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Abstract. In this paper, an approach for bounding the first-passage probability of a class of
nonlinear oscillators with fractional derivative elements and subjected to imprecise stationary
Gaussian loads is presented. Specifically, the statistical linearization and stochastic averaging
methodologies are used in conjunction with an operator norm-based solution framework to
estimate the bounds of the failure probability in a fully decoupled manner. The proposed
technique can treat a wide range of nonlinear and hysteretic behaviors with relatively low
computational cost. A numerical example is considered to demonstrate the applicability of
the proposed approach. Specifically, the bounds of the first-passage probability of a bilinear
hysteretic oscillator with fractional derivative elements are estimated.

1. Introduction
The use of stochastic excitation models constitute a flexible approach to evaluate the effect of
uncertain dynamic loads on structural systems [1, 2, 3]. Within this framework, first-passage
probabilities enable a suitable measure of structural performance [4]. Nonetheless, it is often
challenging to select crisp values for the corresponding excitation model parameters due to, e.g.,
lack of knowledge, scarce data, or conflicting evidence [5]. In this scenario, interval variables
can be adopted to represent the excitation model parameters, whereby first-passage probabilities
become interval-valued [6]. Nevertheless, evaluating the corresponding failure probability bounds
usually proves a computationally daunting task since, in essence, reliability assessment must be
performed for different values of the interval parameters [7]. To address this issue, several
frameworks have been developed (e.g., [8, 9]). For linear structural systems under Gaussian
excitation, the operator norm-based framework proposed in [10, 11] allows determining failure
probability bounds with the solution of two standard optimization problems followed by two
evaluations of the failure probability. Recently, this framework has been extended in [12] to
address nonlinear systems by resorting to the statistical linearization method [13].

https://creativecommons.org/licenses/by/4.0/
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Further, structural dynamical analysis incorporating fractional calculus tools and techniques
has gained considerable attention during the recent years [14, 15, 16]. Specifically, several
approaches have been proposed to assess the response of systems with fractional derivative
elements in a stochastic dynamics framework (e.g., [17, 18, 19]). In this context, a continuing
challenge in the field of stochastic engineering dynamics relates to the development of
computationally efficient methodologies for assessing the reliability of nonlinear systems with
fractional derivative elements (e.g., [20, 21, 22, 23, 24]) and, moreover, for bounding the first-
passage probability of such systems under interval-valued stochastic loading. To this end,
numerically efficient methodologies such as stochastic averaging [25] and statistical linearization
[13] present some attractive features related to their capacity to treat a wide range of nonlinear
and hysteretic structural models under diverse types of stochastic excitation (e.g. [26, 27, 28]).

This paper proposes an approach for bounding the first-passage probability of nonlinear
oscillators with fractional derivative elements and subject to imprecise stationary Gaussian loads.
Specifically, the proposed technique is based on the integration of the statistical linearization
and stochastic averaging methodologies with an operator norm-based framework [11], which
allows estimating failure probability bounds in a fully decoupled manner with relatively low
computational cost. The efficacy of the proposed technique is demonstrated by a numerical
example pertaining to a bilinear hysteretic oscillator with fractional derivative elements. The
obtained results are compared with a reference solution obtained by a direct double-loop
approach.

2. Mathematical formulation
2.1. Equivalent linear oscillator: An imprecise probabilities framework
The class of oscillators of interest satisfies the equation of motion

ẍ(t) + βDα
0,tx(t) + g(t, x, ẋ) = q(t), (1)

where x denotes the response displacement and a dot over a variable accounts for time
differentiation. g(t, x, ẋ) is an arbitrary nonlinear function, β is a constant coefficient and Dα

0,t(·)
represents the Caputo fractional derivative operator of order α, with 0 < α < 1, given by [14]

Dα
0,tx(t) =

1

Γ(1− α)

∫ t

0

ẋ(τ)

(t− τ)α
dτ, (2)

where Γ(·) is the Gamma function.
Further, q(t) denotes a zero-mean stationary Gaussian excitation process described by the

power spectrum Sqq(ω). It is assumed that a set of parameters θ ∈ Rnθ , which are represented
as interval variables, characterize the stochastic excitation model. These are bounded by the
hyper-rectangle [5, 6]

