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Abstract

East Africa is highly vulnerable to extreme weather events, such as droughts

and floods. Skillful seasonal forecasts exist for the October–November–
December short rains, enabling informed decisions, whereas seasonal forecasts

for the March–April–May (MAM) long rains have historically had low skill,

limiting preparation capacity. Therefore, improved long rains prediction is a

high priority and would contribute to climate change resilience in the region.

Recent work has highlighted how lower-troposphere Congo zonal winds in

MAM strongly impact regional moisture fluxes and the long rains total precipi-

tation. We therefore approach long rains predictability through the predictabil-

ity of the Congo winds. We analyze a set of hindcasts from a dynamical

prediction system that is able to reproduce the long rains—Congo winds rela-

tionship in its individual ensemble members. Encouragingly, in observations,

the strength of MAM Congo zonal winds and East Africa rainfall show sub-

stantial correlation with the MAM Atlantic (including North Atlantic

Oscillation, NAO) and Indo-Pacific variability, suggestive of ocean influence

and potential predictability. However, these features are replaced by different

teleconnections in the hindcast ensemble mean fields. This is also true for

NAO linkage to Congo winds, despite correct representation in individual

members, and good skill in hindcasting the NAO itself. The net effect is

strongly negative skill for the Congo winds. We explore statistical correction

methods, including using the Congo zonal wind as an anchor index in a

signal-to-noise calibration for the long rains. This is considered a demonstra-

tion of concept, for subsequent implementation using models with better

Congo zonal wind skill. Indeed, the clear signals found in the Atlantic (includ-

ing Mediterranean) and Indo-Pacific, studied here both in observations and a

dynamical prediction system, motivate evaluation of these features across

other prediction systems, and offer the prospect of improved physically-

informed long rains dynamical predictions.
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1 | INTRODUCTION

It is well established that East Africa (EA) seasonal forecast
skill for March–May (MAM, long rains) is currently much
lower than that for the October–December short rains
(e.g., Batté & Déqué, 2011; Dutra et al., 2013; Mwangi
et al., 2014; Walker et al., 2019). A goal of this paper is to
diagnose a dynamical prediction system during this chal-
lenging forecast period; dynamical models have shown lim-
ited skill for MAM EA rainfall at any substantive lead-time
(MacLeod, 2019a; Walker et al., 2019). This contrasts with
the good dynamical model skill for October–December EA
rainfall (Bahaga et al., 2016; Batté & Déqué, 2011), which
has been attributed to strong links with the El Niño-
Southern Oscillation and the Indian Ocean Dipole (e.g.,
Behera et al., 2005; Black et al., 2003; Hirons & Turner,
2018; Indeje et al., 2000; Nicholson & Kim, 1997), that are
largely absent for the long rains (e.g., Ogallo, 1988; Pohl &
Camberlin, 2006). The region is highly vulnerable to
droughts and floods, so there is clear humanitarian impor-
tance attached to making progress on this forecast problem
(e.g., FEWS NET, 2013, 2022; Magadzire et al., 2017).

Recent work has firmly established a strong physically-
based role for lower-troposphere Congo zonal wind anoma-
lies impacting EA MAM rainfall totals through impact on
moisture fluxes (Finney et al., 2020; Nakamura, 1968;
Okoola, 1999a, 1999b; Walker et al., 2020). In this paper,
we therefore approach the potential predictability of the EA
long rains by exploring the predictability of the Congo
MAM 700-hPa zonal wind. In addition, a North Atlantic
Oscillation (NAO) connection to Congo zonal wind anoma-
lies was identified for the February–April season in Todd
and Washington (2004). Given the established predictability
of the NAO (e.g., Scaife et al., 2014), this is another new
avenue to explore. After considering the NAO, this paper
then also considers other potential sources of predictability
for the MAM Congo winds. Given recent work connecting
the long rains to Indo-Pacific sea-surface temperatures
(SSTs, e.g., Funk et al., 2018), this is also a candidate to con-
sider that may provide predictability of the Congo winds—
long rains system.

Section 2 describes data and methods. Section 3 exam-
ines the Congo winds—long rains relationship within
each individual ensemble member. Section 4 explores
hindcasts of the NAO—Congo wind linkage. Section 5
explicitly examines the predictability of the Congo winds,
comparing links to tropical SSTs in the hindcasts and

observations. Section 6 considers the potential for
improvements to EA rainfall skill through statistical hind-
cast correction that draws in part on the hindcast Congo
winds. Section 7 provides concluding discussion.

