
This is a repository copy of Closed-loop Analysis of Vision-based Autonomous Systems:A
Case Study.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201797/

Version: Published Version

Proceedings Paper:
Păsăreanu, Corina S., Mangal, Ravi, Gopinath, Divya et al. (3 more authors) (2023)
Closed-loop Analysis of Vision-based Autonomous Systems:A Case Study. In: Enea, C.
and Lal, A., (eds.) Computer Aided Verification. CAV 2023. Lecture Notes in Computer
Science . Springer , pp. 289-303.

https://doi.org/10.1007/978-3-031-37706-8_15

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Closed-Loop Analysis of Vision-Based

Autonomous Systems: A Case Study

Corina S. Păsăreanu1,2(B), Ravi Mangal2, Divya Gopinath1,
Sinem Getir Yaman3, Calum Imrie3, Radu Calinescu3, and Huafeng Yu4

1 KBR, NASA Ames, Moffett Field, CA 94035, USA
pcorina@andrew.cmu.edu

2 Carnegie Mellon University, Moffett Field, CA 94035, USA
3 University of York, York, UK

4 Boeing Research and Technology, Santa Clara, CA, USA

Abstract. Deep neural networks (DNNs) are increasingly used in
safety-critical autonomous systems as perception components processing
high-dimensional image data. Formal analysis of these systems is par-
ticularly challenging due to the complexity of the perception DNNs, the
sensors (cameras), and the environment conditions. We present a case
study applying formal probabilistic analysis techniques to an experimen-
tal autonomous system that guides airplanes on taxiways using a percep-
tion DNN. We address the above challenges by replacing the camera and
the network with a compact abstraction whose transition probabilities
are computed from the confusion matrices measuring the performance
of the DNN on a representative image data set. As the probabilities
are estimated based on empirical data, and thus are subject to error,
we also compute confidence intervals in addition to point estimates for
these probabilities and thereby strengthen the soundness of the analysis.
We also show how to leverage local, DNN-specific analyses as run-time
guards to filter out mis-behaving inputs and increase the safety of the
overall system. Our findings are applicable to other autonomous systems
that use complex DNNs for perception.

1 Introduction

Complex autonomous systems, such as autonomous aircraft taxiing systems [31]
and autonomous cars [20,25,42], need to perceive and reason about their environ-
ments using high-dimensional data streams (such as images) generated by rich
sensors (such as cameras). Machine learnt components, specially deep neural
networks (DNNs), are particularly capable of the required high-dimensional rea-
soning and hence, are increasingly used for perception in these systems. While
formal analysis of the safety of these systems is highly desirable due to their
safety-critical operational settings and the error-prone nature of learned compo-
nents, in practice this is very challenging because of the complexity of the system
components, including the high complexity of the neural networks (which may
have thousands or millions of parameters), the complexity of the camera capture

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13964, pp. 289–303, 2023.
https://doi.org/10.1007/978-3-031-37706-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37706-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-37706-8_15

290 C. S. Păsăreanu et al.

process, and the random and hard to characterize nature of the environment in
which the system operates (i.e., the world itself).

In this work, we describe a formal analysis of a closed-loop autonomous
system that addresses the above challenges. Our case study is motivated by a
real-world application, namely, an experimental autonomous system for guiding
airplanes on taxiways developed by Boeing [3,14]. The key idea is to abstract
away altogether the perception components, namely, the perception network and
the image generator, i.e., the camera taking images of the world, and replace
them with a probabilistic component α that maps (abstractions of) the state of
the system to state estimates that are used in downstream decision making in
the closed-loop system. The resulting system can then be analyzed with standard
(probabilistic) model checkers, such as PRISM [34] or Storm [22].

The approach is compositional, in the sense that the probabilistic component
is computed separately from the rest of the system. The transition probabilities in
α are derived based on confusion matrices computed for the DNN (measured on
representative data sets). Developers routinely use confusion matrices to evaluate
machine learning models, so our analysis is closely aligned with existing work-
flows, facilitating its adoption in practice.

The size of the probabilistic abstraction α is linear in the size of the output
of the DNN, and is independent of the number of the DNN parameters or the
complexity of the camera and the environment. We also describe how to leverage
additional results obtained from analyzing the DNN in isolation to further refine
the abstraction and also increase the safety of the closed-loop system through
run-time guards. In particular, we leverage rules mined from the DNN model [17]
to act as run-time guards for the closed-loop analysis, filtering out inputs that
likely lead to invalid DNN behavior. Other methods can also be used (e.g. [17,
18,21,26,32,35]) to catch adversarial or out-of-distribution inputs.

The probabilities in α are estimated based on empirical data, so they are
subject to error. We explore the use of confidence intervals in addition to point
estimates for these probabilities and thereby strengthen the soundness of the
analysis [5,7]. Our technique is applicable to other autonomous systems that use
DNN-based perception from high-dimensional data.

