
This is a repository copy of Morphological subprofile analysis for bioactivity annotation of 
small molecules.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201793/

Version: Accepted Version

Article:

Pahl, A., Schölermann, B., Lampe, P. et al. (7 more authors) (2023) Morphological 
subprofile analysis for bioactivity annotation of small molecules. Cell Chemical Biology, 30 
(7). P839-P853.E7. ISSN 2451-9456 

https://doi.org/10.1016/j.chembiol.2023.06.003

© 2023, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/. This is an author produced 
version of an article published in Cell Chemical Biology. Uploaded in accordance with the 
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Review

Morphological profiling of small molecules

Slava Ziegler,1,* Sonja Sievers,1 and Herbert Waldmann1,2,*
1Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
2Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany

*Correspondence: slava.ziegler@mpi-dortmund.mpg.de (S.Z.), herbert.waldmann@mpi-dortmund.mpg.de (H.W.)

https://doi.org/10.1016/j.chembiol.2021.02.012

SUMMARY

Profiling approaches such as gene expression or proteome profiling generate small-molecule bioactivity pro-

files that describe a perturbed cellular state in a rather unbiased manner and have become indispensable

tools in the evaluation of bioactive small molecules. Automated imaging and image analysis can record

morphological alterations that are induced by small molecules through the detection of hundreds of morpho-

logical features in high-throughput experiments. Thus, morphological profiling has gained growing attention

in academia and the pharmaceutical industry as it enables detection of bioactivity in compound collections in

a broader biological context in the early stages of compound development and the drug-discovery process.

Profiling may be used successfully to predict mode of action or targets of unexplored compounds and to un-

cover unanticipated activity for already characterized small molecules. Here, we review the reported ap-

proaches to morphological profiling and the kind of bioactivity that can be detected so far and, thus, pre-

dicted.

INTRODUCTION

A phenotype unites the observable characteristics of an organ-

ism or a cell, such as gene and protein expression, morphology,

and biochemical properties, and results from the interaction of

genotype and environment (Nussinov et al., 2019). Cell

morphology has been linked to specific cellular states or cellular

processes and, thus, has predictive value in the analysis of ge-

netic, chemical, or disease-related perturbations. However,

morphological alterations often are not obvious to the human

eye, which may not be able to discern subtle changes indepen-

dent of visualization tools, thus calling for the development of

reliable and unbiased analysis methods.

There has been a high demand for detailed mapping of the

bioactivity space, i.e., targets, off-targets, and mode of action

(MoA) of small molecules in general and, more importantly,

drug candidates in particular. Whereas available approaches

to detect bioactivity mostly address the already known drug-

target space, e.g., G-protein-coupled receptors (GPCRs), ki-

nases, and enzymes, in general, ‘‘omics’’ approaches such as

transcriptomics, proteomics, epigenomics, and metabolomics

enable profiling by collecting all measurable parameters to

obtain a holistic view of a given cellular state. Although omics

studies rarely provide direct proof for small-molecule targets,

the inherently rich data they deliver may inform about numerous

altered cellular traits between two states, in particular when

different omics approaches are combined. Moreover, to date,

generic methods for target identification of small molecules are

not available, and target identification often is labor- and time-

intensive (Saxena, 2016; Wilkinson et al., 2020; Ziegler et al.,

2013). Complementary strategies employ comparison of struc-

tural similarity (Awale and Reymond, 2019; Byrne and Schneider,

2019), similarity in gene expression profiles (Lamb et al., 2006;

Subramanian et al., 2017), or selective cell toxicity profiles to

deduce target hypotheses (Rees et al., 2016; Seashore-Ludlow

et al., 2015). Similar compounds have been linked to the modu-

lation of similar targets (Keiser et al., 2007, 2009) and similar

gene expression patterns are provoked by compounds with

common targets or targeted pathways (Lamb et al., 2006; Sub-

ramanian et al., 2017). By analogy, selective growth inhibition

in a broad cell-line panel has been successfully employed for

target/MoA studies (Rees et al., 2016; Seashore-Ludlow

et al., 2015).

