
This is a repository copy of Quantifying uncertainty in inferences of landscape genetic 
resistance due to choice of individual‐based genetic distance metric.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201837/

Version: Published Version

Article:

Beninde, J. orcid.org/0000-0002-1677-1809, Wittische, J. and Frantz, A.C. (2024) 
Quantifying uncertainty in inferences of landscape genetic resistance due to choice of 
individual‐based genetic distance metric. Molecular Ecology Resources, 24 (1). e13831. 
ISSN 1755-098X 

https://doi.org/10.1111/1755-0998.13831

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) 
licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new 
works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative 
works on the same terms. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Mol Ecol Resour. 2023;00:1–18.    | 1wileyonlinelibrary.com/journal/men

Received: 15 March 2021  | Revised: 12 May 2023  | Accepted: 22 June 2023

DOI: 10.1111/1755-0998.13831  

F R O M  T H E  C O V E R

Quantifying uncertainty in inferences of landscape genetic 

resistance due to choice of individual- based genetic distance 

metric

Joscha Beninde1,2  |   Julian Wittische3,4 |   Alain C. Frantz3,4,5

1LA Kretz Center for California 
Conservation Science, Institute of the 
Environment and Sustainability, University 
of California, Los Angeles, California, USA
2IUCN WCPA Connectivity Conservation 
Specialist Group, Gland, Switzerland
3Musée National d'Histoire Naturelle, 
Luxembourg City, Luxembourg
4The Fondation Faune- Flore, Luxembourg 
City, Luxembourg
5The University of Sheffield, Sheffield, UK

Correspondence

Joscha Beninde, LA Kretz Center for 
California Conservation Science, Institute 
of the Environment and Sustainability, 
University of California, Los Angeles, CA, 
USA.
Email: joscha.research@gmail.com

Alain C. Frantz, Musée National d'Histoire 
Naturelle, Luxembourg City, Luxembourg.
Email: afrantz@mnhn.lu

Funding information

Deutsche Forschungsgemeinschaft, 
Grant/Award Number: BE 6887/1- 
1; Fonds National de la Recherche 
Luxembourg, Grant/Award Number: C20/
SR/14748041; Musée National d'Histoire 
Naturelle, Luxembourg

Handling Editor: Jeremy B. Yoder

Abstract

Estimates of gene flow resulting from landscape resistance inferences frequently in-

form conservation management decision- making processes. Therefore, results must 
be robust across approaches and reflect real- world gene flow instead of methodo-

logical artefacts. Here, we tested the impact of 32 individual- based genetic distance 
metrics on the robustness and accuracy of landscape resistance modelling results. We 
analysed three empirical microsatellite datasets and 36 simulated datasets that varied 
in landscape resistance and genetic spatial autocorrelation. We used ResistanceGa to 
generate optimised multi- feature resistance surfaces for each of these datasets using 
32 different genetic distance metrics. Results of the empirical dataset demonstrated 
that the choice of genetic distance metric can have strong impacts on inferred opti-
mised resistance surfaces. Simulations showed accurate parametrisation of resistance 
surfaces across most genetic distance metrics only when a small number of environ-

mental features was impacting gene flow. Landscape scenarios with many features 
impacting gene flow led to a generally poor recovery of true resistance surfaces. 
Simulation results also emphasise that choosing a genetic distance metric should not 
be based on marginal R2- based model fit. Until more robust methods are available, 
resistance surfaces can be optimised with different genetic distance metrics and the 
convergence of results needs to be assessed via pairwise matrix correlations. Based 
on the results presented here, high correlation coefficients across different genetic 
distance categories likely indicate accurate inference of true landscape resistance. 
Most importantly, empirical results should be interpreted with great caution, espe-

cially when they appear counter- intuitive in light of the ecology of a species.

K E Y W O R D S

comparative landscape genetics, connectivity, corridor, current flow, fragmentation, multiple- 
path analysis
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1  |  INTRODUC TION

Spatial genetic patterns form the basis for many ecological and 
evolutionary research avenues and are frequently used to guide 
decision- making in conservation management. With the appropriate 
tools of analysis, patterns of isolation by distance (Wright, 1943), by 
resistance (McRae, 2006), by environment (Wang & Bradburd, 2014) 

or by barriers (Cushman et al., 2006) can be detected and reveal the 
extent to which a species' environment can impact its gene flow pat-
tern. Results of spatial genetic analyses are used in many different 
ways, for example, to identify common drivers of patterns in the 
life history of species (Medina et al., 2018), or to identify corridors 
and generate scientific guidance for conservation management, as 
is the goal, specifically, of many landscape genetic studies (Keller 
et al., 2015). Underlying these efforts is the assumption that models 
of a landscape's impact on spatial genetic patterns are ecologically 
meaningful and robust to different methods of inference.

Landscape genetic approaches that statistically relate the dis-

tribution of genetic similarities among individuals to landscape 
characteristics (Cushman et al., 2006; Schwartz et al., 2009) hold 

great promise as solutions to several methodological problems have 
recently been proposed. For example, linear- mixed effects models 
(LME) can account for the non- independence of pairwise compar-
isons by the use of maximum- likelihood population effect (MLPE) 
parameterisation (Shirk et al., 2017b). Also, simulations have shown 
that LMEs with corrected Akaike information criteria (AICc) model 
selection consistently outperform other regression methods, or 
Mantel- based methods, in correctly identifying true models of land-

scape impact (Shirk et al., 2017b). Furthermore, the recently devel-
oped R- package ResistanceGa (Peterman, 2018), which combines 
LME models with MLPE parameterisation, makes use of a machine- 
learning algorithm to infer resistance values of landscape factors 
that maximise fit to user- specified genetic distances and has proven 
to be a robust tool in inferring true landscape resistance (Winiarski 
et al., 2020). This approach circumvents the inherent subjectivity 
and biases associated with user- specified resistance values, which 
are frequently based solely on expert opinion (Peterman et al., 2014, 
2019; Richardson et al., 2016).

However, approaches of landscape genetic inferences are still 
evolving (Richardson et al., 2016) and some methodological aspects 
remain underexplored. For instance, the genetic distance metrics 
used in (individual- based) landscape resistance modelling seem to be 
frequently chosen with little or no justification provided. The propor-
tion of shared alleles, DPS, (Draheim et al., 2018; Landguth et al., 2010; 

Trumbo et al., 2013) and kinship or relatedness coefficients (Dellicour 
et al., 2019a; Renner et al., 2016) are common choices and continue to 
be implemented in new applications developed for landscape genetic 
analyses (e.g. Savary et al., 2020). However, many of these estimators 
have a large sample variance, which has recently been shown to neg-

atively impact landscape genetic inferences (Winiarski et al., 2020). 

In addition, Kimmig et al. (2020a) have shown that AICc- based sup-

port and rank of the same single- surface resistance model can vary, 
depending on the genetic distance metric used for inference. These 

authors suggested that the use of a genetic distance based on 10 
axes of a factorial correspondence analysis (FCA; an eigenvector- 
based multivariate approach similar to principal component analysis, 
PCA) leads to model selection results with the highest support. In 
contrast, results from a simulation study suggested that genetic dis-

tances derived from 64 PCA axes allowed to correctly identify the 
underlying resistance surfaces most frequently, particularly in sim-

ulation scenarios that were more challenging for landscape genetic 
inferences (Shirk et al., 2017a).