Related Work. Formal proofs of closed-loop safety have been obtained for
systems with low-dimensional sensor readings [11,12,27–30,40]; however, they
become intractable for systems that use rich sensors producing high-dimensional
inputs such as images.

Other works address the modeling and scalability challenges by constructing
abstractions of the perception components [24,33]. To model different environ-
ment conditions, these abstract models use non-deterministic transitions. The
resulting closed-loop systems are analyzed with traditional (non-probabilistic)
techniques. The abstractions either lack soundness proofs [33] or come with only
probabilistic soundness guarantees [24] which do not translate into probabilistic
guarantees over the safety of the overall system. VerifAI [16] can find counter-
examples to system safety, but can not provide guarantees.

The recent work in [36] aims to verify the safety of the trajectories of a
camera-based autonomous vehicle in a given 3D-scene. The work use invariant

Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study 291

regions over the input space grouped based on the same controller action. How-
ever, their abstraction captures only one environment condition (i.e., one scene)
and one camera model, whereas our approach is not particular to a camera model
and implicitly considers all the possible environment conditions.

In contrast to previous work, we describe a formal analysis that is probabilis-

tic, which we believe is natural since the camera images capturing the state of
the world are subject to randomness due to the environment; further DNNs are
learnt from data and are not guaranteed to be 100% accurate. Recent work [2]
also discusses the use of classification metrics, such as confusion matrices, for
quantitative system-level analysis with temporal logic specifications. However,
the work does not discuss the computation of confidence intervals that is nec-
essary for quantifying the empirical results. Also, it does not incorporate DNN
specific analyses as we do here. We build on our previous work DeepDECS [6],
where the goal is to perform controller synthesis with safety guarantees, so the
formalism is more involved. Furthermore, DeepDECS does not consider con-
fidence interval analysis, which we explore here based on some of our other
previous works [5,7]. We analyzed center-line tracking using TaxiNet in [31].
That work focuses on the analysis of the network and not on the overall system.

2 Autonomous Center-Line Tracking with TaxiNet

Boeing is developing an experimental autonomous system for center-line tracking
on taxiways in an airport. The system uses a neural network called TaxiNet for
perception. TaxiNet is designed to take a picture of the taxiway as input and
return the plane’s position with respect to the center-line on the taxiway. It
returns two outputs; cross track error (cte), which is the distance in meters
of the plane from the center-line and heading error (he), which is the angle in
degrees of the plane with respect to the center-line. These outputs are fed to
a controller which in turn manoeuvres the plane such that it remains close to
the center of the taxiway. This forms a closed-loop system where the perception
network continuously receives images as the plane moves on the taxiway. We use
this system as a case study and also as a running example throughout the paper.

System Decomposition. The decomposition of this system is illustrated in
Fig. 1. The controller sends actions a to the airplane to guide it on the taxi-
way. The dynamics (which models the movement of the airplane on the airport
surface) maps previous state s and action a to the next state s′.1 Information
about the taxiway is provided by the perception network (p), i.e. TaxiNet. The
perception network takes high-dimensional images captured with a camera (c),
and returns its estimation sest of the real state s.

For our application, state s ∈ S captures the position of the airplane on
the surface; S is modeled as CTE × HE. The network estimates the state s :=
(cte, he) based on images taken with a camera placed on the airplane. If the
network is ‘perfect’, then s = sest.

2 However, this does not hold in practice.

1 Velocity may be provided as feedback to the controller; we ignore here for simplicity.
2 Assuming the relevant state of the system is recoverable from the input image.

292 C. S. Păsăreanu et al.

The network is trained on a finite set of images and is not guaranteed to be
100% accurate whereas images observed in operation show a wide variety due to
different environment (e.g., light, weather) conditions and imperfections in the
camera.

Fig. 1. Closed-loop System Fig. 2. Abstracted System

Component Modeling. We built a simple discrete model of the airplane
dynamics and a discrete-time controller for the system, similar to previous
related work [4,23] which also considers discretized control. Since the controller
is discretized, we abstract the regression outputs of TaxiNet to view the model
as a classifier which predicts the plane’s position in discrete states. Treatment of
more complex systems with continuous semantics and regression models is left for
future work. The main challenge that we address in the paper is the modeling of
the perception components (the camera capture process and the network), which
we describe in detail in the next section. We model the (abstracted) autonomous
system as a Discrete Time Markov Chain (DTMC) [38]; the code for the models
is provided in the appendix of an extended version of this paper [37].