A general challenge at the heart of chemical biology is how to

detect bioactivity in (synthesized) compound collections as early

as possible and how to address various biological processes

simultaneously that may inform compound optimization. Omics

approaches per se are well suited for this purpose; however,

they are not amenable to high-throughput screening.

The advent of automated high-content imaging and the devel-

opment of algorithms for pattern recognition, feature extraction,

and, thus, image data analysis paved the way for an additional

pillar in the suite of profiling approaches, i.e., morphological

profiling, for chemical biology research and drug discovery.

High-content assays usually are designed tomonitor a given bio-

logical process and detect a limited number of parameters. How-

ever, the extraction of hundreds of parameters independent of a

particular process enables the exploration of small-molecule-

related bioactivity in a more unbiased manner. For morpholog-

ical profiling (Figure 1), cellular components are stained using

fluorescent dyes or antibodies to detect pattern changes upon

perturbation by small molecules. Alternatively, fluorescent tags

can be genetically introduced into cells to directly monitor

morphology markers. High-content imaging is employed to
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capture images for each cellular component, and cell segmenta-

tion identifies cellular and subcellular regions (Bougen-Zhukov

et al., 2017). Hundreds of numerical phenotypic descriptors are

then extracted to generate morphological profiles that describe

phenotypes (as compared with the non-perturbed state) (Bou-

gen-Zhukov et al., 2017; Boutros et al., 2015; Caicedo et al.,

2017; Grys et al., 2017). These features are related to size and

shape of cells and organelles, intensity, and texture, among

others. Profiles of unexplored compounds can then be

compared with the profiles of agents with known targets and
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Figure 1. Workflow for morphological profiling
Upon treatment with compounds, cells are stained for cellular compartments or markers using fluorescent dyes or antibodies. Alternatively, cells expressing

fluorescently tagged proteins for detection of cellular components can be used. High-content imaging and analysis are employed to extract multiple features and

generate morphological profiles that can be compared with profiles of reference compounds. Profile similarity suggests a similar mode of action or even target.

Dimensionality reduction assists clustering of similar profiles and assignment of bioactivity to unexplored compounds. Ref denotes reference compound, i.e.,

compound with known target or mode of action (MoA). See also Table S1.
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mode of action, where profile similarity implies common MoA or

target. Dimensionality reduction is usually performed to convert

high-dimensional into low-dimensional profiles by removing

redundant or irrelevant features while retaining the variance of

the dataset (Bougen-Zhukov et al., 2017; Grys et al., 2017). Clus-

ters of compounds with similar profiles and, thus, MoA, can be

mapped using unsupervised machine learning, as the expected

phenotypic output is unknown (Grys et al., 2017). Phenotypic

categories that can be defined prior to the analysis can be

used in supervised approaches to train models that will then

assign new profiles to existing categories (Bougen-Zhukov

et al., 2017; Grys et al., 2017). Thus, morphological profiling

has the power to assign already known and unanticipated

MoAs to annotated compounds, to detect bioactivity, and to pre-

dict MoAs for biologically uncharacterized small molecules.

This review aims to give an overview of the currently reported

approaches to morphological profiling of small molecules ac-

cording to the employed biological system and strategies to

detect cellular components, the kind of bioactivity that can be

assessed by these methods (see Table S1), and the lessons

learned by their application. It does not focus on the computa-

tional approaches for extraction and analysis of morphological

features (Bougen-Zhukov et al., 2017; Grys et al., 2017;

Scheeder et al., 2018). We lay emphasis on the Cell Painting

Assay (CPA) (Bray et al., 2016; Gustafsdottir et al., 2013), as it

does not require geneticmanipulation, can be usedwith a variety

of cell lines, and has found broad acceptance and application in

the chemical biology community and increasingly in the pharma-

ceutical industry.

