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Abstract: This paper presents the algebra representation for the Task Flow model in the Discovery Method. This metamodel
is based on simple and compound tasks structured using operators such as sequence, selection, and parallel composition.
Recursion and encapsulation are also considered. The axioms of the algebra are presented as well as a set of examples
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1. INTRODUCTION

There has been a steady take up in the use of formal
calculi for software construction over the last 25 years
[8], but mainly in academia. Although there are some
accounts of their use in industry (basically in critical
systems), the majority of software houses in the “real
world” have preferred to use visual modelling as a kind
of “semi-formal” representation of software.

A method is considered formal if it has well-defined
mathematical basis. Formal methods provide a syntactic
domain (i.e., the notation or set of symbols for use in
the method), a semantic domain (like its universe of
objects), and a set of precise rules defining how an
object can satisfy a specification [31]. In addition, a
specification is a set of sentences built using the
notation of the syntactic domain and it represents a
subset of the semantic domain.

Spivey says that formal methods are based on
mathematical notations and “they describe what the
system must do without saying how it is to be done”
[28], which applies to the non-constructive approach
only. Mathematical notations commonly have three
characteristics:

• conciseness - they represent complex facts of
a system in a brief space;

• precision - they can specify exactly everything
that is intended;

• unambiguity - they do not admit multiple or
conflicting interpretations.

Essentially, a formal method can be applied to
support the development of software and hardware.

In software development, the Unified Modeling
Language (UML) is at present the standard visual
modelling notation. At the time of writing, it provides
thirteen different diagrams that can be used to represent
a software system from different aspects and
perspectives [9, 13] [2, 3]. Problems with UML
diagrams creating ambiguous representations can be
summarized as legal UML diagrams having an unclear
meaning, even if they are considered valid according
to [27] [4]. This research was originally motivated by
the fact that software engineering notations are often
vague, in the sense that they are incomplete, or
ambiguous and so are open to different interpretations
by software engineers. The benefit of providing
software engineering notations with a fully formal
metamodel whose properties are known is that
software engineers may then rely on the notations
directly, with full confidence. Software engineers could
create software models without having to understand
the underlying behaviour. In order to achieve this, we
decided to use a process algebra to represent the
behaviour of a particular notation mentioned below.
Process algebras are used to model concurrent systems,
where the term “process” refers to behaviour of a
system [2]. Process algebras arise as an approach of
forma reasoning about computer programs and
programming languages. The use of process algebra
in software engineering is not new. Wirsing [32], for
example, offers an approach to the use of formal
methods, including process algebra, in object-oriented
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engineering. Wang proposes the Real-Time Process
Algebra (RTPA) [29, 30] as a formal method for
software system specification.

In our research we are proposing a particular
process algebra, called Task Algebra, to characterise
the Task Flow models in the Discovery Method. The
advantage is that this will allow software engineers to
use diagram-based design methods that have a secure
formal underpinning. The next section presents a
general vision of Process Algebra. In section 3 the Task
Flow notation used in the Discovery Method is
presented. Section 4 depicts the proposed algebra.
Section 5 includes a small example showing the use
of the task algebra. Finally in section 6, conclusions
are drawn and future research directions are indicated.

2. PROCESS ALGEBRA

The term process algebra or process calculus is used
to define an axiomatic approach for processes. There
is not a unique definition for processes although Baeten
[3] says a process refers to the behaviour of a system.
Process Algebras have been used to model concurrent
systems [11]. Common concepts in the different
process algebras are process (sometimes called agent)
and action [14]. A process can be seen as any concurrent
system with a behaviour based in discrete actions. An
action is considered something that happens
instantaneously and it is atomic. An action is expressed
in conjunction with other actions, using particular
operations defined by the algebras.

Some of the principal process algebras comprise
ACP, CCS, CSP, and more recently Pi-Calculus. The
term process algebra was coined by Bergstra and Klop
in the paper [6] where the Algebra of Communicating
Processes (ACP) was presented. The Calculus of
Communicating Systems (CCS) was proposed by R.
Milner [19].  The contrasting calculus of
Communicating Sequential Processes (CSP) was
proposed by Hoare [18]. An extension and revision to
CCS, the Pi-calculus was later proposed by Milner [20].