Safety Properties. In our study, the goal is to provide guarantees for safe
behavior with respect to two system-level properties indicated by our industrial
partner. The properties specify conditions for safe operation in terms of allowed
cte and he values for the airplane, by using taxiway dimensions. The first prop-
erty states that the airplane shall never leave the taxiway (i.e., |cte| ≤ 8 meters).
The second property states that the airplane shall never turn more than a pre-
scribed degree (i.e., |he| ≤ 35◦), as it would be difficult to maneuver the airplane
from that position. These two properties can be encoded in PCTL [8] as follows.

P =?[F (|cte| > 8m)] (Property 1)

P =?[F (|he| > 35◦)] (Property 2)

Here P =? indicates that we want to calculate the probability that eventually
(F) the system reaches an error state.

TaxiNet DNN. This is a regression model with 24 layers including five con-
volution layers, and three dense layers (with 100/50/10 ELU neurons) before
the output layer. The inputs to the model are RGB color images of size 360 ×
200 pixels. We use a representative data set with 11108 images, shared by our
industry partner. The model has a Mean Absolute Error (MAE) of 1.185 for

Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study 293

cte and 7.86 for he outputs respectively. The discrete nature of the controller in
our DTMCs induces a discretization on TaxiNet’s outputs and the treatment of
TaxiNet as a classifier for the purpose of our analysis. cte ∈ [−8.0 m, 8.0 m] and
he ∈ [−35.0◦, 35.0◦] are translated into cte ∈ {0, 1, 2, 3, 4} and he ∈ {0, 1, 2} as
shown below.

cte =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3 if − 8.0 m <= cte < −4.8 m

1 if − 4.8 m <= cte < −1.6 m

0 if − 1.6 m <= cte <= 1.6 m

2 if 1.6 m < cte <= 4.8 m

4 if 4.8 m < cte <= 8.0 m

he =

⎧

⎪

⎨

⎪

⎩

1 if − 35.0◦ <= he < −11.67◦

0 if − 11.67◦ <= he <= 11.66◦

2 if 11.66◦ < he <= 35.0◦

We use label “−1” to denote error states, i.e., cte = −1 iff |cte| > 8 m and
he = −1 iff |he| > 35◦. For simplicity, we use cte and he to denote both the
classifier and regression outputs in other parts of the paper (with meaning clear
from context). Note that none of the input images are labeled by the classifier as
“−1”, as the outputs of the network are normalized to be within the prescribed
bounds; however, this does not preclude the system from reaching an error.

3 Probabilistic Analysis

In this section, we describe the methodology for abstracting and analyzing an
autonomous system leveraging probabilistic model checking. The main idea,
which we initially explored in [6], is to replace the composition p ◦ c of the
camera (denoted as c) and the perception DNN (denoted as p) with a conserva-
tive abstraction mapping each system state to every possible estimated state; the
transition probabilities are derived empirically based on the confusion matrices
computed for the DNN, on a representative data set. We denote this abstrac-
tion as α : S → D(S), mapping system states to a discrete distribution over
(estimated) system states. Figure 2 depicts the abstracted autonomous system.

We observe that c can be viewed as a map between state s ∈ S to a dis-
tribution over images, denoted as D(Img), where img ∈ Img and Img is the set
of images. For instance, in the TaxiNet system, state s only captures the posi-
tion of the airplane with respect to the center-line, but there are many different
images that correspond to the same position. This is due to uncontrollable envi-
ronmental conditions, such as temporary sensor failures or different lighting and
weather conditions. Consequently, a single state s can map to a number of dif-
ferent images depending on the environment, and this is modeled by considering
c to be a probabilistic map of type S → D(Img). Given a system state s, α(s)
models the probability of p ◦ c leading to a particular estimated state sest; α
needs to be probabilistic because c itself is probabilistic and p is not perfectly
accurate.

We further describe how we can leverage DNN-specific analysis to improve
the accuracy of perception and the safety of the overall system, via the optional
addition of run-time guards. For the verification of the closed-loop system, we
use the PRISM model checking tool [34]. We also explore methods for analysis

294 C. S. Păsăreanu et al.

of DTMCs with uncertain transition probabilities [5,7], to obtain probabilistic

guarantees about the validity of our probabilistic safety proofs even though the
abstraction probabilities are empirical estimates.

Assumptions. Our analysis assumes that the distribution of inputs to the net-
work remains fixed over time (i.e., it is not subject to distribution shifts). More-
over, the data set of input images used to estimate the probabilities in α is
assumed to be representative, i.e., constituted of independently drawn samples
from this fixed underlying distribution of inputs. Relaxing these assumptions is
a challenging but important task for future research.

