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Abstract

1. Next- generation sequencing of pooled samples (Pool- seq) is an important tool 
in population genomics and molecular ecology. In Pool- seq, the relative number 
of reads with an allele reflects the allele frequencies in the sample. However, 
unequal individual contributions to the pool and sequencing errors can lead to 
inaccurate allele frequency estimates, influencing downstream analysis. When 
designing Pool- seq studies, researchers need to decide the pool size (number of 
individuals) and average depth of coverage (sequencing effort). An efficient sam-

pling design should maximise the accuracy of allele frequency estimates while 
minimising the sequencing effort. We describe a novel tool to simulate single 
nucleotide polymorphism (SNP) data using coalescent theory and account for 
sources of uncertainty in Pool- seq.

2. We introduce an R package, poolHelper, enabling users to simulate Pool- seq data 
under different combinations of average depth of coverage and pool size, ac-

counting for unequal individual contributions and sequencing errors, modelled 
by adjustable parameters. The mean absolute error is computed by comparing 
the sample allele frequencies obtained based on individual genotypes with the 
frequency estimates obtained with Pool- seq.

3. poolHelper enables users to simulate multiple combinations of pooling errors, av-

erage depth of coverage, pool sizes and number of pools to assess how they influ-

ence the error of sample allele frequencies and expected heterozygosity. Using 
simulations under a single population model, we illustrate that increasing the 
depth of coverage does not necessarily lead to more accurate estimates, reinforc-

ing that finding the best Pool- seq study design is not straightforward. Moreover, 
we show that simulations can be used to identify different combinations of pa-

rameters with similarly low mean absolute errors. This can help users to define an 
effective sampling design by using those combinations of parameters that mini-
mise the sequencing effort.

4. The poolHelper package provides tools for performing simulations with different 
combinations of parameters (e.g. pool size, depth of coverage, unequal individual 
contribution) before sampling and generating data, allowing users to define sam-

pling schemes based on simulations. This allows researchers to focus on the best 
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1  |  INTRODUC TION

Next generation sequencing (NGS) is an important tool for many bi-
ologists, providing access to polymorphism data across a wide range 
of model and non- model species (Ellegren, 2014). Although the cost 
of sequencing is continuously decreasing, high coverage sequenc-

ing of multiple individuals is still expensive. Furthermore, it is chal-
lenging to obtain individual genomic data for certain species (e.g. 
small organisms) or in evolve- and- resequence experiments involving 
a large number of populations or many points along a time series. 
In those instances, next- generation sequencing of pooled samples 
(Pool- seq) might be the only viable alternative, as it requires less 
DNA per individual. Pool- seq is a sequencing technique that pro-

vides a cost- effective approach to quantify genetic variation within 
a population. It involves pooling multiple individual DNA samples to-

gether and sequencing them collectively. A typical Pool- seq analysis 
requires several steps. First, researchers should determine the pool 
size (i.e. the number of individuals included in the pool) and the de-

sired sequencing depth of coverage during the experimental design 
step. Next, DNA extracted from individual samples is combined into 
pools. In situations where obtaining DNA from each individual sam-

ple is impractical, an alternative approach is to group several individ-

uals together prior to DNA extraction. For instance, muscle tissue 
from multiple individuals can be combined, extracting DNA from the 
entire group of individuals (Morales et al., 2019; Ross et al., 2019). 
Then, DNA extracted from multiple groups of individuals can be 
merged into a single, final pool. Non- equimolar quantities of DNA 
between these groups of multiple individuals, or between individu-

als within a group, can lead to unequal contributions. This disparity 
in contribution may result in certain groups of individuals having a 
disproportionate impact on the overall allele frequencies, leading to 
inaccurate estimation of sample allele frequencies, potentially af-
fecting downstream analysis (Anderson et al., 2014; Ellegren, 2014). 
Subsequently, for each pool, a single library is generated prior to 
sequencing with NGS technologies. Note that Pool- seq does not re-

quire individual tagging of sequences, reducing the laboratory work 
required for library preparation, while still generating population- 
level genomic data (Schlotterer et al., 2014). During this library 
preparation step, stochastic variation in amplification efficiency can 
also result in unequal contributions of individuals, and lead to inac-

curate sample allele frequencies. Finally, the pooled libraries are se-

quenced. This step also introduces uncertainties in the analysis due 
to variation in sequencing depth along the genome, and sequencing 
errors. The next steps, such as quality control, read alignment and 
variant calling, are similar to individual- based sequencing.