2.1. ACP

The Algebra of Communicating Processes is an algebra
proposed in 1982 when Bergstra and Klop wanted to
research a question about unguarded recursive
equations [3]. The algebra is defined using a
combination of instantaneous atomic actions and
algebraic operators in order to generate a variety of

processes. These operators are used to represent union,
concatenation, and concurrency:

• Concatenation, also known as composition or
sequencing, uses the symbol and represents the
order of the actions. Where, for instance,
a×b×cindicates that action a happens before
action b and action b happens before action c.

• Union is used to specify a choice between
actions, using the symbol + to represent the
union. For example, a+b represents that action
a or action b can occur but not both of them.

• Concurrency is represented with the
interleaving || and left-merge operator || , where
p||q allows all possible interleavings of actions
in the processes p and q, whereas p|| q always
prefers the first action of p before the first
action of q and otherwise behaves like ||.

These operators satisfy the following axioms (for
all a Action, and x, y, z Process):

x+y = y+x
x + (y+z) = (x + y) + z
x + x = x
(x�y)�z = x ��(y�z)
(x+y)�z = x�z + y � z
x || y = (x || y) + (y || x)
(a.x)|| y = a.(x || y)
(x + y) || z = (x || z)+(y || z)
a|| y = a ��y

As was mentioned, these axioms just expressed the
concatenation, union and concurrency (via the left-
merge operator). These axioms represent the Basic
Process Algebra, which was later extended to include
communication an presented by Bergstra in [7].

2.2. CCS

Even though the Calculus of Communicating Systems
was presented by Milner in 1973, it was not until 1980
that he published the book [19] that is now considered
the definitive reference on CSS. In CCS a process is
represented by a number of states representing the
possible lines of action that can be realised. The states
of the process are presented as dots (usually open dots),
while the actions represent the transitions from a state
to other [14]. The rules and axioms in CCS are provided
as laws.
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In CCS, 0 (nil) represents the most basic process,
offering a deadlock behaviour. CCS also provides an
action prefixing operator, where an action a can be
prefixed to a process P to denote sequential
composition of a and P. An action can be seen as an
input or output communication on a port.

The choice operator proposed by Milner in CCS
is +. It is commutative, associative and idempotent.
Additionally, the CCS operator | represents parallel
composition, where, for instance, the expression P|Q
depicts two processes running in parallel.
Communication between two processes happens when
there is an action a in one process and a complementary
action ā in the other one.

2.3. CSP

CSP was proposed by Hoare in [17], initially without
a formally defined semantics. Later a semantic model
was proposed based on trace theory [16]. A new model
was proposed and CSP changed its  name to
Theoretical CSP (TCSP) [10], which later was called
again CSP.

The trivial element in CSP is the event, which
is defined as instantaneous and indivisible. Events
are notated in lowercase, for instance x,y,z. are
events in CSP. Processes are nota ted in
uppercase. There are also primitive processes such
as STOP and SKIP to represent basic predefined
behaviours.

CSP builds processes from actions using a prefix
operator �, such that x�P denotes a process formed
by prefixing the process P with the action x. CSP has
two choice operators, for external and internal choice.
The external choice operator �, is defined, such that
(x�P) � (y�Q) denotes a choice between two
processes, according to whether the environment
supplies the event x or y, after which P or Q execute,
respectively. The internal choice operator � makes a
nondeterministic choice and may refuse events from
the environment. A response is only mandatory if all
prefixes are available. Concurrency is represented by
the interleaving operator |||, such that P|||Q denotes a
nondeterministic choice between all possible
inter leavings of the actions of P and Q.  The
synchronising operator ||A forces its operands to
synchronise, such thatP||AQ forces synchronised
communication between P and Q on all the events
in A.

2.4 -Calculus

�-calculus is another process calculi that allows you
to model concurrent systems proposed in 1992 by
Milner et al. [21] as an extension of CCS. In �-calculus
everything is a process and computation. Processes can
be parallel and interact with each other via channels.
�-calculus includes the notion of mobility based on
the ideas proposed by Engberg and Nielsen [12]. Milner
et al. defined some contributions of �-calculus over
Engberg and Nielsen proposal. The atuhors mention
that they are providing a more basic calculus and
simpler encondings of cuntional calculi among others.
The �-calculus has received good acceptation and has
become the common option for modelling concurrent
processes communicating, which is accomplished
through message passing.

