods can be developed [18].

Despite many alternative approaches to OMA and an increase in probabilistic identifica-
tion techniques, few directly attempt to formulate statistically robust algorithms capable
of handling atypical observations. Most OMA algorithms possess some level of inherent
robustness given their dependency on certain mathematical operations, such as the singular

1It is important to note, that there are many types of uncertainty, whether that be a posterior uncertainty
in a Bayesian sense, estimates for bounds, confidence intervals, fiducial intervals, etc. The discussion of
their relative merits lies beyond this work.
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value decomposition, but in certain cases, as will be shown, these algorithms are incapable
of dealing with a considerable number of outliers.

Some ‘robust’ approaches to OMA do exist in literature, however, the term ‘robust’
is often used to loosely refer to methods capable of reliable performance, rather than
statistical robustness. Most of these methods achieve consistency through automated
process; using optimised metrics or machine learning [19], often with the inclusion of
uncertainty in techniques such as clustering [13]. In contrast, this work achieves statistical
robustness through direct augmentation of the underlying algorithm. Furthermore, upon
closer inspection of the literature, only a small selection of papers appear to directly address
the problem of outliers, including recently developed robust algorithms by Liu et.al. on
correlation signal subset-based SSI (CoS-SSI) [20] and Goursat et.al. [21] on Crystal Clear
SSI (CC-SSI); both concerned with addressing non-stationary and noisy signals.

1.2. Structure

To assist navigation through the remainder of the article, the structure is given as
follows:

• (Section 2) provides the necessary theoretical background for canonical correlation
analysis (2.1) and covariance-driven stochastic subspace identification (2.2).

• (Section 3) introduces the theory of probabilistic canonical correlation analysis
(3.1). This is followed by a definition of the novel probabilistic stochastic subspace
identification algorithm (3.2).

• (Section 4) introduces the existing theory of robust probabilistic canonical correlation
analysis (4.1), including the necessary expectation-maximisation update equations
(4.1.1), followed by a definition of the new robust probabilistic stochastic subspace
identification algorithm (4.2).

• (Section 5) presents results and discussion from three individual case studies: a
‘clean’ benchmark case (5.1), a ‘corrupted’ case containing atypical observations (5.2)
and a real world case, using the Z24 bridge benchmark (5.3).

• (Section 6) provides concluding remarks and an outward look at possible avenues for
future work.
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2. Theoretical background

2.1. Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a well established statistical tool [22] that is
used to analyse the mutual dependency between two sets of multidimensional variables. This
dependency can be quantified by finding an appropriate set of orthogonal basis vectors, a
and b, such that the correlation between the linear projections2 of the variables is mutually
maximised, subject to the constraint that the set of transformed variables are uncorrelated3.
Given two co-occurring multidimensional random variables, x ∈ R

d1 and y ∈ R
d2 , this

process can be represented mathematically as

(a′,b′) = argmax
a,b

corr(aTx,bTy) = argmax
a,b

aTΣxyb
√

aTΣxxab
TΣyyb

T

(1)

where Σxy is defined as the cross covariance matrix between x and y, with Σxy = ΣT

yx, and
Σxx and Σyy are the auto covariance matrices. The canonical correlations can be computed
easily by solving the generalised eigenvalue problem

(

0 Σxy

Σyx 0

)(

a
b

)

= λ

(

Σxx 0
0 Σyy

)(

a
b

)

(2)

where a and b are the eigenvectors and λ is the eigenvalue or canonical correlation. In
practice the set of eigenvalues and eigenvectors are computed using the singular value

decomposition (SVD) of Σ
− 1

2

xx ΣxyΣ
−T

2

yy = V1ΛVT

2 .

2.2. Covariance-Driven Stochastic Subspace Identification (Cov-SSI)

This section provides a concise overview of the theory underpinning Cov-SSI for an
output-only case. For the benefit of the reader, the subtle presence of CCA in the method is
highlighted. This derivation follows descriptions given by Katayama [23], Van Overschee and
De Moor [24] and Döhler and Mevel [25]. The reader is directed towards the aforementioned
texts for a fuller derivation and for specifics. Only important details are repeated here.
For ease, Cov-SSI will be synonymous with the abbreviation ‘SSI’ if used, throughout the
remainder of the paper.

Consider an rth order discrete state space model of a linear dynamic system, equivalent
to a mechanical system with ndof degrees of freedom, such that r = 2ndof , in the form

2By assuming linear projections, the results of CCA are easily interpretable whilst keeping the problems
of overfitting mostly manageable.

3One intuitive explanation of CCA is that it is performing PCA on two datasets x and y whilst
simultaneously attempting to maximise the correlation of the two sets of principal components.
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xk+1 = Adxk + wk

yk = Cxk + vk
, E

{[

wq

vq

]

[

wT

s vTs
]

}

=

[

Q S
ST R

]

δqs (3)

where yk ∈ R
l is the output vector at discrete time step k, xk ∈ R

p is the internal state
vector, Ad ∈ R

p×p is the discrete state matrix such that Ad = exp(Ac∆t) where Ac is the
continuous state matrix, ∆t is the sampling time and C is the output matrix. wk ∈ R

p and
vk ∈ R

l are samples of the process noise and measurement noise respectively, E[·] denotes
the expectation and δqs is the Kronecker delta for any two samples in time q and s. The
process and measurement noise are both assumed to be stationary, white noise Gaussian
with zero mean and covariance given by the second part of Equation 3.