MORPHOLOGICAL PROFILING IN MAMMALIAN CELLS

Automated detection of the major cellular compartments (endo-

plasmic reticulum [ER], Golgi, mitochondria, lysosomes, endo-

somes, the actin and tubulin cytoskeleton, nucleoli, and nucleus)

was first reported by Boland and Murphy (2001) in HeLa cells.

Upon staining of cells for one of the compartments and for

DNA, 84 features per image were extracted which, for example,

monitored image texture, patterns, object distance measures

with respect to the cell center, object size, stain overlap with

the nucleus, and others. The DNA pattern was employed as a

standardization between cells as it is consistent among cells,

and protein localization patterns were referred to the DNA stain

as a common landmark. This pioneering work paved the way

for the high-content analysis and image-based profiling tech-

niques for small molecules that differ in the number and type of

detected cellular components and the type of visualization,

which is addressed in the following sections.

Staining of cellular components using dyes and

antibodies

Staining of the DNA and DNA-related components

TheMorphobase, a cell morphology database that employs DNA

staining and bright-field images of srcts-NRK and HeLa cells

upon compound treatment (Futamura et al., 2012), detected

clusters for several target classes such as tubulin, actin, DNA

synthesis, histone deacetylase (HDAC), and heat-shock proteins

(HSPs) (Table S1). Importantly, the clusters of HDAC and protea-

some inhibitors could not be distinguished in srcts-NRK, whereas

RNA and protein synthesis inhibitors could not be separated in

HeLa cells. However, when the perturbation profiles in both

cell lines were considered, the activities could be clearly differen-

tiated. The Morphobase linked the mitochondrial complex I in-

hibitor rotenone to tubulin, the cyclin-dependent kinase (CDK) in-

hibitor 3-ATA, and the polypharmacological compound

resveratrol to DNA synthesis. As the observed activities had

been previously associated with these compounds, these find-

ings emphasize the need of complete annotation for reference

compounds as mostly only the nominal target, i.e., the target

most commonly associated with the compound (Moret et al.,

2019), is annotated in public databases or vendors’ websites.

Further studies using the Morphobase identified inhibitors of

tubulin and the proteasome also in combination with proteome

profiling using the ChemProteobase (Futamura et al., 2012,

2013; Minegishi et al., 2015).

Markers for DNA synthesis (5-ethynyl-3-deoxyuridine [EdU])

and mitosis (phospho-histone H3) along with a DNA stain were

employed to profile compounds in HeLa cells (Young et al.,

2008) (Table S1). The most information-rich characteristics

stemmed from the nuclear stain, i.e., size of the nucleus and

DNA quantity. Profile analysis revealed bioactivity clusters

around the vacuolar ATPase, of antimitotics, corticosteroids,

and progesterone-related compounds. Interestingly, a cell-cy-

cle-arrest-related cluster featured compounds with different

MoAs such as cardiac glycosides, which target Na+/K+-AT-

Pases, the protein translation inhibitors emetine and cyclohexi-

mide, and steroid hormones such as progesterone and danatrol.

The authors compared the predictive nature of the phenotypic

profiling with target prediction based on structural similarity.

Overall, phenotypes were better correlated with the known or

predicted targets than with compound structures.

Staining of the DNA and the cytoskeleton (with or

without Golgi stain)

In addition to visualizing DNA, microtubules and Golgi stainings

were employed for compound profiling in five different cell lines

(SKOV3, A549, SF268, DU145, and HUVEC [human umbilical

vein endothelial cell], see Table S1) (Adams et al., 2006; Tanaka

et al., 2005). Subpopulation analysis was performed based on

the nuclear stain to group cells in populations depending on

the cell-cycle phase by employing the information on DNA con-

tent, morphology, and condensation. Different profiles were

observed for two structurally related compounds, the Src inhib-

itor PP2 and hydroxy-PP, in A549 cells and HUVECs, whereas

the effects of both compounds on DU145, SF268, and SKOV3

cells were similar. Like PP2, hydroxy-PP inhibited the kinases

Fyn, p38-a, and protein kinases A and B, which may explain

the profile similarity in DU145, SF268, and SKOV3 cells. The

lack of similarity in A549 cells and HUVECs may stem from

different expression levels of targeted proteins. Thus, a cell line

set that represents diverse tissues and genetic backgrounds

may be beneficial for the detection of subtle morphological

changes.