Despite these potential sources of uncertainty (e.g. unequal 
 individual contribution), Pool- seq has been extensively used in a 
 variety of settings (Begun et al., 2007; Ferretti et al., 2013; Prescott 
et al., 2015; Zhou et al., 2011). This has lead to the development 
of tools such as the R package poolSeq (Taus et al., 2017) and the 
DIYABC— RF software (Collin et al., 2021) that simulate Pool- seq data, 
as well as data analysis tools (e.g. Kofler et al., 2011). Nonetheless, 
to the best of our knowledge, no tool currently exists that can  
simultaneously and explicitly account for variation in depth of cover-
age, unequal contribution and sequencing errors, which are known 
sources of Pool- seq uncertainty (see Table S1 for more details). It 
is worth noting that unequal contribution occurs due to variations 
in DNA concentration or amplification efficiency among the pooled 
samples, resulting in an uneven representation of genetic material 
from each sample. Here, we use the term pooling error to quantify 
the error caused by unevenly combining multiple DNA samples into 
a single pool, which we explicitly model as the dispersion around 
the expected proportion of reads from each sample. This pooling 
error can introduce biases in estimates of sample allele frequencies. 
As mentioned, two key parameters in the experimental design step 
of a Pool- seq study are the number of individuals in each pool, and 
the average depth of coverage. These two parameters determine 
how much the sample allele frequencies are affected by Pool- seq 
associated errors. On one hand, increasing the number of individ-

uals allows estimating more accurate allele frequencies, but more 
individuals in the pool might not avoid errors associated with un-

equal individual contribution when the pooling error is high. On the 
other hand, increasing the depth of coverage should lead to more 
reliable estimates but it can amplify pooling errors and increase the 
frequency of sequencing errors, which can make it challenging to 
differentiate true low- frequency variants from sequencing errors. 
Moreover, due to its costs, the depth of coverage is typically the 
limiting resource. Simulations of single nucleotide polymorphism 
(SNP) data accounting for sources of uncertainty with Pool- seq data 
under different sampling schemes can thus provide a tool to help 
researchers design Pool- seq experiments and to minimise the error 
associated with the sample allele frequencies.

Here, we introduce an R package (Team, 2020), poolHelper, to 
simulate Pool- seq data according to different sampling designs. Our 
approach relies on coalescent simulations under neutrality using 
scrm (Staab et al., 2015). The poolHelper package provides tools and 
functions to simulate Pool- seq datasets, accounting for potential 
sources of error in the Pool- seq analysis process. Importantly, these 
errors are modelled by parameters that users can adjust. poolHelper 

models the unequal contribution resulting from differences in DNA 

sampling scheme to answer their research questions. poolHelper is comprehen-

sively documented with examples to guide effective use.

K E Y W O R D S
experimental design, open source, Pool- seq, R package, simulations
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concentration and amplification efficiency during DNA extraction 
and library preparation. Additionally, it accounts for sequencing 
depth variation across SNPs, sequencing errors, and mapping errors 
during read alignment. This allows comparing the allele frequencies 
obtained directly from the simulated individual genotypes with the 
frequencies obtained from Pool- seq data. Since R is a free and col-
laborative project, users can use available tools to handle, analyse 
and visualise genomic datasets. Our goal is to provide a flexible 
method of simulating Pool- seq data, allowing researchers to design 
their experiments with a better a priori knowledge of possible errors 
associated with Pool- seq, thus contributing to the recognition of 
Pool- seq as a valuable source of data to reconstruct the evolutionary 
history of populations.

2  |  IMPLEMENTATION

The main steps of our pipeline follow a relatively simple scheme: 
coalescent simulations of individual genotypes under a single popu-

lation model with a constant size, computation of alternative allele 
frequencies directly from the genotypes, simulation of Pool- seq 
given the genotypes, and computation of alternative allele frequen-

cies from the Pool- seq data, assuming that it corresponds to the 
proportion of reads with that allele. To measure the error associ-
ated with Pool- seq we computed the average absolute difference 
between the actual allele frequencies based on individual genotypes 
in the sample and the allele frequencies obtained with Pool- seq. 
Thus, note that we measure the difference between two estimates 
of the allele frequencies in the sample, one based on the sampled 
individual genotypes and the other obtained with Pool- seq of the 
same sample. The poolHelper package provides functions to simu-

late Pool- seq data, under a variety of user- defined conditions. More 
specifically, users can vary the average and variance of the depth 
of coverage, the pool size, sequencing error and the pooling error 
(see below). Additionally, they can also vary the number of groups 
of individuals contributing to the final sequenced pool. By varying 
all of these conditions, it is possible to assess how they influence 
the accuracy of allele frequency estimations. No external R objects 
are needed to use the package. Users can use the implemented coa-

lescent simulations to obtain genotypes, or provide genotypes di-
rectly. The resulting Pool- seq data can be outputed as R objects with 
counts of reads, or converted to commonly used file formats (.vcf 
and .sync), allowing users to analyse simulated Pool- seq data with 
existing downstream methods.