Given output measurements from this stationary process, based on all l measurement
channels, the data can be arranged into a block Hankel matrix, in the usual way, to form

H = Y0|2j−1 ∈ R
2lj×N =

[

Y0|j−1

Yj|2j−1

]

=

[

Yp

Yf

]

(4)

with 2j block rows and N columns, with every block consisting of l rows and where j > 0
and N is sufficiently large (i.e much larger than 2lj) and where j > r (model order) and
the number of columns of block matrices is N . The resultant cross-covariance matrix of the
future Yf with the past Yp is therefore given by

Σ̃ =
1

N

[

Yp

Yf

]

[

YT

p YT

f

]

=

[

Σpp Σpf

Σfp Σff

]

(5)

where Σpf and Σfp are block cross-covariance matrices, and Σff , Σpp are block auto-
covariance matrices respectively. The canonical correlations Λ = diag(λ1, · · · , λr) between
the future and past are the singular values [23], obtained through the singular value
decomposition (SVD) of the following matrix

Σ
−1/2
ff ΣfpΣ

−T/2
pp = V1ΛVT

2 ⋍ V̆1Λ̆V̆
T

2 (6)

where Σ
1/2
ff Σ

T/2
ff = Σff , such that,

Σfp ⋍ Σ
1/2
ff V̆1Λ̆V̆

T

2Σ
T/2
pp (7)

where V1 and V2 are the left and right singular vectors, respectively and Λ̆ neglects
sufficiently small singular values (canonical correlations) in Λ such that the resultant state
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vector has the dimension d = dim(Λ̆). The cross-covariance matrix, Σpf , can be decomposed
into the corresponding extended observability (O) and controllability (C) matrices using
Σfp = OC where

O = Σ
1/2
ff V̆1Λ̆

1/2
, C = Λ̆

1/2
V̆

T

2Σ
T/2
pp (8)

respectively and where rank(O) = rank(C) = d. The extended controllability and
observability matrices can be used to recover the state A and output C matrices,4 and
therefore the modal properties, in the usual manner for operational modal analysis (see
Appendix C). This overall process is summarised by the schema shown in Figure 2.

Figure 2: Schematic of the SSI procedure, highlighting the presence of CCA.

3. Probabilistic Stochastic Subspace Identification

3.1. Probabilistic CCA (PCCA)

The probabilistic interpretation of CCA, developed by Bach and Jordan [8], uses a
latent model approach, similar to that applied by Tipping and Bishop [26] in their earlier
development of probabilistic principal component analysis. Probabilistic CCA is summarised
here and, for the remainder of the paper, will be abbreviated to PCCA. The term CCA
will solely refer to the traditional CCA method.

At the core of PCCA lies a lower dimensional, unobserved latent space described by
variable zn ∈ R

d. This latent variable is transformed through two independent linear
mappings5, W(1) and W(2), to produce a pair of observed variables x

(1)
n ∈ R

D1 and
x
(2)
n ∈ R

D2 . Crucially, as the observed variables are assumed to be generated from a
shared latent space, the two datasets can be considered correlated. The full set of observed
samples are given by matrices X(m) = [x

(m)
1 , . . . ,x

(m)
N ] ∈ R

Dm×N where m = 1, 2 and N

4The method described here for recovering the system matrices is one of many. See Stochastic Balanced
Realisation Algorithm B, Chapter 8 in Katayama [23]

5Note that the transformations defined by Bach and Jordan transform variables from the latent space
to the data space.
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zn

x
(1)
n x

(2)
n

N

Figure 3: Graphical model for the probabilistic, latent variable interpretation of CCA (PCCA)

is the total number of observations. To simplify notation, xn = [x
(1)
n ;x

(2)
n ] ∈ R

D and
X = [X(1);X(2)] ∈ R

D×N is the feature-wise row concatenation of the two random variables,
where D = D1 +D2. PCCA is parameterised by the model parameters θ = {W,Σ,µ,Z}
where the latent variables are denoted by Z = [z1, . . . , zN ], one for each pair of observed
samples, and the remaining variables are the independent model parameters. Given this
list of assumptions, Bach and Jordan defined the following probabilistic model, shown
graphically in Figure 3 and given mathematically through Equations 9 - 11.

zn ∼ N (0, I) (9)

x(m)
n |zn ∼ N (W(m)zn + µ

(m),Σ(m)) (10)

xn|zn ∼ N (Wzn + µ,Σ) (11)

where N (µ ,Σ) corresponds to a Gaussian distribution characterised by mean and covari-
ance, W = [W(1);W(2)], µ = [µ(1);µ(2)] and Σ is a block-diagonal covariance matrix with
Σ(1) and Σ(2) along the diagonal. An isotropic noise model is assumed in the latent space,
which enforces independence between the variables whilst imposing a maximum correlation
condition.

3.1.1. Maximum Likelihood Estimates

Using this model, Bach and Jordan demonstrated the equivalence of probabilistic CCA
to traditional CCA by proving that the maximum likelihood estimates (MLE) for the
parameters in Equation 10 lead to the results of classical CCA and therefore, contain all
the necessary information traditionally obtained through the SVD. The MLE of the weights
are given by

Ŵ
(1)

= Σ
1/2
11 V1P

1/2R (12)

Ŵ
(2)

= Σ
1/2
22 V2P

1/2R (13)

where V1 and V2 are the left and right singular vectors of Σ
−1/2
11 Σ12Σ

−T/2
22 , respectively, P

is a diagonal matrix of the largest d canonical correlations and R is an arbitrary rotation
matrix of size d. The MLE of the means µ1 and µ2 are not stated here as the assumption
is zero mean data but their addition, if required, is trivial.
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3.1.2. Expectation-Maximisation Algorithm

A convenient property of latent variable models is that model parameter estimates
can also be recovered iteratively using the expectation-maximisation (EM) algorithm [27].
Despite fully tractable MLE estimates, Bach and Jordan also provide EM update equations
for PCCA (see Section 4.1 in [8]).

