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STEADY-STATE INHOMOGENEOUS DIFFUSION WITH GENERALIZED
OBLIQUE BOUNDARY CONDITIONS

Abdallah Bradji1 and Daniel Lesnic2,*

Abstract. We consider the elliptic diffusion (steady-state heat conduction) equation with space-
dependent conductivity and inhomogeneous source subject to a generalized oblique boundary condition
on a part of the boundary and Dirichlet or Neumann boundary conditions on the remaining part. The
oblique boundary condition represents a linear combination between the dependent variable and its
normal and tangential derivatives at the boundary. We first prove the well-posedness of the continuous
problems. We then develop new finite volume schemes for these problems and prove rigorously the sta-
bility and convergence of these schemes. We also address an application to the inverse corrosion problem
concerning the reconstruction of the coefficients present in the generalized oblique boundary condition
that is prescribed over a portion Γ0 of the boundary 𝜕Ω from Cauchy data on the complementary
portion Γ1 = 𝜕Ω∖Γ0.
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1. Introduction

Mathematical models involving oblique derivative boundary conditions appear in various areas of applied
sciences, e.g. the gravimetric model of geophysics concerned with the determination of the Earth’s exterior
gravitational field from the magnitude of the gravity gradient [39] and the scattering of long ocean waves by
islands [42].

If Ω is a 𝑑-dimensional domain (𝑑 ≥ 2) with a smooth boundary 𝜕Ω and 𝑙 is a smooth vector field defined on
Ω, then an oblique boundary condition can be written as

𝜕𝑢

𝜕𝑙
+ 𝛽𝑢 = 𝑔 on 𝜕Ω, (1)

where 𝜕𝑢/𝜕𝑙 = ∇𝑢 · 𝑙 is the directional derivative in the direction 𝑙, 𝛽 and 𝑔 are prescribed functions on 𝜕Ω
and 𝑢 is the desired solution that usually satisfies a second-order elliptic partial differential equation, e.g. the
Laplace’s equation in potential theory. Noticing that the oblique derivative is in fact a linear combination of
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the normal n and tangential t derivatives, we can generalize (1) to look like (see equation (10))

𝜅
𝜕𝑢

𝜕n
+ 𝛼

𝜕𝑢

𝜕t
+ 𝛽𝑢 = 𝑔 on 𝜕Ω, (2)

where 𝜅 and 𝛼 are given functions (see also Eq. (7)). For the Laplace’s equation in bounded or unbounded
domains subject to the oblique boundary condition (1) (or (2)), numerical methods based on the boundary
element method (BEM) or the method of fundamental solutions (MFS) were developed in [27,35,38,40], respec-
tively. Moreover, finite volume schemes for the Poisson’s and parabolic equations in bounded domains subject
to the oblique boundary condition (1) (or (2)) were developed in [9, 10]. We refer to [19] for a literature on the
subject of numerical methods for oblique boundary conditions.

The present finite volume analyses developed in Sections 6 and 7 for mixed oblique-Dirichlet or oblique-
Neumann boundary conditions, respectively, generalize in some sense the results established in [10], where the
homogeneous case with oblique condition on the whole boundary was considered. However, the presence of mixed
boundary conditions in (7), (8) or (7), (9), the space-dependent conductivity 𝜅(x) in (6) and the simultaneous
presence of the three coefficients 𝜅, 𝛼 and 𝛽 in the generalized oblique boundary condition (7) require new
changes and new technical tools compared to the analyses of [10], leading to new suitable schemes and results.
We justify rigorously the well-posedness of the direct problem given by equation (6) with the mixed boundary
conditions (7) and (8) or (7) and (9). We then establish finite volume schemes for these two problems. We employ
several technical tools to show both the well-posedness and the convergence of these schemes. In addition, the
application of the generalized oblique boundary condition (7) to the inverse problem of corrosion, developed in
Section 8, is completely new.

2. Preliminaries

Let Ω be an open bounded polygonal piecewise smooth connected subset of R2. We assume classical polygons,
as in [30], Page 182, in which the boundary is the union of a consecutive finite number of linear segments. Let
us denote by x = (𝑥, 𝑦) the current point of R2. For any function Ψ ∈ 𝒞1(Ω), we denote by Ψn = ∇Ψ · n and
Ψt = ∇Ψ · t, where n = (n𝑥,n𝑦)T (resp. t = (−n𝑦,n𝑥)T) is the outward unit normal to the boundary 𝜕Ω (resp.
t is the anti-clockwise unit tangent to 𝜕Ω). The vectors n and t are defined everywhere on 𝜕Ω, except at a finite
number of corner points of 𝜕Ω.

We give now a sense to the operators of normal and tangential derivatives [10], which will allow us to define
the weak formulations of subsequent problems:

(i) We define the operator of normal derivative acting on 𝑢 as an element 𝑢n of 𝐻− 1
2 (𝜕Ω) satisfying the

following: if 𝑢 ∈ 𝐻1(Ω) and 𝑓 ∈ 𝐿2(Ω) are such that

−Δ𝑢 = 𝑓 in Ω (3)

then,

⟨𝑢n, 𝑣⟩
𝐻−

1
2 (𝜕Ω),𝐻

1
2 (𝜕Ω)

=
∫︁

Ω

∇𝑢(x) · ∇𝑣(x) dx−
∫︁

Ω

𝑓(x)𝑣(x) dx, ∀𝑣 ∈ 𝐻
1
2 (𝜕Ω), (4)

where 𝑣 is an element of 𝐻1(Ω) such that 𝛾(𝑣) = 𝑣 and 𝛾 is the classical trace operator from 𝐻1(Ω) to
𝐿2(𝜕Ω).

(ii) We define the operator of tangential derivative acting on 𝑢 as an element 𝑢t of 𝐻− 1
2 (𝜕Ω) satisfying the

following: if 𝑢 ∈ 𝐻1(Ω),

⟨𝑢t, 𝑣⟩
𝐻−

1
2 (𝜕Ω),𝐻

1
2 (𝜕Ω)

=
∫︁

Ω

𝑣𝑥(x)𝑢𝑦(x) dx−
∫︁

Ω

𝑢𝑥(x)𝑣𝑦(x) dx, ∀𝑣 ∈ 𝐻
1
2 (𝜕Ω). (5)

It is easy to justify that the operators of normal and tangential derivatives are well-defined.
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3. Mathematical formulation

Let Γ0 and Γ1 be two open disjoint subsets of 𝜕Ω such that Γ0 ∪ Γ1 = 𝜕Ω and they are also the union of
finite number of linear segments.

Assume also that:

(𝐴1) 𝑓 ∈ 𝐿2(Ω), 𝑔 ∈ 𝐿2(Γ0);
(𝐴2) 𝜅 ∈ 𝐿∞(Ω) and for some known positive constant 𝜅0, 0 < 𝜅0 ≤ 𝜅(x) 𝑎.𝑒.x ∈ Ω;
(𝐴3) 𝛽 ∈ 𝐿∞(Γ0) and for some known positive constant 𝛽0, 0 < 𝛽0 ≤ 𝛽(x) 𝑎.𝑒.x ∈ Γ0;
(𝐴4) 𝛼 ∈ 𝐶1(Ω).

We are interested in the following boundary value problem: given functions 𝛼, 𝛽, 𝑓 , 𝜅 and 𝑔 satisfying the
above conditions solve

−∇ · (𝜅(x)∇𝑢(x)) = 𝑓(x), x ∈ Ω, (6)

with the generalized oblique derivative boundary condition

𝜅(x)𝑢n(x) + (𝛼𝑢)t(x) + 𝛽(x)𝑢(x) = 𝑔(x), x ∈ Γ0, (7)

and the Dirichlet
𝑢(x) = ℎ(x), x ∈ Γ1, (8)

or Neumann

𝜅(x)𝑢n(x) = 𝑞(x), x ∈ Γ1, (9)

boundary conditions, where ℎ ∈ 𝐻1/2(𝜕Ω) and 𝑞 ∈ 𝐿2(Γ1) are also given functions.

Remark 3.1. (a) The boundary condition (7) is equivalent to the more common boundary condition

𝜅(x)𝑢n(x) + 𝛼(x)𝑢t(x) + 𝛽(x)𝑢(x) = 𝑔(x), x ∈ Γ0, (10)

where 𝛽 = 𝛽 + 𝛼t.

(b) Mixed boundary conditions are necessary to be formulated since they arise in the analysis of Cauchy ill-posed
problems of the type considered in Section 8.

(c) The above assumptions (𝐴1)−(𝐴4) on the input data are needed to get convenient weak formulations for the
direct problem (6)–(8) or (6), (7), (9). However, these hypotheses can be weakened. It is worth mentioning
that hypothesis (𝐴4) above or (𝐴4)′ in Section 4.3 below, on 𝛼, are needed in order to get a rigorous
formulation for the tangential operator involved in equation (7), see, for instance, similar hypotheses in [30],
Page 226. Later, we will assume hypotheses which are stronger than those above in order to define suitable
finite volume schemes and provide their error estimates. However, the above assumptions can serve us to
define convenient finite volume schemes with possible proof for the convergence (without convergence rates)
towards the true solution.

4. Existence, uniqueness, and well-posedness of the continuous problems

In this section, we address the existence, uniqueness, and well-posedness of the following two problems:

(1) First problem. The elliptic equation (6) with the generalized oblique derivative boundary condition (7)
on Γ0 and the Dirichlet boundary condition (8) on Γ1.

(2) Second problem. The elliptic equation (6) with the generalized oblique derivative boundary condition (7)
on Γ0 and the Neumann boundary condition (9) on Γ1.

To get a clear and a simple overview, we first consider the existence, uniqueness, and well-posedness of some
particular cases of these two problems.
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4.1. A simplified version of the problem: Robin convective boundary condition

In case Γ0 = ∅ then Γ1 = 𝜕Ω, and therefore equation (6) and (8) or (9) form a classical Dirichlet or Neumann
problem, which we do not investigate herein. On the other hand, in the case Γ1 = ∅, the boundary condition
(7) becomes

𝜅(x)𝑢n(x) + (𝛼𝑢)t(x) + 𝛽(x)𝑢(x) = 𝑔(x), x ∈ 𝜕Ω. (11)

Furthermore, when 𝛼 ≡ 0, the boundary condition (11) becomes the Robin boundary condition

𝜅(x)𝑢n(x) + 𝛽(x)𝑢(x) = 𝑔(x), x ∈ 𝜕Ω. (12)

In such case, the well-posedness of the Robin direct problem for the elliptic equation (6) is given by the following
theorem (see [45], (6.1.15) and (6.1.16), Page 162 and [45], (6.1.23), Page 165), whose proof is given for the
convenience of the reader.

Theorem 4.1 (Well-posedness of the problem (6) and (12), cf. [45]). Let Γ1 = ∅ and assumptions (𝐴1)–(𝐴3) be
held. Then, the elliptic equation (6) with the Robin boundary condition (12) (the particular case of (11) when
𝛼 ≡ 0) has a unique solution in the following weak sense: there exists a unique 𝑢 ∈ 𝐻1(Ω) such that

𝑎(𝑢, 𝑣) = 𝑏(𝑣), ∀𝑣 ∈ 𝐻1(Ω), (13)

where
𝑎(𝑢, 𝑣) =

∫︁
Ω

𝜅(x)∇𝑢(x) · ∇𝑣(x) dx +
∫︁

𝜕Ω

𝛽(x)𝑢(x)𝑣(x) d𝛾(x)

and
𝑏(𝑣) =

∫︁
Ω

𝑓(x)𝑣(x) dx +
∫︁

𝜕Ω

𝑔(x)𝑣(x) d𝛾(x),

where d𝛾 denotes the one-dimensional Lebesgue measure on 𝜕Ω. In addition to this, this weak solution satisfies
the following stability estimate:

‖𝑢‖𝐻1(Ω) ≤
𝐶1

min{𝜅0, 𝛽0}
(︀
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(𝜕Ω)

)︀
, (14)

for some positive constant 𝐶1 that depends only on the geometry of Ω.

Proof. The bilinear form 𝑎(·, ·) is coercive since

𝑎(𝑣, 𝑣) =
∫︁

Ω

𝜅(x)|∇𝑣(x)|2 d𝑥 +
∫︁

𝜕Ω

𝛽(x)𝑣2(x) d𝛾(x)

≥ min{𝜅0, 𝛽0}
(︁
|𝑣|21,Ω + ‖𝛾(𝑣)‖2𝐿2(𝜕Ω)

)︁
, (15)

where |𝑣|1,Ω is the 𝐻1-seminorm defined by
(︀∫︀

Ω
|∇𝑣|2(x) dx

)︀ 1
2 . Using the continuity of the trace (see, for

instance, [45], (1.3.1), Page 10 and [22], Lemma 10.4, Page 69) implies that the norm 𝑣 ↦→ |𝑣|1,Ω + ‖𝛾(𝑣)‖𝐿2(𝜕Ω)

is equivalent to the usual norm ‖ ·‖1,Ω of 𝐻1(Ω), that is ‖𝑣‖1,Ω = (‖𝑣‖2𝐿2(Ω) + |𝑣|21,Ω)
1
2 . Hence, for some constant

𝐶2 which is only depending on Ω, we have, for all 𝑣 ∈ 𝐻1(Ω)

𝐶2

(︀
|𝑣|1,Ω + ‖𝛾(𝑣)‖𝐿2(𝜕Ω)

)︀
≤ ‖𝑣‖1,Ω ≤ (𝐶2)

−1(︀|𝑣|1,Ω + ‖𝛾(𝑣)‖𝐿2(𝜕Ω)

)︀
. (16)

This together with (15) imply that

𝑎(𝑣, 𝑣) ≥ (𝐶2)
2 min{𝜅0, 𝛽0}

2
‖𝑣‖21,Ω. (17)
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Therefore, from the Lax–Milgram lemma there exists a unique solution to the equation (13).
To establish the stability result (14), we take 𝑣 = 𝑢 in (13), and use (16) and (17) together with the Cauchy–

Schwarz inequality to get

(𝐶2)
2 min{𝜅0, 𝛽0}

2
‖𝑢‖21,Ω ≤ |𝑏(𝑢)| ≤ ‖𝑓‖𝐿2(Ω)‖𝑢‖𝐿2(Ω) + ‖𝑔‖𝐿2(𝜕Ω)‖𝛾(𝑢)‖𝐿2(𝜕Ω)

≤ ‖𝑓‖𝐿2(Ω)‖𝑢‖1,Ω +
1
𝐶2
‖𝑔‖𝐿2(𝜕Ω)‖𝑢‖1,Ω ≤ 𝐶3

(︀
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(𝜕Ω)

)︀
‖𝑢‖1,Ω,

with 𝐶3 = max{1, 𝐶−1
2 }. Consequently, (14) holds with 𝐶1 = 2𝐶3(𝐶2)

−2. This completes the proof of
Theorem 4.1. �

4.2. Existence and uniqueness of solution for problem (6) and (7) with Dirichlet boundary
condition (8)

Consider the subspace of 𝐻1(Ω) defined by

𝒱 :=
{︁

𝑣 ∈ 𝐻1(Ω); 𝛾(𝑣)
⃒⃒
Γ1

= 0
}︁

,

which is a Hilbert space endowed with the usual inner product of 𝐻1(Ω). Multiplying both sides of (6) by a
test function 𝑣 ∈ 𝒱 and integrating over Ω yield∫︁

Ω

𝜅(x)∇𝑢(x) · ∇𝑣(x) dx =
∫︁

Ω

𝑓(x)𝜙(x) dx +
∫︁

Γ0

𝜅(x)𝑢n(x)𝑣(x) d𝛾(x). (18)

Using now (7) in (18) imply that∫︁
Ω

𝜅(x)∇𝑢(x) · ∇𝑣(x) dx =
∫︁

Ω

𝑓(x)𝑣(x) dx +
∫︁

Γ0

𝑔(x)𝑣(x) d𝛾(x)

−
∫︁

Γ0

(𝛼𝑢)t(x)𝑣(x) d𝛾(x)−
∫︁

Γ0

𝛽(x)𝛾(𝑢)(x)𝑣(x) d𝛾(x). (19)

Under the assumption (𝐴4), using the definition of the tangential derivative and that 𝛾(𝑣)
⃒⃒
Γ1

= 0, we have∫︁
Γ0

(𝛼𝑢)t(x)𝑣(x) d𝛾(x) =
∫︁

𝜕Ω

(𝛼𝑢)t(x)𝑣(x) d𝛾(x) =
∫︁

Ω

{(𝛼𝑢)𝑦(x)𝑣𝑥(x)− (𝛼𝑢)𝑥(x)𝑣𝑦(x)} dx. (20)

Gathering equations (19) and (20) lead to the following formulation:

𝑎(𝑢, 𝑣) = 𝑏(𝑣), ∀𝑣 ∈ 𝒱, (21)

where

𝑎(𝑢, 𝑣) =
∫︁

Ω

𝜅(x)∇𝑢(x)∇𝑣(x) dx +
∫︁

Ω

{(𝛼𝑢)𝑦(x)𝑣𝑥(x)− (𝛼𝑢)𝑥(x)𝑣𝑦(x)} dx

+
∫︁

Γ0

𝛽(x)𝛾(𝑢)(x)𝑣(x) d𝛾(x) (22)

and
𝑏(𝑣) =

∫︁
Ω

𝑓(x)𝑣(x) dx +
∫︁

Γ0

𝑔(x)𝑣(x) d𝛾(x). (23)
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4.2.1. The particular case ℎ ≡ 0 in (8)

In the particular case ℎ = 0, the boundary condition (8) becomes

𝑢(x) = 0, x ∈ Γ1. (24)

Then, the weak formulation of the problem (6), (7) and (24) is: Find 𝑢 ∈ 𝒱 such that (21) holds.
The assumptions (𝐴1)–(𝐴4) are needed to first give a sense to the terms involved in (22) and (23) for all

𝑣 ∈ 𝒱 and also to prove the existence and uniqueness for problem (21) using the Lax–Milgram lemma. These
assumptions, which are similar, for instance, to Assumption 9.1, Pages 32, 33 of [22], and Assumption 11.1,
Pages 78, 79 of [22], possibly can be weakened. Let us now check that the hypotheses of the Lax–Milgram
lemma are satisfied in order to prove that the problem (21) has a unique solution.