The uncertainty regarding the choice of genetic distance metric 
and how it influences landscape genetic inferences led us to explore 
this issue more thoroughly. We first quantified the variation in land-

scape genetic inferences given 32 different genetic distance metrics 
for three empirical datasets of different taxa, based on single-  and 
multi- feature optimisations using ResistanceGa. In the next step, 
we simulated 36 population- genetic datasets, varying the number 
of features resistant to gene flow, maximum resistance values and 
the degree of spatial autocorrelation. We then applied the same 
ResistanceGa optimisation framework to the simulated datasets as ap-

plied to the empirical datasets. This generated 1152 optimised multi- 
feature resistance surfaces (OMFRS; 36 population- genetic datasets, 
each analysed with 32 different genetic distance metrics), which we 
correlated with the true resistance surfaces, providing a measure of 
accuracy for the recovery of true landscape resistance. We then used 
recursive partitioning approaches to identify the simulation settings, 
for example, resistance or isolation- by- distance scenario and genetic 
distance metrics that were most strongly associated with accurate re-

sistance recovery. In a final step, and with the aim of directly compar-
ing empirical datasets with the simulated results, we test if resistance 
recovery can be predicted based on the convergence of OMFRS, and 
if resistance recovery is associated with marginal R2 (mR2) of opti-
mised models across genetic distance metrics.

2  |  MATERIAL S AND METHODS

2.1  |  Basis of the landscape genetic analyses

Analyses of landscape resistance were based on ResistanceGa. This 
R package evaluates how landscape features influence genetic con-

nectivity by statistically relating the distribution of inter- individual 
genetic distances to the current flow across alternative landscape 
resistance models. This method uses a machine- learning algorithm 
(a genetic algorithm in R package GA; Scrucca, 2013) to optimise 
resistance surfaces that best fit genetic data, thereby avoiding the 
need for users to specify resistance values. ResistanceGa can opti-
mise single categorical and continuous resistance surfaces, as well 
as multiple resistance surfaces simultaneously. The optimisation 
process uses log- likelihood as the objective function; a statistic 
obtained from LME models fit with pairwise genetic distance as 
the response variable and pairwise current flow as the explana-

tory variable, the latter being calculated from resistance models. 
In order to account for non- independence among pairwise genetic 

 1
7

5
5

0
9

9
8

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/1

7
5

5
-0

9
9

8
.1

3
8

3
1

 b
y

 U
n

iv
ersity

 O
f S

h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

4
/0

7
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



    |  3BENINDE et al.

and environmental distances, mixed effects models are fitted using 
the MLPE parameterisation implemented in R package lme4 (Bates 
et al., 2015). Environmental variables are included as fixed effects in 
the model and identity for each pair of individuals as random effects. 
Model support for optimised resistance surfaces is assessed based 
on Akaike information criteria corrected for small sample size (AICc).

In order to gain an understanding of the resistance to movement 
of the entire landscape (Peterman & Pope, 2021), environmental vari-
ables need to be combined into a composite multi- feature resistance 
surface. Given a large number of environmental features and ensuing 
analyses (see below), we followed a stepwise optimisation procedure 
(Kimmig et al., 2020a) to generate OMFRS. At first, single- feature anal-
yses optimised resistance surfaces separately for each environmen-

tal feature. Multi- feature models were then created by sequentially 
adding environmental features to a multi- feature resistance surface, 
based on model support in the prior single- feature analysis (starting 
with the highest- ranking environmental feature and only including 
those that explained genetic differences better than the distance- only 

model). However, only those environmental feature models were re-

tained in the multi- feature model when support was ΔAICc > 2.

2.2  |  Genotype datasets

The empirical analyses were based on three previously published 
datasets: (1) The BOARS dataset consisted of 790 samples of a large 
omnivorous mammal, the wild boar (Sus scrofa L.) that were col-
lected (2005– 2009) randomly across the southern Walloon part of 
Belgium by the local Services of the Nature and Forest Department 
of the Public Service of Wallonia and genotyped at 14 microsatel-
lite loci (Dellicour et al., 2019a); (2) the FOXES dataset contained 
184 samples of a medium- sized mammalian meso- predator, the red 
fox (Vulpes vulpes L.), collected as road- kills (2010– 2015) across 
the metropolitan area of Berlin and genotyped at 15 microsatel-
lite loci (Kimmig et al., 2020a); (3) the LIZARDS dataset contained 
223 samples of a small insectivorous reptile, the common wall lizard 
(Podarcis muralis Laurenti), that were collected across the German 
city of Trier (2011– 2012) and genotyped at 17 microsatellite loci 
(Beninde et al., 2016a). The geographical distribution of the samples 
of all three datasets is shown in Figure 1. Wild boars and foxes are 
continuously distributed across the Walloon and Berlin study areas, 
respectively, and samples covered this space comprehensively. The 
distribution of lizards in Trier is more restricted and samples exhaus-

tively cover all known occurrence locations. The three datasets thus 
follow random sampling schemes that either comprehensively cover 
continuously distributed areas or all known, spatially discontinuous 
occurrences. Such schemes increase the robustness of spatial ge-

netic inferences and are preferred over clustered or transect sam-

pling (Landguth & Schwartz, 2014; Schwartz & McKelvey, 2009).

The isolation- by- distance (IBD) pattern underlying each em-

pirical dataset was described by regressing pairwise estimates of 
Loiselle's kinship coefficient Fij (Loiselle et al., 1995; Vekemans 
& Hardy, 2004) against the natural logarithm of inter- individual 

straight- line geographical distances using SPAGEDI v.1.5 (Hardy & 
Vekemans, 2002). The slope of this regression was estimated to be 
b = −0.009 (SE = 0.002) in the BOARS dataset, b = −0.013 (SE = 0.002) 
in the FOXES dataset and b = −0.013 (SE = 0.003) in LIZARDS. Previous 
analyses of genetic discontinuities using clustering algorithms iden-

tified varying levels of population structure in the three datasets. 
Five geographically distinct and coherent clusters were detected for 
BOARS (Dellicour et al., 2019a), but the authors concluded that clus-

ters were an artefact of the underlying isolation- by- distance pattern 
as cluster boundaries did not correspond to any environmental barri-
ers (see also Frantz et al., 2009). Spatially explicit clustering could not 
confirm a genetic discontinuity, identified by conventional clustering, 
induced by rivers in FOXES (Kimmig et al., 2020a). Both spatially ex-

plicit and conventional clustering identified strong genetic discontinu-

ity associated with a major river in LIZARDS (Beninde et al., 2016a).

2.3  |  Genetic distance metrics

For each of these three datasets, we computed a total of 32 differ-
ent genetic distance metrics. Altogether, 22 of these were based on 
two eigenvector- based multivariate analyses, the principal compo-

nent analysis (PCA) and the closely related factorial correspondence 
analysis (FCA). Both approaches cluster variance between samples 
into composite gradients, maximising differences between samples. 
PCA assumes continuous, normally distributed data (Dytham, 2011), 
whereas FCA assumes data consisting of multistate categorical vari-
ables (She et al., 1987) suitable for the analysis of microsatellite data. 
We used Genetix v.4.05.2 (Belkhir et al., 1996– 2004) to generate a 
contingency table of allele count (0, 1 or 2) by individual for all alleles 
in the population. We then used the R package ade 4 1.7.13 (Dray & 
Dufour, 2007) to perform FCAs and PCAs (with rescaling of allele 
counts) on the contingency table and obtain the position of every in-

dividual on every axis ranging from 1 to 64. We then used the R pack-

age ecodist 2.0.1 (Goslee & Urban, 2007) to obtain genetic distance 
matrices based on the Euclidean distance between positions of indi-
viduals on an incremental number of axes (first distance matrix based 
on the position on axis 1, second distance matrix based on positions 
on axes 1 & 2, etc.) up to the first 10 axes. As recommended by Shirk 
et al. (2017a) we also calculated a genetic distance metric based on 
the first 64 PCA and FCA axes, thus generating 11 distance matrices 
each for PCA-  and FCA- based genetics distance metrics.