3.2. Probabilistic SSI

Figure 4: Schematic of the probabilistic SSI procedure, highlighting the replacement of CCA (see Figure 2)
with probabilistic CCA.

Through substitution of CCA with PCCA in the SSI algorithm, where X(1) = Yf and

X(2) = Yp, it can be shown that the MLE estimates for the weights Ŵ
(m)

, when written in
terms of covariance matrices of the future and past, are (as expected) equivalent to the
observability matrix and controllability matrix transposed, respectively (Equations 14 - 15).
The reader is referred back to Equation 8.

Ŵ
(1)

= Σ
1/2
ff V1Λ

1/2R = O (14)

Ŵ
(2)

= Σ1/2
pp V2Λ

1/2R = CT (15)

Having established the relationship between the MLE result for the weight matrices and
the observability and controllability matrices, this new probabilistic formulation provides
the necessary mathematical foundation upon which new probabilistic and hierarchical
SSI algorithms can be implemented. Such algorithms promise to enhance identification
performance, aid recovery of uncertainty and/or help extract new unseen information.
The first of these new probabilistic approaches to SSI can now be shown, specifically the
presentation of a statistically robust method capable of automatically handling outlying
data in measured timeseries.
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4. Robust Probabilistic SSI (Robust Prob-SSI)

4.1. Robust Probabilistic CCA

Standard probabilistic models can be converted to a more ‘robust’ form through the
replacement of a Gaussian noise model to that of a Student’s t-distribution [28]. Building
on the probabilistic interpretation of CCA, Archambeau, Delannay and Verleysen [29]
constructed a statistically robust equivalent of PCCA. This alternative model is founded
upon two key assumptions. The first is that the observed and latent variables can both
be modelled by a Student’s t-distribution S(µ,Σ, ν) with mean µ and covariance Σ. The
Student’s’ t-distribution has heavier tails than a typical Gaussian, which are determined by
the additional parameter, ν (degrees of freedom). The presence of heavier tails is preferable
as it makes the T-distribution better equipped to handle outliers as it is more likely to
capture them within the distribution. The second assumption is that an outlier in the
feature space must manifest as an outlier in the latent space. Given this set of assumptions,
Archambeau et. al. presented the following probabilistic model (note a continuation of
notation from Section 3.1)

zn ∼ S(zn|0, Id, ν) (16)

x(m)
n |zn ∼ S(x(m)

n |W(m)zn + µ
(m),Σ(m), ν) (17)

Making the set of latent variables explicit, the model can be reformulated into the following
form

un ∼ G
(

un
∣

∣

ν

2
,
ν

2

)

(18a)

zn|un ∼ N
(

zn|0 , u
−1
n Id

)

(18b)

x(m)
n |zn, un ∼ N

(

x(m)
n

∣

∣W(m)zn + µ
(m) , u−1

n Σ(m)
)

(18c)

xn|zn, un ∼ N
(

xn|Wzn + µ , u
−1
n Σ

)

(18d)

where G (α , β) represents a Gamma distribution, un is an additional latent variable and
W, µ, Σ and ν are as previously defined. The corresponding graphical model is shown in
Figure 5.

zn

x
(1)
n x

(2)
n

un

N

Figure 5: Graphical model for robust probabilistic canonical correlation analysis (robust-PCCA)
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4.1.1. Expectation-Maximisation Algorithm

In contrast to PCCA, direct maximisation of the incomplete data log-likelihood
∑

n log p(xn)
with respect to the parameters is intractable. However, using equations (18a-18d) estimates
for the variables can be recovered through an iterative scheme. Archambeau et.al employ
the EM approach, maximising the the expected complete-log-likelihood [29].

L(θ|xn, zn, un) =
N
∑

n=1

ln p(xn, zn, un|θ) (19)

where θ = (µ,W,Σ, ν).

The necessary update equations in the E-step (expectation) and M-step (maximisation)
of robust PCCA are given by the equations 20-27. For completeness, the robust PCCA
algorithm has been re-derived6 in Appendix A.

E-Step

ūn =
D + ν

un(xn − µ)
TA−1(xn − µ) + ν

(20)

ln ũn = ψ

(

D + ν

2

)

− ln

(

un(xn − µ)
TA−1(xn − µ) + ν

2

)

(21)

z̄n = B−1WTΣ−1(xn − µ) (22)

S̄n = B−1 + ūnz̄nz̄
T

n (23)

where A =
(

Σ +WWT
)

, B = WTΣ−1W + Id, ūn = E [un], ln ũn = E [ln(un)],
z̄n = E [zn], S̄n = E

[

unznz
T

n

]

and ψ(·) denotes the digamma function.

6The reader may notice certain equations differ from those in the original robust projections paper [29].
As is evident from the derivation, there appears to be some typographical errors in the original paper, most
notably in the definition of the covariance matrix update equation (Equation 37 in [29])
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Subsequently, the update equations for the parameters in the M-step are given by

Σ′ =
1

N

N
∑

[

ūn(xn − µ)(xn − µ)
T − ūn(xn − µ)(Wz̄n)

T

− ūn(Wz̄n)(xn − µ)
T + ūnWS̄nW

T

]

(24)

W′ =

N
∑

ūn(xn − µ)z̄
T

n

N
∑

S̄n

(25)

µ′ =

N
∑

ūn(xn −Wz̄n)
N
∑

ūn

(26)

0 = 1 + ln
(ν

2

)

− 2 ψ
(ν

2

)

+
1

N

N
∑

[

ln(ũn)− ūn
] (27)

where (·)′ denotes an updated parameter and ν ′ can be found by solving Equation 27
through a suitable line search. The convergence of the EM algorithm was monitored using
the Q-function, derived using standard theory [28].