(i) Coercivity of 𝑎 given by (22). In order to prove this (under an additional assumption on 𝛼t), we consider
𝑢 ∈ 𝒱 and use assumptions (𝐴1)–(𝐴4) to obtain:

𝑎(𝑢, 𝑢) =
∫︁

Ω

𝜅(x)|∇𝑢|2(x) dx +
∫︁

Ω

{(𝛼𝑢)𝑦(x)𝑢𝑥(x)− (𝛼𝑢)𝑥(x)𝑢𝑦(x)} dx +
∫︁

Γ0

𝛽(x)(𝛾(𝑢)(x))2 d𝛾(x)

=
∫︁

Ω

𝜅(x)|∇𝑢|2(x) dx +
1
2

∫︁
Ω

{𝛼𝑦(x)(𝑢2)𝑥(x)− 𝛼𝑥(x)(𝑢2)𝑦(x)} dx +
∫︁

Γ0

𝛽(x)(𝛾(𝑢)(x))2 d𝛾(x)

=
∫︁

Ω

𝜅(x)|∇𝑢|2(x) dx +
1
2

∫︁
𝜕Ω

𝛼t(x)(𝛾(𝑢)(x))2 d𝛾(x) +
∫︁

Γ0

𝛽(x)(𝛾(𝑢)(x))2 d𝛾(x)

≥ 𝜅0

∫︁
Ω

|∇𝑢|2(x) dx +
1
2

∫︁
𝜕Ω

𝛼t(x)(𝛾(𝑢)(x))2 d𝛾(x) + 𝛽0‖𝛾(𝑢)‖2𝐿2(Γ0)
. (25)

Using this expression together with the continuity of the trace operator from 𝐻1(Ω) to 𝐿2(𝜕Ω) and denoting
𝐶𝛼 := min𝜕Ω 𝛼t (note that 𝐶𝛼 ≤ 0 since the mean value of 𝛼t on 𝜕Ω is 0) imply

𝑎(𝑢, 𝑢) ≥ 𝜅0|𝑢|21,Ω +
𝐶4𝐶𝛼

2
‖𝑢‖21,Ω + 𝛽0‖𝛾(𝑢)‖2𝐿2(Γ0)

,

where, thanks to (16), 𝐶4 = 1/(𝐶2)
2. Further, on using the Poincaré inequality (see, for instance, [45],

Thm. 1.3.3, Page 11),

‖𝑢‖1,Ω ≤ 𝐶5|𝑢|1,Ω ≤ 𝐶5

(︀
|𝑢|1,Ω + ‖𝛾(𝑢)‖𝐿2(Γ0)

)︀
, ∀𝑢 ∈ 𝒱 (26)

results in, thanks to the inequality (𝑎2 + 𝑏2) ≥ (𝑎 + 𝑏)2/2,

𝑎(𝑢, 𝑢) ≥ min{𝜅0, 𝛽0}
(︁
|𝑢|21,Ω + ‖𝛾(𝑢)‖2𝐿2(Γ0)

)︁
+

𝐶4𝐶𝛼

2
‖𝑢‖21,Ω

≥

(︃
min{𝜅0, 𝛽0}

2(𝐶5)
2 +

𝐶4𝐶𝛼

2

)︃
‖𝑢‖21,Ω.

Thus, if

min
𝜕Ω

𝛼t =: 𝐶𝛼 > −min{𝜅0, 𝛽0}
(𝐶5)

2
𝐶4

(27)

holds, then the coercivity of 𝑎 is satisfied.
(ii) Continuity of 𝑎(·, ·), given by (22), on 𝒱 × 𝒱. The continuity of 𝑎(·, ·) on 𝒱 × 𝒱 stems from the

Cauchy–Schwarz inequality, the facts that 𝜅 ∈ 𝐿∞(Ω), 𝛼 ∈ 𝒞1(Ω), 𝛽 ∈ 𝐿∞(Γ0), and the continuity of the
trace operator.
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(iii) Continuity of 𝑏(·), given by (23), on 𝒱. The continuity of 𝑏(·) on 𝒱 stems from the Cauchy–Schwarz
inequality, the facts that 𝑓 ∈ 𝐿2(Ω), 𝑔 ∈ 𝐿2(Γ0), and the continuity of the trace operator. In addition, we
have

|𝑏(𝑣)| ≤ 𝐶6

(︀
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0)

)︀
‖𝑣‖1,Ω, (28)

where, thanks to (16), 𝐶6 = max{1, 𝐶−1
2 }.

At this stage, we have justified that the bi-linear form 𝑎(·, ·) and the linear form 𝑏(·), given by (22) and (23),
satisfy the hypotheses of the Lax–Milgram lemma. This implies that the problem (21) has a unique solution. In
addition, by taking 𝑣 = 𝑢 in (21) and using (28), we obtain the following stability estimate:

‖𝑢‖1,Ω ≤ 𝐶7

(︀
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0)

)︀
. (29)

Summarizing the results of this subsection, we have proved the following theorem stating, via (21), the well-
posedness of the problem (6), (7) and (24).

Theorem 4.2 (Well-posedness for the homogeneous Dirichlet problem). Let assumptions (𝐴1)–(𝐴4) be satisfied.
Then, there exists 𝛿 < 0, only depending on Ω, Γ0, 𝛽0, and 𝜅0 (see also Remark 4.5 below), such that if 𝛼 satisfies
the condition 𝐶𝛼 := min𝜕Ω 𝛼t ≥ 𝛿, then there exists a unique solution 𝑢 ∈ 𝒱 to the problem (6), (7) and (24) in
the sense of the weak formulation (21). In addition to this, the stability estimate (29) holds.

4.2.2. The case ℎ ̸≡ 0 in (8)

Let us consider the same problem (6) and (7) but with the non-homogeneous Dirichlet boundary condition (8)
with ℎ ∈ 𝐻1/2(𝜕Ω) instead of the homogeneous condition (24). To obtain the weak formulation of the problem
(6)–(8), we consider the subset 𝒱𝐸 of 𝐻1(Ω) defined by

𝒱𝐸 :=
{︁

𝑣 ∈ 𝐻1(Ω); 𝛾(𝑣)
⃒⃒
Γ1

= ℎ
}︁

,

Following the same steps as in (18)–(23), we obtain that any solution to (6)–(8) should satisfy 𝑢 ∈ 𝒱𝐸 and
also the equation (21). The set 𝒱𝐸 is not a subspace of 𝐻1(Ω) (when ℎ ̸≡ 0) and this does not allow to apply
the Lax–Milgram lemma directly. For this reason, we consider a function ℎ ∈ 𝐻1(Ω) such that 𝛾(ℎ)(x) = ℎ(x)
a.e. x ∈ Γ1, and define 𝜔 := 𝑢− ℎ (called the Dirichlet shift). Inserting 𝑢 by its value 𝜔 + ℎ in (21) yields

𝑎(𝜔, 𝑣) = 𝑏(𝑣), ∀𝑣 ∈ 𝒱, (30)

where
𝑏(𝑣) = 𝑏(𝑣)− 𝑎(ℎ, 𝑣). (31)

Then, the weak formulation of problem (6)–(8) is as follows: Find 𝑢 ∈ 𝐻1(Ω) such that 𝑢 = 𝜔 + ℎ and 𝜔 ∈ 𝒱
is satisfying (30) and (31). The bilinear form 𝑎(·, ·) has already been proved to be continuous on 𝒱 × 𝒱 and
coercive on 𝒱 (under the condition (27)). The continuity of the linear form 𝑏, given by (31), follows from the
continuity of 𝑏 and 𝑎 which have already been proven. Consequently, using the Lax–Milgram lemma, the weak
formulation (30) and (31) has a unique solution 𝜔 ∈ 𝒱. To obtain the unique solvability of the original problem
(6)–(8) we can choose ℎ ∈ 𝐻1(Ω) to be the unique solution of the Dirichlet problem{︂

−∇ ·
(︀
𝜅(x)∇ℎ

)︀
= 0 in Ω,

ℎ|𝜕Ω = ℎ.

Also, the stability estimate (29) extends to

‖𝑢‖1,Ω ≤ 𝐶8

(︀
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0) + ‖ℎ‖𝐻1/2(𝜕Ω)

)︀
, (32)
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where
‖ℎ‖𝐻1/2(𝜕Ω) = inf

ℎ∈𝐻1(Ω):𝛾(ℎ)=ℎ

⃦⃦
ℎ
⃦⃦

1,Ω
.

We summarize now the results of this subsection in the following theorem which extends Theorem 4.2 to the
non-homogeneous case.

Theorem 4.3 (Well-posedness for the non-homogeneous Dirichlet problem). Let assumptions (𝐴1)−(𝐴4) be
satisfied. Then, there exists 𝛿 < 0, only depending on Ω, Γ0, 𝛽0, and 𝜅0 (see also Remark 4.5 below), such that
if 𝛼 satisfies the condition 𝐶𝛼 ≥ 𝛿, then there exists a unique solution 𝑢 ∈ 𝐻1(Ω) to the problem (6)–(8) in the
sense that there exists a unique 𝜔 ∈ 𝒱 satisfying the weak formulation (30)–(31), and 𝑢 = 𝜔+ℎ with ℎ ∈ 𝐻1(Ω)
such that 𝛾(ℎ) = ℎ. In addition to this, the stability estimate (32) holds.

4.3. Existence and uniqueness of solution for problem (6) and (7) with Neumann boundary
condition (9)

Consider now the problem (6), (7) subject to the Neumann boundary condition (9). In this case we replace
the assumption (𝐴4) by the stronger assumption:

(𝐴4)′ 𝛼 ∈ 𝐶1(Ω) and 𝛼|Γ1 = 0.

As in the previous subsection, multiplying both sides of (6) by a test function 𝑣 ∈ 𝐻1(Ω) and using (7), (9)
and (𝐴4)′, one obtains∫︁

Ω

𝜅(x)∇𝑢(x) · ∇𝑣(x) dx +
∫︁

Γ0

𝛽(x)𝛾(𝑢)(x)𝑣(x) d𝛾(x)

=
∫︁

Ω

𝑓(x)𝑣(x) dx +
∫︁

Γ0

𝑔(x)𝑣(x) d𝛾(x)−
∫︁

𝜕Ω

(𝛼𝑢)t(x)𝑣(x) d𝛾(x) +
∫︁

Γ1

𝑞(x)𝑣(x) d𝛾(x). (33)

We then have, using the definition of the tangential derivative in equation (5)∫︁
𝜕Ω

(𝛼𝑢)t(x)𝑣(x) d𝛾(x) =
∫︁

Ω

{(𝛼𝑢)𝑦(x)𝑣𝑥(x)− (𝛼𝑢)𝑥(x)𝑣𝑦(x)} dx

and equation (33) yields (21), where 𝑎 is given by (22) and

𝑏(𝑣) =
∫︁

Ω

𝑓(x)𝑣(x) dx +
∫︁

Γ0

𝑔(x)𝑣(x) d𝛾(x) +
∫︁

Γ1

𝑞(x)𝑣(x) d𝛾(x). (34)

The weak formulation of (6), (7) and (9) is: Find 𝑢 ∈ 𝐻1(Ω) such that

𝑎(𝑢, 𝑣) = 𝑏(𝑣), ∀𝑣 ∈ 𝐻1(Ω), (35)

where 𝑎(·, ·) and 𝑏(·) are, respectively, given by (22) and (34). We remark that the new expression of the linear
form 𝑏(·) defined by (34) contains the additional term

∫︀
Γ1

𝑞(x)𝜙(x) d𝛾(x) compared to the expression (23).
As before, we check that the conditions of Lax–Milgram lemma are satisfied. The continuity of 𝑎 and 𝑏 stems

from the Cauchy Schwarz inequality, (𝐴1)–(𝐴3) and (𝐴4)′, and the continuity of the trace operator (see (16)).
In addition, the following estimate (which extends (28)) on 𝑏(·) holds:

|𝑏(𝑣)| ≤ 𝐶6(Ω)
(︀
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0) + ‖𝑞‖𝐿2(Γ1)

)︀
‖𝑣‖1,Ω. (36)

The coercivity of 𝑎(·, ·) can be checked by following the same steps used in (25)–(27) (or the idea of Remark 4.5
below) but instead of estimate (26) (which stems from the Poincaré inequality and it cannot be applied since
the space of 𝑢 here is 𝐻1(Ω)), we use the following inequality (cf. [21]):

‖𝑢‖1,Ω ≤ 𝐶9

(︀
|𝑢|1,Ω + ‖𝛾(𝑢)‖𝐿2(Γ0)

)︀
, ∀𝑢 ∈ 𝐻1(Ω). (37)
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Estimate (37) can be deduced from the Extended Poincaré–Steklov inequality ([21], Lemma B.63, Page 490) and
using the Cauchy–Schwarz inequality. A discrete version of (16) and (37) will be given later in Lemma 6.3. We
have thus justified that the bi-linear form 𝑎 and the linear form 𝑏, given by (22) and (34), satisfy the hypotheses
of Lax–Milgram lemma. This implies that the problem (35) has a unique solution. In addition, by taking 𝑣 = 𝑢
in (35) and using (36) together with the coercivity of 𝑎(·, ·), we obtain the following stability estimate:

‖𝑢‖1,Ω ≤ 𝐶10

(︀
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0) + ‖𝑞‖𝐿2(Γ1)

)︀
. (38)

We have thus proved the following theorem.

Theorem 4.4 (Well-posedness for problem (6), (7) and (9)). Let assumptions (𝐴1)–(𝐴3) and (𝐴4)′ be satisfied.
Then, there exists 𝛿 < 0, only depending on Ω, Γ0, 𝛽0, and 𝜅0 (see also Remark 4.5 below) such that if 𝛼 satisfies
the condition 𝐶𝛼 ≥ 𝛿, then there exists a unique solution to the problem (6), (7) and (9) in the sense of the
weak formulation (35), where 𝑎(·, ·) and 𝑏(·) are given, respectively, by (22) and (34). In addition to this, the
stability estimate (38) holds.

Remark 4.5 (Another way of justifying the coercivity and an explicit value for 𝛿). The coercivity proved of
𝑎(·, ·) can also be proved in another way, as explained below.

(i) The coercivity for the problem (6)–(8) in Section 4.2 (see (25)–(27)) can also be proved using (37) (instead
of the use of (26)) since (37) is stronger than (26) and, in particular, it yields (26).

(ii) The coercivity for both problems (6)–(8) (in Sect. 4.2) and (6), (7) and (9) (above) can also be proved in a
slightly different way. Indeed, from (25), we can deduce that

𝑎(𝑢, 𝑢) ≥ 𝜅0|𝑢|21,Ω +
(︂

𝐶𝛼

2
+ 𝛽0

)︂
‖𝛾(𝑢)‖2𝐿2(Γ0)

.

So, if 𝐶𝛼 ≥ −𝛽0, we have, using inequalities 2(𝑎2 + 𝑏2) ≥ (𝑎 + 𝑏)2 and (37) (which generalizes (26)),

𝑎(𝑢, 𝑢) > min{𝜅0, 𝛽0/2}
(︁
|𝑢|21,Ω + ‖𝛾(𝑢)‖2𝐿2(Γ0)

)︁
≥ min{𝜅0, 𝛽0/2}

2(𝐶9)
2 ‖𝑢‖21,Ω.

The advantage of this reasoning is that the lower bound 𝛿, stated in Theorems 4.2–4.4, can explicitly be
given by −𝛽0.

5. Definition of a finite volume mesh: admissible meshes

To establish suitable finite volume schemes for solving the above problems and prove their convergence, we use
the following integration rule (see [10]): Let a and b be two points in R2 and (a,b) = {𝑠a+(1− 𝑠)b, 𝑠 ∈ (0, 1)}.
Let 𝜉 ∈ 𝒞1(R2) and t = b−a

|b−a| . Let 𝜉t = ∇𝜉 · t. Then:∫︁
(a,b)

𝜉t(x) d𝛾(x) = 𝜉(b)− 𝜉(a). (39)

We now describe the assumptions which are needed on the mesh.