3.1 Probabilistic Abstractions for Perception

We describe in detail the construction of the probabilistic abstraction α : S →
D(S). We do not need access to the camera and only require black-box access to
the network for constructing our abstraction.3 We assume S is a finite set such
that #S = K where #S denotes the cardinality of set S. We use α(s, sest) to
represent the probability associated with estimated state sest. It is defined as,

α(s, sest) := Pr
img∼c(s)

[p(img) = sest] (1)

We estimate the probabilities in α by means of a confusion matrix. Let Imgs ⊆
Img denote a representative test dataset for images corresponding to state s, i.e.,
every sample in Imgs is assumed to be an independently drawn sample from c(s).
We assume access to representative test datasets corresponding to every state
s ∈ S. Let Img :=

⋃

s∈S Imgs. For any test input img ∈ Img, let p∗(img) ∈ S be
the label (i.e., the true underlying state) of img, which is known since Img is a
test dataset. For the sake of technical presentation, we assume a bijective map
rep : S → [K] that maps every state in S to a number in [K] := {1, 2, . . . ,K}.
We evaluate p on the test dataset Img to construct a K × K confusion matrix C
such that, for any k, k′ ∈ [K], the element in row k and column k′ of this matrix
is given by the number of inputs from Img with true state rep−1(k) that the
perception network p classifies as state rep−1(k′).

C[k, k′] := #
{

img ∈ Img | p∗(img) = rep−1(k) ∧ p(img) = rep−1(k′)
}

(2)

Given the confusion matrix C, empirical estimates for the probabilities in α
are calculated as follows,

α(rep−1(k), rep−1(k′)) :=
C[k, k′]

∑

k′′∈[K] C[k, k′′]
. (3)

3 Our run-time guard does require white-box access.

Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study 295

Predicted
Total = 11108 0 1 2

Actual
0 4748 2139 148
1 91 2010 0
2 744 211 1017

Table 1. Confusion Matrix for he

TaxiNet Example. For the TaxiNet
application, we construct two prob-
abilistic maps, αcte and αhe, corre-
sponding to each of the state variables
cte and he, using a representative test
data set with 11108 samples.4 Thus,
αcte is of type CTE → D(CTE) and αhe

is of type HE → D(HE). Table 1 illustrates the confusion matrix for he. The map-
ping αhe is computed in a straightforward way: αhe(0, 0) = 4748/(4748 + 2139 +
148) = 0.675, giving the probability of estimating correctly that the value of
he is zero. Similarly, αhe(1, 0) = 91/(91 + 2010) = 0.043, giving the probabil-
ity of estimating incorrectly that the value of he is zero instead of one. The
corresponding DTMC code is as follows:

[] he=0 → 0.675: (he_est ’=0) + 0.304: (he_est ’=1) + 0.021: (he_est ’=2);
[] he=1 → 0.043: (he_est ’=0) + 0.957: (he_est ’=1) + 0.0: (he_est ’=2);
[] he=2 → 0.377: (he_est ’=0) + 0.107: (he_est ’=1) + 0.516: (he_est ’=2);

A similar computation is performed for constructing αcte. The resulting code
for the closed-loop system is shown in [37], in the appendix.

3.2 DNN Checks as Run-Time Guards

We use DNN-specific checks as run-time guards to improve the performance
of the perception network and therefore the safety of the overall system. We
hypothesize that for inputs where the checks pass, the network is more likely to
be accurate, and therefore, the system is safer.

For our case study, we distill logical rules from the DNN that characterize
misbehavior in terms of intermediate neuron values and use them as run-time
guards (as described in Sect. 4). More generally, one can use any off-the-shelf
pointwise DNN check, such as local robustness [10,15,19,35,39,41] or confidence
checks for well-calibrated networks [21], as run-time guards (provided that they
are fast enough to be deployed in practice). For practical reasons (TaxiNet is a
regression model, it contains ELU [9] activations, we do not have access to the
training data) we can not use off-the-shelf checks here.

Modeling DNN Checks. Let us denote the application of (one or more) DNN-
specific checks as a function check : (Img → S) × Img → B, such that, for
perception network p ∈ Img → S and image img ∈ Img, check(p, img) = true if
p passes the checks at input img, and check(p, img) = false otherwise.

We further assume that a system that uses DNN checks as a run-time guard
attempts to read the camera sensor multiple (one or more) times, until the
check passes; and aborts (or goes to a fail-safe state) if the number of consecutive
failed checks reaches a certain threshold. This logic can be generalized to consider
more sophisticated safe-mode operations; for instance, the system can decelerate

4 To simplify the DTMCs, we model the updates to cte and he as independent. For
more precision, we can compute confusion matrices and α for the pair (cte, he).

296 C. S. Păsăreanu et al.

and/or notify an operator when the threshold is reached, as this could indicate
serious sensor failure or adverse weather conditions.