Carragher’s group employed DNA-, actin-, and tubulin-stain-

ing in four cell lines (Ovcar3, MiaPaCa2, MCF7, and MCF7 with

truncated, dominant negative TP53 mutant) (Caie et al., 2010).

They even defined subpopulations based on cell-shape descrip-

tors and distinguished an epithelial from a mesenchymal pheno-

type in MCF7 cells. The assay differentiated clusters of inhibitors
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of protein synthesis, proteases, DNA synthesis, and tubulin or

actin modulators, as well as Aurora kinase and Eg5 inhibitors

(Table S1) (Caie et al., 2010; Ljosa et al., 2013). Of note,

tubulin-targeting compounds were separated in stabilizing

(Taxol, epothilone B) and destabilizing (colchicine, nocodazole)

agents. Further analysis revealed resistance and selectivity

across the cell-line panel for some compounds, while other com-

pounds induced similar phenotypes in all four cell lines. Overall,

Ovcar3 cells were more resistant to several compound classes,

whereasMiaPaCa2 cells were oftenmost sensitive to compound

perturbations (Caie et al., 2010).

DNA, tubulin, and phospho-histone H2A.X were used to clas-

sify compound activity in HeLa cells (Twarog et al., 2016). This

approach identified clusters related to Aurora kinase, tubulin,

proteasome, topoisomerases, HDAC, antimetabolites, and

HSP90. However, mammalian target of rapamycin (mTOR)

and phosphatidylinositol 3-kinase (PI3K) inhibitors were not

classified due to low activity in this minimalist assay, in contrast

to approaches that employ additional staining (Reisen

et al., 2015).

Genotype-dependent profiling was performed upon DNA

and actin staining in 12 isogenic cell lines based on the

parental cell line HCT116 (Breinig et al., 2015). The cell lines

harbored deletions in oncogenic mutations or knockouts

(see Table S1). Both genotype-dependent and genotype-inde-

pendent phenotypes were observed in compound-treated

cells, and the number of drug-gene interactions varied across

the cell-line panel. Drug-gene-phenotype interactions were

associated with 15% of the compounds and provided infor-

mation on crosstalk of signaling pathways and potential

drug synergy. The analysis clustered compounds that target

tubulin, MEK, p38, glucocorticoid receptor, DNA alkylation,

or mitochondrial proton gradient. Clusters of connected bio-

logical processes were observed for an iron chelator, antifo-

lates, and DNA methyltransferase inhibition. Uncoupling of

the mitochondrial proton gradient was observed as unantici-

pated bioactivity for the protein kinase Cd (PKCd) inhibitor rot-

tlerin (Figure 2A), which already had been reported in 2001

(Soltoff, 2001). In addition, proteasome inhibition was pre-

dicted by the chemical-genetic matrix for the aldehyde dehy-

drogenase (ALDH) inhibitor disulfiram, endothelial growth fac-

tor receptor (EGFR) inhibitor tyrphostin AG555, and the

nuclear factor kB (NF-kB) inhibitor caffeic acid phenyl ester

(CAPE), which was experimentally validated (see Figure 2B).

A more physiological setup for morphological profiling em-

ployed staining of DNA, actin, and membrane integrity to profile

compounds in patient-derived organoids (PDOs) from 19 pa-

tients with colorectal cancer at different clinical stages (Betge

et al., 2019). Analysis of compound-induced phenotypes re-

vealed clusters of MEK, PI3K/AKT/mTOR, glycogen synthase ki-

nase 3 (GSK3), EGFR, and CDK inhibitors (Table S1). Whereas

phenotypic activity of MEK and CDK inhibitors was observed

in all PDO lines, AKT and GSK3 activity clusters were detected

only in a subset of PDOs. In addition, morphological responses

provided mechanistic insights for MEK and GSK3 inhibitor clas-

ses and linked phenotypes to cancer mutations.