The remaining 10 genetic distance metrics represent other com-

monly used metrics investigated by Shirk et al. (2017b) that fall into 
the following categories, whose definitions were taken from the man-

ual of program sPaGedi v.1.5 (Hardy & Vekemans, 2002). Kinship 

coefficients (the probability that two homologous alleles drawn ran-

domly from each of two individuals are identical by descent): (i) Kc.Lo 
(Loiselle et al., 1995); (ii) Kc.R (Ritland, 1996); relatedness coefficients 

(the proportion of gene copies in one individual with alleles identical 
to these of another individual): (iii) Rc.L&R (Lynch & Ritland, 1999); 

(iv) Rc.Li (Li et al., 1993); (v) Rc.Q&G (Queller & Goodnight, 1989); (vi) 
Rc.W (Wang, 2002); fraternity coefficients (the probability that two 
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individuals share both of their alleles identical by descent): (vii) Fc.L&R 
(Lynch & Ritland, 1999); (viii) Fc.W (Wang, 2002); other metrics: (ix) 
Rousset's â (Rousset, 2000); (x) the proportion of shared alleles DPS 

(Bowcock et al., 1994). The bias of the kinship, relatedness and frater-
nity estimators tends to be small, but they are generally characterised 
by a large sample variance (Lynch & Ritland, 1999; Van de Casteele 
et al., 2001; Vekemans & Hardy, 2004; Wang, 2002). Rousset's â 

estimates genetic distance between individuals in a continuous 
population taking isolation- by- distance into account, while DPS is a 
dissimilarity measure that considers the number of direct differences 
between genotypes. With the exception of DPS, which was estimated 

using the R package adeGenet 2.1.1 (Jombart, 2008), all metrics were 
calculated using sPaGedi v.1.5. For ease of reference, we will refer to 
all of these 10 metrics jointly as ‘Other Metrics’.

2.4  |  Spatial datasets

We analysed nine environmental features per dataset (Table S1) that 
fell into three categories (see original publications for ecological justi-
fications regarding choice of the features; abbreviations correspond 
to datasets: B = BOARS; F = FOXES; L = LIZARDS). Biotic factors: (i) 

F I G U R E  1  Geographical origin of the three empirical datasets. (a) Location of the study regions in Central Europe (L = Luxemburg). 
Distribution of sampling sites (coloured dots) for BOARS (b), FOXES (c) and LIZARDS (d). The background colours of the maps are indicative 
of land use types.
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green areas: all types of arable land and grassland, fallow land, allot-
ments, airports, public parks, cemeteries and bare soils [F,L]; (ii) forests: 

all forest irrespective of their composition [B,F]; (iii) canopy cover: all 

forested areas plus all street trees [L]; (iv) hetero. agri.: heterogene-

ous agricultural areas [B] (v) arable: arable land and permanent crops 
[B]; (vi) pastures: pastures [B]; Anthropogenic infrastructure: (vii) mo-

torways [B,F]; (viii) roads: all motorways, primary and secondary roads 
[L]; (ix) railways: all railway lines [B,L], including major stations [F]; (x) 
urban areas: all artificial surfaces [B]; (xi) sealing level (S.L.) > 80%: seal-
ing level > 80%: continuous urban fabric [F,L]; (xii) S.L. 50%– 80%: seal-
ing level 50%– 80%: discontinuous dense urban fabric [F,L]; (xiii) S.L. 

30%– 50%: sealing level 30%– 50% discontinuous medium dense urban 
fabric [F]; (xiv) remaining built- up: the remaining Urban Atlas categories 
not covered by the previous categories [F,L]; Abiotic factors: (xv) water 

cover: all water bodies [B,F,L]; (xiv) slope: calculated from aggregated 
digital elevation models [B,L] (Figures S1– S3).

The proximity of a sampling location to the boundary of the study 
area can erroneously constrain the predicted current flow during 
optimisation (Koen et al., 2010). The extent of each study area was 
therefore increased to include a buffer around a minimum convex 
polygon of the sampling locations (BOARS: 20 km; FOXES: 5 km; 
LIZARDS: 1 km). The buffer distance reflects the upper margin of 
known, regular dispersal distances of the focal species in the specific 
area or in the type of habitat considered (Prévot & Licoppe, 2013; 

Schulte, 2008; Trewhella & Harris, 1990). Using aRcmaP v.10.3 (ERSI 
Inc.), the buffered study extents were converted into rasters, cover-
ing an area of 23,932 km2 with a resolution of 750 × 750 m in the case 
of the BOARS, of 1206 km2 at 200 × 200 m resolution for FOXES and 
of 34 km2 at 40 × 40 m resolution for LIZARDS. We increased grid 
cell size for FOXES and LIZARDS compared to the original publica-

tions to reduce computational load.

2.5  |  Creating landscape resistance models: 
preparation of single- feature surfaces

We first assessed the effects of single environmental features. To 
generate the relevant input rasters for each study area, we con-

verted a shapefile containing all the environmental features of inter-
est (except slope) into a raster by categorically classifying each cell as 
the single feature with the largest area within the cell. However, we 
ensured that, when a grid cell overlapped with a ‘linear’ feature (mo-

torways, roads, railways, water cover), it was categorically assigned to 
the linear feature, irrespective of the proportion of the cell this fea-

ture occupied. When two or more linear features overlapped with a 
grid cell, the cell was classified as the linear feature that occupied the 
greatest proportion of the cell. Following this approach, each raster 
cell was only assigned a single categorical value. The ensuing raster 
with all the categorical features was re- classified into single- feature 
resistance surfaces where grid cells had a value of one or zero, de-

pending on whether it contained the feature of interest. For BOARS 
and LIZARDS only, a continuous raster of slope was generated sepa-

rately (Figures S1– S3).

2.6  |  Landscape genetic analyses: single- feature 
optimisations

Optimisation of resistance values was conducted using 
ResistanceGa 4.0.14 (for single- feature analyses of empirical data-

sets) and ResistanceGa 4.1- 0.46 (for multi- feature analyses of em-

pirical datasets and all analyses of the simulated datasets). We 
used the SS_optim() function to optimise the resistances of all 
single- feature surfaces. We used the commuteDistance() function 
of the R- package Gdistance v.1.2- 1 (Van Etten, 2017) to calculate 
pairwise current flow between locations on resistance surfaces, 
which is equivalent to circuit- theory- based current flow (Kivimäki 
et al., 2014). Using the GA.PREP() function, we defined a range 
of 1– 500 for the resistance values of categorical surfaces to be 
assessed during optimisation. We refrained from expanding the 
explored parameter space above 500 when optimised resistance 
values were at or near this limit, as we did not aim to identify pre-

cise resistance values, but rather aimed to quantify the variation 
of landscape genetic inferences across genetic distance metrics. 
Limiting the explored parameter space also reduced computa-

tional load.
To account for stochastic parameter estimation of the 

ResistanceGa algorithm, each optimisation was run twice. We 
chose the higher- ranking model of these paired optimisation runs 
for a (pseudo- ) bootstrap procedure with the resist. boot() com-

mand. This function sub- samples a user- specified proportion of 
the locations without replacement, refits the MLPE model for 
each optimised resistance surface and re- calculates AICc values. 
The objective of the procedure is to identify the top- ranking sur-
face across all bootstrap iterations and thereby increase the ro-

bustness of model selection, independently of the combinations 
of samples in the input file. We performed the bootstrap proce-

dure simultaneously for all single- feature resistance surfaces of a 
specific combination of dataset and genetic distance metric, sam-

pling 75% of the observations at each of 1000 iterations. Model 
support was evaluated based on AICc: if the difference in AICc 
(ΔAICc) between two models was >2 AICc units, the model with 
the smallest AICc value was considered to be better supported. 
Hence, if the difference in AICc between the distance- only model 

(i.e. the model based on Euclidean distances between all pairs of 
individuals) and an individual predictor was <2 AICc units, the 
single- feature model was not better supported than the distance- 

only model.