2 | DATA AND METHODS

Hindcasts are from the UK Met Office GloSea5 dynamical
model (MacLachlan et al., 2015). An ensemble of 56 mem-
bers is constructed for each year, initialized across
January 9th to March 1st (details in Table S1). These
start dates represent hindcasts that have generally shown
very low skill for EA long rains in dynamical models (e.
g., MacLeod, 2019a, 2019b).

The period of the hindcasts (1993–2016) mostly sam-
ples interannual MAM EA rainfall variability during the
relatively dry epoch 1998–2011 (Wainwright et al., 2019),
so the analysis period is not marked by strong autocorre-
lation in the long rains. For the MAM EA index used
here at lag 1, r = 0.16 (not significant) and this is true for
all key MAM indices used in the paper. Therefore, full
effective sample size of 24 is assumed, which corresponds
to threshold values of Pearson correlation coefficient (r)
of +/� 0.40, 0.34, 0.27 for significance at p = 0.05, 0.10,
0.20, respectively. For model validation and empirical
investigation, the following datasets are used: precipita-
tion from the Global Precipitation Climatology Project
(Adler et al., 2003), atmosphere from ERA-Interim and
key results cross-checked with ERA5 (Dee et al., 2011;
Hersbach et al., 2020) and SST from NOAA Optimum
Interpolation High Resolution (Reynolds et al., 2007).
The NAO index is calculated as the surface pressure
difference between Azores and Iceland (domains follow
Smith et al., 2020).

3 | INTERNAL MODEL
WIND-RAINFALL CONNECTION

Area-average MAM indices (Figure 1a) of EA rainfall and
zonal 700-hPa winds (U700) over the Congo (index here-
after named U700C) are calculated for both observations
and for each individual GloSea5 ensemble member.
Consistent with Walker et al. (2020), observed EA rainfall
and U700C are highly correlated (r = 0.72, Figure 1b;
and similar using ERA5 for U700C, r = 0.71, see Table S2
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for various such cross-checks). The equivalent correlation
for the GloSea5 ensemble members (a total of 1344 cases)
is also very similar (r = 0.67, Figure 1b), indicating that
the ensemble members accurately represent the mecha-
nism linking EA rainfall and U700C.

This result (Figure 1b) suggests that if GloSea5 could
skillfully predict U700C, this would imply predictability
of EA MAM rainfall. Note however, Figure 1b is internal
to the individual ensemble member hindcasts. Whether
the correct phase of the U700C—EA rainfall system is

present in the hindcast ensemble mean (EM) is a further
question, that is explored below.

4 | POTENTIAL ROLE FOR
THE NAO

A link between NAO and Congo zonal winds was
previously identified for the February–April season
(Todd & Washington, 2004). Therefore, the NAO is here

FIGURE 1 (a) Region used for the East Africa rainfall index (shaded blue, 12.5�N to 10�S, 30�E to 52.5�E, land points) and for the

Congo zonal wind index (brown box, 5�N to 5�S, 10�E to 30�E). (b) Scatter plot of March–May seasonal mean 700-hPa zonal wind anomaly

over the Congo versus the rainfall anomaly over East Africa, for observations (black) and for the individual ensemble members of GloSea5

(purple). The years are 1993–2016 (GloSea5 has 56 ensemble members, so a total of 1344 realizations). (c) Correlation (March–May) of

GloSea5 hindcast NAO index with the observed NAO index, as a function of ensemble size (black). Ensembles of each size are generated

through selecting random members of the ensemble, and repeating 1000 times. The red line is the correlation when replacing observations

with one member of the ensemble. Years used are 1993–2016.
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considered as a possible source of predictability for U700C.
In the hindcasts, MAM NAO shows significant skill
(EM skill of r = 0.55, consistent with Lledo et al., 2020),
and displays (Figure 1c) the same anomalously weak
signal-to-noise ratio seen in winter (Eade et al., 2014;
Scaife & Smith, 2018). This suggests that NAO predictability
in MAM has potential to deliver (either directly, or through
common forcing) some predictability of the U700C index.

The observed NAO-wind relationship in Todd and
Washington (2004) is reproduced here for MAM (Figure 2a).
In the observations, NAO correlates with the U700C index
at r = �0.36 and with EA rainfall at r = �0.49 (full correla-
tion map, Figure S1a).