It is important to note that despite the presence of heavier tails, in the case of no outliers,
it is expected that the Students’ t-distribution will tend towards the PCCA maximum
likelihood result.

4.2. Robust Probabilistic SSI

Figure 6: Schematic of the robust probabilistic SSI procedure, highlighting the replacement of PCCA (see
Figure 4) with robust PCCA.

After successful convergence of the EM algorithm, final estimates for the weights can be
obtained. These weights, as described by the model, are considered to be the statistically
robust transformations from the latent space to the observation space. The commonality
between the weights recovered by PCCA and robust PCCA, based on their ability to
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transform the data to the relevant subspace, grant a similar replacement of CCA in the SSI
procedure, now for robust PCCA.

W(1) = O (28)

W(2) = CT (29)

As noted by Archambeau et. al., the weights recovered through EM do not account for
the rotational ambiguity seen previously in Section 3.1.1. Although often unnecessary7,
the arbitrary rotation matrix R can be recovered through a simple post-processing step,
described in Appendix B. In the specific case of robust Prob-SSI, recovery of the rotation
matrix is essential for formulating the stabilisation diagram in the usual way.

7This arbitrary rotation is often ignored as its omission still results in data being transformed into the
relevant subspace.
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5. Results and Discussion

With a mathematical framework for conducting system identification in a statistically
robust and probabilistic way now established, attention can be directed towards robust
identification of modal parameters using experimental data. Three separate case studies
are used to demonstrate, evaluate and compare the identification performance of robust
Prob-SSI to Cov-SSI. The first study (Section 5.1) uses data from a simulated linear MDOF
to benchmark the general performance of robust Prob-SSI to standard Cov-SSI under ideal
conditions. The variance exhibited by both methods due to different random input forcing
is also briefly explored. The second case study (Section 5.2) exploits the same simulated
MDOF system but now containing artificially introduced outliers. This study is used to
test the robustness of identification to outliers under known conditions. The third and final
case study (Section 5.3) uses data collected from the Z24 bridge benchmark. This study is
used to investigate the method’s overall appropriateness to “real-world” data and assess
and evaluate its overall performance against Cov-SSI.

In all tests, robust Prob-SSI was directly compared to Cov-SSI to highlight differences
in identification performance. The reader will notice the omission of results from Prob-SSI.
As has been shown, the MLE estimates obtained through Prob-SSI are equivalent to those
found through Cov-SSI and so their addition was redundant.

Computational efficiency was not a primary factor of this work as it was deemed to be
a distraction from the hypothesis being proposed. However, due to the iterative nature of
the EM algorithm and the variability in convergence, robust Prob-SSI at present displays
typically longer computation times, when compared to the SVD based Cov-SSI. Nevertheless,
through effective computational optimisation, it is believed this could be greatly improved.

5.1. Benchmark: Simulated MDOF Linear System

To evaluate the identification performance of robust Prob-SSI, a suitable benchmark
was created. Response data was generated using a generic three degree-of-freedom (DOF)
linear dynamic system with proportional damping; shown in Figure 7 and described by the
model parameters in Equation (30). The system was subsequently excited using broadband
forcing, of order 10−2 with a standard deviation of 1, mimicking ambient excitation. The
system was simulated at a sample rate of 1 × 103 Hz and generated 8192 samples. The
Hankel matrix was constructed using 20 lags; i.e. 10 forwards and 10 backwards in time.
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Figure 7: Simulated MDOF System
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 , C = K× 10−4 (30)

k = 1× 104 (N/m), m = 10 (kg)

Before application of robust Prob-SSI, suitable initial conditions are required for the
EM algorithm. A small perturbation to the CCA (PCCA maximum likelihood) result was
chosen as the initial estimate of the full weight matrix, providing a sensible prior that, one
would expect, converges to a solution sooner and therefore reduces computational expense.
The initial estimates for the covariance matrices were randomly sampled from an inverse
Wishart distribution W−1(K, ν) where ν = D + 2 and K = ID.

Following analysis of the data, consistency diagrams8 were generated for both methods
using standard techniques. These are shown in Figure 8. To ensure fair comparison, fixed
definitions for the consistency criteria were applied to both methods. This ensured that
any discrepancies in identified consistency arose solely from the method and not through
independent changes to specific criteria. The chosen criteria were: a 2% relative change in
frequency, a 5% absolute change in damping ratio, and a 98% relative correspondence in
the MAC value.

8This often referred to as the stabilisation diagram, however the authors believe this choice of terminology
may cause confusion with the ‘stability’ of poles referenced in control theory. Hence, the term consistency
diagram is used. This transition has also been adopted by others in the field of dynamics [30]
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Figure 8: Consistency diagrams for the 3DOF system, recovered using Cov-SSI (top) and robust Prob-SSI
(bottom).

As evident from Figure 8, the found consistency diagram for Robust Prob-SSI is
very comparable with that of Cov-SSI. Clear columns of fully consistent poles are easily
identifiable and, as shown in Table 1, the estimated values for the natural frequencies and
damping ratios comfortably lie within an acceptable tolerance of the ground truth used in
the simulation.

Table 1: A comparison of the natural frequencies and damping ratios obtained in the benchmarking study.