2.1  |  Coalescent simulations of individual  
genotypes

To obtain individual genotypes, we used scrm to simulate coalescent 
gene trees under a model of a single population with constant effec-

tive size Ne. To model different effective population sizes and muta-

tion rates, users can vary � = 4Ne�, where � is the neutral mutation 

rate per locus per generation. This allows to investigate Pool- seq as-

sociated uncertainties in populations with varying levels of expected 
genetic diversity, which is proportional to �. We assumed that the 
sample size was the same for each locus, corresponding to the total 
number of individuals sampled in the Pool- seq experiment. The ef-
fective size of the population from which the sample is taken is de-

fined by �, which users can modify. Additionally, we assumed that 
the actual haplotypes of all individuals in the pool were known. The 
effect of pooling is simulated in posterior steps (see next section). 
To obtain individual genotypes, we assumed random mating in the 
population and paired haplotypes at each locus at random for each 
biallelic single nucleotide polymorphic (SNP) site.

2.2  |  Simulation of Pool- seq data

We follow a series of steps (Figure 1) to model and simulate allele 
frequencies obtained with Pool- seq for biallelic SNPs, as described 
in Carvalho et al. (2023). The variation in depth of coverage across 
SNPs is assumed to follow a negative binomial distribution (nBin, 

F I G U R E  1  Diagram of the required steps to simulate Pool- seq 
data. The steps related to contribution probabilities are depicted by 
dark coloured boxes, while circles represent the required inputs for 
each corresponding step. Each box contains the relevant formulas 
for its corresponding step.
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following e.g. Hardcastle & Kelly, 2010). Thus, the number of reads 
c at each site is

where s = mean(c)∕var(c) and � = mean(c)2 ∕ (var(c) −mean(c)). The 
mean(c) and var(c) represent, respectively, the mean and variance 
of the depth of coverage across all SNPs. We assumed that the se-

quenced pool can have resulted from merging DNA extracted from 
K different groups of individuals, where each group could have a dif-
ferent number of individuals. To account for variability in the contri-
bution of each individual to the pool, we assumed that the number 
of reads follows a multinomial- Dirichlet distribution. That is, at each 
site, reads from the ith individual in the kth group (rk,i) follow a mul-
tinomial distribution

where pk,i denotes the proportion of reads from individual i  in group k, 
which is assumed to follow a Dirichlet distribution,

where N denotes the total number of sequenced individuals in group k, 
and �i models the variance of contribution, reflecting the unequal con-

tribution of individuals. Note that the contribution is expected to be 
equal for all individuals. If DNA extraction is performed for K groups of 
individuals that are then combined into a larger pool, uneven contribu-

tions between these groups of individuals may also occur. To account 
for this, we modelled the unequal contribution of each group of indi-
viduals by assuming that the number of reads from the kth group (rk ) 
follows a multinomial- Dirichlet distribution, such that rk ∼ mult

(

c, pk
)

 , 
where pk is the proportion of reads from a given group, assumed to 
follow a Dirichlet distribution,

where nk is the number of individuals in group k, and �g models the 
variance of contribution due to unequal contribution of groups of indi-
viduals. Following Gautier et al. (2013), we model explicitly the pooling 
error due to unequal contribution with the parameters �i and �g, which 
reflect the variance of contribution of individuals and groups of indi-
viduals, respectively, as

where �i and �g are the unequal contribution parameters for individuals 
within a group, and among groups of individuals, respectively. All groups 

of individuals are assumed to have the same �g, and all individuals are 
assumed to have the same �i. These depend on pooling error param-

eters �i and �g for individuals and groups of individuals, respectively 
(Gautier et al., 2013). Larger values of �i and �g lead to a larger disper-
sion, resulting in more unequal contributions. The variance of contribu-

tion depends on the experimental error as var
(

pk,i
)

=
(

�iE
[

pk,i
])2

 and 

var
(

pk
)

=
(

�gE
[

pk
])2. Although the selection of an appropriate pooling 

error might be potentially hard, given its unknown nature, we previ-
ously estimated values ranging from 24 to 236 (Carvalho et al., 2023). 
Furthermore, previous studies have also considered values ranging 
from 0 to 250 (Gautier et al., 2013). Thus, the pooling errors used here 
are within the reasonable ranges for this parameter (see Figure S1 for 
an example of how different pooling errors impact individual contribu-

tion). Note that the �i and �g that reflect the maximum dispersion, that is 
maximum unequal contribution when just one individual or one group 
of individuals contribute to the pool, correspond to �i and �g of zero. 
This implies that the upper limit for �2

i
 is N − 1 (Equation 5), and for �2

g
 is 

(

N∕nk
)

− 1 (Equation 6). Users can use these values as a reference to 
determine the maximum error values based on their sample sizes.