Definition 5.1 (Admissible meshes, cf. [23]). An admissible finite volume mesh of Ω, denoted by 𝒯 , is a finite
family of open polygonal convex disjoint subsets of Ω (the “control volumes”), with positive measures. To this
family we associate a family of disjoint subsets of Ω contained in hyperplanes of R2, denoted by ℰ (these are
the edges of the control volumes), and a family of points 𝒫 = {x𝐾 | 𝐾 ∈ 𝒯 } in Ω, satisfying the following
properties (as in [23], Definition 9.1):

– Ω = ∪𝐾∈𝒯 𝐾.
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– For all 𝜎 ∈ ℰ , there exists a hyperplane 𝜎 ⊂ 𝐸 ⊂ R2 and 𝐾 ∈ 𝒯 such that 𝜎 = 𝜕𝐾 ∩ 𝐸. We denote by
m(𝜎) the one-dimensional measure of 𝜎 and assume m(𝜎) > 0. We assume that, for all 𝐾 ∈ 𝒯 , there exists
a subset ℰ𝐾 of ℰ such that 𝜕𝐾 = ∪𝜎∈ℰ𝐾

𝜎. It then results that, for all 𝜎 ∈ ℰ , either 𝜎 ⊂ 𝜕Ω or there exists
(𝐾, 𝐿) ∈ 𝒯 × 𝒯 with 𝐾 ̸= 𝐿 such that 𝐾 ∩ 𝐿 = 𝜎; in the latter case we denote 𝜎 = 𝐾|𝐿.

– For all 𝐾 ∈ 𝒯 , x𝐾 ∈ 𝐾. Furthermore, for all 𝜎 ∈ ℰ such that there exists (𝐾, 𝐿) ∈ 𝒯 × 𝒯 with 𝜎 = 𝐾|𝐿, it
is assumed that the straight line (x𝐾 ,x𝐿) going through x𝐾 and x𝐿 is orthogonal to 𝐾|𝐿. For 𝐾 ∈ 𝒯 and
𝜎 ∈ ℰ𝐾 , let 𝒟𝐾,𝜎 be the straight line going through x𝐾 and orthogonal to 𝜎. We assume that 𝒟𝐾,𝜎 ∩ 𝜎 ̸= ∅
and we set {y𝜎} = 𝒟𝐾,𝜎 ∩ 𝜎.

If 𝒯 is an admissible mesh, we will also use the following notations:

– The mesh size is defined by size(𝒯 ) = sup{diam(𝐾) | 𝐾 ∈ 𝒯 }, and for any 𝐾 ∈ 𝒯 denote by m(𝐾) the
two-dimensional Lebesgue measure of 𝐾 (it is the area of 𝐾).

– The set of interior (resp. boundary) edges is denoted by ℰint (resp. ℰext), ℰint = {𝜎 ∈ ℰ | 𝜎 ̸⊂ 𝜕Ω} (resp.
ℰext = {𝜎 ∈ ℰ | 𝜎 ⊂ 𝜕Ω}).

– The set of neighbours of 𝐾 is denoted by 𝒩 (𝐾) = {𝐿 ∈ 𝒯 | ∃𝜎 ∈ ℰ𝐾 , 𝜎 = 𝐾 ∩ 𝐿}.
– If 𝜎 = 𝐾|𝐿, we denote by 𝑑𝜎 or 𝑑𝐾|𝐿 the Euclidean distance between x𝐾 and x𝐿 (which is positive) and

𝑑𝐾,𝜎 the distance from x𝐾 to 𝜎.
– If 𝜎 ∈ ℰ𝐾 ∩ ℰext, let 𝑑𝜎 denote the Euclidean distance between x𝐾 and y𝜎 (then, 𝑑𝜎 = 𝑑𝐾,𝜎).
– For any 𝜎 ∈ ℰ , the “transmissibility” through 𝜎 is defined by 𝜏𝜎 = m(𝜎)

𝑑𝜎
(note that 𝑑𝜎 > 0).

In addition, in order to take care of both the generalized oblique boundary condition (7) and the Dirichlet
or Neumann boundary condition (8) or (9), we assume the following assumption on the mesh 𝒯 .

Assumption 5.2 (Assumption on the mesh 𝒯 ). Let 𝒯 be an admissible mesh in the sense of Definition 5.1.
For any 𝜎 ∈ ℰext, we assume that either 𝜎 ⊂ Γ0 or 𝜎 ⊂ Γ1. We then define the following two subsets of ℰext:

Γ𝒯0 = {𝜎 ∈ ℰext | 𝜎 ⊂ Γ0} and Γ𝒯1 = {𝜎 ∈ ℰext | 𝜎 ⊂ Γ1}. (40)

To discretize the governing equation (6) and the oblique boundary condition (7), we need the following
definitions.

Definition 5.3. Let ℰext ∋ 𝜎 = (a,b) = {𝑠a + (1 − 𝑠)b, 𝑠 ∈ (0, 1)}. Denote by 𝜎− (resp. 𝜎+) the element of
ℰext such that a is in the closure of 𝜎− (resp. b is in the closure of 𝜎+) and 𝜎− ̸= 𝜎 (resp. 𝜎+ ̸= 𝜎). We also set
𝜎𝑒 = b and 𝜎𝑏 = a (so that |𝜎𝑒 − 𝜎𝑏|t = 𝜎𝑒 − 𝜎𝑏).

Definition 5.4. Let 𝛼 ∈ 𝒞1(Ω). For 𝜎 ∈ ℰext, the notations 𝜎𝑒, 𝜎𝑏, 𝑢𝜎+ and 𝑢𝜎− are given in Definition 5.3 (in
particular, 𝜎 = (𝜎𝑏, 𝜎𝑒), with m(𝜎)t = 𝜎𝑒 − 𝜎𝑏). We set:

𝑢𝜎,+ = 𝑢𝜎 and 𝑢𝜎,− = 𝑢𝜎+ if 𝛼(𝜎𝑒) ≥ 0,

𝑢𝜎,+ = 𝑢𝜎+ and 𝑢𝜎,− = 𝑢𝜎 if 𝛼(𝜎𝑒) < 0.

Definition 5.5 (The finite volume space). For an admissible mesh 𝒯 , the space 𝒳 (𝒯 ) is defined by 𝒳 (𝒯 ) =
𝒴(𝒯 ) × 𝒵(𝒯 ) ⊂ 𝐿2(Ω) × 𝐿2(𝜕Ω), where 𝒴(𝒯 ) is the set of functions from Ω to R, which are constant over
each control volume 𝐾 ∈ 𝒯 , and 𝒵(𝒯 ) is the set of functions which are constant on each 𝜎 ∈ ℰext. In the same
manner, we define 𝒵0(𝒯 ) (resp. 𝒵1(𝒯 )) as the space of functions which are constant on each 𝜎 ∈ Γ𝒯0 (resp.
𝜎 ∈ Γ𝒯1 ).

Throughout the next sections, the letters 𝐶𝑖 denote positive constants, which are independent of the param-
eters of discretization.
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6. Formulation of a finite volume scheme for the problem (6) and (7) with
the Dirichlet boundary condition (8) and its convergence analysis

Let us describe the principles of the scheme we want to present in order to approximate the problem (6)–(8).
Integrating both sides of (6) over a control volume 𝐾, using integration by parts, and summing over the edges
𝜎 of the control volume 𝐾 yield

−
∑︁

𝜎∈ℰ𝐾

∫︁
𝜎

𝜅(x)∇𝑢(x) · n𝐾,𝜎 d𝛾(x) = m(𝐾)𝑓𝐾 , (41)

where n𝐾,𝜎 denotes the normal unit vector to 𝜎 outward to 𝐾 and 𝑓𝐾 is the mean value of 𝑓 on 𝐾, i.e.

𝑓𝐾 =
1

m(𝐾)

∫︁
𝐾

𝑓(x) dx. (42)

The discrete set of the unknowns are denoted by (𝑢𝐾)𝐾∈𝒯 and (𝑢𝜎)𝜎∈Γ𝒯0
. These unknowns are expected to

approximate the exact solution 𝑢 in the control volumes 𝐾 ∈ 𝒯 and on the edges 𝜎 ∈ Γ𝒯0 . Note that, due to
the Dirichlet boundary condition (8), 𝑢 is known on Γ1. We look now for equations satisfied by these discrete
unknowns using a convenient approximation to (41) and the boundary conditions (7) and (8).

To this end, we consider the following cases:

(I) 𝜎 ∈ ℰ𝐾 ∩ℰint with 𝜎 = 𝐾|𝐿. In this case, −
∫︀

𝜎
𝜅(x)∇𝑢(x) ·n𝐾,𝜎 d𝛾(x) can be approximated using discrete

fluxes which are consistent and conservative, and are given by the classical two–points formula (see [23],
Page 818 or also [22], Page 80):

𝐹𝐾,𝜎 = −𝜏𝜅
𝜎 (𝑢𝐿 − 𝑢𝐾), (43)

where

𝜏𝜅
𝜎 = m(𝜎)

𝜅𝐾𝜅𝐿

𝑑𝐾,𝜎𝜅𝐿 + 𝑑𝐿,𝜎𝜅𝐾
, 𝜅𝐾 =

1
m(𝐾)

∫︁
𝐾

𝜅(x) dx, 𝜅𝐿 =
1

m(𝐿)

∫︁
𝐿

𝜅(x) dx. (44)

(II) 𝜎 ∈ ℰ𝐾 and 𝜎 ⊂ Γ1. In this case, −
∫︀

𝜎
𝜅(x)∇𝑢(x) · n𝐾,𝜎 d𝛾(x) can be approximated using (43) by taking

𝑢𝐿 = ℎ(y𝜎) (which stems from the Dirichlet boundary conditions (8)), i.e.

𝐹𝐾,𝜎 := −𝜏𝜅
𝜎 (ℎ𝜎 − 𝑢𝐾) and ℎ𝜎 = ℎ(y𝜎), (45)

with
𝜏𝜅
𝜎 = m(𝜎)

𝜅𝐾

𝑑𝐾,𝜎
. (46)

(III) 𝜎 ∈ ℰ𝐾 and 𝜎 ⊂ Γ0. In this case, −
∫︀

𝜎
𝜅(x)∇𝑢(x) ·n𝐾,𝜎 d𝛾(x) can be expressed using the oblique boundary

condition (7) as

−
∫︁

𝜎

𝜅(x)∇𝑢(x) · n𝐾,𝜎 d𝛾(x) =
∫︁

𝜎

(𝛼𝑢)t(x) d𝛾(x) +
∫︁

𝜎

𝛽(x)𝑢(x) d𝛾(x)−m(𝜎)𝑔𝜎, (47)

where 𝑔𝜎 is the mean value of 𝑔 on 𝜎, i.e.

𝑔𝜎 =
1

m(𝜎)

∫︁
𝜎

𝑔(x) d𝛾(x). (48)

Equation (47) can be approximated as follows [10]:

𝐹𝐾,𝜎 := −𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾) = 𝛼(𝜎𝑒)𝑢𝜎,+ − 𝛼(𝜎𝑏)𝑢𝜎−,+ + m(𝜎)𝛽𝜎𝑢𝜎 −m(𝜎)𝑔𝜎, (49)
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where 𝜏𝜅
𝜎 is defined by (46), 𝛽𝜎 is defined by (48) by replacing 𝑔 with 𝛽, 𝑢𝜎,+ is given in Definition 5.4,

and 𝑢𝜎−,+ is obtained by replacing 𝜎 with 𝜎− and 𝜎𝑒 with 𝜎𝑏 in Definition 5.4. To take into account the
Dirichlet boundary condition (8), we set in (49), for all 𝜎 ∈ ℰext such that 𝜎 ⊂ Γ0,

𝑢𝜎+ = ℎ(y𝜎) if 𝜎+ ⊂ Γ1 and 𝑢𝜎− = ℎ(y𝜎) if 𝜎− ⊂ Γ1. (50)

After having described the principles of the numerical scheme, we give now its formulation in the next
subsection.

6.1. Definition of the scheme for the Dirichlet boundary condition (8) on Γ1

To summarise our finite volume scheme stated in (43)–(50) we introduce the following definition.

Definition 6.1 (Definition of a finite volume scheme for (6)–(8)). Let 𝜏𝜅
𝜎 be defined in (44) and (46). Define

the discrete fluxes (see (43), (45) and (49)),

𝐹𝐾,𝜎 =

⎧⎪⎨⎪⎩
−𝜏𝜅

𝜎 (𝑢𝐿 − 𝑢𝐾), ∀𝜎 = 𝐾|𝐿,

−𝜏𝜅
𝜎 (ℎ(y𝜎)− 𝑢𝐾), ∀𝜎 ∈ ℰ𝐾 with 𝜎 ⊂ Γ1,

−𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾), ∀𝜎 ∈ ℰ𝐾 with 𝜎 ⊂ Γ0.

(51)

Let (𝑢𝐾)𝐾∈𝒯 and (𝑢𝜎)𝜎∈Γ𝒯0
denote the discrete set of unknowns. As a finite volume scheme, we suggest (see

(41)): ∑︁
𝜎∈ℰ𝐾

𝐹𝐾,𝜎 = m(𝐾)𝑓𝐾 , ∀𝐾 ∈ 𝒯 , (52)

and, (see (49)), for all 𝜎 ∈ ℰ𝐾 with 𝜎 ⊂ Γ0,

− 𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾) = 𝛼(𝜎𝑒)𝑢𝜎,+ − 𝛼(𝜎𝑏)𝑢𝜎−,+ + m(𝜎)𝛽𝜎𝑢𝜎 −m(𝜎)𝑔𝜎, (53)

where 𝑓𝐾 and 𝑔𝜎 are given, respectively, by (42) and (48), and 𝛽𝜎 is given (48) by replacing 𝑔 with 𝛽. Further,
in order to take into account the Dirichlet boundary condition (8), we set in (53), for all 𝜎 ∈ ℰext with 𝜎 ⊂ Γ0,

𝑢𝜎+ = ℎ(y𝜎) if 𝜎+ ⊂ Γ1 and 𝑢𝜎− = ℎ(y𝜎) if 𝜎− ⊂ Γ1. (54)

6.2. Well-posedness of the discrete problem

Let us extend the definition of 𝑢𝜎 by

𝑢𝜎 =
𝜅𝐾𝑑𝐿,𝜎𝑢𝐾 + 𝜅𝐿𝑑𝐾,𝜎𝑢𝐿

𝑑𝐾,𝜎𝜅𝐿 + 𝑑𝐿,𝜎𝜅𝐾
if 𝜎 = 𝐾|𝐿 ∈ ℰint, (55)

𝑢𝜎 = ℎ(y𝜎), ∀𝜎 ∈ Γ𝒯1 . (56)

In this way, the discrete flux (51) can be written in a unified form as

𝐹𝐾,𝜎 = −m(𝜎)
𝜅𝐾

𝑑𝐾,𝜎
(𝑢𝜎 − 𝑢𝐾) (57)

for which we have the conservativity

𝐹𝐾,𝜎 = −𝐹𝐿,𝜎, ∀𝜎 = 𝐾|𝐿. (58)

We prove the following discrete well-posedness result.
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Theorem 6.2 (Well-posedness of scheme (52)–(54)). In addition to the hypotheses of Theorem 4.3, which
states the well-posedness of the weak solution of problem (6)–(8), assume that ℎ ∈ 𝒞1(𝜕Ω) and that there exists
ℎ ∈ 𝒞1(Ω) such that 𝛾(ℎ) = ℎ (see Remark 6.6 when ℎ is not smooth). Let 𝒯 be an admissible mesh in the
sense of Definition 5.1 satisfying Assumption 5.2. Then there exists a unique solution (𝑢𝐾)𝐾∈𝒯 and (𝑢𝜎)𝜎∈Γ𝒯0
to the finite volume scheme (52)–(54) of Definition 6.1. Corresponding to this unique solution, let 𝒴(𝒯 ) ∋ 𝑢𝒯
be defined such that its constant value over any 𝐾 ∈ 𝒯 is 𝑢𝐾 (see also Definition 5.5). Also, let 𝒵(𝒯 ) ∋ 𝑣𝒯 be
defined such that its constant value over any 𝜎 ∈ ℰext is 𝑢𝜎 if 𝜎 ∈ Γ𝒯0 and ℎ(y𝜎) if 𝜎 ∈ Γ𝒯1 . Then, the above
discrete solution satisfies the following stability estimate:(︁

|(𝑢𝒯 , 𝑣𝒯 )|21,𝒳 (𝒯 ) + ‖𝑣𝒯 ‖2𝐿2(Γ0)
+ |𝑣𝒯 |2𝛼,𝒵(𝒯 )

)︁ 1
2

≤ 𝐶11

(︁
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0) +

(︀
‖𝛽‖𝐿∞(Γ0) + 1

)︀
‖ℎ‖𝒞1(Ω)

)︁
, (59)

where

|(𝑢𝒯 , 𝑣𝒯 )|21,𝒳 (𝒯 ) := |𝑢𝒯 |21,𝒯 +
∑︁

𝜎∈ℰext∩ℰ𝐾

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 (60)

with
|𝑢𝒯 |21,𝒯 :=

∑︁
𝜎=𝐾|𝐿∈ℰint

𝜏𝜎(𝑢𝐿 − 𝑢𝐾)2, (61)

and

|𝑣𝒯 |2𝛼,𝒵(𝒯 ) :=
∑︁

𝜎∈ℰext

|𝛼(𝜎𝑒)|(𝑢𝜎+ − 𝑢𝜎)2. (62)

To prove Theorem 6.2, we need to use the following technical lemmas. Lemma 6.3 below is not explicitly stated
in the existing literature but it can be deduced from Lemmas 10.3 and 10.5 of [22].