Θ =
{
θ ∈ Rnθ : θLi ≤ θi ≤ θUi , i = 1, . . . , nθ

}
, (3)

where θLi and θUi denote, respectively, the lower and upper bounds between which the true value
for the i-th parameter is expected to lie [5]. For reliability assessment purposes, a first-passage
failure event is defined as [4]

F = max
t∈[0,T ]

max
ℓ=1,...,nζ

∣∣∣∣ζℓ(t)ζ∗ℓ

∣∣∣∣ > 1, (4)

where ζℓ(t) correspond to the responses of interest with thresholds ζ∗ℓ > 0, ℓ = 1, . . . , nζ , and
T is the simulation period. Since the parameters θ are interval-valued, the corresponding first-
passage failure probability PF (θ) = P (F |θ) is also an interval variable, that is,

PF (θ) ∈
[
PL
F , P

U
F

]
=

[
min
θ∈Θ

PF (θ),max
θ∈Θ

PF (θ)

]
, (5)
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where PL
F and PU

F denote the lower and upper bounds of PF (θ), respectively. In principle,
these bounds can be determined by identifying the extrema of the failure probability function.
This leads to the so-called double-loop approaches [7], where reliability analysis is performed
in the inner loop and the outer loop comprises an optimization procedure (with respect to the
parameters θ).

Next, assuming that the oscillator in equation (1) is lightly damped, its response follows a
pseudo-harmonic behavior [13, 29]. In this regard, the response displacement has the form

x(t) = A(t) cos(ω(A)t+ ψ(t)), (6)

where A(t) and ψ(t) denote the response amplitude and phase, respectively, and ω(A) represents
the amplitude-dependent natural frequency. Since the system is lightly damped, A(t) and ψ(t)
are slowly-varying processes with respect to time. Therefore, they can be considered as constant
over one cycle of oscillation [13], i.e., A(t) = A and ψ(t) = ψ. Further, equation (1) is written
for simplicity as [22]

ẍ(t) + β0ẋ(t) + z(t, x,Dα
0,tx, ẋ) = q(t), (7)

where z(t, x,Dα
0,tx, ẋ) = βDα

0,tx+g(t, x, ẋ)−β0ẋ, and β0 = 2ζ0ω0 is a damping coefficient with ω0

and ζ0 denoting the natural frequency and damping ratio of the corresponding linear oscillator.
Then, the oscillator in equation (7) is approximated by [29, 30]

ẍ(t) + (β0 + β(A)) ẋ(t) + ω2(A)x(t) = q(t), (8)

where β(A) and ω(A) denote the amplitude-dependent damping and stiffness, respectively. The
determination of the latter is done by forming the difference between equations (7) and (8), and
minimizing it in the mean-square sense over one cycle of oscillation [13]. This leads to

β(A) =
ω2
0

Aω(A)
S(A) +

β

ω1−α(A)
sin
(απ

2

)
− β0, (9)

where

S(A) = − 1

π

∫ 2π

0
g(A cosϕ,−Aω(A) sinϕ) sinϕdϕ (10)

and ϕ = ω(A)t+ ψ, and

ω2(A) =
ω2
0

A
F (A) + βωα(A) cos

(απ
2

)
, (11)

where

F (A) =
1

π

∫ 2π

0
g(A cosϕ,−Aω(A) sinϕ) cosϕdϕ. (12)

Further, assuming that p(A) denotes the response amplitude probability density function (PDF),
taking expectations on equations (9) and (11), the equivalent elements are approximated by

βeq =

∫ ∞

0
β(A)p(A)dA (13)

and

ω2
eq =

∫ ∞

0
ω2(A)p(A)dA. (14)

Therefore, the equivalent linear system in equation (8) takes the form

ẍ(t) + (β0 + βeq) ẋ(t) + ω2
eqx(t) = q(t). (15)
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The determination of the equivalent linear damping and stiffness elements in equations (13) and
(14) rely on the response amplitude PDF, which is done by resorting to the stochastic averaging
method.