2.5. API-Calculus

API-Calculus is an extension of �-Calculus proposed
by Rahimi et al. [22] for modelling intelligent-agent
based systems. In general, API-calculus introduces the
concepts of knowledge unit, milieu and term. A
knowledge unit. It is formed by a knowledge base and
a set of facts. A mobile agent can have one or more
knowledge units and also is able to send and receive
knowledge units from other mobile agents.

Terms. While terms exist in �-calculus, a term in
API-Calculus can be not just a name. In API-Calculus
a term cab also be a rule/fact, a function or a variable.

Milieu. It is a new level of abstraction can be
created to define a closed environment where a
collection or family of agents works to solve a common
problem.

With these three concepts the authors propose to
“address the intelligence, natural grouping and
security apects of mobile agents” [22].

2.6. Why yet Another Process Algebra?

We are proposing a simple process algebra that is a
direct representation of the Task Flow model for the
Discovery Method. Translations from the diagrams to
the Task Algebra could easyly be made by software
developers, which are usually not experienced in
formal methods, or automatically generated by an
Integrated Development Environment (IDE). Task
Flow models are tipically used in the Businness
Modelling phase of the Discovery Method or can be
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used to substitute the Activity diagram of UML [23].
Our Task Algebra attempt to be a lightweight formal
method that allows software developers to reduce the
effort of writing and verifying formal specifications.

3. THE TASK FLOW MODELS

The Discovery Method is an object-oriented
methodology proposed formally in 1998 by Simons
[24, 25]; it is considered by the author to be a method
focused mostly on the technical process [26]. From
version 1, Discovery has been using a simple and
semantically clearer notation based on UML, but
changing some models where this is considered
appropriate. In addition, it is consistent with the process
model of OPEN [15], and has been tested in a number
of industrial projects by MSc students at the University
of Sheffield. The simple and unambiguous Discovery
notation makes it an appropriate option to work with.

The Discovery Method is organised into four
phases: Business Modelling, Object Modelling, System
Modelling, and Software Modelling.The Business
Modelling phase is task-oriented. A task is defined in
the Discovery Method as something that has the
specific sense of an activity carried out by stakeholders
that has a business purpose. This task-based exploration
will lead eventually towards the two kinds of Task
Diagrams: The Task Structure and Task Flow
Diagrams.

The workflow is represented in the Discovery
Method using the Task Flow Diagram. It depicts the
order in which the tasks are realised in the business,
expressing also the logical dependency between tasks.
While the notation used in the Discovery Method is
largely based on the Activity Diagram of UML, it
maintains consistently the labelled ellipse notations for
tasks. Figure 1 shows the notation for the Task Flow
Diagram.

Tasks are connected by an arrow indicating the
direction of the flow. Choice is represented by a
diamond and exception, a special case of a choice, is
represented using a half-diamond symbol. The full
diamond is used to split the flow in two or more
choices, whereas the half-diamond symbol represents
the choice between continuing the normal flow or the
exceptional flow. Because the conditions on the choices
are mutually exclusive, the half-diamond decision only
needs to express one of the conditions, the one raising
the exception. The start and end symbols are the

standard symbols used in flowcharts and state
diagrams. There is also a particular kind of end symbol
identified as fail. Fail is notated as a small circle
crossed by a diagonal line and represents exit with
failure from the task described by the diagram. By
contrast, the traditional end symbol represents an exit
with success from the same task.

Figure 1: Elements of the Task Flow Diagram1 Elements of the Task
Flow Diagram

Finally, the Task Flow diagram in the Discovery
method allows the representation of parallel tasks. This
representation in the diagram is necessary because
business processes, just like other kind of processes,
are sometimes independent from other processes and,
consequently, could be performed concurrently. The
Task Flow diagram employs the fork and join symbols
to delimit two or more concurrent flows. The fork and
join symbols are common to many different notations
for flow and state diagrams, such as those surveyed by
[5]. A fork is a transition with one source task and many
target tasks. A join is a transition from many source
tasks to one target task. After a fork, the concurrent
flows are understood to execute simultaneously. Tasks
in each subflow are executed sequentially, but tasks in
different subflows may execute in a nondeterministic
order. A join indicates a syncrhonisation point, where
the concurrent subflows must all terminate before
proceeding to the next task. Forks and joins have to be
balanced: for each fork a corresponding join symbol
closing the parallel tasks section should exist.