2.7  |  Creating landscape resistance models: 
preparation and analysis of multi- feature surfaces

Next, we generated multi- feature resistance surfaces by sequen-

tially adding environmental features to a resistance surface. The 
principle underlying this stepwise approach is to add predictors 
based on model support (AICc values) in the single- feature analysis 
but to only retain a new predictor in the multi- feature model if its 
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addition improved model support (ΔAICc >2 after bootstrap analy-

sis) relative to the previous multi- feature model. We started with 
the highest- ranking single- feature models but only considered en-

vironmental features whose model support was ΔAICc > 2 with the 
distance- only model in the single- feature analysis. We performed 
multi- feature optimisations by applying the single- surface optimisa-

tion SS_optim() procedure to multi- categorical resistance surfaces. 
Each grid consisted of N categorical predictors and each cell in the 
grid was assigned a value from zero to N, depending on whether it 
was classified as one of the predictors or as matrix, that is, the re-

maining study area.
Kimmig et al. (2020a) have shown that the statistical support of 

multi- feature categorical models was sensitive to the starting re-

sistance values of the input surface. It would have been impractical 
to perform optimisations of grids containing all possible combina-

tions of starting values to identify the combination with the highest 
support. We thus followed the approach by Kimmig et al. (2020a) 

where the initial value assigned to a categorical predictor in a multi- 
feature surface depended on its resistance/permeability value 
inferred in the initial single- feature analysis. For example, when 
manually combining two different categorical predictors in a single 
grid, a predictor inferred to be permeable in the initial analysis was 
given a value of zero in the multi- feature grid, a predictor resisting 
gene flow a grid value of two and the remaining cells a value of 
one. If multiple predictors were shown in the initial analysis to, say, 
resist gene flow, the feature with the highest initially inferred re-

sistance value was given the highest value in the multi- feature grid, 
followed by the predictor with the second- highest initial resistance 
value and so on.

We performed each optimisation twice but only included the run 
with the lowest AICc value in bootstrap analysis. In the case of the 
BOARS and LIZARDS, we also included a continuous resistance sur-
face (slope) in the analyses. When it was the turn to consider slope in 

the stepwise optimisation procedure, we used the multi- surface MS_

optim() command to combine the previous multi- feature resistance 
surface with the continuous slope raster. If the addition of slope im-

proved model support, we added the next categorical environmental 
feature to the multi- feature resistance surface and continued with 
the MS_optim() command to combine both rasters. Otherwise, we 
only optimised the new multi- categorical surface using the SS_optim() 
command. In some instances, the best- supported single- feature re-

sistance surface remained the best model after the stepwise optimi-
sation procedure. For ease of reference, we will nevertheless refer 
to all final models as ‘multi- feature’ models (OMFRS).

We assessed the similarities of the final OMFRS obtained for 
different genetics distance metrics based on correlation analyses. 
We used the layerStats() command in R package RasteR v.3.6.11 
(Hijmans, 2022) to estimate Pearson correlation coefficients ρ 

for pairwise comparisons of all OMFRS within each dataset and 
plotted matrices of correlation coefficients using R package coR-

RPlot v.0.92 (Wei & Simko, 2021). Cases where no single- features 
model was better than the distance- only model were omitted from 
this analysis. Plots were generated using the R- packages GGPlot2 

v.3.1.1 (Wickham, 2016) and tReemaP v.2.4.3 (Tennekes, 2021). We 
used a Scheirer- Rare- Hare extension of the Kruskal– Wallis test 
(Dytham, 2011) in R package RcomPanion v.2.1.7 (Mangiafico, 2019) 

to test for the effect of the dataset and the type of genetic distance 
metric (FCA-  or PCA- based metric, Other Metric) on the number of 
single- feature models that explained the distribution of genetic dis-

tances better than the distance- only model as well as on the number 
of features that were included in the final OMFRS.

2.8  |  Generation of simulated data

We conducted spatially explicit demo- genetic simulations using 
cdPoP v.1.3.12 (Landguth & Cushman, 2010; Figure 2) in order to 
objectively quantify the ability of the different genetic metrics to 
re- create true landscape resistance. In order to investigate realistic 
simulation scenarios, we based simulation settings on the LIZARDS 
dataset. We simulated 100 generations of reproduction and disper-
sal among 3500 individuals in a grid based on the original LIZARDS 
study area and some of the surrounding landscape (Figure S3). We 
simulated 16 loci with 12 alleles each to mimic the original dataset 
(16 loci and an average of 11.8 alleles per locus). In order to generate 
the cost- distance matrices required by CDPOP, we created resist-
ance surfaces consisting of five different categorical environmental 
features (derived from the empirical lizard dataset): (a) green areas: 

obtained by merging the canopy cover and forests features; (b) trans-

port infrastructure: obtained by merging the railways and roads fea-

tures; (c) remain. built- up; (d) urban dense: obtained by merging the 
S.L. >80% and S.L. 50%– 80%: features; (e) water cover. To decrease 
computational load for simulations and for subsequent optimisa-

tions, we increased the cell size of the resistance grid by a factor of 
three (120 × 120 m resolution), while preserving continuity of linear 
features in the landscape (Figure S3, Appendix S1). It has been shown 
previously that spatial grain has limited effect on landscape genetic 
inference (Cushman & Landguth, 2010; Winiarski et al., 2020), and 
we therefore expect minimal effects on results.

We then ran simulations where an individual's dispersal prob-

ability was determined by a dispersal kernel (10−x; see cdPoP man-

ual) and cumulative resistance between source and target grid cells 
(Landguth & Cushman, 2010). Following Beninde et al. (2016a), we 
excluded the major river and very urbanised areas from carrying liz-

ards, while dispersal through these areas was permitted. We set the 
mean clutch size (reproductive ability) to four (Ji & Braña, 2000). At 
the end of a simulation, we only considered the cells where lizards 
had been caught in the field and subsampled the same number of 
individuals per cell as in the empirical dataset (223 individuals) to 
generate the genetic datasets used in the downstream landscape 
genetic analyses.

In order to quantify the ability of the genetic distance metrics 
to re- create true landscape resistance in different ecological and 
demographic contexts, we varied three hierarchical factors in sim-

ulations, fragmentation, resistance and isolation- by- distance, result-
ing in a total of 12 different modelling scenarios (Figure 2). At the 
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    |  7BENINDE et al.

uppermost hierarchical level, the fragmentation scenario, the two 
features with the highest resistance were either weakly (resistance 
values: water cover = 8, urban dense = 4; low- fragmentation scenario) 
or strongly (water cover = 30, urban dense = 15; high- fragmentation 

scenario) resisting gene flow. Within each of these two scenarios, 

we further simulated a low- resistance scenario in which the remaining 
three features did not impact gene flow (all resistance values = 1) as 
well as a high- resistance scenario where two of the three remain-

ing features weakly impacted gene flow (remain. built- up = 3, green 

areas = 2, transport infrastructure = 1). For each combination of 

F I G U R E  2  Overview of the simulation datasets. Fragmentation and Resistance Scenarios describe the different ways the landscapes 
were specified. IBD scenario and replicates refer to the settings used in CDPOP to generate the simulated datasets. The 32 Genetic distance 
metrics refer to the analysis framework applied to each of the simulated (and empirical) datasets, conducted using ResistanceGa.
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8  |    BENINDE et al.

fragmentation and resistance scenario, we further simulated three 
different strengths of IBD by changing dispersal function parame-

ters, as this was previously shown to influence accurate landscape 
genetic inferences (Shirk et al., 2017a). The slope of this regression 
in LIZARDS was estimated as b = −0.013 (SE = 0.003; see above). In 
the high- IBD scenarios, IBD slopes were b > −0.013, in the medium- 

IBD scenario slopes ranged from −0.010 < b ≤ −0.013 and slopes in 
the low- IBD scenario were b < −0.010. We simulated three replicates 
for each of these 12 modelling scenarios, resulting in 36 simulated 
datasets.