In this regard, the stochastic differential equation governing the slowly varying response
amplitude process is constructed. The associated Fokker-Planck equation is given by (e.g. [25])

∂p(A)

∂t
=− ∂

∂A

{(
−1

2
(β0 + βeq)A+

πS(ωeq)

2ω2
eqA

)
p(A)

}
+

1

4

∂

∂A

{
πS(ωeq)

ω2
eq

∂p(A)

∂A
+

∂

∂A

(
πS(ωeq)

ω2
eq

p(A)

)}
. (16)

In general, if the system under consideration is a linear oscillator subject to stationary excitation,
the solution of equation (16) is readily available in the form of a Rayleigh distribution (e.g.,
[31, 32]). Moreover, for the case of a linear oscillator with fractional derivative elements, a
closed-form expression for the response amplitude PDF is given by [33]

p(A) =
sin
(
απ
2

)
A

ω1−α
0 σ2

exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
, (17)

where σ2 denotes the stationary response variance of a linear oscillator subject to white noise
excitation [13].

2.2. First-passage failure probability bounds estimation
The methodology described in section 2.1 yields a linear relationship between the oscillator
response and the stochastic excitation corresponding to a given value of θ. This enables the
implementation of an operator norm-based decoupling framework [10, 12] to estimate the bounds
of the first-passage failure probability in equation (5). In this regard, the zero-mean discrete
Gaussian load in equation (15) is represented via the Karhunen-Loève (K-L) expansion [34].
Specifically, it is assumed that Λ(θ) denotes the diagonal nξ×nξ matrix containing the nξ largest
eigenvalues of the stochastic load covariance matrix Σ(θ) and Υ(θ) denotes the nT ×nξ matrix
of the corresponding eigenvectors. Then, the loading at time tk = (k − 1)∆t, k = 1, . . . , nT ,
where ∆t represents the time step and nT = T/∆t+ 1 is the number of time instants, is given
by

q(tk,θ, ξ) = ψ
T
k (θ)ξ. (18)

In equation (18), ψk(θ) corresponds to the k-th column of the matrix Ψ(θ) = Λ1/2(θ)ΥT(θ)
and ξ ∈ Rnξ comprises nξ standard Gaussian random variables.

Further, assuming that the nT discrete values of the ℓ-th normalized response of interest are
contained in the vector

h̄ℓ(θ, ξ) =
1

h∗ℓ

[
hℓ(t1,θ, ξ) · · · hℓ(tnT ,θ, ξ)

]T
, (19)

ℓ = 1, . . . , nζ , leads to

h̄(θ, ξ) =
[
h̄T
1 (θ, ξ) . . . h̄T

nζ
(θ, ξ)

]T
, (20)

which comprises all the discrete values of all responses of interest for a given realization of θ and
ξ. Then, considering equation (15), the relationship between the discrete responses of interest
and the basic random variables is linear and can be written as [35]

h̄(θ, ξ) = M(θ)ξ. (21)
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In equation (21), the linear mapping M(θ) ∈ RnTnζ×nξ depends on the response thresholds,
the adopted integration scheme for equation (15), and the matrix Ψ(θ). Hence, M(θ) is a
function of θ since these parameters determine the K-L expansion vectors in equation (18) and
the properties of the equivalent oscillator in equation (15). The induced (p1, p2)-norm of this
matrix is defined as

∥M(θ)∥p1,p2 = sup
ξ ̸=0

∥M(θ)ξ∥p1
∥ξ∥p2

= sup
ξ ̸=0

∥h̄(θ, ξ)∥p1
∥ξ∥p2

, (22)

where ∥ · ∥pi denotes the pi-norm of a vector (i = 1, 2). Thus, ∥M(θ)∥p1,p2 measures the
maximum amplification of ∥h̄(θ, ξ)∥p1 with respect to the magnitude of the input vector, i.e.,
∥ξ∥p2 . The values p1 = ∞ and p2 = 2 are adopted herein [10, 12]. Then, the main idea of the
employed operator norm framework is to use ∥M(θ)∥∞,2 as a numerically efficient proxy of the
failure probability function PF (θ) in order to identify the values of θ that yield the bounds in
equation (5). Specifically, this scheme leads to[