Lemma 6.3 (Equivalence of norms, see [22]). Let Ω be a polygonal connected open bounded subset of R𝑑 and
𝒯 be an admissible mesh in the sense of Definition 5.1. Let 𝐼 ⊂ 𝜕Ω be such that the (𝑑− 1)-Lebesgue measure
of 𝐼 is positive. Let us define the following norm on 𝒴(𝒯 ) (see Definition 5.5):

‖𝑢‖21,𝒯 = |𝑢|21,𝒯 + ‖𝑢‖2𝐿2(Ω), (63)

where |𝑢|21,𝒯 is given by (61). Then the norms ‖ · ‖1,𝒯 and | · |1,𝒯 + ‖𝛾(·)‖𝐿2(𝐼) are equivalent, with constants
only depending on Ω and 𝐼, where 𝛾(𝑢)(x) = 𝑢𝐾 a.e. x ∈ 𝜎, for all 𝜎 ∈ ℰ𝐾 ∩ ℰext.

Proof. We consider the following steps.

First step: first side inequality. Using ([22], Lemmas 10.3 and 10.5) yields that for all 𝑢 ∈ 𝒴(𝒯 ),

‖𝑢−𝑚𝐼(𝑢)‖𝐿2(Ω) ≤ 𝐶12|𝑢|1,𝒯 , (64)

where 𝑚𝐼(𝑢) is the mean value of 𝑢 over 𝐼, that is, 𝑚𝐼(𝑢) = 1
m(𝐼)

∫︀
𝐼
𝑢(x) d𝛾(x). Using the inequality

|𝑎| − |𝑏| ≤ |𝑎− 𝑏|, inequality (64) implies that

‖𝑢‖𝐿2(Ω) ≤ 𝐶12|𝑢|1,𝒯 +
√︀

m(Ω)|𝑚𝐼(𝑢)|. (65)

Using the Cauchy–Schwarz inequality yields

|𝑚𝐼(𝑢)| ≤
√︀

m(𝐼)
m(𝐼)

‖𝛾(𝑢)‖𝐿2(𝐼) =
1√︀
m(𝐼)

‖𝛾(𝑢)‖𝐿2(𝐼).
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This with (65) imply that
‖𝑢‖𝐿2(Ω) ≤ 𝐶13

(︀
|𝑢|1,𝒯 + ‖𝛾(𝑢)‖𝐿2(𝐼)

)︀
. (66)

Using the definition (63) of the norm ‖ · ‖1,𝒯 , inequality (66) implies that

‖𝑢‖1,𝒯 ≤ 𝐶14

(︀
|𝑢|1,𝒯 + ‖𝛾(𝑢)‖𝐿2(𝐼)

)︀
.

Second step. second side inequality. Using ([22], Lemma 10.5, Page 72) yields

‖𝑢‖21,𝒯 = |𝑢|21,𝒯 + ‖𝑢‖2𝐿2(Ω) ≥
1
2
|𝑢|21,𝒯 +

1
2
|𝑢|21,𝒯 +

1
2
‖𝑢‖2𝐿2(Ω)

≥ 1
2
|𝑢|21,𝒯 +

𝐶15

2
‖𝛾(𝑢)‖2𝐿2(𝜕Ω) ≥ 𝐶16

(︁
|𝑢|21,𝒯 + ‖𝛾(𝑢)‖2𝐿2(𝐼)

)︁
. (67)

Inequality (67) together with inequality
√

𝑎2 + 𝑏2 ≥ 1√
2
(𝑎 + 𝑏) imply that

‖𝑢‖1,𝒯 ≥ 𝐶17

(︀
|𝑢|1,𝒯 + ‖𝛾(𝑢)‖𝐿2(𝐼)

)︀
.

This completes the proof of Lemma 6.3.

�

Lemma 6.4. Let Ω be a polygonal connected open bounded subset of R𝑑 and 𝒯 be an admissible mesh in the
sense of Definition 5.1 satisfying Assumption 5.2. Then, for some positive constant 𝐶18, which only depends on
Ω and Γ1, for all 𝑢𝒯 ∈ 𝒴(𝒯 ) (see Definition 5.5), we have

‖𝛾(𝑢𝒯 )‖𝐿2(Γ0) ≤ 𝐶18

⎛⎜⎝|𝑢𝒯 |1,𝒯 +

⎛⎝ ∑︁
𝜎∈ℰ𝐾∩Γ𝒯1

𝜏𝜎(𝑢𝐾)2

⎞⎠ 1
2
⎞⎟⎠, (68)

where 𝑢𝐾 is the value of 𝑢𝒯 over the control volume 𝐾 and 𝛾 is the discrete trace operator defined in Lemma 6.3.

Proof. Using Lemma 10.5, Page 72 of [22] (or Lemma 6.3, see (67)) yields

‖𝛾(𝑢𝒯 )‖𝐿2(Γ0) ≤
1√
𝐶15

(︀
|𝑢𝒯 |1,𝒯 + ‖𝑢𝒯 ‖𝐿2(Ω)

)︀
.

This with (66) (by choosing 𝐼 = Γ1) and the fact that 𝑑𝐾,𝜎 ≤ diam(Ω) imply the desired estimate (68). This
completes the proof of Lemma 6.4. �

Lemma 6.5. Let Ω be a polygonal connected open bounded subset of R𝑑 and 𝒯 be an admissible mesh in
the sense of Definition 5.1. Let 𝜏𝜅

𝜎 be defined in (44) and (46). Then, under Assumption (𝐴2) (recall that
𝜏𝜎 = m(𝜎)/𝑑𝜎 for 𝜎 ∈ ℰint and 𝜏𝜎 = m(𝜎)/𝑑𝐾,𝜎 for 𝜎 ∈ ℰext ∩ ℰ𝐾), we have

𝜅2
0

‖𝜅‖𝐿∞(Ω)
𝜏𝜎 ≤ 𝜏𝜅

𝜎 ≤
‖𝜅‖2𝐿∞(Ω)

𝜅0
𝜏𝜎, ∀𝜎 ∈ ℰint,

𝜅0𝜏𝜎 ≤ 𝜏𝜅
𝜎 ≤ ‖𝜅‖𝐿∞(Ω)𝜏𝜎, ∀𝜎 ∈ ℰext,

and the following equivalence of semi-norms holds, for all 𝑢𝒯 ∈ 𝒴(𝒯 ):

𝜅0√︀
‖𝜅‖𝐿∞(Ω)

|𝑢𝒯 |1,𝒯 ≤ |𝑢𝒯 |1,𝜅,𝒯 ≤
‖𝜅‖𝐿∞(Ω)√

𝜅0
|𝑢𝒯 |1,𝒯 ,

where
|𝑢𝒯 |21,𝜅,𝒯 =

∑︁
𝜎=𝐾|𝐿∈ℰint

𝜏𝜅
𝜎 (𝑢𝐿 − 𝑢𝐾)2. (69)
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Proof. The lemma can be checked using the expression for 𝜏𝜅
𝜎 and assumption (𝐴2). �

Proof of Theorem 6.2. (i) Proof of (59). We follow the techniques of [22], Page 51. We introduce (𝑢𝐾)𝐾∈𝒯 =
(𝑢𝐾 − ℎ𝐾)𝐾∈𝒯 and (𝑢𝜎)𝜎∈ℰext = (𝑢𝜎 − ℎ(y𝜎))𝜎∈ℰext where

ℎ𝐾 = ℎ(x𝐾), ∀𝐾 ∈ 𝒯 and 𝑢𝜎 = ℎ(y𝜎), ∀𝜎 ∈ Γ𝒯1 .

The scheme (52) becomes ∑︁
𝜎∈ℰ𝐾

𝐹𝐾,𝜎 = m(𝐾)𝑓𝐾 −
∑︁

𝜎∈ℰ𝐾

𝐺𝐾,𝜎, ∀𝐾 ∈ 𝒯 , (70)

where

𝐹𝐾,𝜎 =

⎧⎨⎩
−𝜏𝜅

𝜎 (𝑢𝐿 − 𝑢𝐾), ∀𝜎 = 𝐾|𝐿,

−𝜏𝜅
𝜎 (0− 𝑢𝐾), ∀𝜎 ∈ ℰ𝐾 with 𝜎 ⊂ Γ1,

−𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾), ∀𝜎 ∈ ℰ𝐾 with 𝜎 ⊂ Γ0.

and

𝐺𝐾,𝜎 =
{︂
−𝜏𝜅

𝜎

(︀
ℎ𝐿 − ℎ𝐾

)︀
, ∀𝜎 = 𝐾|𝐿,

−𝜏𝜅
𝜎

(︀
ℎ(y𝜎)− ℎ𝐾

)︀
, ∀𝜎 ∈ ℰ𝐾 ∩ ℰext.

The scheme (53) then states that for all 𝜎 ∈ ℰ𝐾 with 𝜎 ⊂ Γ0,

− 𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾) = 𝛼(𝜎𝑒)𝑢𝜎,+ − 𝛼(𝜎𝑏)𝑢𝜎−,+ + m(𝜎)𝛽𝜎𝑢𝜎 −m(𝜎)𝑔𝜎

+ 𝜏𝜅
𝜎

(︀
ℎ𝜎 − ℎ𝐾

)︀
+ 𝛼(𝜎𝑒)ℎ𝜎,+ − 𝛼(𝜎𝑏)ℎ𝜎−,+ + m(𝜎)𝛽𝜎ℎ𝜎. (71)

We multiply both sides of (70) by 𝑢𝐾 and sum over 𝐾 ∈ 𝒯 to obtain∑︁
𝐾∈𝒯

𝑢𝐾

∑︁
𝜎∈ℰ𝐾

𝐹𝐾,𝜎 =
∫︁

Ω

𝑓𝒯 (x)𝑢𝒯 (x) dx−
∑︁

𝜎∈ℰ𝐾

𝐺𝐾,𝜎𝑢𝐾 , (72)

where 𝑓𝒯 , 𝑢𝒯 ∈ 𝒴(𝒯 ) whose values over 𝐾 are, respectively, 𝑓𝐾 and 𝑢𝐾 . Using (58), (51), (56) (recall that
Γ𝒯0 and Γ𝒯1 are given in (40)), and the conservativity property 𝐹𝐾,𝜎 = −𝐹𝐿,𝜎 for all 𝜎 = 𝐾|𝐿, the left hand
side of (72) can be written as∑︁

𝐾∈𝒯
𝑢𝐾

∑︁
𝜎∈ℰ𝐾

𝐹𝐾,𝜎 =
∑︁

𝜎=𝐾|𝐿

𝐹𝐾,𝜎(𝑢𝐾 − 𝑢𝐿) +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝑢𝐾𝐹𝐾,𝜎

= |𝑢𝒯 |21,𝜅,𝒯 −
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)𝑢𝐾 +

∑︁
𝜎∈ℰ𝐾∩Γ𝒯1

𝜏𝜅
𝜎 (𝑢𝐾)2

= 𝒩 2(𝑢𝒯 )−
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)𝑢𝜎, (73)

where
𝒩 2(𝑢𝒯 ) = |𝑢𝒯 |21,𝜅,𝒯 +

∑︁
𝜎∈∩ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)2 +

∑︁
𝜎∈ℰ𝐾∩Γ𝒯1

𝜏𝜅
𝜎 (𝑢𝐾)2.

Let us now express the second term on the RHS of (73) using (71) as

−
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)𝑢𝜎 =

∑︁
𝜎∈ℰ𝐾∩Γ𝒯0

(︀
𝛼(𝜎𝑒)𝑢𝜎,+ − 𝛼(𝜎𝑏)𝑢𝜎−,+

)︀
𝑢𝜎
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+
∫︁

Γ0

𝛽𝒯 (x)(𝑣𝒯 )2(x) d𝛾(x)−
∫︁

Γ0

𝑔𝒯 (x)𝑣𝒯 (x) d𝛾(x)

+
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎

(︀
ℎ𝜎 − ℎ𝐾

)︀
𝑢𝜎 +

∑︁
𝜎∈ℰ𝐾∩Γ𝒯0

(︀
𝛼(𝜎𝑒)ℎ𝜎,+ − 𝛼(𝜎𝑏)ℎ𝜎−,+

)︀
𝑢𝜎

+
∫︁

Γ0

𝛽𝒯 (x)ℎ𝒯 (x)𝑣𝒯 (x) d𝛾(x), (74)

where 𝑔𝒯 ∈ 𝒵0(𝒯 ), ℎ𝒯 ∈ 𝒵(𝒯 ), 𝛽𝒯 ∈ 𝒵0(𝒯 ), 𝑣𝒯 ∈ 𝒵(𝒯 ) whose values over 𝜎 are, respectively, 𝑔𝜎, ℎ𝜎, 𝛽𝜎

and 𝑢𝜎. It is useful to note that, since 𝑢𝜎 = ℎ(y𝜎) for all 𝜎 ∈ Γ𝒯1 , then 𝑣𝒯 (x) = 0 for x ∈ Γ1. Since 𝑢𝜎 = 0
for all 𝜎 ∈ Γ𝒯1 and {𝑢𝜎,+, 𝑢𝜎,−} = {𝑢𝜎+ , 𝑢𝜎}, the first term in the RHS of (74) can be written as, see [10],
Page 19 (see also [23], Pages 768, 769 and [22], Pages 42, 43),∑︁

𝜎∈ℰ𝐾∩Γ0

(︀
𝛼(𝜎𝑒)𝑢𝜎,+ − 𝛼(𝜎𝑏)𝑢𝜎−,+

)︀
𝑢𝜎 =

∑︁
𝜎∈ℰext

(︀
𝛼(𝜎𝑒)𝑢𝜎,+ − 𝛼(𝜎𝑏)𝑢𝜎−,+

)︀
𝑢𝜎

=
∑︁

𝜎∈ℰext

|𝛼(𝜎𝑒)|(𝑢𝜎,+ − 𝑢𝜎,−)𝑢𝜎,+

=
1
2

∑︁
𝜎∈ℰext

|𝛼(𝜎𝑒)|
(︁
(𝑢𝜎,+ − 𝑢𝜎,−)2 + 𝑢2

𝜎,+ − 𝑢2
𝜎,−

)︁
=

1
2
|𝑣𝒯 |2𝛼,𝒵(𝒯 ) +

1
2

∫︁
𝜕Ω

𝛼t(x)(𝑣𝒯 )2(x) d𝛾(x)

=
1
2
|𝑣𝒯 |2𝛼,𝒵(𝒯 ) +

1
2

∫︁
Γ0

𝛼t(x)(𝑣𝒯 )2(x) d𝛾(x). (75)

Using the facts that |ℎ𝜎−ℎ𝐾 | ≤ 𝐶19𝑑𝐾,𝜎‖ℎ‖𝒞1(Ω) and
∑︀

𝜎∈ℰ m(𝜎)𝑑𝜎 = 2m(Ω) (see [25], equation (4.3), Page
1025) together with Lemma 6.5, the fourth term on the RHS of (74) can be estimated as⃒⃒⃒⃒

⃒⃒ ∑︁
𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎

(︀
ℎ𝜎 − ℎ𝐾

)︀
𝑢𝜎

⃒⃒⃒⃒
⃒⃒ ≤ 𝐶20‖ℎ‖𝒞1(Ω)

⎛⎜⎝
⎛⎝ ∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)2

⎞⎠ 1
2

+ ‖𝛾(𝑢𝒯 )‖𝐿2(Γ0)

⎞⎟⎠.

Gathering this estimate together with Lemmas 6.4 and 6.5 implies that⃒⃒⃒⃒
⃒⃒ ∑︁
𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (ℎ𝜎 − ℎ𝐾)𝑢𝜎

⃒⃒⃒⃒
⃒⃒ ≤ 𝐶21‖ℎ‖𝒞1(Ω)𝒩 (𝑢𝒯 ). (76)

Thanks to the facts that |𝛼(𝜎𝑒)ℎ𝜎,+−𝛼(𝜎𝑏)ℎ𝜎−,+| ≤ 𝐶22(𝛼)m(𝜎)‖ℎ‖𝒞1(Ω) and 𝑑𝐾,𝜎 ≤ diam(Ω) and using the
triangle and the Cauchy–Schwarz inequalities together with the hypothesis (𝐴2) and Lemmas 6.4 and 6.5,
we get the following estimate on the fifth term on the RHS of (74):⃒⃒⃒⃒

⃒⃒ ∑︁
𝜎∈ℰ𝐾∩Γ𝒯0

(︀
𝛼(𝜎𝑒)ℎ𝜎,+ − 𝛼(𝜎𝑏)ℎ𝜎−,+

)︀
𝑢𝜎

⃒⃒⃒⃒
⃒⃒ ≤ 𝐶23(𝛼)‖ℎ‖𝒞1(Ω)

∑︁
𝜎∈Γ𝒯0

m(𝜎)|𝑢𝜎|

≤ 𝐶24(𝛼, 𝜅, Ω)‖ℎ‖𝒞1(Ω)

⎛⎜⎝
⎛⎝ ∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)2

⎞⎠ 1
2

+ ‖𝛾(𝑢𝒯 )‖𝐿2(Γ0)

⎞⎟⎠
≤ 𝐶25(𝛼, 𝜅, Ω)‖ℎ‖𝒞1(Ω)𝒩 (𝑢𝒯 ). (77)
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On the other hand, the second term on the RHS of (72) can be estimated using the following equivalent
expression, thanks to the property 𝐺𝐾,𝜎 = −𝐺𝐿,𝜎, for all 𝜎 = 𝐾|𝐿:∑︁

𝜎∈ℰ𝐾

𝐺𝐾,𝜎𝑢𝐾 =
∑︁

𝜎=𝐾|𝐿

𝐺𝐾,𝜎(𝑢𝐾 − 𝑢𝐿) +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝐺𝐾,𝜎𝑢𝐾 .