4. THE TASK ALGEBRA FOR TASK FLOW

MODELS

Even though Task Flow models could be represented
using one of the process algebras described above, a
particular algebra was defined with the aim of having
a clearer translation between the graphical model and
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the algebra. One of the main difficulties with applying
an existing process algebra was the notion that
processes consist of atomic steps, which can be
interleaved. This is not the case in the Task Algebra,
where even simple tasks have a non-atomic duration
and are therefore treated as intervals, rather than atomic
events.

A simple task in the Discovery Method [24, 25] is
the smallest unit of work with a business goal. A simple
task is the minimal representation of a task in the
model. A compound task can be formed by either
simple or compound tasks in combination with
operators defining the structure of the Task Flow
Model.

In addition to simple tasks and compound tasks,
the metamodel also requires the definition of three
instantaneous events. These may form part of a
compound task in the algebra.

4.1. The Metamodel

The basic elements of the task algebra are the simple
task, which is defined using a unique name to
distinguish from others; � representing the empty
activity; and the success � and failure � symbols,
representing a finished activity.

Simple and compound tasks are combined using
the operators that construct the structures allowed in
the Task Flow Model. The basic syntax structures for
the Task Flow Model are sequential composition,
selection, parallel composition, repetition, and
encapsulation:

• Sequential composit ion defines the
chronological order of execution for a task or
a group of tasks from the left to the right and ;
is used as the operator.

• Selection is represented with the symbol + and
it means that there is a choice between the
operands.

• Parallel composition defines the simultaneous
execution of the elements in the expression. It
is represented by the symbol ||.

• Repeti tion allows the reiteration of an
expression in the form of an until-loop and
while-loop structure. It is represented using the
µx fixpoint.

• Finally, encapsulation is used to group a set
of tasks and structures. This constructs a

compound task and is represented using curly
brackets {}.

The algebra has the following definition in Backus
Naur form:

Activity ::= � — empty activity
| � — succeed
| � — fail(early termination)
| Task — a single task
| Activity; Activity — a sequence of activity
| Activity + Activity — a selection of activity
| Activity || Activity — parallel activity
| �x.(Activity; � + x) — until-loop activity
| �x.(� + Activity; x) — while-loop activity

Task::= Simple — a simple task
| {Activity} — encapsulated activity

A task can be either a simple or a compound task.
Compound tasks are defined between brackets {and},
and this is also called encapsulation because it
introduces a different context for the execution of the
structure inside it. Curly brackets are used in the syntax
context to represent diagrams and sub-diagrams but
also have implications for the semantics that will be
explained later. Also, parentheses can be used to help
comprehension or to change the associativity of the
expressions. Expressions associate to the right by
default.

The metamodel represents in a simple way every
basic structure used for the Task Flow Diagram. For
instance, supposing there are three tasks a,b and c; a
sequence composition of these elements can be
specified as follows:

a; b; c

Which means the execution of a, then b, and then
c.  The selection operator + should be used for
representing the choice among tasks:

a + b + c
The concurrent execution of these three tasks

may be represented using the parallel composition
operator ||:

a||b||c
Meaning that a, b and c are executed simultaneously

and may terminate in any order. Finally, the repetition
operator works either as an until-loop or a while-loop.
The difference between each repetition is, as can be
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supposed, that the until-loop structure guarantees at least
one execution of the activity in the repetition:

µx.(a;���+ x)
Repetition is modelled using recursion. In the

example above, �x binds x to the expression (a; ��+ x),
where a occurs at least once and, if under the choice
of x, the expression is expanded (i.e., the expression is
repeated recursively, x being the fixed-point of bound
by �). The next example shows a while-loop:

�x.(�+a; x)

As in the until-loop, �x binds x to the expression
(��+ a; x), but the choice is put in front of the expression
to be repeated.

4.2. Task Model Constructions

Just as the graphical structures of the Task Flow Model
can be composed, basic definitions in the task algebra
may form complex expressions. The BNF definition
can be considered like a Universal Algebra which, to
accomplish an accurate representation of the diagram
syntax, has to be limited by axioms. The BNF definition
and its axioms form an Ideal or Quotient Algebra.

4.2.1. Simple Task

As it was explained before, a simple task is the minimal
representation of a task in the abstract syntax with
significance for the expressions; whilst an Activity is
formed using a combination of operators (sequence,
selection parallel composition, and repetition), simple
tasks, empty activity, end with success and end with
fail. Empty and finished activities are vacuous
activities. Empty is represented with �, success with �
and fail using �. The fact that simple tasks cannot be
vacuous activities is formalised in the next axioms:

(sp.1) � a � Simple • a � � � a � � � a � �

(sp.2)
, ( ; ) ( )

( || ) ( ; )
� � � � � � � �
� � � �� � � �

� �a Simple y z Activity a y z a y z
a y z a x y x

Simple tasks are different from succeed, fail and
empty activities because simple tasks represent
processes with interval duration different from zero.
Succeed, fail and empty activities are considered
instantaneous events.