PL
F , P

U
F

]
≈
[
PF

(
θ∗,L

)
, PF

(
θ∗,U

)]
, (23)

where
θ∗,L = argmin

θ∈Θ
∥M(θ)∥∞,2 (24)

and
θ∗,U = argmax

θ∈Θ
∥M(θ)∥∞,2 . (25)

The proposed framework for estimating the bounds in equation (5) is summarized in the
following two-step procedure:

I. Determine the parameter values θ∗,L and θ∗,U by solving equations (24) and (25). In this
regard, evaluating ∥M(θ)∥∞,2 for a given value of θ involves determining an equivalent
linear oscillator according to section 2.1, and then finding the corresponding matrix M(θ)
in equation (21).

II. Estimate the failure probability bounds PL
F ≈ PF (θ

∗,L) and PU
F ≈ PF (θ

∗,U ) using the
nonlinear oscillator in equation (1) and any appropriate reliability analysis technique [4].

3. Numerical example
A bilinear hysteretic oscillator with fractional derivative elements is considered as numerical
example (e.g., [36]). The oscillator response is given by equation (1) with

g(t, x, ẋ) = γω2
0x(t) + (1− γ)ω2

0xyz. (26)

In equation (26), γ denotes the post- to pre-yield stiffness ratio, xy is the yielding onset, and z
is a state variable such that

xy ż = ẋ (1−H(ẋ)H(z − 1)−H(−ẋ)H(−z − 1)) , (27)

where H(·) is the Heaviside step function. The following parameter values are considered:
β = 6.32, α = 0.5, γ = 0.7, ω0 = 10, and xy = 0.01.

Further, the zero-mean Gaussian stochastic excitation q(t) in equation (1) is described by
the Clough-Penzien spectrum [37]

Sqq(ω) =
ω4
(
ω4
g + (2ζgωgω)

2
)
S0(

(ω2
g − ω2)2 + (2ζgωgω)2

) (
(ω2

f − ω2)2 + (2ζfωfω)2
) , (28)
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where S0 is the intensity of the excitation (in (m/s2)2/Hz), ωg and ωf are the natural circular
frequencies of the filter (in rad/s), and ζg and ζf the corresponding damping ratios. It is
assumed that all parameters characterizing Sqq(ω) in equation (28) are interval-valued, and thus,
θ = [S0, ωg, ωf , ζg, ζf ]

T. The corresponding lower and upper bounds of the different parameters
are shown in table 1.

Table 1. Lower and upper bounds of the interval parameters.

Parameter Lower bound Upper bound

S0 0.040 0.060
ωg 9.976 14.964
ωf 4.344 6.516
ζg 0.640 0.960
ζf 0.544 0.816

The first-passage failure event is defined in terms of the oscillator displacement x(t) as

F = max
t∈[0,T ]

|x(t)|
x∗

> 1 (29)

where x∗ = 0.111 and T = 20 s is the reference period with time step ∆t = 0.01. Further,
considering the entire set of eigenvectors of the covariance matrix are retained to construct the
K-L expansion in equation (18), a total of nξ = 2001 random variables are involved in the
discrete representation of q(t).

The implementation of the proposed framework relies on determining the equivalent linear
oscillator in equation (15). Therefore, taking into account the hysteretic term defined by
equations (26) and (27), equations (10) and (12) yield

S(A) =

{
4xy

π

(
1− xy

A

)
, A > xy

0, A ≤ xy
(30)

and

F (A) =

{
A
π

(
Λ− 1

2 sin(2Λ)
)
, A > xy

A, A ≤ xy
, (31)

respectively, where Λ = arccos
(
1− 2xy

A

)
. Then, taking into account equations (9), (11), (30)

and (31), as well as equation (17), the equivalent elements in equation (15) are determined
as functions of the stationary response variance σ2, i.e., βeq = βeq(σ

2) and ωeq = ωeq(σ
2).