To model the effect of the run-time check in our analysis, we can define β as
the probability that an image img generated by the camera c, for any state s,
satisfies check(p, img) = true;

β := Pr
img∼D

[check(p, img) = true] (4)

Here D is the distribution obtained by combining c(s) for all states s ∈ S.5 To
be more precise we can define a separate βs for each state s. We estimate β using
the representative set of images Img,

β :=
#Img

true

#Img
(5)

where Img
true

:= {img ∈ Img | check(p, img) = true}.
For the overall analysis of the closed-loop system, irrespective of the state s,

we can assume that the DNN check will pass with a probability β. Moreover,
since the perception network only processes images that pass the DNN check, we
construct a refined probabilistic abstraction αtrue using conditional probability:

αtrue(s, sest) := Pr
img∼c(s)

[p(img) = sest|check(p, img) = true] (6)

We can estimate αtrue as before, but the confusion matrix is built using only
the images that pass the DNN check, i.e., for dataset Img

true
⊆ Img.

TaxiNet Example. For TaxiNet, out of 11108 inputs, 9125 inputs (i.e., 82.1%)
pass the DNN check resulting in the following code:

i:[0..M] init 0;
[] pc=0 & i<M → 0.821: (v’=1) & (pc ’=1) & (i’=0) + 0.179: (v’=0) & (i’=i+1);

We model the result of applying the DNN check with variable v; v = 1 if the
check returns true for an image and v = 0 otherwise. M is the number of allowed
repeated sensor readings and i is used to count the number of failed DNN checks.

The abstraction for state variables he (αhe) and cte (αcte) is only computed
for the inputs that pass the check (i.e., for v = 1) based on newly computed
confusion matrices. The DTMC code for the closed-loop system with run-time
guards is shown in [37], in the appendix.

3.3 Confidence Analysis

The construction of the probabilistic abstractions relies on calculating empirical
point estimates of the required probabilities. However, these empirical estimates
lack statistical guarantees and can be off by an arbitrary amount from the true
probabilities. To address this concern, we experiment with using FACT [5,7]

5 To simplify the presentation, we omit the precise mathematical formulation for D.

Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study 297

to calculate confidence intervals for the probability that the safety properties of
the closed-loop system are satisfied. The inputs to FACT are: 1) a parametric
DTMC m where each empirically estimated transition probability is represented
by a parameter, 2) a PCTL formula φ, 3) an error level δ ∈ (0, 1) and 4) an
observation function O mapping state s to a tuple representing the number
of observations for each outgoing transition from s; in our case, the number of
observations can be obtained directly from the computed confusion matrices, i.e.,
O(s) = (C[rep(s), 1], . . . , C[rep(s),K]). FACT synthesizes a (1 − δ)-confidence
interval [a, b] ⊆ [0, 1] for the probability that φ is satisfied, given the observations.

TaxiNet Example. The following partial code illustrates the parametric ver-
sion of the code provided in Sect. 3.1 (with the complete code for the parametric
models provided in [37], in the appendix). The first three lines represent the
number of observations obtained from the confusion matrix in Table 1.

param double x = 4748 2139 148;
param double y = 91 2010;
param double z = 744 211 1017;
...
[] he=0 → x1:(he_est ’=0) + x2:(he_est ’=1) + (1-x1-x2):(he_est ’=2);
[] he=1 → y1:(he_est ’=0) + (1-y1):(he_est ’=1);
[] he=2 → z1:(he_est ’=0) + z2:(he_est ’=1) + (1-z1-z2):(he_est ’=2);

4 Experiments

In this section, we report on the experiments that we conducted as part of our
probabilistic safety analysis of the center-line tracking autonomous system.

We built two DTMC models, m1 and m2, denoting the closed-loop center-line
tracking system without and with a run-time guard, respectively. The airplane
dynamics and the controller are identically modeled in the two DTMCs as dis-
crete components. The code for the models (in PRISM syntax) and more details
about the analysis are presented in [37], in the appendix.

Mining Rules for Run-time Guards. We leverage our prior work [17], to
extract rules of the form Pre =⇒ Post from the DNN. Post is the condition
|cte∗ − cte| > 1.0 m ∨ |he∗ − he| > 5◦ on the regression model’s outputs and
Pre is a condition over the neuron values in the three dense layers of TaxiNet
(cte∗ and he∗ denote ground-truth values). The considered Post characterizes
invalid behavior (as explained in [31]). If an input satisfies Pre, the DNN check
is considered to have failed on that input. Pre can be evaluated efficiently during
the forward pass of the model, making it a good run-time guard candidate. Here
is an example of a rule for invalid behavior:

N1,85 <= −0.998 ∧ N2,50 <= 3.31 ∧ N1,84 <= −0.994 ∧ N1,15 > −0.999

∧ N1,21 <= 1.711 ∧ N1,70 <= 11.088 ∧ N1,51 > −0.999 ∧ N1,21 > −0.637 =⇒

|cte∗ − cte| > 1.0 m ∨ |he∗ − he| > 5
◦

Ni,j indicates the jth neuron in the ith dense layer. The conditions over neuron
values can be checked during the forward pass of the DNN. If an input satisfies
the conditions, it is interpreted as failing the check. If the check consecutively

298 C. S. Păsăreanu et al.

fails M times, the system aborts, meaning that the system stops operating and
hands over control to a fail-safe mechanism (such as the pilot). More details on
the rules and their deployment as run-time guards are in [37], in the appendix.