4.2.2. Empty Activity

As was said before, the symbol � is used to represent
the empty activity. It is needed because the selection

is a binary operator and � is used to characterise the
empty branch, where in combination with the selection
operator it is used as the choice between doing
something or nothing.

As a result of the existence of this element, a set
of axioms must be defined to interpret the meaning of
the empty activity when it is a part of other kinds of
expression. These rules are specified within each
operator description.

4.2.3. Finished Activity

The finished activity is necessary to represent situations
when an activity should terminate before the normal
end. The algebra representation allows two kind of
finished activity: succeed and fail. Succeed is useful
to represent an early exit from within an expression,
returning the control to the higher scope. On the other
hand, fail is used to represent the termination of all
tasks, and the failure is propagated to the higher levels.

� and � are considered instantaneous events.
Similar to the empty activity, the finished activities
have an effect in many operator constructions, and they
will be defined later.

4.2.4. Sequential Composition

Sequential composition is defined as the consecutive
execution of activities, from the left to the right. Tasks
are separated by ’;’. For example:

a; b; c; d � a; (b; (c; d))
The intuitive meaning is that first a will be

executed, then b, and so on until the task d. Parentheses
can be used to group elements but the meaning is not
altered whatsoever. An associative axiom is defined to
support this notion. Axioms for distribution, empty
sequence and finished activity are also defined.
Commutativity and idempotence properties are not
considered for sequences:

(s.1) � a, b, c � Activity • a;(b; c) � (a; b); c
— associative sequence

(s.2) � a, b, c � Activity • (a + b); c ��(a; c) + (b; c)
— right distributivity of sequence over
selection

(s.3) � a � Activity • a; � � �; a � a
— empty sequence

(s.4) � a � Activity • �; a � �
— fail on sequence
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(s.5) � a � Activity • �; a ���
— succeed on sequence

Rule (s.2) defines that a right sequence is
distributed over a left selection. Left distribution of
sequence over selection is not allowed because, as in
ACP [3, 4], left sequence distribution changes the point
where the choice is made. It follows that:

� a, b, c � Activity • a; (b + c) � (a; b) + (a; c)

Because in the expression a; (b+c), initially a is
executed and then the choice between b and c is made;
while in the expression (a;b) + (a;c) the choice is first
and afterwards a is executed. The difference in
the branching position can be easily appreciated in
Figure 2.

in the syntax. The guards are supposed to be mutually
exclusive and exhaustive. When a guard is satisfied
the left activity is executed and the right branch is
discarded, otherwise the left activity is discarded and
the next guard is verified. Logically, the last guard does
not need to be checked and the order in which the
branches are considered is irrelevant.

The axioms defined for the selection operator are:

(sel.1) � a, b, c � Activity • (a + b) + c � a + (b +
c) � a + b + c

— Associative selection

(sel.2) � a, b � Activity • a + b � b + a
— commutative selection

(sel.3) � a � Activity • a + a � a
— idempotent selection

In the case of the empty activity, it is also possible
to reduce the expression if both sides have the empty
activity by the idempotent rule (sel.3). But, if just one
of the elements (right or left) is �, then the selection
has no reductions. �  a � Activity, the following
expressions are irreducible:

a + � – irreducible selection of empty activity or activity

The same applies to the finished activities, where
the selection between any of the finished activities or
a general Activity has no reduction:

��+ � – irreducible selection of fail or activity
��+ a – irreducible selection of succeed or activity
��+�� – irreducible selection of empty activity or fail
��+ � – irreducible selection of empty activity or succeed

As described above, selection interacts with
sequences and the right distributivity axiom may be
applied. Its interaction with parallel composition is
shown below.