2.9  |  Analysis of simulation results

2.9.1  |  ResistanceGa optimisations

The 36 simulated genetic datasets were analysed using ResistanceGa, 
in the same way as the empirical datasets for single-  (see Section 2.6) 

and multi- feature optimisations (see Section 2.7), and using the 
same 32 genetic distance metrics as with the empirical datasets 
(see Section 2.3). In combination, this yielded 1152 analyses. The 
result of each of these analyses was a final optimised landscape re-

sistance surface (OMFRS), identified following the model- selection 
framework laid out in sections 2.6 and 2.7. We interpret and refer 
to this as the ‘optimised resistance surface’, which we compared to 
the simulation- underlying resistance model, the ‘true resistance sur-
face’, using raster correlations. The correlation coefficient between 
the true and the optimised resistance surfaces is a direct measure 
of the ability to re- create true resistances following ResistanceGa 

optimisations, and we refer to this correlation as ‘resistance recov-

ery’. Resistance recovery values close to one indicate the optimised 
resistance was close to the true resistance, while negative values, 
or those close to zero, indicate no, or little, resistance recovery re-

spectively. In cases when the best- supported model overall was the 
distance- only model, that is, no optimised resistance surface had 
ΔAICc > 2, correlations to the true raster cannot be performed. In 
these cases, we assigned a resistance recovery of 0, accounting for 
the fact that the distance model was a bad fit to the true resistance 
while allowing us to include the results for further analyses.

2.9.2  |  Identifying factors most important for 
accurate resistance recovery

The next set of analyses quantified the importance of the genetic 
distance metrics and the simulation scenarios' ecological and demo-

graphic contexts for resistance recovery. We first used a Kruskal– 
Wallis test to check for differences in resistance recovery between 
the three replicate runs performed for each set of simulation scenar-
ios. In the next step, we used two different approaches of recursive 
partitioning to identify the most important variables determining re-

sistance recovery. Both approaches used resistance recovery as the 
response variable and the genetic distance metrics and all simulation 

scenarios (replicate, fragmentation, resistance and IBD) as predictor 
variables, to create homogenous outcome groups.

The first approach used Random Forest models (Breiman, 2001) 

to quantify the overall amount of variation in resistance recovery 
explained by predictor variables, the relative importance of the pre-

dictor variables (based on the increase in mean- squared error when 
variables are omitted, %IncMSE) and the estimated association be-

tween feature levels of predictor variables and resistance recovery 
(using partial dependence plots). The machine- learning regression 
tree- based algorithm implemented in Random Forest models is par-
ticularly well- suited for large datasets and has high predictive abil-
ity (Buri et al., 2022). Models were fitted with ntrees = 10,000 and 
the default value of mtry using the randomForest() function in the R 
package by the same name (v4.7- 1; Liaw & Wiener, 2002).

The second approach was to create more readily interpretable 
results to use for further analyses and to provide guidance for empir-
ical approaches. For this, we made use of the conditional inference 
framework implemented by ctree() in the R package PaRtykit v.1.2- 16 
(Hothorn & Zeileis, 2015), to generate a single decision- tree. These 
models are comparable in predictive ability of ensemble- based 
models of single trees, as produced by Random Forest, but allow 
straightforward interpretation (Buri et al., 2022). We generated 
Random Forest models for the full dataset, and ctree models for a 
subset of the genetic distance metrics only (excluding the two low-

est performing metrics, see Section 3), both jointly and separately 
for the three simulation replicates.

2.9.3  |  Association between true resistance 
recovery and the convergence of OMFRS

The ctree model predicts the response variable for each terminal 
node, given the predictor variable levels at splits of the decision tree 
(Hothorn & Zeileis, 2015). In our models, the response variable is the 
value of resistance recovery. To test if resistance recovery is linked 
to the convergence of all optimised rasters falling within terminal 
nodes, we calculated the median pairwise correlation coefficient of 
all OMFRS within terminal nodes and correlated it to the predicted 
resistance recovery. Such an association would allow to directly 
compare simulation results to empirical data, by calculating the me-

dian of pairwise correlation coefficient of all OMFRS for a given em-

pirical dataset.

2.9.4  |  Association between resistance recovery and 
marginal R2

In order to understand if the mR2 of models is associated with the 
resistance recovery achieved by models, and thus a suitable metric 
to identify the best genetic distance metric to use for a given data-

set, we used generalised linear models and model selection based 
on Akaike Information Criterion (AIC). In all models, we specified 
the resistance recovery of the OMFRS as the response variable and 
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the following as predictor variables: only the mR2 of models (model 
1), both the mR2 and the genetic distance metrics (model 2), and 
both the mR2, the genetic distance metrics and their interactions 
(model 3). Models were run with the glm() function and ranked 
using the AIC() in stats package in R, using a gamma distribution 
that best fitted the negative exponential transformation of the re-

sponse variable.

3  |  RESULTS

3.1  |  Single- feature optimisations

There was substantial variation in the number of single- feature 
models that explained the distribution of genetic distances better 
than the distance- only model (‘better- than- distance models’) across 
all genetic metrics (Figure 3a). The Scheirer- Ray- Hare extension of 
the Kruskal– Wallis test showed that there was an effect of the ge-

netic metric category on the number of better- than- distance mod-

els (Table 1). The FCA-  and PCA- based metrics generally inferred 
a higher number of better- than- distance models than the Other 
Metrics and the Other Metrics were less consistent in the number of 
inferred better- than- distance models (Table 1, Figure 3a).

Independently of the dataset, the AICc- based model rank of 
single- feature models (only considering better- than- distance land-

scape factors), varied substantially across the different genetic 

distance metrics (Figure S4). Seven different landscape features re-

ceived highest AICc- based model support at least once in BOARS, 
six in the case of the FOXES and five in the case of the LIZARDS 
(Figure 4).

3.2  |  Multi- feature optimisations

Across all genetic metrics, there was substantial variation in the 
number of better- than- distance environmental features that were 
included in the final multi- feature models (Figure 3b). The Scheirer– 
Ray– Hare extension of the Kruskal– Wallis test showed that there 
was an effect of the genetic metric category on the number of fea-

tures included in the final multi- feature models (Table 2). Using an 
FCA-  or PCA- based metric generally resulted in a higher number 
of features included in the final model than when using one of the 
Other Metrics (Figure 3b).

The final OMFRS did not converge across many genetic met-
rics and the degree of convergence differed between datasets. 
The highest correlation coefficients were obtained for pairwise 
comparisons of the final OMFRS in the LIZARDS dataset (me-

dian ± IQR: 0.875 ± 0.967; Figure 5e). Pairwise correlation co-

efficients were lower in BOARS (median ± IQR: 0.408 ± 0.600; 
Figure 5a) and FOXES (median ± IQR: 0.241 ± 0.734; Figure 5c). 

LIZARDS was also the only dataset where we systematically ob-

tained high correlation coefficients across the three categories of 

F I G U R E  3  Number of features in models of empirical datasets. The number of environmental features are shown that impact the 
distribution of the genetic variation in the three empirical datasets after bootstrapping. (a) Number of models with a single environmental 
feature with higher AICc- based model support than the distance- only model. (b) Number of environmental features that are included in the 
final multi- feature model. FCA: Eleven metrics based on position of individuals on differing number of axes of a factorial correspondence 
analysis. PCA: Eleven metrics based on position of individuals on differing number of axes of a principal component analysis. Other Metrics: 
Eight metrics based on fraternity, kinship and relatedness coefficients in addition to Rousset's â and the proportion of shared alleles DPS. For 

further information, please refer to the Section 2.
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distance metrics (Figure 5f). In the FOXES dataset, we only ob-

tained highly correlated resistance surfaces within the same cat-
egory of distance metric (Figure 5d). While there was some good 

convergence between a few individual metrics, it was difficult to 
discern an overall pattern in the correlation coefficients in the 
case of the BOARS (Figure 5f).