Confusion Matrices. The confusion matrices for the classification version of
TaxiNet, computed for the two cases (without and with run-time guard) are
shown in [37], in the appendix. The tables can be used by developers to better
understand the DNN performance. For instance, the results summarized in the
confusion matrices indicate that the DNN performs best for inputs lying on the
center-line, which can be attributed to training being done mainly using scenarios
where the plane follows the center-line. The model appears to perform better
when the plane is heading left, as opposed to heading right, which may be due to
camera position. These observations can be used by developers to improve the
model, by training on more scenarios. Note also that the model does not make
‘blatant’ errors, mistaking inputs on the left as being on the right (of center-line)
or vice-versa (see e.g., entries with zero observations). Formal proofs can provide
guarantees of absence of such transitions.

(a) Property (b) Property (c) Property

Fig. 3. Probabilistic model checking results via PRISM

Analysis. We analyzed m1 and m2 with respect to the two PCTL properties,
P =?[F (cte = −1)] (Property 1), and P =?[F (he = −1)] (Property 2)6. The
airplane is assumed to start from a initial position on the center-line and heading
straight. For m2, i.e. the model with a run-time guard, we also evaluate the
probability of the TaxiNet system going to the abort state using the property,
P =?[F (v = 0 & i = M) (Property 3), where M is the threshold for the number
of consecutive run-time check failures.

The probabilities of these properties being satisfied, calculated by PRISM,
are shown in Fig. 3, where N is a constant in the DTMCs that dictates the length
of the finite-time horizon considered for the analysis. Note that the system has an
additional planning layer that calculates the waypoints for the airplane’s course
on the taxiway. The system is only used for controlling the airplane movement
between pairs of waypoints, hence a short horizon suffices.

The confidence intervals computed with FACT are shown in Fig. 4, at differ-
ent confidence levels (0.95 to 0.99), for N = 4. For computing the intervals, we
ignore the transitions in the DTMCs that were not observed in our data (see [37]
for more details).

6 We rewrote the properties in terms of the discrete values.

Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study 299

The PRISM analysis scales well; e.g., evaluating Property 1 for model m2

(N = 30) requires less than 0.1 s on an M1 MacBook Pro, 16 GB RAM. The
numbers are similar for other queries. However, the confidence analysis does not
scale as well; we could not go beyond N = 4 for a timeout of two hours, with
Property 1 hardest to check. Newer work, fPMC [13], addresses these scalability
challenges but we found it not yet mature enough to be applied to our models.

Discussion and Lessons Learned. The experiments demonstrate the feasibil-
ity of our approach, which enables reasoning about a complex DNN interacting
with conventional (discrete-time) components via a simple probabilistic abstrac-
tion. Our analysis not only provides qualitative (i.e., an error is reachable or not)
but also quantitative (i.e., likelihood of error) results, helping developers assess
the risk associated with the analyzed scenario.

0.95 0.96 0.97 0.98 0.99

Confidence level

0

0.01

0.02

0.03

0.04

(a) Property

0.95 0.96 0.97 0.98 0.99

Confidence level

0

0.02

0.04

0.06

(b) Property

Fig. 4. Confidence interval results via FACT

The results highlight the benefit of the run-time guards in improving the
safety of the overall system; see Figs. 3(a,b) for lower error probabilities and
Figs. 4(a,b) for tighter intervals for m2. The probability of aborting is very
small, indicating the efficacy of the fail-safe mechanism (see Figs. 3(c)). More
importantly, since the DNN demonstrates higher accuracy on the inputs where
the run-time check passes, the results also indicate that improved accuracy of the

DNN translates into improved safety. The computed probabilities and confidence
intervals can be examined by developers and regulators to ensure that system
safety is met at required levels. If the confidence intervals are too large, they can
be made tighter by adding more data, as guided by the confusion matrices.

Based on our feedback (confusion matrices) our industrial partner is retrain-
ing the perception network. As the system is in its early stages, our industrial
partner was more interested in the trends suggested by our analysis rather than
the exact probability results. For instance, our results indicate that safety will
increase with a better-performing network. The partner was also interested in
how the DNN-specific analysis contributes to the system-level analysis. A prob-
abilistic analysis is best viewed as an “average-case” analysis rather than “worst-
case”. Nevertheless, such analysis is still useful since it conveys whether the
system at least behaves safely in the average-case.