Staining using multiple staining sets

The use of multiple staining sets enables detection of various

cellular components in parallel processed samples and is thus

not limited by the number of spectrally separable dyes (Ta-

ble S1).

A seminal work on morphological profiling of small molecules

by the Altschuler andWu groups explored 100 drugs mostly with

known MoA in HeLa cells using a DNA stain and five different

staining sets: (1) splicing factor SC35 and the cytokinesis protein

anillin; (2) b-tubulin and actin; (3) phospho-p38 and phospho-

extracellular signal-regulated kinase (ERK); (4) p53, c-Fos; and

(5) phosphoadenosine 3,5-monophosphate response element-

binding protein (CREB) and calmodulin (Perlman et al., 2004).

For compounds that provoked strong responses, some descrip-

tors changed differently at the different concentrations, implying

differences of high and low concentrations in target engagement

or interaction with several targets with different affinities. For

example, camptothecin inhibits at low concentration topoisom-

erase I and causes an S-phase arrest, whereas at high concen-

tration it inhibits transcription along with further cellular pro-

cesses. The authors predicted the MoA of the poorly

characterized compound austocystin that clustered with tran-

scription and translation inhibitors. Already this first report

made some essential observations: (1) compounds with com-

mon targets displayed similar profiles irrespective of the chemi-

cal structure; (2) compounds with common MoA may display

very different profiles, and their clustering may be poor due to

modulation of further targets; (3) clustering based onmorpholog-

ical profiles reflects similar MoA rather than chemical similarity.

Woehrmann et al. (2013) used two sets of stains for profiling in

HeLa cells: (1) DNA, phospho-histone H3, and EdU; and (2) DNA,

actin, and tubulin (Table S1). Filtering was applied to exclude

weakly active (fatty acids, prostaglandins, and steroids) or toxic

compounds thatmade up54%of the initially profiled compounds.

Several bioactivity clusters were defined based on profile similar-

ity: G1-S arrest supercluster (which could be further differentiated

in subclusters around DNA antimetabolites, topoisomerases,

transcription and translation, and proteasome inhibitors), actin,

tubulin, phosphodiesterases, mitochondrial uncouplers, HSP90,

kinases, calcium channels, calmodulin, and PAF (platelet-acti-

vating factor) ligand. For many compounds, profiles at different

concentrations clustered together. Gene set enrichment analysis

was performedusing features instead of genes, feature categories

instead of gene sets, annotated MoA classes instead of pheno-

types, and compound-dose instances instead of samples. This

enabled discrimination between DNA synthesis and protease in-

hibitors (belonging to the supercluster) as well as HSP and micro-

tubule inhibitors. Importantly, the authors addressed unantici-

pated activity of some compounds: For example, SU-4312

(vascular endothelial growth factor receptor [VEGFR] inhibitor),

SKF-96365 (calcium channel blocker), andGW-9662 (peroxisome

proliferator-activated receptor [PPAR] ligand) clustered with

microtubule poisons (Figure 2C). For the first three compounds,

microtubule-targeting activity was either already reported or

demonstrated by the authors. Tyrphostins such as tyrphostin 8

(AG10) and AG879 (Figure 2A), which inhibit multiple kinases,

were assigned to the cluster of mitochondrial uncouplers. Several

tyrphostin derivatives are indeed known to uncouple the mito-

chondrial proton gradient (Soltoff, 2004). To explore morpholog-

ical clusters based on kinase inhibitors, the authors combined

the cytological profiles of 24 kinase inhibitors with their inhibition

profiles for 24 selected kinases. Kinase inhibitors often target
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several kinases and their, in part broad, inhibitory profiles make it