Is this NAO link reproduced in the individual ensemble
members? To answer this, as in Figure 1b, the 56 ensemble
members are catenated from each of the 24 years, to give
1344 cases. The model NAO correlates at r = �0.25 with
the model U700C and at r = �0.31 with the model EA
rainfall (full maps in Figure S2). These values are therefore
a little lower than in the observations, but have the same
sign and, with the large sample size of 1344, are estimated
as highly significant (discussed in Table S3). The model
results suggest the observed sample correlation of NAO ver-
sus EA rainfall (r = �0.49) is at the high end of possible
24-year outcomes (see Table S4), but still well within the
range implied by the model.
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FIGURE 2 (a) Correlation (March–May) between the observed NAO and the observed 700-hPa zonal wind, 1993–2016. For guidance,
local significance at the 5% level is +/�0.40. NAO is here defined as the surface pressure difference for the box (70�N to 63�N, 25�W to

16�W) minus (40�N to 36�N, 28�W to 20�W). (b) Same as (a) but for the ensemble mean hindcast NAO versus the ensemble mean hindcast

700-hPa zonal wind. (c) Same as (a) but with the observed SST. (d) Same as (b) but with the ensemble mean hindcast SST. For reference, the

gray box is the Congo zonal wind index domain (Figure 1a).
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In both observations and the model, the NAO
correlates slightly higher with EA rainfall than with
U700C. The hypothesis that the NAO linkage to EA rain-
fall occurs partly through U700C (which impacts EA rain-
fall, i.e., mediation, Kolstad and MacLeod (2022)) and in
addition, partly through a different route, is supported by
multiple regression analysis of the three indices, in both
observations and the model (Table S5). Overall, these
results with the individual members appear to suggest the
model should have skill in predicting EA rainfall through
the NAO-wind-rainfall connection.

However, the EM predictions from the model behave
differently. The correlation of the EM NAO with the EM
U700 field (Figure 2b) loses (or perhaps displaces east of
20�E) the two bands that were oriented southwest to
northeast, located to the south of the NAO in the
observed pattern (Figure 2a). Now, the negative U700
correlation over Congo seen in the observations as part of
the banding structure (Figure 2a) is replaced with a weak
isolated zone of positive correlations over Congo in the
model (Figure 2b). The difference in structure is already
seen in the southern pole of the NAO, which for the
model in terms of U700 is oriented too strongly in
the east–west direction, and penetrates substantially into
northwestern Africa, leading to negative U700 correla-
tions where in the observations there is already the next
band of opposite sign correlations (Figure 2a). In sum-
mary, the EM hindcast of NAO correlates at r = 0.32
with the EM hindcast of U700C (Figure 2b). In the
observed system, the opposite sign of association operates
(r = �0.36, and seen in Figure 2a).

A possible source of this discrepancy emerges by
considering the observed SST relationship with the
observed NAO (Figure 2c) and comparing that to the
hindcast EM SST relationship with the hindcast EM NAO
(Figure 2d). The observations reveal the well-known tri-
pole SST anomaly across the North Atlantic, with particu-
larly strong negative correlations in the eastern tropical
North Atlantic, generally considered to be primarily a
response to NAO (e.g., Hurrell & Deser, 2010; Visbeck
et al., 2003, with boreal spring also active, Penland &
Hartten, 2014). However, in the hindcasts, the relationship
of the EM NAO to SSTs in this region is weaker
(Figure 2d), and does not extend close to West Africa
(5–15�N). Furthermore, the gradient from this location to
the eastern Gulf of Guinea is reversed. These differences
may be expected to impact nearby climate anomalies;
model experiments in Todd and Washington (2004) sug-
gested tropical North Atlantic SSTs could serve as a link
between the NAO and its impact over equatorial Africa.

Thus, in the GloSea5 forecast system, there does not
appear to be a working mechanism in the predictable
portion of variance (EM) linking NAO through to MAM

EA rainfall (evidenced further in Figure S1b). This may
be related to model error (including the EM NAO pre-
dicted signal being too weak), or it may be that the NAO-
U700C linkage is in fact confined to the internal portion
of NAO variance and is fundamentally not predictable,
that is, this linkage will always be confined to the individ-
ual members of an ensemble forecast. In future exten-
sions of this analysis, useful insights are also likely from
previous work on winter NAO and tropical Atlantic
linkages (e.g., analysis of CMIP experiments in Jing
et al., 2020), but expression in boreal spring, and in ini-
tialized seasonal hindcast experiments, brings challenges
unique to the problem here.