Using this expression, the Cauchy–Schwarz inequality, Lemmas 6.4 and 6.5, and gathering this with the facts
that |𝐺𝐾,𝜎| ≤ 𝐶26𝑑𝜎𝜏𝜅

𝜎 ‖ℎ‖𝒞1(Ω) (recall that 𝑑𝜎 = 𝑑𝐾,𝜎 if 𝜎 ∈ ℰ𝐾 ∩ ℰext) and
∑︀

𝜎∈ℰ𝐾
m(𝜎)𝑑𝐾,𝜎 = 2m(𝐾)

imply that ⃒⃒⃒⃒
⃒ ∑︁
𝜎∈ℰ𝐾

𝐺𝐾,𝜎𝑢𝐾

⃒⃒⃒⃒
⃒ ≤ 𝐶27‖ℎ‖𝒞1(Ω)

⎛⎜⎝|𝑢𝒯 |1,𝜅,𝒯 + ‖𝛾(𝑢𝒯 )‖𝐿2(Γ0) +

⎛⎝ ∑︁
𝜎∈ℰ𝐾∩Γ𝒯1

𝜏𝜅
𝜎 (𝑢𝐾)2

⎞⎠ 1
2
⎞⎟⎠

≤ 𝐶28‖ℎ‖𝒞1(Ω)𝒩 (𝑢𝒯 ). (78)

Gathering now (72)–(75) implies that

𝒩 2(𝑢𝒯 ) +
∫︁

Γ0

𝛽𝒯 (x)(𝑣𝒯 )2(x) d𝛾(x) +
1
2
|𝑣𝒯 |2𝛼,𝒵(𝒯 ) +

1
2

∫︁
Γ0

𝛼t(x)(𝑣𝒯 )2(x) d𝛾(x)

=
∫︁

Ω

𝑓𝒯 (x)𝑢𝒯 (x) dx +
∫︁

Γ0

𝑔𝒯 (x)𝑣𝒯 (x) d𝛾(x)−
∑︁

𝜎∈ℰ𝐾

𝐺𝐾,𝜎𝑢𝐾 −
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎

(︀
ℎ𝜎 − ℎ𝐾

)︀
𝑢𝜎

−
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

(︀
𝛼(𝜎𝑒)ℎ𝜎,+ − 𝛼(𝜎𝑏).ℎ𝜎−,+

)︀
𝑢𝜎 −

∫︁
Γ0

𝛽𝒯 (x)ℎ𝒯 (x)𝑣𝒯 (x) d𝛾(x). (79)

Using Lemma 6.5 and gathering (79) with (76)–(78) give

|(𝑢𝒯 , 𝑣𝒯 )|21,𝒳 (𝒯 ) +
∫︁

Γ0

𝛽𝒯 (x)𝑣2
𝒯 (x) d𝛾(x) + |𝑣𝒯 |2𝛼,𝒵(𝒯 ) +

∫︁
Γ0

𝛼𝑡(x)𝑣2
𝒯 (x) d𝛾(x)

≤ 𝐶29(𝜅, 𝛼, Ω)𝒮, (80)

where
𝒮 =

∫︁
Ω

𝑓𝒯 (x)𝑢𝒯 (x) dx +
∫︁

Γ0

(𝑔𝒯 − 𝛽𝒯 ℎ𝒯 )(x)𝑣𝒯 (x) d𝛾(x) +
⃦⃦
ℎ
⃦⃦
𝒞1(Ω)

|(𝑢𝒯 , 𝑣𝒯 )|1,𝒳 (𝒯 ). (81)

It is useful to note that, since 𝑢𝜎 = 0 for all 𝜎 ∈ Γ𝒯1 ,

|(𝑢𝒯 , 𝑣𝒯 )|21,𝒳 (𝒯 ) = |𝑢𝒯 |21,𝒯 +
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 +
∑︁

𝜎∈ℰ𝐾∩Γ𝒯1

𝜏𝜎𝑢2
𝐾 .

Using the notation 0 ≥ 𝐶𝛼 = min𝜕Ω 𝛼t and assumption (𝐴3), equation (80) implies that

|(𝑢𝒯 , 𝑣𝒯 )|21,𝒳 (𝒯 ) + (𝛽0 + 𝐶𝛼)‖𝑣𝒯 ‖2𝐿2(Γ0)
+ |𝑣𝒯 |2𝛼,𝒵(𝒯 ) ≤ 𝐶29(𝜅, 𝛼, Ω)𝒮.

As before, the previous inequality with the hypothesis 𝐶𝛼 ≥ −𝛽0
2 imply that

|(𝑢𝒯 , 𝑣𝒯 )|21,𝒳 (𝒯 ) + ‖𝑣𝒯 ‖2𝐿2(Γ0)
+ |𝑣𝒯 |2𝛼,𝒵(𝒯 ) ≤ 𝐶30(𝜅, 𝛽0, 𝛼, Ω)𝒮. (82)

Using the Cauchy–Schwarz inequality and applying, respectively, Lemmas 6.3 (with 𝐼 = Γ0) and 6.4 yield⃒⃒⃒⃒∫︁
Ω

𝑓𝒯 (x)𝑢𝒯 (x) dx
⃒⃒⃒⃒
≤ ‖𝑓𝒯 ‖𝐿2(Ω)‖𝑢𝒯 ‖𝐿2(Ω)
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≤ 𝐶31(Ω)‖𝑓‖𝐿2(Ω)

(︁
|𝑢𝒯 |1,𝒯 + ‖𝛾(𝑢𝒯 )‖𝐿2(Γ0)

)︁
≤ 𝐶32(Ω)‖𝑓‖𝐿2(Ω)|(𝑢𝒯 , 𝑣𝒯 )|1,𝒳 (𝒯 ). (83)

In addition to this, using the Cauchy–Schwarz inequality, the inequality (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2, the fact that
m(𝜎)
𝜏𝜎

= 𝑑𝜎 < diam(Ω) and Lemma 6.4 yield⃒⃒⃒⃒∫︁
Γ0

(𝑔𝒯 − 𝛽𝒯 ℎ𝒯 )(x)𝑣𝒯 (x) d𝛾(x)
⃒⃒⃒⃒
≤ ‖𝑔𝒯 − 𝛽𝒯 ℎ𝒯 ‖𝐿2(Γ0)

‖𝑣𝒯 ‖𝐿2(Γ0)

≤ 𝐶33(Ω)‖𝑔 − 𝛽ℎ‖𝐿2(Γ0)

⎛⎝ ∑︁
𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + ‖𝛾(𝑢𝒯 )‖2𝐿2(Γ0)

⎞⎠1/2

≤ 𝐶34(Ω)
(︁
‖𝑔‖𝐿2(Γ0)

+ ‖𝛽‖𝐿∞(Γ0)

⃦⃦
ℎ
⃦⃦
𝒞1(Ω)

)︁
|(𝑢𝒯 , 𝑣𝒯 )|1,𝒳 (𝒯 ). (84)

Gathering now this inequality with (83) and (81) implies that

|𝒮| ≤ 𝐶35(Ω)
(︁
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0)

+
(︁
‖𝛽‖𝐿∞(Γ0)

+ 1
)︁⃦⃦

ℎ
⃦⃦
𝒞1(Ω)

)︁
|(𝑢𝒯 , 𝑣𝒯 )|1,𝒳 (𝒯 ).

This with (82) imply that(︁
|(𝑢𝒯 , 𝑣𝒯 )|21,𝒳 (𝒯 ) + ‖𝑣𝒯 ‖2𝐿2(Γ0)

+ |𝑣𝒯 |2𝛼,𝒵(𝒯 )

)︁ 1
2

≤ 𝐶36(𝛼, 𝜅, Ω, 𝛽0)
(︁
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0)

+
(︁
‖𝛽‖𝐿∞(Γ0)

+ 1
)︁⃦⃦

ℎ
⃦⃦
𝒞1(Ω)

)︁
. (85)

Using now the triangle inequality, the definition (60) of |(·, ·)|1,𝒳 (𝒯 ), the fact that 𝑢𝐾 = 𝑢𝐾 + ℎ𝐾 and
𝑢𝜎 = 𝑢𝜎 + ℎ(y𝜎) and also since |ℎ𝐾 − ℎ𝐿|, |ℎ𝜎 − ℎ𝐾 |, and |ℎ(y𝜎+) − ℎ(y𝜎)| are, respectively, bounded
above by, up to multiplicative constants which are independent of the parameters of the discretization,
𝑑𝐾|𝐿‖ℎ‖𝒞1(Ω), 𝑑𝐾,𝜎‖ℎ‖𝒞1(Ω) and m(𝜎)‖ℎ‖𝒞1(Ω), estimate (85) yields the desired estimate (59).

(ii) Proof of the existence and uniqueness. The finite volume scheme of Definition 6.1 leads to a linear
system of equations whose matrix is square since the number of unknowns is 𝑀 = 𝑀1 + 𝑀2, where 𝑀1

is the number of elements of 𝒯 and 𝑀2 is the number of elements of 𝜎 ∈ ℰext such that 𝜎 ⊂ Γ0 (under
Assumption 5.2). The number of equations is also 𝑀 . Therefore, the existence of a solution of such scheme
is equivalent to its uniqueness. Such uniqueness can be deduced from the estimate (59) by assuming that
(𝑓, ℎ, 𝑔) = (0, 0, 0). This with estimate (59) imply that |(𝑢𝒯 , 𝑣𝒯 )|1,𝒳 (𝒯 ) = 0. On the other hand, the fact
that ℎ = 0 implies that 𝑢𝜎 = 0 for all 𝜎 ∈ Γ𝒯1 . From this and the fact that |(𝑢𝒯 , 𝑣𝒯 )|1,𝒳 (𝒯 ) = 0, we deduce
(𝑢𝒯 , 𝑣𝒯 ) = (0, 0). This completes the proof of Theorem 6.2.

�

Remark 6.6 (Formulation of a scheme when ℎ is not “smooth” and its well-posedness). The formulation
of the finite volume scheme of Definition 6.1 requires the regularity assumption ℎ ∈ 𝒞1(𝜕Ω) and to get the
stability result (59), we have assumed the existence of ℎ ∈ 𝒞1(Ω) such that 𝛾(ℎ) = ℎ. However, these regularity
assumptions can be weakened, respectively, to ℎ ∈ 𝐿2(𝜕Ω) to define a suitable finite volume scheme and to
ℎ ∈ 𝐻1/2(𝜕Ω) to get a stability result similar to (59). When ℎ ∈ 𝐿2(𝜕Ω), there is another possibility to define a
finite volume scheme (instead of that given in Definition 6.1) in which ℎ(y𝜎) involved in Definition 6.1 can be
replaced by the mean value on the edge 𝜎, see Remark 9.5, Page 42 of [22], that is,

1
m(𝜎)

∫︁
𝜎

ℎ(x) d𝛾(x).
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In order to get a discrete stability similar to the one of (59), it suffices only to assume that ℎ ∈ 𝐻1/2(𝜕Ω).
Consequently, there exists a function ℎ ∈ 𝐻1(Ω) such that 𝛾(ℎ) = ℎ. Using Lemma 9.4, Page 49 of [22], we are
able to prove the following discrete well-posedness result, under some hypotheses on the mesh 𝒯 :(︁

|(𝑢𝒯 , 𝑣𝒯 )|21,𝒳 (𝒯 ) + ‖𝑣𝒯 ‖2𝐿2(Γ0)
+ |𝑣𝒯 |2𝛼,𝒵(𝒯 )

)︁ 1
2

≤ 𝐶37(𝛼, 𝜅, Ω, 𝛽0)
(︁
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0) +

(︀
‖𝛽‖𝐿∞(Γ0) + 1

)︀⃦⃦
ℎ
⃦⃦

𝐻1(Ω)

)︁
.

6.3. Convergence rate of scheme (52)–(54)

In this subsection, we prove the following convergence result.

Theorem 6.7 (Convergence rate of scheme (52)–(54)). In addition to the hypotheses of Theorem 6.2, assume
that the weak solution 𝜔 of (30), (31) and ℎ are smooth, namely, 𝜔, ℎ ∈ 𝒞2(Ω) (and consequently 𝑢 = 𝜔 + ℎ ∈
𝒞2(Ω)), and that 𝜅 ∈ 𝒞1(Ω). We define the errors:

𝑒𝐾 = 𝑢(x𝐾)− 𝑢𝐾 , ∀𝐾 ∈ 𝒯 , 𝑒𝜎 = 𝑢(y𝜎)− 𝑢𝜎, ∀𝜎 ∈ Γ𝒯0 , and 𝑒𝜎 = 0, ∀𝜎 ∈ Γ𝒯1 ,

and assume that the size(𝒯 ) is small, namely, size(𝒯 ) < 1. Then, the following error error estimate holds:

|(𝑒𝒯 , 𝑒𝒯 )|1,𝒳 (𝒯 ) + ‖𝑒𝒯 ‖𝐿2(Γ0)
+ |𝑒𝒯 |𝛼,𝒵(𝒯 ) ≤ 𝐶38

√︀
size(𝒯 ), (86)

where (𝑒𝒯 , 𝑒𝒯 ) ∈ 𝒳 (𝒯 ) (see Definition 5.5) whose values over (𝐾, 𝜎) are (𝑒𝐾 , 𝑒𝜎).
The order

√︀
size(𝒯 ) is the same as the one obtained in [10] (using the mesh of Definition 5.1) and [9]

(for general meshes) for a finite volume scheme approximating the Poisson’s equation with oblique boundary
conditions on the whole boundary.

Proof. Let us define the following auxiliary errors:

𝑅𝐾,𝜎 :=

{︃
𝜏𝜅
𝜎 (𝑢(x𝐿)− 𝑢(x𝐾))−

∫︀
𝜎

𝜅(x)∇𝑢(x) · n𝐾,𝜎(x) d𝛾(x), ∀𝜎 = 𝐾|𝐿,

𝜏𝜅
𝜎 (𝑢(y𝜎)− 𝑢(x𝐾))−

∫︀
𝜎

𝜅(x)∇𝑢(x) · n𝐾,𝜎(x) d𝛾(x), ∀𝜎 ∈ ℰ𝐾 ∩ ℰext.
(87)

It is shown in [22], Page 81 that
|𝑅𝐾,𝜎| ≤ 𝐶39m(𝜎)size(𝒯 ). (88)

Since the value of the exact solution 𝑢 over the boundary Γ1 is ℎ when the problem considered is (6)–(8), then
the errors 𝑅𝐾,𝜎 in this case are expressed as follows:

𝑅𝐾,𝜎 :=

⎧⎪⎨⎪⎩
𝜏𝜅
𝜎 (𝑢(x𝐿)− 𝑢(x𝐾))−

∫︀
𝜎

𝜅(x)∇𝑢(x) · n𝐾,𝜎(x) d𝛾(x), ∀𝜎 = 𝐾|𝐿,

𝜏𝜅
𝜎 (ℎ(y𝜎)− 𝑢(x𝐾))−

∫︀
𝜎

𝜅(x)∇𝑢(x) · n𝐾,𝜎(x) d𝛾(x), ∀𝜎 ∈ ℰ𝐾 ∩ Γ1,

𝜏𝜅
𝜎 (𝑢(y𝜎)− 𝑢(x𝐾))−

∫︀
𝜎

𝜅(x)∇𝑢(x) · n𝐾,𝜎(x) d𝛾(x), ∀𝜎 ∈ ℰ𝐾 ∩ Γ0.

(89)

Using the notations of Definition 5.4, we define the error

𝑟𝜎 = 𝛼(𝜎𝑒)𝑢(𝜎𝑒)− 𝛼(𝜎𝑒)𝑢
(︀
y𝜎,+

)︀
.

Using a Taylor expansion, the following estimate holds:

|𝑟𝜎| ≤ 𝐶40|𝛼(𝜎𝑒)|m(𝜎). (90)

Both estimates (88) and (90) hold under the assumption that 𝑢 ∈ 𝒞2(Ω). Using (41) and (89) yields that, for
all 𝐾 ∈ 𝒯 ,

−
∑︁

𝜎=𝐾|𝐿

𝜏𝜅
𝜎 (𝑢(x𝐿)− 𝑢(x𝐾))−

∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜅
𝜎 (𝑢(y𝜎)− 𝑢(x𝐾)) = m(𝐾)𝑓𝐾 −

∑︁
𝜎∈ℰ

𝑅𝐾,𝜎. (91)
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Using (7), (89) (third branch) and rule (39) imply that, for all 𝜎 ∈ ℰ𝐾 ∩ Γ𝒯0 ,

− 𝜏𝜅
𝜎 (𝑢(y𝜎)− 𝑢(x𝐾)) = 𝛼(𝜎𝑒)𝑢(𝜎𝑒)− 𝛼(𝜎𝑏)𝑢(𝜎𝑏) +

∫︁
𝜎

𝛽(x)𝑢(x) d𝛾(x)−m(𝜎)𝑔𝜎 −𝑅𝐾,𝜎

= 𝛼(𝜎𝑒)𝑢
(︀
y𝜎,+

)︀
− 𝛼(𝜎𝑏)𝑢

(︀
y𝜎−,+

)︀
+ m(𝜎)𝛽𝜎𝑢(y𝜎)−m(𝜎)𝑔𝜎 −𝑅𝐾,𝜎

+ 𝑟𝜎 − 𝑟𝜎− + 𝑙𝜎, (92)

where 𝑙𝜎 =
∫︀

𝜎
𝛽(x)𝑢(x) d𝛾(x)−m(𝜎)𝛽𝜎𝑢(y𝜎). Using a Taylor expansion, we obtain

|𝑙𝜎| ≤ 𝐶41m(𝜎)size(𝒯 ). (93)

Subtracting (52) and (53) from (91) and (92), respectively, yield that for all 𝐾 ∈ 𝒯 ,

−
∑︁

𝜎=𝐾|𝐿

𝜏𝜅
𝜎 (𝑒𝐿 − 𝑒𝐾)−

∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾) = −

∑︁
𝜎∈ℰ𝐾

𝑅𝐾,𝜎 (94)

and, for all 𝜎 ∈ ℰ𝐾 such that 𝜎 ⊂ Γ0,

− 𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾) = 𝛼(𝜎𝑒)𝑒𝜎,+ − 𝛼(𝜎𝑏)𝑒𝜎−,+ + m(𝜎)𝛽𝜎𝑒𝜎 −𝑅𝐾,𝜎 + 𝑟𝜎 − 𝑟𝜎− + 𝑙𝜎. (95)

Multiplying both sides of (94) by 𝑒𝐾 and summing the result over 𝐾 ∈ 𝒯 , we obtain

−
∑︁
𝐾∈𝒯

𝑒𝐾

∑︁
𝜎∈ℰ𝐾

𝑅𝐾,𝜎 = |𝑒𝒯 |21,𝜅,𝒯 +
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾)2 +

∑︁
𝜎∈ℰ𝐾∩Γ𝒯1

𝜏𝜅
𝜎 𝑒2

𝐾 −
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾)𝑒𝜎.