4.2.6. Parallel Composition

Parallel composition is defined as the simultaneous
execution of all its tasks and it is represented with the
operator ||. An example is the expression:

a || b || c || d � a || (b || (c || d))

Intuitively it expresses that the elements a, b, c,
and d are initiated at the same time and executed
simultaneously. The end of any of them is non-
deterministic. Like the last operators, a set of axioms
are defined:

Figure 2: State Transition Diagram for Expressions a;(b+c) and (a;b)
+ (a;c)

Empty and finished activities may coexist in an
expression, in which case the rules (s.3), (s.4 and (s.5)
are confluent and may interact, for instance:

• a1; �; �; a2�a1;�
– by applying (s.4), or (s.3) and (s.4)

• a1; �; �; a2�a1; �
– by applying (s.3) and (s.5)

Or:
• �; ���;��� – by applying (s.3) and (s.4)

• �; ���;����– by applying (s.3) and (s.5)

4.2.5. Selection

The selection of activities is performed with the +
operator. It represents the choice among a group of
activities, for instance:

a + b + c + d � a + (b + (c + d))

Intuitively each branch is evaluated from the left
to the right. Guards are implicit and are not represented
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(p.1) � a, b, c � Activity • (a || b) || c � a ||(b||c)
— Associative parallel composition

(p.2) �a, b � Activity • a || b � b || a
— Commutative composition

(p.3) �a, b, c � Activity • (a + b)|| c � (a||c) + (b||c)
— rightdistributivity of concurrency
over selection

(p.4) �a � Activity • a || � � a
— instant synchronisation

(p.5) �a � Activity • a || ����� if a ��
— instant failure

(p.6) �a � Activity • a || � � �
— instant success

The associative and commutative axioms (p.1, p.2)
reflect the nondeterministic order of concurrent
activity. Also, it is possible to do right and left
distribution of concurrent composition over selection,
but only the one axiom is necessary. Right distribution
over selection is defined in (p.3) and left distribution
is derived by applying (p.1) and (p.3):

�a, b, c � Activity • a || (b + c) � (a || b) + (a || c)
— left distribution of concurrency over
selection, by axiom (p.1) and (p.3)

The use of instant events such as �, � and � may
occur too in combination with parallel composition.
Axioms (p. 4), (p. 5) and (p. 6) define instant
synchronisation, fail and succeed respectively. Whilst
(p.4) performs the elimination of å whether it is on the
right or the left of the parallel operator, (p.5) and (p.6)
establish that any activity in parallel composition with
fail or succeed is equivalent to just itself. Although
the parallelism is resolved as the simultaneous
execution of simple activities (i.e., concurrency
between a single task and an Activity means that the
single task could occur at any time among all the simple
actions of such Activity), Succeed and fail are
considered as instantaneous events and they have
priority over the elements of the Activity. In addition,
succeed has a major priority than fail, therefore in the
case of a parallel composition between these two
elements succeed will prevail (p. 6).

Logically, this set of rules is confluent, which can
be easily shown. The specific case of �||� can be
resolved using any of the rules defined for each symbol
to work with parallel composition. For example, the
next expressions are equivalents:

�||���||���   – from (p.2), (p.4) and (p.5)

The result is obtained by applying either the rule
(p. 4) or rule (p. 5). The instantaneous events are also
confluent with the rest of the parallel axioms:

�a, b � Activity • (a||b) || � � a || (� || b) � a || b || �
� a || b

— by (p.1) and (p.4)

�a � Activity • a || � � � || a � a
— by (p.2) and (p.4)

�a � Activity • a || � � � || a � �       if a ���
— by (p.2) and (p.5)

�a � Activity • a || � � � || a ���
— by (p.2) and (p.6)

�a, b � Activity • (a||b)|| � � a || (�||b) � a||b|| � � �

if a � �� b � � — by (p.1) and (p.5)

�a, b � Activity • (a || b) � � a || (� || b) � a || b || �
� � — by (p.1) and (p.6)

�a, b � Activity • (a + b) || � � (a || �) + (b || �) � a
+ b — by (p.3) and (p.4)

�a, b � Activity • (a + b) || � � (a || �) + (b || �) � �

if a ����� b ��� — by (p.3) and (p.5)

4.2.7. Repetition

Repetition of tasks is defined as an until- and while-
loop. The structures in the metamodel are constructed
using recursion. The until-loop is formed by an Activity
followed by an option of continuing or repeating x:

µx. (a; � + x)

Intuitively can be seen that the Activity is repeated
as long as � is not chosen. When � is chosen (i.e., the
end state of the recursion function is reached) the
recursion terminates, which means that the next activity
outside of the until-loop may be executed. The choice
of the fixed-point x results in expanding unrolling the
expression.