5 | OTHER SOURCES OF
PREDICTABILITY FOR CONGO
ZONAL WINDS

This section evaluates and diagnoses the EM hindcasts of
MAM U700C. First, it is confirmed that U700C (EM) still
has a significant positive correlation with EA rainfall (EM),
like in the individual members (Figure 1b), but just not as
strong (r = 0.47, see Figure S3). Next, comparing observed
and EM U700C hindcast values (Figure 3a, black line), a
substantial highly significant negative skill emerges
(r = �0.49, p = 0.015). This finding suggests that there is
potential predictability for U700C, but that there is indeed
an error in the model hindcasts that is leading to a system-
atic tendency for reversal of sign in the hindcast anomaly.
The observed U700C index in fact correlates negatively not
just with the co-located EM hindcast U700, but also, with
the hindcast U700 right across the equatorial Indian Ocean,
where the correlation intensifies (Figure 3b). This is a much
stronger signal than any NAO-related one in Figure 3b,
where no correlations of substance extend northwestward
into the NAO domain. Therefore, the NAO does not appear
to be the primary source of the negative U700C skill, even
though the reversed EM NAO link in GloSea5 (compare
Figure 2a,b) could potentially make a small contribution.

To explore where potential sources of predictability of
U700C may reside in the ocean, the observed U700C index
has been correlated with observed SST (Figure 3c). Several
areas emerge as potential contributors to U700C variability,
including the tropical Atlantic, eastern Mediterranean and
northwestern Indian Ocean. However, strongest signals are
in the western Pacific (negative correlation “<” shape),
which has been associated with EA MAM precipitation
potential predictability (Funk et al., 2018, 2019; Funk &
Hoell, 2015; Lyon & DeWitt, 2012). However, the model
EM hindcast U700C correlates with hindcast SST in a very
different way (Figure 3d). It fails to capture the western
tropical Pacific relationship, but in contrast emphasizes
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FIGURE 3 (a) Same as Figure 1c, but for the 700-hPa zonal wind index over the Congo (U700C index). Figure 1c displays the signature

of the established NAO predictability (with signal-to-noise paradox), and similarities here are notable, with observed-model correlation

growing with ensemble size (black line), and model-model correlation (purple line) peaking at absolute values lower than the model-

observed (black line). (b) Correlation (March–May) between the observed U700C index and the ensemble mean hindcast 700-hPa zonal

wind. Years used are 1993–2016. For guidance, local significance at the 5% level is +/� 0.40. (c) Correlation (March–May) between observed

U700C and observed SST (shading) and observed rainfall (contours). Contours at +/�0.2 and 0.4, positive dark red, negative dark blue.

Years used are 1993–2016. (d) Same as (c) but for the ensemble mean hindcast of U700C and ensemble mean hindcast of SST (shading) and

rainfall (contours). For reference, in b (c, d) the gray (orange) box is the U700C index domain (Figure 1a).
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positive correlations with the southeastern tropical Indian
Ocean. Across the Indo-Pacific, the sign of correlations
is generally reversed in Figure 3d compared to Figure 3c,
although maxima are differently located. Differences
between EM and observed teleconnections could simply be
a result of internal systematic but unpredictable variability.
However, it is hypothesized that the western Pacific signal
should be predictable at this short-lead time, which would
imply a weakness of this model in this region, with a lack
of western Pacific relationship in the hindcasts (Figure 3d),
being replaced by opposite sign relationship in the south-
eastern Indian Ocean; it is proposed that this substantially
contributes to the model U700C hindcast wind error.

The above interpretations are supported by also
considering the correlation of precipitation with U700C
(contours on Figure 3c,d). The tropical precipitation corre-
lations support the presence of strong regional climate vari-
ations associated with the SST correlations emphasized
above, at a scale that is consistent with impact on U700C.
For example, hindcast U700C correlates strongly and posi-
tively with precipitation in the southeastern Indian Ocean
(where SST correlations are positive), whereas observations
emphasize negative correlations with the western Pacific
region (where SST correlations are negative). Alignment of
SST and precipitation correlations (see Kumar et al., 2013)
is also present in the tropical Atlantic (Figure 3c,d), and
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FIGURE 4 (a) Correlation (March–May) between observed U700C index and observed 700-hPa zonal wind. Years used are 1993–2016.
For guidance, local significance at the 5% level is +/�0.40. (b) Same as (a) but for ensemble mean hindcast U700C index versus ensemble

mean hindcast of 700-hPa zonal wind. (c) Validation of March–May hindcast of 700-hPa zonal wind. Statistic shown is the correlation

(calculated at each grid-box) between the ensemble mean hindcast and the observed over 1993–2016. (d) Same as (c) but for sea-surface

temperature. For reference, the gray box is the U700C index domain (Figure 1a).
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with reversed sign for observations compared to model,
suggesting errors in the tropical Atlantic likely play a role
in the reversed sign of skill for U700C. The sign of precipi-
tation correlation in the tropical North Atlantic generally
extends into West Africa, especially in the model hindcasts
(Figure 3d) highlighting that a next step is the need to
understand links to continental convection for a full under-
standing of long rains predictability.