Natural Frequency (Hz) Damping Ratio

1 2 3 1 2 3

Truth 4.74 6.44 10.65 0.0033 0.0020 0.0015
Cov-SSI 4.73 6.46 10.73 0.0024 0.0050 0.0128

Robust Prob-SSI 4.74 6.45 10.80 0.0030 0.0047 0.0100

Due to stochastic variation in the excitation and, in the case of Robust Prob-SSI, the
initialisation of the EM algorithm, the inherent variance shown by both methods was also
explored. Assuming a correct number of DOF, both methods were applied to 100 datasets
whereby the underlying system dynamics remain unchanged but the random seed needed to
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Figure 9: A demonstration of the variance seen in the natural frequency estimates using Cov-SSI and
robust Prob-SSI for 100 tests on the same 3DOF dynamic system but with varying input forcing.

generate the random forcing varied between tests. The estimates of the natural frequencies
from these tests are shown in Figure 9.

As expected, due to the complex nature of the system poles, the recovered estimates
exist in conjugate pairs. This is evident from the clear matching of results seen in both
tests between poles 1 and 2, poles 3 and 4, and poles 5 and 6. The variance exhibited by
robust Prob-SSI is highly similar to that of Cov-SSI for all the recovered poles, when the
correct number of degrees of freedom is assumed. Overall, this result demonstrates that
robust Prob-SSI is capable of accurately replicating the results of Cov-SSI.

5.2. Corrupted Dataset: Simulated MDOF Linear System

Having established that robust Prob-SSI is capable of replicating the results of Cov-SSI
for a simulated, ‘clean’ case, we now turn our attention to the proposed robustness of
this method to corrupted datasets. In the context of this work, a ‘corrupted’ dataset will
refer to any dataset containing either artificially generated or naturally occurring, atypical
observations (outliers9). Furthermore, the terms ‘atypical observations’ and ‘outliers’ will
be used interchangeably.

The corrupted dataset used in this study is based on the same linear dynamic MDOF

9An important detail worth noting is the definition of outliers. Archambeau et.al. assume that an outlier
in the latent space will manifest as an outlier in the dataspace. This is a relatively sensible assumption
given the linear transformation to the data. However, recall that Cov-SSI relies on components of the
cross-covariance matrix. Therefore, if the cross-covariance is insensitive to atypical observations present in
the timeseries, there will be no discernible effect on the identification procedure. In the simulated case, this
can be explored, but for real datasets, the ‘clean’ case is unobtainable.
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system used in the benchmarking case but now with the inclusion of artificial outliers of a
chosen type and dispersion. In the example shown here, outliers were introduced at random
locations in each sensor channel and set to a specified value, plus some small amount of
noise. This was intended to mimic random sensor dropout where the measured value is
pinned to the lower supply rail of the DAQ unit with some noise. As one might expect,
there are many different types and patterns of outliers that could manifest in experimental
data and it would be extremely difficult to generate and analyse all such cases. Nevertheless,
for completeness, a selection of corrupted datasets with varying outlier types were also
generated and analysed. The results of these series of tests are presented in Appendix D.

In the case shown, the number of outliers was set to 0.1% per channel which, for a
dataset with 3 sensor channels and 8192 data points, equated to approximately 24 outliers
in total. The response data and outliers are shown in Figure 10. To ensure a fair comparison
of the two approaches, definitions for the consistency criteria were once again fixed. The
consistency diagrams recovered from this scenario are shown in Figure 11.

Figure 10: Response data from a simulated 3DOF ‘corrupted’ dataset, containing 0.1% artificially introduced,
random outliers in each signal channel. The value of the outliers was set to a specified value plus some
small amount of noise, intended to mimic random sensor dropout where the measured value is pinned to
the lower supply rail of the DAQ unit with some noise

It is immediately apparent that robust Prob-SSI displays a significant improvement
in identification performance over Cov-SSI when confronted with the corrupted dataset.
Whilst robust Prob-SSI comfortably identifies all three correct natural frequencies of the
system, traditional Cov-SSI fails to find the first, struggles to accurately identify the second
and only successfully identifies the third natural frequency. This failure in identification
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Figure 11: Consistency diagrams recovered using Cov-SSI (top) and robust Prob-SSI (bottom) using
response data from a simulated 3DOF ‘corrupted’ dataset, containing 0.1% artificially introduced, randomly
located outliers (in each channel), set to a specified value, plus some small amount of noise.

can be clearly observed as the lack of a column of fully consistent poles in the upper frame
of Figure 11.

However, it is expected that there will be several instances where, despite the presence of
outliers, SSI will continue to perform as expected. Similarly, there will also be cases where
robust Prob-SSI will also fail to identify the system. The replacement of SSI with robust
Prob-SSI is not a straightforward one. In Appendix E, it is illustrated how increasing the
percentage of outliers inevitably leads to a deterioration in performance for both methods.
Clearly, although robust Prob-SSI offers some protection, in the presence of many outliers
it will be impossible to identify the dynamics.

Similar to the benchmark case, the variance of the estimates from both tests was also
explored and similarly the correct number of DOF was assumed. The variance in the
resulting natural frequency estimates is shown in Figure 12. As is clearly shown, the
variance in Cov-SSI is significantly greater than that of robust Prob-SSI,
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Figure 12: A demonstration of the variance seen in the natural frequency estimates when using Cov-SSI
and robust Prob-SSI to analyse response data from 100 datasets of the same 3DOF dynamic system with
varying input forcing but with artificially induced random outliers (0.1% per channel).

5.3. Case Study: Z24 Bridge

This final study is used to investigate and evaluate the performance of robust Prob-SSI
when confronted with a real world example; a subset of the ever dependable Z24 bridge
dataset. More information on the Z24 bridge, the available datasets and references to the
original work, can be found here (bwk.kuleuven.be/bwm/z24/z24) [31–33]. Data collected
from the Z24 bridge is often employed for new SHM tasks concerned with temporal changes
to the modal properties, induced by damage and/or temperature. Its frequent application
across structural dynamic research for benchmarking new system identification approaches
to large scale structures, in SHM and automatic pole selection, make it a sensible choice for
this study.