300 C. S. Păsăreanu et al.

5 Conclusion

We demonstrated a method for the analysis of the safety of autonomous systems
that use complex DNNs for visual perception. Our abstraction helps separate
the concerns of DNN and conventional system development and evaluation. It
also enables the integration of heterogeneous artifacts from DNN-specific anal-
ysis and system-level probabilistic model checking. The approach produces not
only qualitative results but also provides insights that can be used in quanti-
tative safety assessment for AI/DNN-enabled systems. This is, potentially, an
important step to fill one of the gaps of quantitative evaluation for future AI
certification [1].

Future work involves experimentation with image data sets representing a
variety of environment conditions. We also plan to refine our models, inducing
finer partitions on the DNN, and validate them through simulations. Another
future research direction involves the study of the composition of safety proofs
for the system analyzed in different scenarios. Finally, we are working on compo-
sitional analysis techniques to achieve worst-case (non-probabilistic) guarantees.

References

1. EASA concept paper: First usable guidance for level 1 machine learning applica-
tions (2021). https://www.easa.europa.eu/en/downloads/134357/en

2. Badithela, A., Wongpiromsarn, T., Murray, R.M.: Leveraging classification metrics
for quantitative system-level analysis with temporal logic specifications. In: 2021
60th IEEE Conference on Decision and Control (CDC), pp. 564–571. IEEE (2021).
https://doi.org/10.1109/CDC45484.2021.9683611

3. Beland, S., et al.: Towards assurance evaluation of autonomous systems. In:
IEEE/ACM International Conference On Computer Aided Design, ICCAD 2020,
San Diego, CA, USA, 2–5 November 2020, pp. 84:1–84:6. IEEE (2020)

4. Byrne, R., Abdallah, C., Dorato, P.: Experimental results in robust lateral control
of highway vehicles. In: Proceedings of 1995 34th IEEE Conference on Decision
and Control, vol. 4, pp. 3572–3575 (1995)

5. Calinescu, R., Ghezzi, C., Johnson, K., Pezzé, M., Rafiq, Y., Tamburrelli, G.: For-
mal verification with confidence intervals to establish quality of service properties
of software systems. IEEE Trans. Reliab. 65(1), 107–125 (2015)

6. Calinescu, R., Imrie, C., Mangal, R., Păsăreanu, C., Santana, M.A., Vázquez,
G.: Discrete-event controller synthesis for autonomous systems with deep-learning
perception components. arXiv preprint arXiv:2202.03360 (2022)

7. Calinescu, R., Johnson, K., Paterson, C.: FACT: a probabilistic model checker for
formal verification with confidence intervals. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 540–546. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9_32

8. Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24611-4_5

https://www.easa.europa.eu/en/downloads/134357/en
https://doi.org/10.1109/CDC45484.2021.9683611
http://arxiv.org/abs/2202.03360
https://doi.org/10.1007/978-3-662-49674-9_32
https://doi.org/10.1007/978-3-662-49674-9_32
https://doi.org/10.1007/978-3-540-24611-4_5

Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study 301

9. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network
learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289
(2015)

10. Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via ran-
domized smoothing. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of
the 36th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 97, pp. 1310–1320. PMLR, 09–15 June 2019

11. Dawson, C., Gao, S., Fan, C.: Safe control with learned certificates: a survey of neu-
ral Lyapunov, barrier, and contraction methods. arXiv preprint arXiv:2202.11762
(2022)

12. Dawson, C., Lowenkamp, B., Goff, D., Fan, C.: Learning safe, generalizable
perception-based hybrid control with certificates. IEEE Rob. Autom. Lett. 7(2),
1904–1911 (2022)

13. Fang, X., Calinescu, R., Gerasimou, S., Alhwikem, F.: Software performability
analysis using fast parametric model checking. arXiv preprint arXiv:2208.12723
(2022)

14. Frew, E., et al.: Vision-based road-following using a small autonomous aircraft. In:
2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720), vol. 5,
pp. 3006–3015 (2004)

15. Fromherz, A., Leino, K., Fredrikson, M., Parno, B., Pasareanu, C.: Fast geomet-
ric projections for local robustness certification. In: International Conference on
Learning Representations (2021)

16. Ghosh, S., Pant, Y.V., Ravanbakhsh, H., Seshia, S.A.: Counterexample-guided
synthesis of perception models and control. In: 2021 American Control Conference
(ACC), pp. 3447–3454. IEEE (2021)

17. Gopinath, D., Converse, H., Pasareanu, C., Taly, A.: Property inference for deep
neural networks. In: International Conference on Automated Software Engineering
(ASE), pp. 797–809. IEEE (2019)

18. Gopinath, D., Katz, G., Păsăreanu, C.S., Barrett, C.: DeepSafe: a data-driven
approach for assessing robustness of neural networks. In: Lahiri, S.K., Wang, C.
(eds.) ATVA 2018. LNCS, vol. 11138, pp. 3–19. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01090-4_1