Further insight emerges on the Indo-Pacific errors
when the U700C versus U700 field relationship is consid-
ered in observations (Figure 4a) and the model
(Figure 4b). In the model, the correlations suggest that
anomalous winds connect from the southeastern tropical
Indian Ocean into EA and the Congo region. This is
absent in the observations, which reflect the way the
western Pacific SST influence reaches across the Indian
Ocean (Funk et al., 2018). Detailed assessments have
shown such linkages are important but often erroneous
in models during other seasons (e.g., October–December,
Hirons & Turner, 2018).

The above interpretation is further reinforced when
considering the wider GloSea5 validation of U700
(Figure 4c) and SST (Figure 4d). Areas of low SST predic-
tion skill, as well as low U700 skill, are found in the
northwestern tropical Pacific near where the observed
U700C index strongly correlates with observed SST.

In addition, relatively low SST hindcast skill is found in
the eastern tropical North Atlantic and Gulf of Guinea,
areas that also have near-zero U700 skill. The region is an
area prone to model errors. Rainfall along the equatorial
Atlantic here (Figure S1b) and in other GloSea5 simula-
tions, exhibits erroneous connections with the NAO (also
shown for winter in Scaife et al., 2017) that are likely related
to long-standing model errors in the equatorial Atlantic

(Dippe et al., 2019). Furthermore, given the reversed rela-
tion between EM NAO and U700C (Figure 2a,b), and the
broadly reversed Atlantic SST correlation with U700C
(Figure 3c,d), the Atlantic (including the Mediterranean)
should also be considered in a deeper assessment of the
U700C hindcast errors. These results point the way to
future analysis of forecast models, to explore the way in
which the Indo-Pacific and Atlantic are handled at this time
of year, seeking models that deliver robust predictability of
U700C and EA rainfall.

6 | EXPLORING MODEL
CORRECTION

The tight relationship between U700C and EA rainfall
(Figure 1b) motivates considering whether U700C may be
used as the anchor index for signal-to-noise (SNC) calibra-
tion improvement of EA rainfall hindcasts. This is analo-
gous to the successful use of NAO as anchor index for
SNC hindcast improvement of precipitation in the NOA-
impacted region (Smith et al., 2020). The problem is that,
unlike the NAO, the skill of U700C here is negative. In
principle, SNC can utilize negative skill information (see
below). However, we do not advocate implementing this
model correction operationally until there is physically-
informed understanding of the negative skill. Further-
more, the negative skill, while maintained in sign when
using ERA5, is weaker in amplitude (see Table S2), intro-
ducing further uncertainty. With these caveats, we here
make a demonstration of concept by implementing SNC
using the result in Figure 3a.

The ratio of predictable components equation (Eade
et al., 2014) uses the correlation coefficient between the EM

FIGURE 5 Time-series of March–May East Africa rainfall for observations (Obs, black line) compared to GloSea5 ensemble mean (Raw,

blue line) and the GloSea5 ensemble mean after correction using signal-to-noise calibration (Calibrated, orange line). Vertical lines show

interquartile ranges of the ensemble member values. The validation correlation (comparing to the observed line) is given in the bottom right

corner for the raw and calibrated series respectively. The calibration uses the hindcast 700-hPa Congo zonal wind index, whose ensemble

mean hindcast correlates with observed precipitation at r = �0.19 (the partial correlation removing the effect of the ensemble mean

hindcast rainfall, is larger at r = �0.36, enabling the significant coefficient a2 in Equation 1).
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and observations (Equation S1) and is the first of three steps
(Equations S1–S3) delivering a U700C value (termed U0) in
each year with magnitude consistent with the signal-
to-noise paradox and with corrected sign of anomaly. In
each year, the subset of U700C ensemble members that are
closest to U0 are selected (see Figure S4). These members
can be expected to now contain some of the U700C—EA
rainfall linkage found in Figure 1b, as well as some of the
direct skill that was present in the model EA precipitation
from other sources (Figure 5, r = 0.26). Application of SNC
(Figure 5) increases skill to r = 0.40 (p = 0.05).