It is unknown if the Z24 data features any outlying observations or signal corruption.
However, multiple output acceleration signals, across multiple tests in the initial stages of
testing, appear to demonstrate clipping (see Figure 13). It is undetermined in previous
literature if this clipping affects the identification and fundamentally this will remain
unknown. However, this interesting feature of the Z24 data makes it highly suitable for our
investigation into robust Prob-SSI as a robust alternative to SSI given possible a-typical
observations.
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Figure 13: A sample of output time series acceleration measurements (the first 8192 points) taken from the
Z24 bridge dataset 10G10 (corresponding to data recorded on ‘17-Jan-1998’ at ‘10:00:00’), that appear to
demonstrate over-ranging of the sensors and therefore clipping of the measured signals.

A subset of the Z24 dataset, specifically data folder 07E01 containing acceleration
measurements observed on the ‘06-Dec-1997’ at ‘10:00:00’, prior to the induced damage, was
initially selected at random for processing. Only the initial segment, the first 8192 points,
was used in the analysis. The resulting consistency diagrams generated using both SSI
methods are shown in Figure 14. The frequency range is limited to show the first 4 natural
frequencies, as identified in the original works, as these are often the main frequencies used
when analysing this dataset.

The first two identified modes are easily observable in both diagrams, given the presence
of highly consistent poles. The same can also be said of the third and fourth modes,
with robust Prob-SSI demonstrating better consistency when compared to Cov-SSI over
increasing model order. Across all the identified modes, one could argue that robust Prob-
SSI identifies consistent poles at all of these modes at lower model orders than Cov-SSI
and thus, would provide more confidence to the practitioner. There is some speculation
in the SHM community regarding the existence of a mode at 7Hz, however, it is believed
to be illusive. Interestingly, the robust approach appears to largely ignore the presence of
this mode suggesting it may be the result of noise, aptly accounted for in this case by the
Student’s t noise model.

This promising initial evidence suggests that robust Prob-SSI exhibits comparatively
better identification performance over Cov-SSI. However, a single dataset alone is insufficient
to make such a claim. To better assess the overall identification performance to a larger
range of cases, Cov-SSI and robust Prob-SSI were applied to the first segment (first 8192
points) of multiple Z24 datafiles, specifically those dated 21st November 1997 14:00:00
through to 25th April 1998 14:00:00, and the resultant poles extracted.
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Figure 14: Consistency diagrams generated using results from Cov-SSI (top) and robust Prob-SSI (bottom)
after application to a single subset of the Z24 bridge dataset (07E01); corresponding to data recorded on
‘06-Dec-1997’ at ‘01:00:00’

Rather than manually selecting consistent poles in each consistency diagram, a very
time consuming activity, automatic selection of the consistent poles was achieved using
an implementation of the clustering algorithm DBSCAN. The application of DBSCAN
(or derivative thereof, OPTICS) to pole selection in stabilisation diagrams is not a novel
one, existing work can be found here [34]. As the performance of any given clustering
technique was not the focus of this study, the decision to use DBSCAN clustering over
another was arbitrary, however as a very common mode of clustering and one frequently
cited in literature, it may seem the most sensible. For information on the theory and
implementation of DBSCAN, the reader is directed here [35].

Akin to the approach used by Boroschek and Bilbao [34], the distance metric in DBSCAN
was chosen to take the following form:

dist(pi, pj) =
|ωi − ωj|

max(ωi, ωj)
+ (1−MAC(φi, φj)) (31)

where the natural frequencies ωi, ωj and mode shapes φi, φj correspond to poles pi and pj
respectively, and the MAC is the modal assurance criterion. The reachability distance was
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chosen to be 0.005%, with the minimum number of objects set to 25.

Following application of DBSCAN to the Z24 data, centres of the recovered pole clusters
were plotted against the corresponding date and time of collection. Figure 15 displays the
temporal changes to the natural frequency estimates obtained using Cov-SSI and robust
Prob-SSI. The first noticeable difference between the two plots in Figure 15 is variation
in the number of consistent poles situated around 7 Hz, corresponding to the supposedly
illusive mode. Congruent to the assessment of the single consistency diagram, robust
Prob-SSI (bottom) appears to find a lower number of consistent poles at this frequency
across the full range of tests, when compared to Cov-SSI (top). Again, this is likely due
to any noise generating this nuisance mode, being accounted for by the Student’s t noise
model of robust Prob-SSI.

Figure 15: Temporal changes to the natural frequency estimates of the Z24 bridge, identified using Cov-SSI
(top) and Robust Prob-SSI (below). DBSCAN clustering was used to extract the non-spurious, consistent
poles from each individual dataset. Both methods were applied to the first segment (first 8192 points) of
all datafiles ranging from 21st November 1997 14:00:00 to 25th April 1998 14:00:00.
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Turning attention to the first two modes, much lower variance is observed in the
frequency estimates recovered using robust Prob-SSI across the entire test series compared
to Cov-SSI. This reinforces preliminary conclusions drawn from Figure 14 regarding the
increased consistency of recovered poles using robust Prob-SSI. This reduction in variance is
also apparent, albeit less obviously, in modes three and four, suggesting robust Prob-SSI is
capable of recovering less noisy pole estimates than Cov-SSI. This has several benefits, not
least in providing the experienced practioner with more confidence when selecting suitable
poles from the consistency diagram. This new technique may also prove to be a preferred
method of modal parameter recovery for SHM schemes tasked with accurately monitoring
temporal changes to modal properties and inferring possible damage. Reducing variance in
modal property estimates is of value, in the SHM setting, as it offers a route to reducing
false positives and increasing sensitivity in anomaly detection.