Indicatively,

βeq =− β0 +
β sin2

(
απ
2

)
ω1−α
0 σ2

∫ ∞

0

A

ω1−α(A)
exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA

+
4xyω

2
0(1− γ) sin

(
απ
2

)
πω1−α

0 σ2

∫ ∞

xy

1− xy

A

ω(A)
exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA

(32)

and a corresponding expression holds for ω2
eq. The stationary response variance corresponding

to the equivalent linear oscillator in equation (8) depends, in turn, on the equivalent linear
damping and stiffness elements [13], i.e., σ2 = σ2(ωeq, βeq). Thus, a coupled set of nonlinear
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algebraic equations is constructed and then solved for computing βeq, ωeq and σ2. This is done
in an iterative manner (e.g., [13, 38]) or by resorting to any pertinent numerical scheme.

The optimization problems defined in equations (24) and (25) are solved to identify the
parameter values that bound the failure probability and, subsequently, the failure probability
is evaluated at these values by considering the nonlinear oscillator in equations (1), (26) and
(27). A pattern search algorithm (e.g., [39]) is implemented to solve the optimization problems,
while direct Monte Carlo simulation with 2.5× 104 generated samples is employed for reliability
assessment. In passing, note that alternative optimization techniques and reliability assessment
methods can be also considered for the practical implementation of the proposed approach.

The results obtained by the proposed approach are presented in table 2. Specifically, the
optimal values θ∗ = [S∗

0 , ω
∗
g , ω

∗
f , ζ

∗
g , ζ

∗
f ]

T corresponding to the failure probability bounds PL
F

and PU
F , as well as the associated values of the failure probability, PF (θ

∗), and operator norm,
∥M(θ∗)∥∞,2, are shown in the table. Further, the failure probability bounds obtained by a
double-loop approach are also reported. These results, which can be regarded as reference
values, are obtained by solving the optimization problems in equation (5) directly. To this end,
a pattern search algorithm is considered and direct Monte Carlo simulation with a sample size of
2.5× 104 is used for estimating PF (θ). It is readily seen that the reference values for the failure
probability bounds agree with those estimated by the proposed approach. Furthermore, the
optimal parameter values identified by both methods are relatively similar between each other.
Notably, the proposed approach requires only two reliability analyses, which leads to significant
computational savings in this case. The obtained results highlight the validity of the adopted
solution strategy for this example. That is, the use of the statistical linearization and stochastic
averaging methodologies in conjunction with the operator norm defined in equation (22) enables
a numerically efficient proxy that allows bounding the failure probability function in a fully
decoupled manner.

Table 2. Results obtained by the proposed approach and a direct solution scheme.

Proposed approach Double-loop approach

PL
F PU

F PL
F PU

F

S∗
0 0.040 0.060 0.040 0.060
ω∗
g 9.976 11.167 10.470 12.275
ω∗
f 6.516 4.344 6.491 4.434

ζ∗g 0.960 0.640 0.925 0.644
ζ∗f 0.816 0.544 0.805 0.548

PF (θ
∗) 6.8× 10−4 7.96× 10−1 7.2× 10−4 7.99× 10−1

∥M(θ∗)∥∞,2 3.7× 10−3 1.92× 10−2 4.1× 10−3 1.86× 10−2

Time (s) 8.09× 102 7.10× 102 3.56× 104 6.79× 104

4. Conclusion
In this paper an approach for bounding the first-passage probability of a class of nonlinear
oscillators with fractional derivative elements and subject to imprecise stationary Gaussian loads
has been developed. This has been done by combining the statistical linearization and stochastic
averaging methodologies with a recently proposed operator norm-based solution framework,
which allows bounding the first-passage probability in a fully decoupled manner. Specifically,
an operator norm related to the equivalent linear oscillator obtained at any given value of the
excitation model parameters is employed as a numerically efficient proxy of the failure probability
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in order to identify the parameter values that yield the extrema of the failure probability.
Ultimately, the solution of two standard optimization problems and two corresponding reliability
analyses are required to estimate the bounds of the first-passage probability. The efficacy of
the proposed approach has been demonstrated by a numerical example consisting of a bilinear
hysteretic oscillator with fractional derivative elements subject to a stochastic excitation modeled
by filtered Gaussian noise, while reference results obtained from a standard double-loop approach
have been also provided for comparison.
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