This together with (95) imply

−
∑︁
𝐾∈𝒯

𝑒𝐾

∑︁
𝜎∈ℰ𝐾

𝑅𝐾,𝜎 = |𝑒𝒯 |21,𝜅,𝒯 +
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾)2 +

∑︁
𝜎∈ℰ𝐾∩Γ𝒯1

𝜏𝜅
𝜎 𝑒2

𝐾

+
∑︁

𝜎∈Γ𝒯0

(︀
𝛼(𝜎𝑒)𝑒𝜎,+ − 𝛼(𝜎𝑏)𝑒𝜎−,+

)︀
𝑒𝜎 +

∫︁
Γ0

𝛽𝒯 (x)(𝑒𝒯 )2(x) d𝛾(x)

−
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝑅𝐾,𝜎𝑒𝜎 +
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

(𝑟𝜎 − 𝑟𝜎−)𝑒𝜎 +
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝑙𝜎𝑒𝜎.

This together with the same reasoning used to obtain (82) imply that

|(𝑒𝒯 , 𝑒𝒯 )|21,𝒳 (𝒯 ) + ‖𝑒𝒯 ‖2𝐿2(Γ0)
+ |𝑒𝒯 |2𝛼,𝒵(𝒯 ) ≤ 𝐶42(|T1|+ |T2|+ |T3|), (96)

where

T1 = −
∑︁
𝐾∈𝒯

𝑒𝐾

∑︁
𝜎∈ℰ𝐾

𝑅𝐾,𝜎 +
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝑅𝐾,𝜎𝑒𝜎, T2 = −
∑︁

𝜎∈Γ𝒯0

(𝑟𝜎 − 𝑟𝜎−)𝑒𝜎, and T3 = −
∑︁

𝜎∈Γ𝒯0

𝑙𝜎𝑒𝜎.

Let us now estimate each term in the RHS of (96).

(i) Estimate of the first term in the RHS of (96). Re-ordering the sum and using the conservativity
property 𝑅𝐾,𝜎 = −𝑅𝐿,𝜎 for all 𝜎 = 𝐾|𝐿 ∈ ℰint yield

T1 =
∑︁

𝜎=𝐾|𝐿

𝑅𝐾,𝜎(𝑒𝐿 − 𝑒𝐾) +
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝑅𝐾,𝜎(𝑒𝜎 − 𝑒𝐾)−
∑︁

𝜎∈ℰ𝐾∩Γ𝒯1

𝑅𝐾,𝜎𝑒𝐾 .

Using this expression together with (88), the fact
∑︀

𝜎∈ℰ m(𝜎)𝑑𝜎 = 2m(Ω) and the Cauchy–Schwarz inequal-
ity imply that

|T1| ≤ 𝐶43size(𝒯 )|(𝑒𝒯 , 𝑒𝒯 )|1,𝒳 (𝒯 ). (97)
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(ii) Estimate of the second term in the RHS of (96). Re-ordering the sum and using the Cauchy–Schwarz
inequality together with estimate (90) and the fact that m(𝜎) ≤ size(𝒯 ) imply that

|T2| =

⃒⃒⃒⃒
⃒ ∑︁
𝜎∈ℰext

𝑟𝜎(𝑒𝜎+ − 𝑒𝜎)

⃒⃒⃒⃒
⃒

≤ 𝐶40

√︀
size(𝒯 )

√︁
‖𝛼‖𝒞(Ω)

(︃ ∑︁
𝜎∈ℰext

m(𝜎)

)︃ 1
2
(︃ ∑︁

𝜎∈ℰext

|𝛼(𝜎𝑒)|(𝑒𝜎+ − 𝑒𝜎)2
)︃ 1

2

≤ 𝐶44

√︀
size(𝒯 )

√︁
‖𝛼‖𝒞(Ω)|𝑒𝒯 |𝛼,𝒵(𝒯 ) ≤ 𝐶45

√︀
size(𝒯 )|𝑒𝒯 |𝛼,𝒵(𝒯 ). (98)

(iii) Estimate of the third term in the RHS of (96). Using the Cauchy–Schwarz inequality together with
estimate (93) and the reasoning used to obtain (84) yield

|T3| ≤ 𝐶46size(𝒯 )‖𝑒𝒯 ‖𝐿2(Γ0) ≤ 𝐶47size(𝒯 )|(𝑒𝒯 , 𝑒𝒯 )|1,𝒳 (𝒯 ). (99)

Using (96)–(99) and that size(𝒯 ) < 1, we deduce the desired estimate (86). This completes the proof of
Theorem 6.7.

�

7. Formulation of a finite volume scheme for the problem (6) and (7) with
Neumann boundary condition (9) and its convergence analysis

As in Section 6, let us first describe the principles of the finite volume scheme we want to present in order to
approximate the problem given by equations (6), (7) and (9). Let (𝑢𝐾)𝐾∈𝒯 and (𝑢𝜎)𝜎∈ℰext denote the discrete
unknowns. These unknowns are expected to approximate the exact solution 𝑢 in the control volumes 𝐾 ∈ 𝒯
and on the edges 𝜎 ∈ ℰext. We look now for equations satisfied by these discrete unknowns using a convenient
approximation for (41) and the boundary conditions (7) and (9). To this end, we consider the following cases:

(I) 𝜎 ∈ ℰ𝐾 ∩ ℰint with 𝜎 = 𝐾|𝐿. In this case, −
∫︀

𝜎
𝜅(x)∇𝑢(x) · n𝐾,𝜎 d𝛾(x) can be approximated using the

same two-points formula (43) and (44).
(II) 𝜎 ∈ ℰ𝐾 and 𝜎 ⊂ Γ1. In this case, −

∫︀
𝜎

𝜅(x)∇𝑢(x) · n𝐾,𝜎 d𝛾(x) can be approximated using the Neumann
boundary condition (9) on Γ1 (see [22], equation (10.7), Page 64 and [22], equation (11.8), Page 83), as

𝐹𝐾,𝜎 = −𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾) = −m(𝜎)𝑞𝜎 = −

∫︁
𝜎

𝑞(x) d𝛾(x).

(III) 𝜎 ∈ ℰ𝐾 and 𝜎 ⊂ Γ0. In this case, −
∫︀

𝜎
𝜅(x)∇𝑢(x)·n𝐾,𝜎 d𝛾(x) can be expressed, using the oblique boundary

condition (7), as in (47)–(49).

7.1. Definition of the scheme for the Neumann boundary condition (9) on Γ1

To summarize our finite volume scheme stated above, we introduce the following definition.

Definition 7.1 (Definition of a finite volume scheme for (6), (7) and (9)). Let 𝜏𝜅
𝜎 be defined in (44) and (46).

Define the discrete fluxes

𝐹𝐾,𝜎 =
{︂
−𝜏𝜅

𝜎 (𝑢𝐿 − 𝑢𝐾), ∀𝜎 = 𝐾|𝐿,

−𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾), ∀𝜎 ∈ ℰ𝐾 ∩ ℰext.

(100)

Let (𝑢𝐾)𝐾∈𝒯 and (𝑢𝜎)𝜎∈ℰext denote the set of discrete unknowns. As a finite volume scheme, we suggest the
scheme given by (52), with

𝐹𝐾,𝜎 =
{︂
−m(𝜎)𝑞𝜎, ∀𝜎 ∈ ℰ𝐾 with 𝜎 ⊂ Γ1

𝛼(𝜎𝑒)𝑢𝜎,+ − 𝛼(𝜎𝑏)𝑢𝜎−,+ + m(𝜎)𝛽𝜎𝑢𝜎 −m(𝜎)𝑔𝜎, ∀𝜎 ∈ ℰ𝐾 with 𝜎 ⊂ Γ0.
(101)
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7.2. Well-posedness of the discrete problem

Let us extend the definition of 𝑢𝜎 by (55) such that the discrete fluxes (100) can be written in a unified
form as (57). One of the properties we use to analyse the finite volume schemes is conservativity (which can be
checked from (100)), that is,

𝐹𝐾,𝜎 = −𝐹𝐿,𝜎, ∀𝜎 = 𝐾|𝐿. (102)

The results of this subsection are summarized in the following theorem.

Theorem 7.2 (Well-posedness of scheme of Definition 7.1). Assume that the hypotheses of Theorem 4.4 , which
states the well-posedness of the weak solution of problem (6), (7) with the Neumann boundary condition (9),
are satisfied. Let 𝒯 be an admissible mesh in the sense of Definition 5.1 satisfying Assumption 5.2. Then, there
exists a unique solution (𝑢𝐾)𝐾∈𝒯 and (𝑢𝜎)𝜎∈ℰext to the finite volume scheme of Definition 7.1. Corresponding
to this unique solution, let 𝒴(𝒯 ) ∋ 𝑢𝒯 be defined such that its constant value over any 𝐾 ∈ 𝒯 is 𝑢𝐾 . Also, let
𝒵(𝒯 ) ∋ 𝑣𝒯 be defined such that its constant value over any 𝜎 ∈ ℰext is 𝑢𝜎. Then, the above discrete solution
satisfies the following stability estimate:

‖𝑢𝒯 ‖1,𝒯 +

(︃ ∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2
)︃ 1

2

+ |𝑣𝒯 |𝛼,𝒵(𝒯 ) ≤ 𝐶48

(︀
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0) + ‖𝑞‖𝐿2(Γ1)

)︀
, (103)

where ‖ · ‖1,𝒯 (resp. | · |𝛼,𝒵(𝒯 )) is the discrete norm (resp. semi-norm) defined in (63) (resp. (62)).

Proof. We prove Theorem 7.2 item by item.

(i) Proof of the discrete stability (103). To get the discrete well-posedness, we multiply both sides of (52)
by 𝑢𝐾 and sum over 𝐾 ∈ 𝒯 to get∑︁

𝐾∈𝒯
𝑢𝐾

∑︁
𝜎∈ℰ𝐾

𝐹𝐾,𝜎 =
∫︁

Ω

𝑓𝒯 (x)𝑢𝒯 (x) dx, (104)

where 𝑓𝒯 , 𝑢𝒯 ∈ 𝒴(𝒯 ) whose values over 𝐾 are, respectively, 𝑓𝐾 and 𝑢𝐾 . Using the conservativity property
(102), and equations (100) and (101) (recall that Γ𝒯0 and Γ𝒯1 are given in (40)), the LHS of (104) can be
written as ∑︁

𝐾∈𝒯
𝑢𝐾

∑︁
𝜎∈ℰ𝐾

𝐹𝐾,𝜎 =
∑︁

𝜎=𝐾|𝐿

𝐹𝐾,𝜎(𝑢𝐾 − 𝑢𝐿) +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝑢𝐾𝐹𝐾,𝜎

= |𝑢𝒯 |21,𝜅,𝒯 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)2 −

∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)𝑢𝜎

= |𝑢𝒯 |21,𝜅,𝒯 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)2

−
∫︁

Γ1

𝑞𝒯 (x)𝑣𝒯 (x) d𝛾(x)−
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)𝑢𝜎, (105)

where 𝑞𝒯 , 𝑣𝒯 are constant over each 𝜎 ∈ Γ𝒯1 whose values over 𝜎 are 𝑞𝜎 and 𝑢𝜎, respectively, and | · |21,𝜅,𝒯
is given by (69) in Lemma 6.5. We show that the fourth term on RHS of (105) is positive up to an additive
quantity expressed in terms of the function 𝑔. Indeed, using the discrete boundary condition (101) on Γ0,
equation (74) holds with ℎ = 0, 𝑢𝒯 = 𝑢𝒯 , and 𝑣𝒯 = 𝑣𝒯 , where 𝑔𝒯 , 𝛽𝒯 and 𝑣𝒯 are constant over each 𝜎 ∈ Γ𝒯0
whose values over 𝜎 are, respectively, 𝑔𝜎, 𝛽𝜎 and 𝑢𝜎. Since 𝛼 = 0 over Γ1, the first term on the RHS of (74)
can be written as (see [10], Page 19, [23], Pages 768, 769 and [22], Pages 42, 43),∑︁

𝜎∈ℰ𝐾∩Γ0

(︀
𝛼(𝜎𝑒)𝑢𝜎,+ − 𝛼(𝜎𝑏)𝑢𝜎−,+

)︀
𝑢𝜎 =

∑︁
𝜎∈ℰext

(︀
𝛼(𝜎𝑒)𝑢𝜎,+ − 𝛼(𝜎𝑏)𝑢𝜎−,+

)︀
𝑢𝜎
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=
∑︁

𝜎∈ℰext

|𝛼(𝜎𝑒)|(𝑢𝜎,+ − 𝑢𝜎,−)𝑢𝜎,+

=
1
2

∑︁
𝜎∈ℰext

|𝛼(𝜎𝑒)|
(︀
(𝑢𝜎,+ − 𝑢𝜎,−)2 + 𝑢2

𝜎,+ − 𝑢2
𝜎,−
)︀

=
1
2
|𝑣𝒯 |2𝛼,𝒵(𝒯 ) +

1
2

∫︁
𝜕Ω

𝛼t(x)𝑣2
𝒯 (x) d𝛾(x)

=
1
2
|𝑣𝒯 |2𝛼,𝒵(𝒯 ) +

1
2

∫︁
Γ0

𝛼t(x)𝑣2
𝒯 (x) d𝛾(x), (106)

where, since 𝛼(𝜎𝑒) = 0 for all 𝜎 ∈ Γ𝒯1 and {𝑢𝜎,+, 𝑢𝜎,−} = {𝑢𝜎+ , 𝑢𝜎},

|𝑣𝒯 |2𝛼,𝒵(𝒯 ) =
∑︁

𝜎∈ℰext

|𝛼(𝜎𝑒)|(𝑢𝜎,+ − 𝑢𝜎,−)2 =
∑︁

𝜎∈Γ𝒯0

|𝛼(𝜎𝑒)|(𝑢𝜎,+ − 𝑢𝜎,−)2

=
∑︁

𝜎∈Γ𝒯0

|𝛼(𝜎𝑒)|(𝑢𝜎+ − 𝑢𝜎)2. (107)

Note that equation (106) has the same form of equation (75). Equation (106) together with (74) (with, as
stated before, (ℎ, 𝑢𝒯 , 𝑣𝒯 ) = (0, 𝑢𝒯 , 𝑣𝒯 )), (104), and (105) imply that∫︁

Ω

𝑓𝒯 (x)𝑢𝒯 (x) dx +
∫︁

Γ0

𝑔𝒯 (x)𝑣𝒯 (x) d𝛾(x) +
∫︁

Γ1

𝑞𝒯 (x)𝑣𝒯 (x) d𝛾(x) = |𝑢𝒯 |21,𝜅,𝒯

+
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾)2 +

∫︁
Γ0

𝛽𝒯 (x)𝑣2
𝒯 (x) d𝛾(x) +

1
2
|𝑣𝒯 |2𝛼,𝒵(𝒯 )

+
1
2

∫︁
Γ0

𝛼t(x)𝑣2
𝒯 (x) d𝛾(x).