6. Conclusions

This paper presented a new formulation of the stochastic subspace identification (SSI)
algorithm, recasting it as a problem in probabilistic inference. Such an approach was made
possible through close alignment of SSI with the theory of probabilistic projections [8].
Mathematically, an equivalence between the maximum likelihood estimates of the weights
(linear transformations) of the latent projections, and the observability and controllability
matrix transposed, was established. This unique perspective of SSI lays the requisite
mathematical foundation required to enable a multitude of new SSI-based OMA algorithms,
likely to be constructed using more complex probabilistic and hierarchical techniques.
Such algorithms could add more value to the inclusion of SSI as a component in broader
probabilistic frameworks, although the detail of which not discussed here.

Based on this new probabilistic form, this paper then introduced a second contribution -
a statistically robust SSI algorithm, capable of providing a principled and automatic way of
handling atypical observations in multi-output time-series responses, such as those observed
in field measurements. Consequently, the proposed method was evaluated against three
primary case studies. The first study benchmarked robust Prob-SSI against conventional
SSI using a familiar MDOF dataset and displayed highly comparable results in the case
where data are not corrupted. The second study sought to evaluate the methods ability
to resist misidentification when presented with outliers. Robust Prob-SSI was exposed
to a ’corrupted’ dataset containing artificially introduced outliers; designed to mimic a
typical form of anomalous data observed in experimental testing. Subsequent analysis
showed robust Prob-SSI outperform conventional SSI, with the former exhibiting better
modal identification performance (consistency) and higher confidence in the found poles.
The last study investigated data taken from the Z24 Bridge benchmark, chosen with
the view of better demonstrating identification performance on data more indicative of
a real system. Results from this analysis showed that robust Prob-SSI, enabled by the
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novel probabilistic interpretation of the SSI algorithm, gives an automated and consistent
approach to managing data collected in OMA settings.

This initial body work highlighted the first of many new formulations of SSI, made
possible through the novel viewpoint of SSI as a problem in probabilistic inference. The
authors envisage future work pursuing new algorithms, constructed upon Prob-SSI, for
example, adopting a Bayesian methodology through the inclusion of priors over the model
parameters or alternative hierarchical structures.
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Appendix A. Robust Probabilistic CCA Derivation
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N
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Figure A.16: Graphical latent model for Robust Canonical Correlation Analysis
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where xn = [x
(1)
n ;x

(2)
n ], X(m) = [x

(m)
1 , . . . ,x

(m)
N ] with m = 1, 2, X = [X(1);X(2)],

Z = [z1, . . . .zN ] and Σ is a block-diagonal covariance matrix with matrices Σ(1) and
Σ(2) as the diagonal elements.

In the original Robust Projections paper, the normal distributions are defined using the
precision matrix, rather than covariance matrix. Note that here only covariance matrices
are used.

To derive the EM update equations for the parameters and an appropriate Q-function
to monitor convergence of the EM algorithm, the log-likelihood function must be defined:

L(θ|xn, zn, un) =
N
∑

ln p(xn, zn, un|θ) (A.3)

where θ = (µ,W,Σ, ν).
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Through the simplification of terms, Eq.A.4 can be rearranged and simplified to
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The log matrix identity ln|aX| = D ln(a) + ln|X|can be used to expand and simplify
the terms ln |(unId)| and ln |unΣ

−1|, giving
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Q FUNCTION DERIVATION

Given the definition of the log likelihood in Equation A.6, the Q-function and subse-
quently the EM update equations, can be derived.

Q = Ez,u|x,θ [L(θ)] =

∫∫

L(θ)p(z, u) dzdu (A.7)
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Let the expectations of the latent parameters be denoted by

E [un] = ūn (A.9a)

E [ln(un)] = ln ũn (A.9b)

E [zn] = z̄n (A.9c)

E
[

unznz
T

n

]

= S̄n (A.9d)

Using the conditional distributions of the variables, exact solutions for the expectations
can be recovered.
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Using the conditional distributions, values for the expectation of these variables, with
respect to the other variables.
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is found using the equation for the mean of a Gamma distribution, and
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is the expectation of the log Gamma distribution.

z̄n = B−1WTΣ−1(xn − µ) (A.17)

where B = WTΣ−1W + Id

S̄n = B−1 + E [un]E [zn]E[z
T

n ] (A.18)

S̄n = B−1 + ūnz̄nz̄
T

n (A.19)

Expectation-maximisation update equations can be analytically found from the Q-
function using

θnew = argmax
θ

(Q(θold,X)) (A.20)

The EM update equations can be recovered by taking the derivative of the Q-function,
with respect to the various parameters θ, and setting the resulting equations to zero and
solving for the parameter in question.
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setting
∂Q

∂Σ−1 = 0 and rearranging, note that due to the symmetry of Σ, ΣT = Σ, the

following update equation for the covariance can be defined.
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letting
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= 0 and rearranging,
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Mean Update
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premultiplying by Σ and rearranging for µ gives
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µ =

N
∑

ūn(xn −Wz̄n)
N
∑

ūn

(A.29)

ν Update

∂Q

∂ν
=

1

N

N
∑

[

1

2
ln
(ν

2

)

+
1

2
·
ν

2
·
2

ν
− ψ

(ν

2

)

+
1

2
ln(ũn)−

1

2
ūn

]

(A.30)

∂Q

∂ν
=

1

N

N
∑

[

1

2
+

1

2
ln
(ν

2

)

− ψ
(ν

2

)

+
1

2
ln(ũn)−

1

2
ūn

]

(A.31)

letting
∂Q

∂ν
= 0, multiplying by 2 and rearranging the sum,

0 = 1 + ln
(ν

2

)

− 2 ψ
(ν

2

)

+
1

N

N
∑

[

ln(ũn)− ūn
] (A.32)

The maximum likelihood of ν can be found through solving th eabove equation using
line search.
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Appendix B. Recovery of Rotation Matrix R

The following theory for the recovery of the rotation matrix in Robust PCCA summarises
the work presented by Archambeau et.al. in Appendix A of [29] and the accompanying
errata of Appendix A. for the same paper.