Source df SS SS/MStotal p- Value

Dataset 2 1323 1.865 .393

Genetic distance category 2 34,173 48.168 <.001

Dataset*Genetic distance 4 6265 8.830 .065

Residuals 87 25,637

Total

Note: Results from a Scheirer- Ray- Hare extension of the Kruskal– Wallis test for the number of 
environmental features that explain the distribution of genetic distances better than the distance- 

only model. We investigated the effects of dataset (BOARS, FOXES & LIZARDS; see Section 2) and 

type of genetic distance (Other metrics, FCA- based & PCA- based; see Section 2).

Abbreviations: df, degrees of freedom; MStotal, total of the sum of squares values divided by the 
total degrees of freedom; SS, sum of squares.

TA B L E  1  Number of single- features 
better than the distance- only model in 

empirical datasets.

F I G U R E  4  Frequency of highest- ranking models in empirical datasets. The frequency of single- feature models being identified as the 
AICc- based best- supported model in each of the three empirical datasets, ordered by the three different categories of genetic distance 
metrics. FCA: 11 metrics based on position of individuals on differing number of axes of a factorial correspondence analysis. PCA: 11 metrics 
based on position of individuals on differing number of axes of a principal component analysis. Other Metrics: Eight metrics based on 
fraternity, kinship and relatedness coefficients in addition to Rousset's â and the proportion of shared alleles DPS. The size of each rectangle 
is proportional to the number of times a model was identified as the best- supported model. For further information, please refer to the 
Section 2.

Source df SS SS/MStotal p- Value

Dataset 2 3546 4.746 .093

Genetic distance category 2 28,602 38.286 <.001

Dataset*Genetic distance 4 5285 7.074 .132

Residuals 87 33,538

Total

Note: Results from a Scheirer- Ray- Hare extension of the Kruskal– Wallis test for the number of 
features that are included in the final multi- feature model. We investigated the effects of dataset 
(BOARS, FOXES & LIZARDS; see Section 2) and type of genetic distance (Other Metrics, FCA- 
based & PCA- based; see Section 2).

Abbreviations: df, degrees of freedom; MStotal, total of the sum of squares values divided by the 
total degrees of freedom; SS, sum of squares.

TA B L E  2  Number of features included 
in final, multi- feature models of empirical 
datasets.
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F I G U R E  5  Similarity of multi- feature 
models of empirical datasets. Distribution 
and matrix analysis of the Pearson 
correlation coefficients (ρ) obtained 
for pairwise comparisons of the final 
optimised resistance surfaces generated 
using different genetic distances of the 
empirical datasets. Histogram showing 
the distribution of ρ in the (a) BOARS, 
(c) FOXES and (e) LIZARDS datasets and 
correlation matrix of ρ in the (b) BOARS 
(d) FOXES and (f) LIZARDS datasets. The 
scale colours in the correlation matrix 
denote whether the correlation is positive 
(closer to 1, dark blue) or negative (closer 
to −1, dark red). Explanations on the 
precise nature of the different genetic 
distance metric can be found in the 
Section 2.
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3.3  |  Simulation results

3.3.1  |  Differences in replicate runs

Resistance recovery was not significantly different between the 
three replicate runs (Kruskal– Wallis: χ2 = 3.294, df = 2, p = .193).

3.3.2  |  Basic summary statistics of resistance 
recovery for genetic distance metrics

Grouping the genetic distance metrics into Other, FCA and PCA 
and averaging the minimum, median and maximum resistance re-

covery of all models within these categories showed that Other 
Metrics have both the highest maximum and median resistance 
recovery (0.999 and 0.867 respectively). FCA-  and PCA- derived 
metrics performed similarly, in general, and achieved compara-

ble maximum resistance recovery to Other Metrics (0.988 and 
0.989 respectively) and slightly lower median resistance recovery 
(0.813 for both). However, Other Metrics were more variable and 
obtained strikingly lower minimum resistance recovery (−0.826) 
than both FCA-  and PCA- derived metrics (−0.182 and −0.212 
respectively).

3.3.3  |  Recursive partitioning of resistance recovery

Random Forest models of the full dataset explained 52.2% of the 
variation and identified resistance scenario (56.2% IncMSE), genetic 
distance metric (41.2%) and fragmentation scenario (35.6%) as the 
most important predictor variables, in descending order, while rep-

licate (17.5%) and IBD scenario (12.9%) were less important. Partial 
Dependence of genetic distance metrics further identified particu-

larly poor resistance recovery by the fraternity coefficients Fc.L&R 
and Fc.W (Figure S5), which we subsequently dropped from all 
further analyses. For this subset of the data, resistance scenario re-

mained the most important factor, followed by fragmentation sce-

nario, based on %IncMSE- rank of Random Forest models and the 
highest hierarchy- level of ctree models (Figure S6). The importance 
of the remaining predictors differed and both IBD scenario and rep-

licate became more important, while genetic distance metric ranked 
lowest in %IncMSE and only appeared in one node in the third hier-
archy level. We therefore also generated Random Forest and ctree 
models for each of the three simulation replicates separately.

Random Forest models across the three replicates varied in 
the amount of variation explained (replicate 1 = 48.0%, replicate 
2 = 61.9%, replicate 3 = 44.6%). Models of all replicates identified 
resistance scenario as the most important predictor variable, that 
is, with highest %IncMSE, and genetic distance metric as the least 
important, while fragmentation and IBD scenario varied in %IncMSE 
rank. Ctree models similarly identified resistance scenario as most 
important (1st hierarchy level) in models for all replicates, genetic 
distance metric as least important (only featured in one node across 

models for all replicates), while fragmentation and IBD scenarios 
varied in importance (Figure 6; Figures S6– S8).

Based on the dataset of all replicates, resistance recovery was 
among the lowest in all high- resistance & low- fragmentation sce-

narios (Figure S6). Within the high- resistance & high- fragmentation 

scenario, resistance recovery was highest when using most of the 
Other Metrics, that is, Kc.Lo, Kc.R, Rc.L&R, Rc.Li, Rc.Q&G, Rc.W and 
DPS, and lower when using Rousset's â or any FCA-  or PCA- derived 
metric. Based on the data for replicate 1 (Figure S7), genetic dis-

tance metrics were significant in one sub- node of the low- resistance 

scenario, and showed higher resistance recovery for all FCA-  and 
PCA- based metrics (except those based on 64 axes) than for the re-

maining metrics.

3.3.4  |  Association between true resistance 
recovery and the convergence of OMFRS

Correlation analyses of the median pairwise correlation coefficient 
of all OMFRSs within terminal nodes of ctree models and the pre-

dicted resistance recovery of terminal nodes were performed for the 
full dataset, separately for all three replicates and jointly for all three 
replicates. Results for the full dataset were insignificant (ρ = .342, 
df = 14, p- value = .195; Figure 7a). Correlation results for the repli-
cates analysed separately varied considerably (replicate 1: ρ = −.094, 
df = 11, p- value = .759; replicate 2: ρ = .863, df = 3, p- value = .059; 
replicate 3: ρ = .866, df = 4, p- value = .026). Correlation results for 
the combined data of all three replicates were significant (ρ = .47, 
df = 22 and p- value = .021; Figure 7b).