Using this equation, the assumption (𝐴3), applying Lemma 6.5 and using the notation 0 ≥ 𝐶𝛼 = min𝜕Ω 𝛼t,
we obtain

|𝑢𝒯 |21,𝒯 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + (𝛽0 + 𝐶𝛼)‖𝑣𝒯 ‖2𝐿2(Γ0)
+ |𝑣𝒯 |2𝛼,𝒵(𝒯 )

≤ 𝐶49

(︂∫︁
Ω

𝑓𝒯 (x)𝑢𝒯 (x) dx +
∫︁

Γ0

𝑔𝒯 (x)𝑣𝒯 (x) d𝛾(x) +
∫︁

Γ1

𝑞𝒯 (x)𝑣𝒯 (x) d𝛾(x)
)︂

. (108)

As before, if 𝐶𝛼 ≥ −𝛽0/2 then (108) implies that

|𝑢𝒯 |21,𝒯 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + ‖𝑣𝒯 ‖2𝐿2(Γ0)
+ |𝑣𝒯 |2𝛼,𝒵(𝒯 )

≤ 𝐶50

(︂∫︁
Ω

𝑓𝒯 (x)𝑢𝒯 (x) dx +
∫︁

Γ0

𝑔𝒯 (x)𝑣𝒯 (x) d𝛾(x) +
∫︁

Γ1

𝑞𝒯 (x)𝑣𝒯 (x) d𝛾(x)
)︂

≤ 𝐶51

(︀
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0) + ‖𝑞‖𝐿2(Γ1)

)︀(︀
‖𝑢𝒯 ‖𝐿2(Ω) + ‖𝑣𝒯 ‖𝐿2(𝜕Ω)

)︀
. (109)

On the other hand, using that 𝑑𝜎 (defined in the notations following Definition 5.1) satisfies 𝑑𝜎 < diam(Ω),
it yields

1
2
‖𝑣𝒯 ‖2𝐿2(𝜕Ω) ≤

∑︁
𝜎∈ℰext

m(𝜎)(𝑢𝜎 − 𝑢𝐾)2 + ‖𝛾(𝑢𝒯 )‖2𝐿2(𝜕Ω)
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≤ 𝐶52

(︃ ∑︁
𝜎∈ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + ‖𝛾(𝑢𝒯 )‖2𝐿2(𝜕Ω)

)︃
.

Gathering this with Lemma 6.3 gives the following estimate on the second term on the RHS of (109):

‖𝑢𝒯 ‖2𝐿2(Ω) + ‖𝑣𝒯 ‖2𝐿2(𝜕Ω) ≤ ‖𝑢𝒯 ‖2𝐿2(Ω) + 2𝐶52

(︃ ∑︁
𝜎∈ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + ‖𝛾(𝑢𝒯 )‖2𝐿2(𝜕Ω)

)︃

≤ 𝐶53

(︃ ∑︁
𝜎∈ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + ‖𝑢𝒯 ‖21,𝒯

)︃
.

Further, using that 𝜏𝜎 ≥ m(𝜎)
diam(Ω) , we get

∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + ‖𝑣𝒯 ‖2𝐿2(Γ0)
≥ 𝐶54

⎛⎝∑︁
𝜎∈Γ𝒯0

m(𝜎)(𝑢𝜎 − 𝑢𝐾)2 +
∑︁

𝜎∈Γ𝒯0

m(𝜎)(𝑢𝜎)2

⎞⎠
≥ 𝐶54

2
‖𝛾(𝑢𝒯 )‖2𝐿2(Γ0)

. (110)

The LHS of (109) is bounded below by

|𝑢𝒯 |21,𝒯 +
1
2

(︃ ∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + ‖𝑣𝒯 ‖2𝐿2(Γ0)

)︃
+ |𝑣𝒯 |2𝛼,𝒵(𝒯 ).

Gathering this with (110) and Lemma 6.3 give the following lower bound for the LHS of (109):

|𝑢𝒯 |21,𝒯 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + ‖𝑣𝒯 ‖2𝐿2(Γ0)
+ |𝑣𝒯 |2𝛼,𝒵(𝒯 )

≥ |𝑢𝒯 |21,𝒯 +
1
2

∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + 𝐶55‖𝛾(𝑢𝒯 )‖2𝐿2(Γ0)
+ |𝑣𝒯 |2𝛼,𝒵(𝒯 )

≥ 𝐶56|||(𝑢𝒯 , 𝑣𝒯 )|||2, (111)

where

|||(𝑢𝒯 , 𝑣𝒯 )|||2 := ‖𝑢𝒯 ‖21,𝒯 +
∑︁

𝜎∈ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2 + |𝑣𝒯 |2𝛼,𝒵(𝒯 )

≤ 𝐶57

(︀
‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐿2(Γ0) + ‖𝑞‖𝐿2(Γ1)

)︀
|||(𝑢𝒯 , 𝑣𝒯 )|||.

This estimate together with the inequality (𝑎 + 𝑏 + 𝑐)2 ≤ 3(𝑎2 + 𝑏2 + 𝑐2) imply the desired estimate (103).

(ii) Proof of the existence and uniqueness of the solution. The finite volume scheme of Definition 7.1
leads to a linear system of equations whose matrix is square since the number of unknowns is 𝑀 = 𝑀1+𝑀2,
where 𝑀1 is the number of elements of 𝒯 and 𝑀2 is the number of elements of 𝜎 ∈ ℰext under Assumption 5.2.
The number of equations is also 𝑀 . Therefore, the existence of the solution for such scheme is equivalent to
its uniqueness. Such uniqueness can be deduced from the estimate (103) by assuming that (𝑓, 𝑔, 𝑞) = (0, 0, 0)
and using the fact that ‖𝑢𝒯 ‖1,𝒯 +

(︀∑︀
𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑢𝜎 − 𝑢𝐾)2
)︀1/2 is a norm on 𝒳 (𝒯 ) = 𝒴(𝒯 ) × 𝒵(𝒯 ) ⊂

𝐿2(Ω)× 𝐿2(𝜕Ω), which yields 𝑢𝒯 = 0 and 𝑣𝒯 = 0. This completes the proof of Theorem 7.2.

�
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7.3. Convergence rate of the scheme for the Neumann boundary condition (9) on Γ1

The results of this subsection are summarized in the following new theorem.

Theorem 7.3 (Convergence rate of scheme of Definition 7.1). In addition to the hypotheses of Theorem 7.2,
assume that the weak solution stated in Theorem 4.4 for problem (6), (7) and (9) is “smooth”, namely 𝑢 ∈ 𝒞2(Ω),
and that 𝜅 ∈ 𝒞1(Ω). For an admissible mesh 𝒯 in the sense of Definition 5.1 satisfying Assumption 5.2, let us
define the errors:

𝑒𝐾 = 𝑢(x𝐾)− 𝑢𝐾 , ∀𝐾 ∈ 𝒯 and 𝑒𝜎 = 𝑢(y𝜎)− 𝑢𝜎, ∀𝜎 ∈ ℰext,

where (𝑒𝒯 , 𝑒𝒯 ) denotes the element of 𝒳 (𝒯 ) whose values over (𝐾, 𝜎) are (𝑒𝐾 , 𝑒𝜎). Assume also that the size(𝒯 )
is small, namely, size(𝒯 ) < 1. Then the following error estimate holds:

‖𝑒𝒯 ‖1,𝒯 +

(︃ ∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑒𝜎 − 𝑒𝐾)2
)︃1/2

+ |𝑒𝒯 |𝛼,𝒵(𝒯 ) ≤ 𝐶58

√︀
size(𝒯 ), (112)

where ‖ · ‖1,𝒯 is the discrete norm given by (63).

Proof. From (87) (second branch) and (9), we deduce that

𝑅𝐾,𝜎 = 𝜏𝜅
𝜎 (𝑢(y𝜎)− 𝑢(x𝐾))−m(𝜎)𝑞𝜎, ∀𝜎 ∈ ℰ𝐾 ∩ Γ𝒯1 . (113)

Using (41) and (87) yield that for all 𝐾 ∈ 𝒯 ,

−
∑︁

𝜎=𝐾|𝐿

𝜏𝜅
𝜎 (𝑢(x𝐿)− 𝑢(x𝐾))−

∑︁
𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑢(y𝜎)− 𝑢(x𝐾))

−
∑︁

𝜎∈ℰ𝐾∩Γ𝒯1

𝜏𝜅
𝜎 (𝑢(y𝜎)− 𝑢(x𝐾)) = m(𝐾)𝑓𝐾 −

∑︁
𝜎∈ℰ𝐾

𝑅𝐾,𝜎. (114)

Using (7), (87) (second branch) and the rule (39) imply that equation (92) holds for all 𝜎 ∈ ℰ𝐾∩Γ𝒯0 . Subtracting
(52) (see the definition of scheme given in Definition 7.1) and (101) (second branch) from (114) and (92),
respectively, yields, that for all 𝐾 ∈ 𝒯 ,

−
∑︁

𝜎=𝐾|𝐿

𝜏𝜅
𝜎 (𝑒𝐿 − 𝑒𝐾)−

∑︁
𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾)−

∑︁
𝜎∈ℰ𝐾∩Γ𝒯1

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾) = −

∑︁
𝜎∈ℰ𝐾

𝑅𝐾,𝜎 (115)

and, for all 𝜎 ∈ ℰ𝐾 ∩ Γ𝒯0 equation (95) holds. Multiplying both sides of (115) by 𝑒𝐾 , summing the result over
𝐾 ∈ 𝒯 , and using the reasoning of (105) yield

−
∑︁
𝐾∈𝒯

𝑒𝐾

∑︁
𝜎∈ℰ𝐾

𝑅𝐾,𝜎 = |𝑒𝒯 |21,𝜅,𝒯 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾)2

−
∑︁

𝜎∈ℰ𝐾∩Γ𝒯1

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾)𝑒𝜎 −

∑︁
𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾)𝑒𝜎, (116)

where | · |1,𝜅,𝒯 is the semi-norm given in Lemma 6.5. From (100) (second branch) and (101) (first branch), we
deduce that

−𝜏𝜅
𝜎 (𝑢𝜎 − 𝑢𝐾) = −m(𝜎)𝑞𝜎, ∀𝜎 ∈ ℰ𝐾 ∩ Γ𝒯1 .

Subtracting this from (113) yields

−𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾) = −𝑅𝐾,𝜎, ∀𝜎 ∈ ℰ𝐾 ∩ Γ𝒯1 .
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Gathering this with (116) yields

−
∑︁
𝐾∈𝒯

𝑒𝐾

∑︁
𝜎∈ℰ𝐾

𝑅𝐾,𝜎 +
∑︁

𝜎∈ℰ𝐾∩Γ𝒯1

𝑅𝐾,𝜎𝑒𝜎 = |𝑒𝒯 |21,𝜅,𝒯 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾)2 −

∑︁
𝜎∈ℰ𝐾∩Γ𝒯0

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾)𝑒𝜎.

Re-ordering the sum of the left hand side of the previous expression and using the property 𝑅𝐾,𝜎 = −𝑅𝐿,𝜎 for
all 𝜎 = 𝐾|𝐿 ∈ ℰint yield

−
∑︁
𝐾∈𝒯

𝑒𝐾

∑︁
𝜎∈ℰ𝐾

𝑅𝐾,𝜎 +
∑︁

𝜎∈ℰ𝐾∩Γ𝒯1

𝑅𝐾,𝜎𝑒𝜎

=
∑︁

𝜎=𝐾|𝐿

𝑅𝐾,𝜎(𝑒𝐿 − 𝑒𝐾) +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝑅𝐾,𝜎(𝑒𝜎 − 𝑒𝐾)−
∑︁

𝜎∈ℰ𝐾∩Γ𝒯0

𝑅𝐾,𝜎𝑒𝜎.

Gathering the previous two expressions with (95) (which still holds for all 𝜎 ∈ ℰ𝐾 ∩Γ𝒯0 , as stated above) imply
that

|𝑒𝒯 |21,𝜅,𝒯 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜅
𝜎 (𝑒𝜎 − 𝑒𝐾)2 +

∑︁
𝜎∈Γ𝒯0

(︀
𝛼(𝜎𝑒)𝑒𝜎,+ − 𝛼(𝜎𝑏)𝑒𝜎−,+

)︀
𝑒𝜎 +

∫︁
Γ0

𝛽𝒯 (x)(𝑒𝒯 )2(x) d𝛾(x)

+
∑︁

𝜎∈Γ𝒯0

(𝑟𝜎 − 𝑟𝜎−)𝑒𝜎 +
∑︁

𝜎∈Γ𝒯0

𝑙𝜎𝑒𝜎 =
∑︁

𝜎=𝐾|𝐿

𝑅𝐾,𝜎(𝑒𝐿 − 𝑒𝐾) +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝑅𝐾,𝜎(𝑒𝜎 − 𝑒𝐾).

This with the reasoning followed between (106)–(109) imply that

|𝑒𝒯 |21,𝒯 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑒𝜎 − 𝑒𝐾)2 + ‖𝑒𝒯 ‖2𝐿2(Γ0)
+ |𝑒𝒯 |2𝛼,𝒵(𝒯 )

≤ 𝐶59

⎧⎨⎩ ∑︁
𝜎=𝐾|𝐿

𝑅𝐾,𝜎(𝑒𝐿 − 𝑒𝐾) +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝑅𝐾,𝜎(𝑒𝜎 − 𝑒𝐾)−
∑︁

𝜎∈Γ𝒯0

(𝑟𝜎 − 𝑟𝜎−)𝑒𝜎 −
∑︁

𝜎∈Γ𝒯0

𝑙𝜎𝑒𝜎

⎫⎬⎭. (117)

Let us estimate each term on the RHS of (117):

(i) Estimate of the first and second terms on the RHS of (117). Using the Cauchy–Schwarz inequality
together with (88) and

∑︀
𝜎∈ℰ m(𝜎)𝑑𝜎 = 2m(Ω) (see [22], Page 62 or [25], equation (4.3), Page 1025),⃒⃒⃒⃒
⃒⃒ ∑︁
𝜎=𝐾|𝐿

𝑅𝐾,𝜎(𝑒𝐿 − 𝑒𝐾) +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝑅𝐾,𝜎(𝑒𝜎 − 𝑒𝐾)

⃒⃒⃒⃒
⃒⃒

≤ 𝐶60size(𝒯 )

⎛⎝|𝑒𝒯 |1,𝒯 +

(︃ ∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑒𝜎 − 𝑒𝐾)2
)︃ 1

2
⎞⎠. (118)

(ii) Estimate of the third term on the RHS of (117). Re-ordering the sum and using the Cauchy–Schwarz
inequality together with estimate (90) and the fact that m(𝜎) ≤ size(𝒯 ) imply that (recall that | · |𝛼,𝒵(𝒯 )

is the semi-norm on 𝒵(𝒯 ) given by (62) and also (107)) we obtain (98).
(iii) Estimate of the fourth term on the RHS of (117). Using the Cauchy–Schwarz inequality together

with estimate (93) yield (see also (99))⃒⃒⃒⃒
⃒⃒ ∑︁
𝜎∈Γ𝒯0

𝑙𝜎𝑒𝜎

⃒⃒⃒⃒
⃒⃒ ≤ 𝐶41size(𝒯 )

∑︁
𝜎∈Γ𝒯0

m(𝜎)|𝑒𝜎| ≤ 𝐶41

√︀
m(Γ0)size(𝒯 )‖𝑒𝒯 ‖𝐿2(Γ0). (119)
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Using (117) along with (98), (118) and (119), and that size(𝒯 ) < 1, we obtain

|𝑒𝒯 |21,𝒯 +
∑︁

𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑒𝜎 − 𝑒𝐾)2 + ‖𝑒𝒯 ‖2𝐿2(Γ0)
+ |𝑒𝒯 |2𝛼,𝒵(𝒯 )

≤ 𝐶61

√︀
size(𝒯 )

⎛⎝|𝑒𝒯 |1,𝒯 +

(︃ ∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑒𝜎 − 𝑒𝐾)2
)︃1/2

+ |𝑒𝒯 |𝛼,𝒵(𝒯 ) + ‖𝑒𝒯 ‖𝐿2(Γ0)

⎞⎠.

This estimate together with the inequality (𝑎 + 𝑏 + 𝑐 + 𝑑)2 ≤ 4(𝑎2 + 𝑏2 + 𝑐2 + 𝑑2) imply that

|𝑒𝒯 |1,𝒯 +

(︃ ∑︁
𝜎∈ℰ𝐾∩ℰext

𝜏𝜎(𝑒𝜎 − 𝑒𝐾)2
)︃1/2

+ ‖𝑒𝒯 ‖𝐿2(Γ0) + |𝑒𝒯 |𝛼,𝒵(𝒯 ) ≤ 4𝐶61

√︀
size(𝒯 ).

This with the inequality (111) (by choosing (𝑢𝒯 , 𝑣𝒯 ) = (𝑒𝒯 , 𝑒𝒯 )) yield the desired estimate (112). This
completes the proof of Theorem 7.3.

�

The problems (6)–(8) and (6), (7), (9) investigated both theoretically and numerically so far have been direct
and well-posed problems. In the next section, we formulate and investigate inverse and ill-posed problems arising
in boundary corrosion in which the coefficients 𝛽 and/or 𝛼 in (7) are unknown along with the main dependent
variable 𝑢.

8. An application to corrosion

Although material losses resulting from the deterioration of a metal leads to an unknown perturbation of
the corroded boundary [37], the linearization of the Butler-Volmer nonlinear boundary condition [47] leads to a
simpler problem [31,32] concerned with the determination of the corrosion coefficient 𝛽 in the Robin boundary
condition

𝜅(x)𝑢n(x) + 𝛽(x)𝑢(x) = 0, x ∈ Γ0, (120)

while assuming that the corroded boundary Γ0 is known. Related inverse corrosion problems in which Γ0 is
unknown but 𝛽 is known, or when both Γ0 and 𝛽 are unknown can be found e.g. in [11,12,33] and [1,4,44,46],
respectively.