The until-loop has only one axiom specifying the
unrolling of the recursions on the loop:

(r.1) �a � Activity • µx.(a; � + x) � a; � + µx.(a; �+x)

— unrolling one cycle of until-loop repetition

This rule can be applied as many times as necessary
resulting possibly in an infinite repetition of the activity
and the option to continue or repeat:
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µx.(a; � + x) � a; � + µx.(a; � + x) � a; � + (a; � +
µx.(a; � + x))� ... — by (r.1)

Additionally, there are three special cases where
the expression may be reduced, those ones when any
of the instantaneous events is involved. In one case an
until-loop containing just the empty element � can be
reduced just to �:

µx.(�; � + x) � �; � + µx. (�; � + x) � �; � + (�; � +
µx.(�; � + x)) � ... � � — by (r.1) and (s.3)

The reduction of empty sequences can be made
by the axiom (s.3). The recursion keeps going infinitely
or finishes when the � in the selection is chosen.

On the other hand, if the activity in the until-loop
contains just � or �, the expression may be reduced
and the recursion is eliminated:

µx.(�; � + x) � �; � + µx.(�; � + x) � ... � �
— by (r.1) and (s.4)

µx.(�; � + x) � �; � + µx.(�; � + x) � ... � �
— by (r.1) and (s.5)

As the examples above show, it is possible to
reduce the until-loop using the axioms (s.4) or (s.5)
already defined.

Alternatively, the while-loop is formed by the
option of doing an Activity followed by repeating x, or
the option of finishing the execution of the loop:

µx.(� + a; x)
As the until-loop, the while-loop has only one

axiom specifying the unrolling of the recursions on the
loop:

(r.2) �a � Activity • µx.(� + a; x) � � + a; µx.(� + a; x)
—unrolling one cycle
of while-loop repetition

Applying this rule as many times as necessary
results in an infinite repetition of the option to finish
the loop or doing the activity and repeat:
µx.(� + a; x) � � + a; µx.(� + a; x) � � + a; (� + a;
µx.(� + a; x)) � ... — by (r.2)

Additionally, there are three special cases where
the expression may be reduced, those ones when any
of the instantaneous events is involved. The while-loop
containing just the empty element � can be reduced
just to �:
µx.(� + �; x) � � + �; µx.(� + �; x) � � + �; (� + �;
µx.(� + �; x)) � ... � � — by (r.2) and (s.3)

The reduction of empty sequences can be made
by the axiom (s.3). The recursion keeps going infinitely
or finishes when the � in the selection is chosen. Finally,
in the cases where the activity in the while-loop
contains only the symbol � or �, the expression may
be reduced and the recursion is eliminated:

µx.(� + �; x) � � + �; µx.(� + �; x) � ... � � + �
— by (r.2) and (s.4)

µx.(� + �; x) � � + �; µx.(� + �; x) � ... � � + �
— by (r.2) and (s.5)

4.2.8. Encapsulation

The encapsulation of tasks is used to isolate an Activity
from the rest of the expression giving it a scope and a
name. It is built by using curly brackets around the
Activity. Consequently, act represents the encapsulation
of the Activityact.  But, the real importance of
encapsulation is denoting the scope of a compound task
to limit the effect of � and �, which represent early
exit. A more detailed example could be:

{{a1; {a2 + a3}; a4}; a5}

Supposing a1,a2,...,a5 are simple tasks, in that case
the expression also could be expressed as a set of
compound tasks:

let X = {a2 + a3}
let Y = {a1; X; a4}
{Y; a5}

Using encapsulation is a way of abstracting the
representation of a complex task flow and treating it as
a single task (i.e., a subtask, part of another larger task),
in the same way that a complex diagram can be divided
into different sub-diagrams to facilitate comprehension.