3.3.5  |  Association between resistance 
recovery and marginal R2

There was a positive and significant association of resistance recov-

ery and mR2 of models (Figure S9). The model with the highest AIC 
support (Table 3), also showed significant interactions of mR2 and 

genetic distance metrics, rendering mR2 an unsuitable measure by 
which to choose the best model among those generated with dif-
ferent genetic distance metrics. As shown in Figure S9, Other met-
rics had lower mR2 than PCA-  or FCA- derived models, while having 
higher median resistance recovery values (see above).

4  |  DISCUSSION

Landscape genetic approaches need to deliver ecologically meaning-

ful and methodologically robust results in order to provide scientific 
guidance for conservation applications (Keller et al., 2015). A large 
body of simulation studies shows that conclusions of landscape ge-

netic studies can be impacted by a variety of methodological and sta-

tistical choices (Peterman et al., 2014, 2019; Richardson et al., 2016; 

Shirk et al., 2017a, 2017b). Surprisingly, the effect of genetic distance 

 1
7

5
5

0
9

9
8

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/1

7
5

5
-0

9
9

8
.1

3
8

3
1

 b
y

 U
n

iv
ersity

 O
f S

h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

4
/0

7
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



    |  13BENINDE et al.

metrics on landscape genetic inferences has received relatively lit-
tle attention (but see Shirk et al., 2017a; Winiarski et al., 2020). We 
here provide evidence for a strong impact of the choice of genetic 
distance metric in empirical datasets and demonstrate via simula-

tions that the ability to correctly identify true landscape resistance, 
which we refer to as resistance recovery, strongly depends on the 

characteristics of the landscape under consideration. Our simulation 
scenarios demonstrate further that resistance recovery can be low, 
irrespective of the utilised genetic distance metric. Interpreting the 
empirical findings in light of simulation results leads us to conclude 
that accurate resistance recovery can be limited, even when study 
designs are well- suited for landscape genetic inference.

F I G U R E  6  Recursive partitioning results of the simulated datasets. This ctree analysis shows the overarching importance of the 
resistance- , fragmentation-  and IBD- scenarios for the accurate parameterization of landscape resistance surfaces. The analysis shown here 
is based only on the data of replicate 2 of the simulation datasets and excludes data generated using the fraternity coefficients Fc.L&R and 
Fc.W (see Section 3). This ctree analysis is representative of the main simulation results and emphasises that the choice of genetic distance 
metric may only be marginally important across landscape scenarios (see Figures S6– S8 for ctree analyses of the full simulation dataset, 
replicate 1 and replicate 3). Terminal nodes show resistance recovery in boxplots, the response variable, with a value of one indicating 
perfect recovery of the true landscape resistance surface. In summary, high resistance recovery can be expected in low resistance scenarios, 
and low resistance recovery in high resistance scenarios.

F I G U R E  7  Resistance recovery and convergence of OMFRS in simulated datasets. The association of resistance recovery and the 
convergence of optimised multi- feature resistance surfaces of the simulated dataset, calculated separately for (a) terminal nodes of ctree 
models for the full dataset (see Figure S6) and (b) the combined terminal nodes of all ctree models run separately for replicates 1– 3 (Figure 6; 

Figure S7 and S8).
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Comprehensive single- feature analyses of three individual- 
based empirical datasets demonstrated a strong impact of the 
choice of genetic distance metric on the results of landscape genetic 
inferences. Given the large number of environmental features and 
ensuing analyses, we followed a stepwise optimisation procedure, 
which first optimised single- feature resistance surfaces and then 
created multi- feature surfaces based on model support in the single- 
feature analysis, dropping all models that were no better than the 
distance- only model. This was a more viable approach than testing 
model support for all possible combinations of all single- feature 
models, as it greatly reduced computational load. We found signif-
icant differences between genetic distance metrics in the number 
of single- feature models that were better than the distance- only 

model (Figure 3a), and thus, the number of single- feature models 
considered in multi- feature analyses. The choice of genetic distance 
metric was similarly important in identifying the best- supported 
single- feature model, which varied substantially across all metrics 
(Figure 4). Users, therefore, need to be cautious in the interpretation 
of results that appear counter- intuitive in light of the biology of the 
species, especially when the best- supported single- feature model(s) 
did not correspond to environmental features causing major genetic 
discontinuities, for example, those identified by clustering methods 
(e.g. Kimmig et al., 2020a, 2020b).

It is recommended to extend landscape genetic inferences be-

yond single- feature models, more generally, to capture landscape re-

sistance more comprehensively (Peterman & Pope, 2021). However, 
multi- feature results for the three empirical datasets also demon-

strated a strong effect of genetic distance metrics on the outcome 
of multi- feature modelling approaches. Similar to single- feature 
analyses, there were large differences in the number of environmen-

tal features included in the final optimised models (Figure 3b), and 
pairwise correlation coefficients of all final OMFRS varied greatly 
across genetic distance metrics (Figure 5). Therefore, the usage of 
some genetic distance metrics must have led to erroneous OMFRS. 
Furthermore, there was no combination of genetic distance metrics 
across datasets that consistently gave rise to highly correlated re-

sistance surfaces. For the most part, FCA-  and PCA-  derived met-
rics provided more similar models, which were very different from 

models generated using Other metrics (except in LIZARDS, see 
Figure 5f). Our empirical results are thus rather sobering and imply 
limited robustness of inferences of landscape genetic resistance 
across individual- based genetic distance metrics.

A more nuanced picture emerges, however, when considering 
simulation results. Recursive partitioning of results showed partic-

ularly poor resistance recovery by the fraternity coefficients Fc.L&R 
and Fc.W. (Figure S5), corroborating findings by Shirk et al. (2017a), 
and we recommend they find no further application in landscape ge-

netic studies. Beyond that, the choice of genetic distance metric is 
of lesser importance for high- resistance recovery and only becomes 
relevant within specific simulation settings. Overarchingly, results of 
the low- resistance scenario, that is, when only two of the five envi-
ronmental features were simulated to restrict gene flow (Figure 2), 
produced high resistance recovery, robustly across genetic distance 
metrics. In contrast, in the high- resistance scenarios, that is, when 
all five environmental features were simulated to restrict gene flow, 
resistance recovery was generally low. Further exploring results 
specifically with respect to genetic distance metrics showed that 
all FCA-  and PCA- based metrics (except those based on 64 axes) 
can lead to slightly better resistance recovery in the low- resistance 

scenario, for example, when resistance recovery was already high. 
Further, in the high- resistance & high- fragmentation scenario, resis-

tance recovery was markedly higher when using most of the Other 
metrics, that is, Kc.Lo, Kc.R, Rc.L&R, Rc.Li, Rc.Q&G, Rc.W and DPS, 
as opposed to Rousset's â or any FCA-  or PCA- derived metric. Thus, 
when working with empirical data and expecting low- resistance 

levels, resistance recovery may be increased when using FCA-  or 
PCA- derived genetic distances based on axes 1– 10. While, when 
high resistance and high fragmentation are expected, any of the Other 
metrics (except Rousset's â) may increase resistance recovery. We 
need to emphasise that these conclusions need to be further sub-

stantiated by expanding on the three simulation replicates pre-

sented here.
Other simulation studies have shown that the optimisation of 

resistance models followed by AICc ranking of LME models is meth-

odologically sound and suited for pairwise distance matrices (Shirk 
et al., 2017b; Winiarski et al., 2020). The simulation study by Shirk 
et al. (2017a) came to different conclusions from those presented 
here, despite using a very similar set of distance metrics. These au-

thors showed similarly high model selection accuracy of most genetic 
distance metrics across simulation scenarios (with the exception of 
Fc.L&R and Fc.W.), while a PCA metric derived from 64 axes led to 
recovering true resistance models most frequently, particularly in 
simulation scenarios that are more challenging for landscape genetic 
inferences. This is in contrast to the results presented here, which 
also show similar performance of most genetic distance metrics, but 
emphasise that performance varies greatly in different landscape 
scenarios. The fact that many metrics performed relatively well in 
Shirk et al. (2017a) might be an artefact of the results being based 
on a single simulated landscape, although this needs to be substan-

tiated. Winiarski et al. (2020) found that, in principle, ResistanceGa 

had a high ability to recover true resistance surfaces under a variety 

TA B L E  3  Association of resistance recovery and marginal R2 in 

simulation datasets.