19. Gowal, S., et al.: On the effectiveness of interval bound propagation for training
verifiably robust models. arXiv preprint arXiv:1810.12715 (2018)

20. Grigorescu, S.M., Trasnea, B., Cocias, T.T., Macesanu, G.: A survey of deep learn-
ing techniques for autonomous driving. CoRR abs/1910.07738 (2019)

21. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. CoRR abs/1706.04599 (2017)

22. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transfer 24(4), 589–610 (2022)

23. Hoffmann, G.M., Tomlin, C.J., Montemerlo, M., Thrun, S.: Autonomous automo-
bile trajectory tracking for off-road driving: Controller design, experimental vali-
dation and racing. In: American Control Conference, ACC 2007, New York, NY,
USA, 9–13 July 2007, pp. 2296–2301. IEEE (2007)

24. Hsieh, C., Li, Y., Sun, D., Joshi, K., Misailovic, S., Mitra, S.: Verifying controllers
with vision-based perception using safe approximate abstractions. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 41(11), 4205–4216 (2022)

25. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks:
verification, testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev. 37, 100270 (2020)

http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/2202.11762
http://arxiv.org/abs/2208.12723
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-030-01090-4_1
http://arxiv.org/abs/1810.12715

302 C. S. Păsăreanu et al.

26. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. CoRR abs/1610.06940 (2016)

27. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig 2.0:
verification of neural network controllers using Taylor model preconditioning. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 249–262. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_11

28. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embedded Comput. Syst. (TECS) 20(1), 1–26 (2020)

29. Ivanov, R., Jothimurugan, K., Hsu, S., Vaidya, S., Alur, R., Bastani, O.: Composi-
tional learning and verification of neural network controllers. ACM Trans. Embed-
ded Comput. Syst. (TECS) 20(5s), 1–26 (2021)

30. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, pp. 169–178 (2019)

31. Kadron, I.B., Gopinath, D., Pasareanu, C.S., Yu, H.: Case study: analysis of
autonomous center line tracking neural networks. In: Bloem, R., Dimitrova, R.,
Fan, C., Sharygina, N. (eds.) Software Verification - 13th International Conference,
VSTTE 2021, New Haven, CT, USA, 18–19 October 2021, and 14th International
Workshop, NSV 2021, Los Angeles, CA, USA, 18–19 July 2021, Revised Selected
Papers. LNCS, pp. 104–121 (2021). https://doi.org/10.1007/978-3-030-95561-8_7

32. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

33. Katz, S.M., Corso, A.L., Strong, C.A., Kochenderfer, M.J.: Verification of image-
based neural network controllers using generative models. J. Aerosp. Inf. Syst.
19(9), 574–584 (2022)

34. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

35. Leino, K., Wang, Z., Fredrikson, M.: Globally-robust neural networks. In: Interna-
tional Conference on Machine Learning (ICML) (2021)

36. Habeeb, P., Deka, N., D’Souza, D., Lodaya, K., Prabhakar, P.: Verification of
camera-based autonomous systems. IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst., 1 (2023). https://doi.org/10.1109/TCAD.2023.3240131

37. Pasareanu, C.S., et al.: Closed-loop analysis of vision-based autonomous systems:
a case study. CoRR abs/2302.04634 (2023). https://doi.org/10.48550/arXiv.2302.
04634

38. Privault, N.: Discrete-Time Markov Chains, pp. 77–94. Springer, Heidelberg (2013)
39. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial

examples. In: International Conference on Learning Representations (2018)
40. Santa Cruz, U., Shoukry, Y.: NNLander-VeriF: a neural network formal verifica-

tion framework for vision-based autonomous aircraft landing. In: Deshmukh, J.V.,
Havelund, K., Perez, I. (eds.) NASA Formal Methods Symposium, pp. 213–230.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06773-0_11

41. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019)

42. Tabernik, D., Skocaj, D.: Deep learning for large-scale traffic-sign detection and
recognition. CoRR abs/1904.00649 (2019)

https://doi.org/10.1007/978-3-030-81685-8_11
https://doi.org/10.1007/978-3-030-95561-8_7
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/TCAD.2023.3240131
https://doi.org/10.48550/arXiv.2302.04634
https://doi.org/10.48550/arXiv.2302.04634
https://doi.org/10.1007/978-3-031-06773-0_11

Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study 303

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study
	1 Introduction
	2 Autonomous Center-Line Tracking with TaxiNet
	3 Probabilistic Analysis
	3.1 Probabilistic Abstractions for Perception
	3.2 DNN Checks as Run-Time Guards
	3.3 Confidence Analysis

	4 Experiments
	5 Conclusion
	References