It is insightful to compare the SNC result with a
model output statistics regression, consistent with previous
dynamical seasonal forecast correction approaches (e.g.,
Ndiaye et al., 2009). Such approaches can also allow for
optimal spatial shift in the signal (e.g., through canonical
correlation analysis, Colman et al., 2020). However for the
purpose of a simple comparison with SNC, we implement a
regression prediction model (hereafter, REG) using the
hindcast EA precipitation and U700C as predictors:

EAobs ¼ a0þa1�EAmodþa2�U700Cmod ð1Þ

where EAobs and EAmod are the observed and EM hind-
cast values of EA MAM precipitation, and U700Cmod is
the EM MAM hindcast of U700C. Such a model has a fit
skill of r= 0.44. The a1 coefficient is positive (significant
at p= 0.056) reflecting the fact that the hindcast EA rainfall
already has a small amount of positive skill independent of
U700Cmod. The a2 coefficient is negative (significant at
p= 0.089), with the negative sign consistent with revers-
ing the wind-rainfall signal compared to observations
(as also done in the SNC). The predictions from REG and
SNC are highly correlated (r= 0.86, plotted in Figure S5).
One advantage of SNC is that it identifies actual realiza-
tions in the model system, which may be further con-
sulted for properties such as daily weather sequences.

7 | CONCLUDING DISCUSSION

The Indo-Pacific and the eastern side of the tropical Atlan-
tic represent complex systems to capture in MAM seasonal
forecasts over Africa, and likely have been at the root of
difficulties in seasonal predictions at this time of year over
EA (e.g., see Walker et al., 2019). However, it is encourag-
ing that the MAM Congo zonal wind index (U700C) is
closely tied to MAM EA rainfall in observations (r = 0.72),
and this is also true in the individual hindcast ensemble
members studied here (r = 0.67). This suggests U700C is
an indicator of a coherent system delivering rainfall anom-
alies in observations and the model. Therefore, predictabil-
ity of U700C has been the focus of this paper.

The NAO correlates with U700C and EA rainfall
strikingly in both observations and the hindcast individual
ensemble members, for example, NAO v EA rainfall 1993–
2016, r = �0.49 in observations and r = �0.31 in the hind-
cast members with the large sample size of 1344. However,
these correlations are absent in the hindcast EM. This requires
further work to understand why the signal is confined to the
internal (non-predictable) variance of this model, despite
strong EM skill for the MAMNAO. Possible sources of model
error pointed to include the weak amplitude of NAO signals
(e.g., Figure 1a) and errors in tropical Atlantic variability. In
addition, in terms of EA rainfall linkage to northern midlati-
tudes, the primary role of theNAO inMAM is likely gradually
replaced with linkages to sharper upper-level troughs and
ridges over the Mediterranean region (Camberlin &
Philippon, 2002; Wainwright et al., 2022; Ward et al., 2021)
during months that are closer to winter (e.g., February–
March), motivating assessment atmonthly resolution.

The U700C skill is found to be strongly negative, and
with evidence of a clear predictable component of vari-
ability in the U700C hindcasts. We note possible contri-
butions to this negative skill from variability across the
tropical and broader Atlantic, and the Indo-Pacific.
However, linkages seen in observations emanating from
the western Pacific (Funk et al., 2018) may require better
hindcasts for successful model representation of the
Indo-Pacific influence on U700C and EA rainfall.

We have explored the potential of model recalibration, in
part motivated by the presence of a so-called signal-to-noise
paradox for U700C, where the model is better at predicting
the real world than its own ensemble members (Figure 3a).
Results deliver some improvement, but are still relatively
modest compared to many tropical areas (Scaife et al., 2019),
and are considered at this stage a demonstration of concept,
for subsequent implementation with models that contain bet-
ter U700C skill. In addition, skill improvements as a function
of lead-time and perhaps initial ocean–atmosphere state
(such as NAO phase) should be investigated.

In summary, we propose that accurate model
representation of the U700C links to the Indo-Pacific and
Atlantic regions offers the prospect of much improved
forecast skill for MAM EA rainfall. These linkages are a
priority for further assessment in current models, includ-
ing their interplay with intraseasonal variability via the
Madden-Julian Oscillation (e.g., Maybee et al., 2023;
Vellinga & Milton, 2018). The work here also encourages
further investigation of physically-informed recalibration
of current forecasts.
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