We also accounted for sequencing and mapping errors by 
 assuming that the reference allele R may be incorrectly called as an 
alternative allele A or vice versa with an error rate �seq. We modelled 
the number of reads Ai with the alternative allele for the ith individ-

ual at a particular site following a binomial distribution: we assumed 
Ai ∼ Bin

(

rk,i , �seq
)

 if the individual is homozygous for the reference al-
lele and Ai ∼ Bin

(

rk,i , 1 − �seq

)

 if the individual is homozygous for the 
alternative allele. We also assumed that there are only two alleles at 
each site and that each base has an equal chance of being miscalled. 
Therefore, for heterozygous individuals, each read originates from 
either the reference or alternative allele with equal probability (Li 
et al., 2012) and Ai ∼ Bin

(

rk,i ,0.5
)

, where rk,i represents the total num-

ber of reads contributed by an individual. A commonly used filter can 
also be applied, discarding SNPs with less than the required number of 
minor- allele reads. The allele frequencies estimated for the Pool- seq 
data correspond to the proportion of reads with the alternative allele.

2.3  |  Measuring error of estimates

To measure the error of Pool- seq estimates of allele frequencies or 
expected heterozygosity, we compared the estimates obtained from 
the individual genotypes in the sample with the estimates obtained 
from Pool- seq. We calculate the mean absolute error as

where n indicates the total number of SNPs. When calculating the 
error of Pool- seq estimates of allele frequencies, xi and yi correspond 
to the frequencies of the alternative allele at the ith SNP in the sam-

ple, obtained with individual genotypes (xi) or with Pool- seq (yi). When 
measuring the error of expected heterozygosity, xi and yi represent the 
expected heterozygosity obtained based on the sample of either indi-
vidual genotypes (xi) or Pool- seq (yi).

(1)c ∼ nBin(s,�),

(2)rk,i ∼ mult
(

c, pk,i
)

,

(3)pk,i ∼ Dir

(

�i

1

N

)

,

(4)pk ∼ Dir

(

�g

nk

N

)

,

(5)�i =
N − 1 − �

2
i

�
2
i

,

(6)�g =

(

N∕nk
)

− 1 − �
2
g

�2
g

,

(7)� =
1

n
×

∑

∣ yi − xi ∣ ,
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2.4  |  Main functionality

The poolHelper package allows users to compute the mean abso-

lute error of allele frequencies and expected heterozygosity under 
a variety of conditions. Users can vary the mean depth of coverage 
and the associated variance, the value of the pooling error and the 
number of sampled individuals. Additionally, it is possible to evalu-

ate the effect of combinations of parameters, for instance, various 
mean depths of coverage combined with several pooling error val-
ues. Thus, the poolHelper package provides users with a tool to aid in 
the design of pooled sequencing experiments, by allowing research-

ers to evaluate the best strategy, in terms of pool sizes or depth of 
coverage, to obtain accurate estimates of allelic frequencies, while 
minimising the sampling effort and costs.

2.5  |  Effect of combining multiple groups of 
individuals

An important consideration is whether DNA extraction should in-

volve multiple groups of individuals, which are then combined into a 

final pool for library preparation and sequencing, or if DNA should 
be extracted individually from each sample and subsequently com-

bined into a final pool. Users can test the effect of this choice by 
using the “maePool” function. This function computes the mean ab-

solute error for a given sample size sequenced using a pool with a 
single group of individuals or a pool combining multiple groups of in-

dividuals (Figure S2). By varying the mean coverage and the pooling 
error, it is possible to evaluate the effect of using a single or multiple 
groups under different conditions.

2.6  |  Impact of mean depth of coverage

Another critical decision is defining the mean depth of coverage 
used to sequence a pool of individuals. The “maeFreqs” function im-

plements the calculation of the mean absolute error between allele 
frequencies computed from genotypes and Pool- seq allele frequen-

cies simulated under different mean depth of coverage. By varying 
the mean depth of coverage and the associated variance, users can 
determine which coverage produces more accurate allele frequency 
estimates for a given sample size and pooling error (Figure 2).