In order to compensate for the missing information, the potential 𝑢 is measured on some non-empty open
subset 𝐾 of Γ1 as

𝑢
⃒⃒
𝐾

= ℎ. (121)

The inverse Robin problem concerned with the identification of the impedance corrosion coefficient 𝛽 in some
admissible set

ℬ :=
{︀
𝛽 ∈ 𝒞(Γ0)

⃒⃒
0 ̸≡ 𝛽 ≥ 0

}︀
, (122)

along with the potential 𝑢 ∈ 𝐻1(Ω) satifying the Laplace’s equation

Δ𝑢 = 0 in Ω, (123)

the Robin boundary condition
𝑢n(x) + 𝛽(x)𝑢(x) = 0, x ∈ Γ0, (124)
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the Neumann boundary condition (9) with 0 ̸≡ 𝑞 ∈ 𝐿2(Γ1) and the measured boundary potential (voltage)
(121) with ℎ ∈ 𝐿2(𝐾), was investigated in [15] where the uniqueness and Lipschitz stability of solution were
established. In this section, we extend the previous investigations by considering the conductivity equation

−∇ · (𝜅(x)∇𝑢) = 0 x ∈ Ω, (125)

in an inhomogeneous material Ω with space-dependent conductivity 𝜅 satisfying assumption (𝐴2), instead of
the homogeneous Laplace’s equation (123), subject to the generalized boundary condition

𝜅(x)𝑢n(x) + (𝛼𝑢)t(x) + 𝛽(x)𝑢(x) = 0, x ∈ Γ0, (126)

instead of the Robin boundary condition (124) (or (120)). Moreover, we investigate the case when the coefficient
𝛼 satisfying assumption (𝐴4) (or (𝐴′4)) may also be unknown.

Theorem 8.1 (Identification of 𝛽 when 𝛼 is known). Let 0 ̸≡ 𝑞 ∈ 𝐿2(Γ1), ℎ ∈ 𝐿2(𝐾), 𝜅 satisfying assumption
(𝐴2) and 𝛼 ∈ 𝒞1(Ω) be known. Then the inverse problem (9), (121), (125) and (126) has at most one solution
(𝛽, 𝑢) ∈ ℬ ×𝐻1(Ω).

Proof. Following [15], let (𝛽𝑖, 𝑢𝑖) ∈ ℬ ×𝐻1(Ω) for 𝑖 = 1, 2 be two solutions of the inverse problem (9), (121),
(125) and (126). Then the difference 𝑤 = 𝑢1 − 𝑢2 satisfies the Cauchy problem{︂

−∇ · (𝜅∇𝑤) = 0, in Ω,
𝑤
⃒⃒
𝐾

= 0, 𝑤n

⃒⃒
𝐾

= 0.

Then from the Holmgren’s unique continuation theorem, we obtain that 𝑤 ≡ 0 in Ω. This implies that 𝑢1 = 𝑢2

in Ω and therefore:

𝜅(𝑢1)n + (𝛼𝑢1)t + 𝛽1𝑢1 = 0 = 𝜅(𝑢1)n + (𝛼𝑢1)t + 𝛽2𝑢1 on Γ0. (127)

Thus, (𝛽1 − 𝛽2)𝑢1 = 0 on Γ0. If we assume, by contradiction, that there exists a point in Γ0 where 𝛽1 and 𝛽2

are not equal, then from the continuity of 𝛽𝑖 ∈ ℬ for 𝑖 = 1, 2, it follows that there exists a neigbourhood 𝑉 of
that point, which is strictly included in Γ0, where 𝛽1 is distinct of 𝛽2 and hence, it follows that 𝑢1 = 0 on 𝑉
and from (127) also that (𝑢1)n = 0 on 𝑉 . This means that 𝑢1 ∈ 𝐻1(Ω) satisfies the Cauchy problem{︂

−∇ · (𝜅∇𝑢1) = 0, in Ω,
𝑢1

⃒⃒
𝑉

= 0, (𝑢1)n
⃒⃒
𝑉

= 0.

From Holmgren’s unique continuation theorem we obtain that 𝑢1 ≡ 0 in Ω, which is in contradiction with the
fact that 𝑘(𝑢1)n = 𝑞 ̸≡ 0 on Γ1. Hence, 𝛽1 and 𝛽2 must coincide on Γ0 and this concludes the proof of the
theorem. �

According to the assumption (𝐴4)′, let us now define

𝒜 :=
{︁

𝛼 ∈ 𝒞1
(︀
Ω
)︀
; 𝛼
⃒⃒
Γ1

= 0
}︁

.

Theorem 8.2 (Identification of 𝛼 when 𝛽 is known). Let 0 ̸≡ 𝑞 ∈ 𝐿2(Γ1), 𝜅 satisfying assumption (𝐴2) and
𝛽 ∈ ℬ be known. For 𝛼1, 𝛼2 ∈ 𝒜, let 𝑢1, 𝑢2 ∈ 𝐻1(Ω) be the corresponding solutions of the direct problem (9),
(125) and (126). Suppose that 𝑢1

⃒⃒
𝐾

= 𝑢2

⃒⃒
𝐾

. Then, 𝑢1 = 𝑢2 in Ω and 𝛼1 = 𝛼2 on Γ0 (and hence on 𝜕Ω).

Proof. As before in the proof of Theorem 8.1, we first obtain that 𝑢1 = 𝑢2 in Ω and that

𝜅(𝑢1)n + (𝛼1𝑢1)t + 𝛽𝑢1 = 0 = 𝜅(𝑢1)n + (𝛼2𝑢1)t + 𝛽𝑢1 = 0 on Γ0. (128)
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Thus, ((𝛼1 − 𝛼2)𝑢1)t = 0 on Γ0. Let us denote 𝑍 := (𝛼1 − 𝛼2)𝑢1 in Ω, which satisfies that 𝛼1, 𝛼2 ∈ 𝒜,
𝑢1 ∈ 𝐻1(Ω) and 𝑍t = 0 on 𝜕Ω. Then, according to the definition (5) of the tangential derivative we have∫︀
Ω
(𝑍𝑥𝑣𝑦−𝑍𝑦𝑣𝑥) dΩ = 0 for all 𝑣 ∈ 𝐻1(Ω). On sampling with the conjugates of harmonic functions. i.e. 𝑤𝑥 = 𝑣𝑦

and 𝑤𝑦 = −𝑣𝑥, we obtain that 0 =
∫︀
Ω
∇𝑍 · ∇𝑤 dΩ =

∫︀
𝜕Ω

𝑍𝑤n d𝛾 for any harmonic function 𝑤 in Ω. Since
Ω ⊂ R2 is simply-connected we can conformally map it to the unit circle and on choosing the trial harmonics
𝑤𝑘(𝑟, 𝜃) = 𝑟𝑘 cos(𝑘𝜃) and 𝑟𝑘 sin(𝑘𝜃) for 𝑘 ∈ N, we obtain, via Fourier analysis, that 𝑍

⃒⃒
𝜕Ω

= constant. Since
𝛼1 = 𝛼2 = 0 on Γ1 it follows that 𝑍

⃒⃒
𝜕Ω

= 0. Thus, (𝛼1 − 𝛼2)𝑢1 = 0 on Γ0. Proceeding as before in the proof
of Theorem 8.1, we readily obtain that 𝛼1 = 𝛼2 on Γ0 (and hence on 𝜕Ω). Remark that we only obtain that
𝛼1 = 𝛼2 on Γ0 (and hence on 𝜕Ω), but not inside the domain Ω. �

Theorem 8.3 (Simultaneous identification of both 𝛼 and 𝛽). Let 𝜅 satisfying assumption (𝐴2) be known. Let
0 ̸≡ 𝑞 ∈ 𝐿2(Γ1), 0 ̸≡ 𝑄 ∈ 𝐿2(Γ1), ℎ ∈ 𝐿2(𝐾) and 𝐻 ∈ 𝐿2(𝐾) be given boundary data. We further assume that
𝑞 and 𝑄 are linearly independent. For 𝑖 = 1, 2, let 𝛼𝑖 ∈ 𝒜, 𝛽𝑖 ∈ ℬ and let 𝑢𝑖, 𝑈𝑖 ∈ 𝐻1(Ω) be the corresponding
solutions of the direct problems⎧⎪⎪⎨⎪⎪⎩

−∇ · (𝜅∇𝑢𝑖) = 0 in Ω,

𝜅(x)(𝑢𝑖)n(x) + (𝛼𝑖𝑢𝑖)t(x) + 𝛽𝑖(x)𝑢𝑖(x) = 0, x ∈ Γ0,

𝜅(𝑢𝑖)n = 𝑞, on Γ1,

𝑢𝑖 = ℎ on 𝐾

(129)

and ⎧⎪⎪⎨⎪⎪⎩
−∇ · (𝜅∇𝑈𝑖) = 0 in Ω,

𝜅(x)(𝑈𝑖)n(x) + (𝛼𝑖𝑈𝑖)t(x) + 𝛽𝑖(x)𝑈𝑖(x) = 0, x ∈ Γ0,

𝜅(𝑈𝑖)n = 𝑄, on Γ1,

𝑈𝑖 = 𝐻 on 𝐾.

(130)

Then, 𝑢1 = 𝑢2, 𝑈1 = 𝑈2 in Ω, 𝛽1 = 𝛽2 on Γ0 and 𝛼1 = 𝛼2 on Γ0 (and hence on 𝜕Ω).

Proof. As before, by Holmgren’s unique continuation we obtain that 𝑢1 = 𝑢2 and 𝑈1 = 𝑈2 in Ω and{︂
((𝛼1 − 𝛼2)𝑢1)t + (𝛽1 − 𝛽2)𝑢1 = 0 on Γ0,

((𝛼1 − 𝛼2)𝑈1)t + (𝛽1 − 𝛽2)𝑈1 = 0 on Γ0.
(131)

Multiplying in (131) the first equation by 𝑈1 and the second equation by 𝑢1 and subtracting, we obtain

(𝛼1 − 𝛼2)((𝑢1)t𝑈1 − (𝑈1)t𝑢1) = 0 on Γ0. (132)

Given that 𝑞 and 𝑄 are non-trivial linearly independent functions on Γ1 we can infer that the traces 𝑢
⃒⃒
Γ0

and
𝑈
⃒⃒
Γ0

will also be linearly independent [13]. Indeed, if that is not the case equation (126) implies that 𝜅𝑢n

⃒⃒
Γ0

and 𝜅𝑈n

⃒⃒
Γ0

would also be linearly dependent and, from Holmgren’s unique continuation, it would follow that 𝑢

and 𝑈 would be linearly dependent in Ω. Then, there would exist (𝑐1, 𝑐2) ∈ R2∖(0, 0) such that 𝑐1𝑢 + 𝑐2𝑈 ≡ 0
in Ω. Again, by the unique continuation property, it follows that 𝑐1𝑞 + 𝑐2𝑄 ≡ 0 on Γ1, which contradicts the
assumption that 𝑞 and 𝑄 are linearly independent [1]. Therefore, we have proved that 𝑢

⃒⃒
Γ0

and 𝑈
⃒⃒
Γ0

are linearly
independent, which means that their Wronskian 𝑊 (𝑢, 𝑈) := 𝑢t𝑈 −𝑈t𝑢 does not vanish on open subsets of Γ0.
From equation (132) and continuity of 𝛼𝑖 for 𝑖 = 1, 2, this implies that 𝛼1 = 𝛼2 on Γ0. The remaining statement
that 𝛽1 = 𝛽2 on Γ0 follows from one of the equations in (131) along with the arguments used in the proof of
Theorem 8.1. �

Remark 8.4. Theorems 8.1–8.3 also holds when we consider the Dirichlet data (8) on Γ1 and the measured
flux

𝜅𝑢n

⃒⃒
𝐾

= 𝑞 ∈ 𝐿2(𝐾), (133)

on 𝐾 ⊂ Γ1, instead of the Neumann data (9) on Γ1 and the measured potential (121) on 𝐾.
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Remark 8.5. Identifying the boundary Γ0 along with the corrosion coefficients 𝛽 and 𝛼 may also be possible
using the techniques of [1, 14], but this investigation is deferred to future work.

Various objective functionals to be minimized have been proposed for the reconstruction of the Robin coef-
ficient 𝛽 in the inverse problem (121)–(124) and (9). For example, the Tikhonov regularization functional

𝒥1(𝛽) := ‖𝑢(𝛽)− ℎ‖2𝐿2(𝐾) + 𝜆‖𝛽‖2𝐿2(Γ0)
, (134)

where 𝜆 ≥ 0 is the regularization parameter, has been minimized in [34] using the conjugate gradient method
(CGM). For ill-posed problems, the functional (134) may not stabilize the solution if 𝜆 ≥ 0 is chosen too small
while for nonlinear problems it may not be strictly convex and hence the numerical solution will depend on the
initial guess. In order to overcome this non-robustness with respect to the initial guess, domain objective func-
tionals (named after R. Kohn and M. Vogelius) have been proposed for solving (121)–(124) and (9), assuming,
for simplicity, that 𝐾 = Γ1, e.g.:

𝒥2(𝛽) := ‖𝑢𝐷(𝛽)− 𝑢𝑁 (𝛽)‖2𝐿2(Ω) + 𝜆‖𝛽‖2𝐿2(Γ0)
, (135)

or

𝒥3(𝛽) :=
⃦⃦
𝑢𝐷(𝛽)− 𝑢𝑁 (𝛽)

⃦⃦2

𝐻1(Ω)
+ 𝜆‖𝛽‖2𝐿2(Γ0)

, (136)

see [49], or

𝒥4(𝛽) :=
⃦⃦
∇𝑢𝐷(𝛽)−∇𝑢𝑁 (𝛽)

⃦⃦2

𝐿2(Ω)
+
∫︁

Γ0

𝛽|𝑢𝐷(𝛽)− 𝑢𝑁 (𝛽)|2, (137)

see [15–17], where 𝑢𝐷(𝛽), 𝑢𝐷(𝛽) ∈ 𝐻1(Ω) are the unique solutions of the direct well-posed problems⎧⎨⎩
−Δ𝑢𝐷 = 0 in Ω,

𝑢𝐷 = ℎ on Γ1,

𝜕n𝑢𝐷 + 𝛽𝑢𝐷 = 0 on Γ0,

(138)

and ⎧⎨⎩
−Δ𝑢𝑁 = 0 in Ω,

𝜕n𝑢𝑁 = 𝑞 on Γ1,

𝜕n𝑢𝑁 + 𝛽𝑢𝑁 = 0 on Γ0.

(139)

As for the set of admissible functions 𝛽, one can choose

ℬ0 :=
{︀
𝛽 ∈ 𝐿∞(Γ0); 0 < 𝛽0 ≤ 𝛽(x) ≤ 𝛽1 < ∞ 𝑎.𝑒. x ∈ Γ0

}︀
,

see [49], such that the assumption (𝐴3) is satisfied. Compared to the set ℬ, the assumption 𝛽 > 0 imposed in
the set ℬ0 is quite natural in atmospheric corrosion [32,36].

For our inverse problem given by equations (6)–(9) for reconstructing the potential 𝑢 along with the boundary
coefficients 𝛽 and/or 𝛼, similar functionals to 𝒥1–𝒥4 can be defined, where 𝑢𝐷, 𝑢𝑁 ∈ 𝐻1(Ω) are the unique
solutions of the direct well-posed problems⎧⎪⎨⎪⎩

−∇ ·
(︀
𝜅∇𝑢𝐷

)︀
= 0 in Ω,

𝑢𝐷 = ℎ on Γ1,

𝜅𝜕n𝑢𝐷 + 𝛽𝑢𝐷 +
(︀
𝛼𝑢𝐷

)︀
t

= 0 on Γ0,

(140)
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and ⎧⎪⎨⎪⎩
−∇ ·

(︀
𝜅∇𝑢𝑁

)︀
= 0 in Ω,

𝜅𝜕n𝑢𝑁 = 𝑞 on Γ1,

𝜅𝜕n𝑢𝑁 + 𝛽𝑢𝑁 +
(︀
𝛼𝑢𝑁

)︀
t

= 0 on Γ0.

(141)

Finally, remark that the problems (140) and (141) are exactly the direct and well-posed problems analysed and
solved using the finite volume method in the previous sections.

9. Conclusion and a perspective

The elliptic diffusion equation with space-dependent conductivity and a generalized oblique boundary condi-
tion on a part of the boundary and Dirichlet or Neumann boundary conditions on the remaining part has been
considered. The well-posedness of the continuous problems has been established along with new finite volume
schemes. The discrete stability and the convergence of these schemes have been shown. The convergence order of
these schemes is the same as the one obtained in our previous works [5,10] which dealt with Poisson’s equation
with an oblique boundary condition on the whole boundary of the domain. We have also addressed an appli-
cation to the inverse corrosion problem concerning the reconstruction of coefficients present in the generalized
oblique boundary condition that is prescribed over a portion Γ0 of the boundary 𝜕Ω from Cauchy data on the
complementary portion Γ1 = 𝜕Ω∖Γ0.

The results obtained in the present paper can be extended, in principle, to the general non-conforming
meshes SUSHI of [25] in the following sense: (i) in the case of constant conductivity 𝜅, we can obtain the same
discrete well-posedness and error estimates (thanks to [25], Thm. 4.8, Page 1033); (ii) in the case of non-constant
conductivity 𝜅(x), we can obtain the discrete well-posedness and convergence (without rate of convergence) as
in Remark 4, Pages 2547, 2548 of [9]. However, this needs a separate study in which the functional tools of [18]
may need to be employed. We will address this extension to SUSHI and also to the general framework of the
Gradient Discretization Method (GDM), [18, 20], for elliptic and parabolic equations in the future. Finally, as
a perspective of this work, we plan to extend the results and applications of this paper to parabolic equations.
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