GLM df AIC

Resistance recovery ~ mR2 + genetic 
distance metric + mR2 * genetic 
distance metric

3 1639.9

Resistance recovery ~ mR2 + 

genetic distance metric
34 1665.9

Resistance recovery ~ mR2 65 1814.7

Note: Results of GLMs testing the association of resistance recovery 
(i.e. the accuracy of re- creating the true landscape resistance surface), 
marginal R2 of models and the genetic distance metric used to generate 
models (11 PCA-  and FCA- based metrics and 10 Other metrics), ranked 
by AIC.
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of simulation scenarios and using single-  and multi- surface analyses. 
However, the authors used a synthetic genetic distance metric in 
order to better control levels of random noise introduced by vari-
ance in genetic distances. Similar to our study, the authors found 
that ResistanceGa had difficulty identifying the true resistance sur-
faces when simulating highly stochastic individual- based data.

Our simulation results create an obvious dilemma. Overarchingly, 
recovering accurate resistance surfaces appears to depend on the 
number of environmental features influencing gene flow or, in the 
words of the present study, on the resistance scenario. Knowledge 
of this, however, is usually limited, and more often than not, it is the 
explicit goal of empirical landscape genetic studies to generate such 
knowledge on patterns of landscape resistance in the first place. 
Moreover, our results clearly show that researchers should refrain 
from choosing a genetic distance metric based on the mR2 of models 
(e.g. Kimmig et al., 2020a; Mignotte et al., 2021), as the GLM model 
with the highest AIC support (Table 3) showed significant interac-

tions of mR2 and genetic distance metrics.
The results from the simulation study broadly supported that 

one possible way of assessing the accuracy of landscape genetic in-

ference in a given dataset might be the convergence of OMFRS ob-

tained using genetic distance metrics. When there are high levels of 
convergence between OMFRS obtained from using different genetic 
distance metrics, resistance recovery is likely high, whereas resis-

tance recovery is likely low when convergence is low (although we 
need to acknowledge that it is also possible to have high convergence 
on a poorly performing model, corresponding to low resistance re-

covery). The correlation between the median values of the pairwise 
correlation coefficients of all OMFRSs within terminal nodes and the 
mean resistance recovery predicted for terminal nodes showed pos-

itive associations with clear trends in recursive partitioning analyses, 
although some remained insignificant (Figure 7).

Applying this approach to the three empirical datasets, the high-

est value of convergence between OMFRSs was obtained for the 
LIZARDS dataset and indicated fair expected resistance recovery, 
while the level of convergence in BOARS and FOXES indicated low 
expected resistance recovery. LIZARDS was the only empirical data-

set which systematically obtained high correlation coefficients of 
OMFRSs across the three categories of distance metrics, while in 
BOARS and FOXES FCA-  and PCA- derived models had a generally 
low correlation with models generated with Other metrics. LIZARDS 
was also the only dataset where Bayesian clustering methods iden-

tified a genetic discontinuity that was clearly associated with a land-

scape feature (see Section 2.2 Genotype datasets). It thus appears 
plausible that the highly converging resistance surfaces accurately 
represent the landscape features acting as drivers of gene flow in 
LIZARDS. Given the lack of convergence between optimised resis-

tance surfaces in the BOARS and FOXES datasets, we cannot confi-
dently identify accurate resistance surfaces for them. One limitation 
of the present study is the single spatial scale used in analyses, as 
spatial scale can influence the inferred effects of landscape vari-
ables in landscape genetic studies (Angelone et al., 2011; Bauder 
et al., 2021). However, as OMFRSs did not converge at the spatial 

scale analysed here, we assume a similar influence of genetic dis-

tance metrics on results also at other scales.
Future work needs to disentangle the effect of genetic distance 

metrics on true landscape resistance more generally, especially to 
provide better guidance on which individual- based genetic distance 
metrics to use in different empirical settings. In line with Kimmig 
et al. (2020a), we chose mostly categorical surfaces for this study, 
however, it has been postulated that continuous surfaces are bet-
ter suited for accurate inference of landscape resistance (Peterman 
et al., 2019). Furthermore, the modelling framework implemented 
here can be expanded to test all possible pairwise combinations of 
single features, using the multi- surface function in ResistanceGA. 
Simulations have further suggested an increase in model selection ac-

curacy with lower variance in genetic distances and with population- 
based approaches (Winiarski et al., 2020). Given we here presented 
microsatellite- based data, single- nucleotide polymorphisms (SNPs) 
approaches may allow for more accurate resistance recovery, due 
to the expected lower variance estimates of SNP- based genetic dis-

tances (e.g. Galla et al., 2020; Lemopoulos et al., 2019). In addition, 
the question of whether inference based on population- based ap-

proaches is less affected by the choice of genetic distance metric 
needs to be investigated. Furthermore, a ResistanceGa- based empiri-
cal study has recently suggested that convergence of the results ob-

tained with different population- based genetic distance metrics and 
AICc- based model support improved when using a least- cost path 
approach, rather than the current flow method implemented here, 
to calculate resistance distances (Reyne et al., 2023). The study was 
performed on natterjack toads (Bufo camalita) and further research 
will show whether this conclusion is generally valid or a result of the 
limited mobility of the study species.

Comparisons of ResistanceGa and more recently implemented re-

cursive partitioning approaches to parameterise resistance surfaces 
will be particularly valuable to explore. One of these approaches 
utilises iterative Random forest models paired with least- cost tran-

sect analysis (LCTA) to parameterise resistance surfaces (Pless 
et al., 2021). Statistically, this is a very different approach from the 
genetic algorithm and MLPE models utilised in ResistanceGa but it also 
requires users to choose a genetic distance metric, with the resulting 
values used as the response variable. A Gradient forest approach, 
on the other hand, uses allele frequencies directly as the response 
variable, alleviating users from choosing genetic distance metrics 
(Vanhove & Launey, 2023). A first comparison of this method looks 
promising, showing Gradient forest approaches (as implemented in 
resGF), to outperform both ResistanceGa and Random forest mod-

elling paired with LCTA in landscape genetic inference (Vanhove & 
Launey, 2023).

5  |  CONCLUSION

The extensive optimisations presented here, using ResistanceGa 

on 36 simulated and three empirical datasets, could not iden-

tify a single genetic distance metric, or a group of metrics, that 
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systematically recovered accurate resistance surfaces across 
different landscape scenarios. Furthermore, simulation results 
indicate that mR2 of models is not a suitable indicator for the best- 
performing genetic distance metric. In summary, our results call 
into question the ability to recover complex spatial resistance 
surfaces using simplified summary statistics of genetic distances, 
highlighting the need for new approaches to infer landscape re-

sistance robustly across landscape scenarios and taxonomic 
groups. When using ResistanceGa, we emphasise the need to op-

timise resistance surfaces with different genetic distance metrics 
and assess the convergence of results via pairwise correlation co-

efficients of all optimised multi- feature resistance surfaces. These 
need to be checked for high coefficients across different genetic 
distance categories (Other, FCA and PCA) and can be compared to 
the simulated results presented here for expected true resistance 
recovery values. Most importantly, we want to call for a cautious 
interpretation of empirical data, especially when results appear 
counter- intuitive in light of the ecology of species, (e.g. Peterman 
et al., 2014), or are based on a single genetic distance metric only 
(e.g. Beninde et al., 2018), and, particularly, when inferences are 
translated into conservation recommendations.
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