challenging to assign a profile or cluster to the inhibition of a given

kinase. Merging the morphological and kinase inhibition profiles

revealed clusters around AMPK (AMP-activated protein kinase),

PKCa, Rho-kinase (ROCK), and phosphorylase kinase. A very

similar investigation demonstrated that the morphological profiles

of iron siderophores such as deferoxamine cluster with the pro-

files of DNA-interacting agents, and similarity to these profiles

enabled identification of microferrioxamines as iron chelators

(Schulze et al., 2013). Moreover, antimitotic activity and calcium

channel modulation was suggested for two newly isolated natural

products, respectively (Ochoa et al., 2015).

A Novartis team also selected sets of different stains for

profiling in U2OS cells: (1) DNA, cytoplasm, tubulin; (2) DNA,

cytoplasm, mitochondria; (3) DNA, cytoplasm, ER; and (4)

DNA, cytoplasm, Golgi (Reisen et al., 2015). Compounds were

selected to comprise different targets and processes with rele-

vance to drug discovery, and 52% of the tested compounds

were active. Compounds lacking profile similarity to other com-

pounds were removed prior to cluster analysis. Clusters were

analyzed for enrichment of targets or gene sets using public

and commercial databases and could be linked to the following

targets or processes: HDACs, tubulin, PI3K-AKT-mTOR, HMG-

CoA reductase (HMGCR), platelet-derived growth factor
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Figure 2. Small molecules explored using morphological profiling with unanticipated activity
(A) Structures of tyrosine kinase inhibitors tyrphostin 8 and AG 879 and the PKCd inhibitor rottlerin that displayed unanticipated proton gradient uncoupling

activity (Breinig et al., 2015; Woehrmann et al., 2013).

(B) Structures of disulfiram (ALDH inhibitor), AG 555 (EGFR inhibitor), and CAPE (NF-kB inhibitor) that displayed unanticipated proteasome targeting activity

(Breinig et al., 2015).

(C) Structures of SU-4312 (VEGFR inhibitor), SKF-95365 (Ca2+ channel blocker), and GW-9662 (PPAR ligand) that displayed unanticipated tubulin-targeting

activity (Woehrmann et al., 2013).

(D) Structures of TAK-165 (Erb inhibitor), PF3845 (FAAH inhibitor), and actigenin (MEK and IkB inhibitor) with unanticipated activity as mitochondrial toxins (Cox

et al., 2020).

See also Table S2.
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receptor B, CaM kinase, HSP90, TOP1, RAR, CaSR, HB-EGF-

PKCb-cyclin D1, sphingosine kinase 1, muscle organ develop-

ment, and kinases.

A different study combined four staining sets—(1) actin,

tubulin, DNA; (2) ER, lysosomes, membranes; (3) mitochondria

and NF-kB; (4) p53 and caspase 9—for profiling in HeLa cells

(Kremb and Voolstra, 2017). Bioactivity groups were detected

for DNA-targeting agents, topoisomerase and tubulin as well

for neurotransmitter-related compounds that accumulate in ly-

sosomes and impair their function (Table S1). The authors

explored manually the alterations of the 20 core features for sin-

gle compounds or group of similar compounds to detect the

changed parameters and, thus, map the modulated cellular

components and biological processes (and relate alterations to

structural modification within one compound class). Inhibition

of protease activity was predicted for a poorly explored natural

product, which was experimentally confirmed. This approach

linked the activity of Red Sea algae fractions to modulation of

CDKs or tubulin polymerization. Furthermore, some Red Sea

algae fractions showed similar profiles to inhibitors of HIV-1

reverse transcriptase (RT), and HIV-1 RT inhibition was subse-

quently confirmed (Kremb et al., 2017).