Having defined

B1 = W̆
(1)T

Σ(1)−1
W̆

(1)
+ Id (B.1)

B2 = W̆
(2)T

Σ(2)−1
W̆

(2)
+ Id (B.2)

The matrix R1 contains the eigenvectors of

J1 =
(

Id −B−1
1

)
1

2

(

Id −B−1
2

)(

Id −B−1
1

)
1

2 (B.3)

with Υ̃2 corresponding eigenvalues. Similarly R2 contains the eigenvectors of

J2 =
(

Id −B−1
2

)
1

2

(

Id −B−1
1

)(

Id −B−1
2

)
1

2 (B.4)

with the same eigenvalues Υ̃2.

Given the above, it can finally be shown that the canonical directions are

U
(1)
d = Σ−1

11 W̆
(1)(

Id −B−1
1

)− 1

2R1 (B.5)

U
(2)
d = Σ−1

22 W̆
(2)(

Id −B−1
2

)− 1

2R2 (B.6)
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Appendix C. Recovery of the modal properties from the state and output
matrices.

Given a state matrix A, the following eigenvalue problem

Aψ = λψ (C.1)

can be solved to recover a set of eigenvalues λ and corresponding eigenvectors ψ. The
respective eigenvalues correspond to a set of discrete time system poles. The continuous
system poles can be recovered easily using

µ = log(Λ) (C.2)

where Λ is a diagonal matrix containing eigenvalues λ. Once recovered, the poles can be
used to trivially calculate the natural frequencies in rad s−1

ωn =
|µ|

∆t
(rads−1) (C.3)

where ∆t is the sample time, and the damping ratios can be found using

ζn = −Re{µ} ⊘ |µ| (C.4)

where ⊘ denotes a Hadamard (elementwise) division.

Finally, the mode shape matrix Φ can also be recovered using the found output matrix
C and the eigenvectors Ψ, such that

Φ = Re{CΨ} (C.5)
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Appendix D. Varying Outlier Type Case Studies

Employing the same underlying linear dynamic system used in the outlier study shown
in Section 5.2, a range of alternative outlier cases were explored to observe the effects of
varying outlier type on identification performance across both methods.

Appendix D.1. Periodic Block Dropout to Electrical Noise Floor

The outliers in this example are designed to mimic periodic dropout of a single sensor
channel to a supposed ‘electrical noise floor’, repeating in regular blocks with a duration
of 0.01 seconds. Output response data and outliers are shown in Figure D.1, whilst the
consistency diagrams for Cov-SSI and robust Prob-SSI are shown in Figure D.2.
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Figure D.1: Response data from a simulated 3DOF ‘corrupted’ dataset, containing 0.1% of artificially
introduced, periodic blocks of outliers in one channel. The value of the outliers was set to a specified value,
plus some small amount of noise.
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Figure D.2: Consistency diagrams recovered using Cov-SSI (top) and robust Prob-SSI (bottom) for the
periodic block dropout case.
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Appendix D.2. Clipping

The outliers in this example are designed to mimic the clipping of all sensor channels to
80% of the maximum amplitude of the individual signals. Output response data and the
outliers are shown in Figure D.3, whilst the consistency diagrams for Cov-SSI and robust
Prob-SSI are shown in Figure D.4.

Figure D.3: Response data from a simulated 3DOF ‘corrupted’ dataset, where all channels were clipped to
80% of the maximum value of each channel.

Figure D.4: Consistency diagrams recovered using Cov-SSI (top) and robust Prob-SSI (bottom) using
response data from a simulated 3DOF ‘corrupted’ dataset, where all channels are clipped to 80% of the
maximum value of each channel.
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Appendix D.3. Block Dropout to Zero

The outliers in this example are designed to mimic a block dropout of a single sensor
channel to zero. The dropout starts at 3 seconds and has a duration of 1 second. Output
response data and outliers are shown in Figure D.5, whilst the consistency diagrams for
Cov-SSI and robust Prob-SSI are shown in Figure D.6.

Figure D.5: Response data from a simulated 3DOF ‘corrupted’ dataset, where values in a single channel
were set to zero amplitude for a 1000 point block in the 8192 point long data series.

Figure D.6: Consistency diagrams recovered using Cov-SSI (top) and robust Prob-SSI (bottom) using
response data from a simulated 3DOF ‘corrupted’ dataset, where values in a single channel were set to zero
amplitude for a 1000 point block in the 8192 point long data series.
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Appendix E. Percentage Outlier Study

Employing the same parameters used in the outlier study shown in Section 5.2, the effect
of changing the percentage of outliers was explored to observe the effects on identification
performance across both methods.

Appendix E.1. Random Outliers - 0.5%

Figure E.7: Consistency diagrams recovered using Cov-SSI (top) and robust Prob-SSI (bottom) using
response data from a simulated 3DOF ‘corrupted’ dataset, containing 0.5% artificially introduced, randomly
located outliers (in each channel), set to a specified value, plus some small amount of noise.
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