As mentioned above, when a succeed event occurs
in an expression, this corresponds to an early exit from
the scope of the enclosing task. The normal flow of
control resumes at the task boundary. A different result
is obtained when a fail event occurs in the expression.
In this case, the fail event is promoted to the higher
level, beyond the immediate task boundary. All the
usual axioms apply to activity that is encapsulated
within a task. Some additional axioms describe the
specific effects of at the task boundary:

(e.1) {�}���{�} – vacuous subtask
(e.2) �a��Activity•{a;�}�{a} – coincident exit
(e.3) �a��Activity•{a+�}�{a}+� – vacuous



72 International Journal of Computational Intelligence Theory and Practice

selection
(e.4) {�}�� – promotion of fail
(e.5)�a��Activity•{a;�}�{a};�– promotion of fail

in sequence
(e.6)�a��Activity•{a+�}�{a}+� – promotion of fail

   in selection
The vacuous subtask axiom (e.1) denotes that

succeed alone within curly brackets is equivalent to
the empty activity because succeed has no influence
outside of its scope. Similarly, if succeed is next to the
left bracket, it has no effect and may be removed even
forming part of a sequence (e.2). The axiom (e.3)
promotes the selection outside of the encapsulation area
changing succeed for �. Basically it establishes that a
selection between an activity and succeed is equivalent
to the choice of that activity within brackets and
nothing (�). If fail is alone within the curly brackets, it
is promoted to the higher level by the axiom (e.4). The
axiom (e.5) denotes the promotion of fail when this is
next to the left bracket in a sequence. Finally, the axiom
(e.6) promotes the selection and fail outside the curly
brackets.

Additional axioms are not required for parallel
composition and repetition, since the transformations
can be derived from the existing ones:

�a � Activity • {a || �} � � — by (p.5) and (e.1)
{µx.(�; � + x)} ��� — by (r.1), (s.5) and (e.1)

5. AN EXAMPLE: THE READER ROLE IN AN

ELECTRONIC JOURNAL

An interesting case study was developed by Adams [1]
working with the Discovery Method for modelling a
web based electronic journal. The study models an
electronic journal, which is offered free to all
subscribers, where the authors submit their articles and
pay towards the costs of their online publication by
conducting peer reviews of articles submitted by other
authors.

Figure 3 shows the Task Flow Diagram for the
reader role. The diagram describes the choice the reader
has initially to decide between reading information
about the journal, searching for an article, or reading
about content alerting before subscribing to the content
alerting service.

The diagram is formed by six tasks: Read Info on
Journal, Search for Article, Read Abstract, Download
Article, Read about Content Alerting, and Register for

Content Alerting. The first task is clearly defined as a
compound task, which is formed by the subtasks Read
Journal Aims, and Read Submission Instructions.

The task algebra expression for the diagram from
Figure 3 should be as follows:	 �

� � � �

� �

Additionally, the compound task ReadInfoOn
Journal can be defined like this:
ex ReadInfoOnJournal = (readJournalAims + readSubmissionInstruction)

6. CONCLUSIONS

Software has become increasingly important in
everyday life; yet while we are more dependent on it,
it does not appear to be getting more reliable. What is
needed is a better way to carefully examine software
for accuracy and reliability. In order for software to be
amenable to such an examination, it should have a
precise specification.

The present paper depicted the metamodel for the
Task Flow model in the Discovery Method. The task
algebra is based on simple and compound tasks
structured using operators such as sequence, selection,
and parallel composition. Recursion and encapsulation
are also considered. The axioms of the algebra were
presented as well as a set of examples showing a
combination of basic elements in expressions denoting
simple, and more complex, Task Flow diagrams.

Figure 3: Reader Task Flow Diagram
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It is believed that the work presented here could
easily be integrated into the process of modelling
software. By itself, the task algebra is an easy and
simple enough formalism to be used even by software
engineers having little previous experience with formal
languages. The intention of this approach is eventually
to provide a graphical tool to generate the diagrams
and translate them automatically into the abstract
syntax, so that the developer need not generate the
representation in the formal language by hand.

Process Algebras are used to model concurrent
systems. Common concepts in the different process
algebras such as process and action could be used to
represent similar concepts in software modelling. This
is the approach our project uses. We proposed a simple
process algebra that is a direct representation of the
Task Flow model for the Discovery Method. The Task
Flow model is part of the Business Modelling phase
of the Discovery Method. In this phase, the goal is to
explore and represent the requirements of the customer
in a structured model of the business context where
the system will work. Our Task Algebra will help to
specify unambiguous and verifiable requirements.

Further work developed involves the definition of
the denotational semantics for the task algebra, giving
the semantics in terms of traces. For this, formal
semantic functions and mapping functions have to be
defined. In addition, a graphical tool will be needed to
generate the diagrams and translate them into the
algebra. This tool, which is envisaged as future work,
will support the automatic construction and
simplification of formal models by developers, directly
from diagram specifications. Additionally, model-
checking techniques are being developed to validate
Task Models represented in the algebra.
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