F I G U R E  2  Mean absolute error between the allele frequencies obtained from the individual genotypes in the sample and those obtained 
from Pool- seq data under a variety of conditions. For all conditions, sites with less than two minor- allele reads were removed. In all plots, the 
y- axis represents the mean absolute error between the allele frequencies estimates. The top panel shows the mean absolute error for three 
different pooling error values (x- axis). For each plot, either the pool size or the coverage were fixed (the fixed value is indicated on the top of 
each plot). Thus, when pool size was fixed, the average coverage varied and vice- versa. In the bottom panel, we highlight comparisons that 
lead to similar mean absolute errors for intermediate values of pooling error (150 in the bottom left panel) and high pooling error (300 in the 
bottom right panel). In all plots, the pool size, defined by the nDip parameter, is represented in shades of blue, with darker shades indicating 
a larger pool and the average coverage, defined by the mean parameter, is represented in shades of red, with darker shades indicating higher 
coverage.
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2.7  |  Impact of pool sizes

When designing a Pool- seq experiment, it is essential to define the 
number of individuals to include in the pool, that is the pool size. 
The calculation of the mean absolute error between allele frequen-

cies for different pools sizes can be carried out using the “maeFreqs” 
function. This allows users to evaluate what is the optimal pool size 
for a fixed coverage and/or pooling error (Figure 2). Thus, the “mae-

Freqs” function allows users to decide how many individuals to pool 
to obtain the most accurate allele frequencies estimates for a given 
mean depth of coverage.

2.8  |  Example of an effective Pool- seq design using 
simulations

By performing simulations in a single panmictic population, assum-

ing that pooling error is intermediate to high (150 or 300) and after 
applying a commonly used filter (removing sites with less than two 
minor- allele reads), it is not obvious that one should always increase 
the average depth of coverage per individual in the pool (Figure 2). 
For instance, when pooling error is 150, we observe the same mean 
absolute error with a pool of 50 individuals sequenced at 10× than 
with a pool of 10 individuals sequenced at 50×. This suggests that 
it may be more cost- effective to use a pool of 50 individuals at 10× 

(expected individual contribution of 10/50) than using fewer indi-
viduals with a higher expected coverage per individual. This holds 
true for larger pool sizes and depths of coverage, given that we also 
get the same mean absolute error when comparing a pool of 200 in-

dividuals sequenced at 50× with a pool of 50 individuals sequenced 
at 100× (Figure 2). If pooling error is even higher (i.e. 300) a pool of 
100 individuals sequenced at 100× leads to a slightly lower mean 
absolute error than a pool of 50 individuals sequenced at double the 
coverage (200×; Figure 2). Thus, similar errors of allele frequencies 
in the sample can be obtained with different combinations of pool 
sizes and average depth of coverage. Therefore, the design of an ef-
fective Pool- seq study is not straightforward and an a priori simula-

tion study can help assess an efficient sampling scheme to obtain 
accurate allele frequencies while minimising the sequencing effort 
(mean depth of coverage).

3  |  CONCLUSIONS

We present an R package, poolHelper, to simulate pooled se-

quencing data under a model of a single panmictic population 
and compute the error in sample allele frequencies and expected 
heterozygosity obtained with Pool- seq for different study designs 
and commonly used filters (e.g. filters on minimum and maximum 
depth of coverage and on minimum number of minor- allele reads). 
The package relies on coalescent simulations performed with scrm 

(Staab et al., 2015). Currently, data are simulated under a single 
population with a constant effective population size. However, 

our package allows users to simulate genotypes under different 
models and use those genotypes as input to compute the mean ab-

solute error or simulate Pool- seq data. This enables users to focus 
on their specific scenarios of interest and then simulate Pool- seq 
data under a wide range of user- defined parameters. This package 
is implemented in the R environment, providing tools for data visu-

alisation, allowing users to produce graphics and quickly visualise 
the effect of multiple combinations of Pool-seq parameters. The 
poolHelper package's vignette contains a comprehensive explana-

tion of the functions in the package, as well as examples detailing 
its usage.
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available on the Comprehensive R Archive Network (CRAN; https://
cran.r- proje ct.org/packa ge=poolH elper). There is no other data as-

sociated with this paper.
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individuals, with each group containing 10 individuals. Two scenarios 
were considered: one assuming a low pooling error rate of 5, and the 
other assuming a high pooling error rate of 300. The same pooling 
error value was used to model the dispersion among pools and 
individuals. The y- axis represents the mean absolute error between 
the allele frequencies estimates and the x- axis indicates the number 
of groups used to sequence the sample.
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