Simultaneous staining of multiple components

The availability of fluorescent markers for different cellular com-

ponents that can be spectrally separated enables simultaneous

detection of various cellular components. To the best of our

knowledge, the CPA, which was developed at the Broad Insti-

tute, is the only example thus far. It employs six different stains

(DNA, mitochondria, Golgi, ER, actin, plasma membrane, and

RNA) that are simultaneously detected in five different channels

(Gustafsdottir et al., 2013). This approach has found numerous

applications and thus will be discussed separately in detail

(see below).

Morphological profiling using genetically encoded

markers

The use of genetically encoded markers for visualization of

cellular components enables imaging of live cells and omits the

need for a staining procedure. The Altschuler and Wu groups

generated a set of 93 triply labeled cell lines (called optimal re-

porter cell lines for annotating compound libraries, or ORACLs)

(Kang et al., 2016). The cell lines were derived from A549 cells

and genetically modified to carry the mCherry fluorescent pro-

tein (RFP) for image segmentation and CFP (cyan fluorescent

protein)-histone 2B for nucleus detection. Each cell line addition-

ally carried a different, randomly yellow fluorescent protein

(YFP)-tagged protein. Live-cell phenotypic profiles were gener-

ated and compound signatures were further extended by

concatenating profiles from different concentrations, time

points, and ORACLs. The cell-line panel was treated with 30

compounds that target six mechanistic classes to assess the

performance of the reporter cell lines. The X-ray repair and

cross-complementing protein 5 (XRCC5)-tagged cell line

demonstrated high accuracy (94%) for MoA prediction, whereas

the reporter cell line carrying only RFP showed the lowest accu-

racy (ca. 60%). Compounds were profiled at one or three con-

centrations in the YFP-XRCC5 ORACL at 24 and 48 h, and

data for both time points were merged in the final profiles. Clus-

ters for compounds were detected that target DNA, microtu-

bules, mTOR, proteasome, HDAC, HSP90, Aurora kinase, and

ER. A literature search revealed clusters for glucocorticoids,

Na+/K+-ATPase, and dihydrofolate reductase. Furthermore,

two new proteasome inhibitors and one new mTOR inhibitor

were identified using the ORACL approach, and these predic-

tions were experimentally validated.

Amore targeted approach to genetically label selected cellular

components was employed by a team at Janssen Pharmaceu-

tica (Table S1). The cell lines A549, HepG2, and WPMY1 were

designed to carry TagBFP and nuclear-targeted TagBFP to

distinguish between nucleus and cytosol, and GFP- and RFP-

tagged organelles or proteins. Five variants of each cell line

were generated to detect: (1) actin and early endosome; (2) ER

and mitochondria; (3) Golgi and autophagosome; (4) tubulin

and NF-kB signaling; and (5) non-homologous end joining-medi-

ated repair of DNA double-strand breaks and clathrin-mediated

endocytosis (Cox et al., 2020). Each profiled compound was

manually annotated with one or more MoA. In addition, gene

names of the respective targets were extracted from the

ChEMBL and IUPHAR database. Fifty-three percent of the com-

pounds showed activity in at least one cell line and 92% of the

active compounds were detectable with only three reporter cell

lines. Compounds whose targets were not expressed were

active at higher concentrations, which is most likely attributed

to off-target activity. No cell line from the panel outperformed

all others. The number of distinctMoA increasedwith the number

of screened cell lines, the number of cell types, andmarker pairs.

MoAs could be better differentiated when multiple concentra-

tions were tested. Clusters were detected for the following tar-

gets or processes: PI3K/mTOR, Aurora kinases, bromodomains,

glucocorticoid receptor, HDAC, HSP, HMGCR, kinesins, tubulin,

ROCK, DNA synthesis, and MEK. Poor clustering was observed

for ABL1 and VEGFR inhibitors. Interestingly, glucocorticoids

displayed phenotypic activity only in A549-derived cells, even

though the glucocorticoid receptor gene NR3C1 was expressed

across the cell-line panel. Similar observations were made for

compounds that induce mitochondrial toxicity, such as uncou-

plers and respiratory chain inhibitors. Thus, profiling compounds

in different cell lines may be essential to map a certain MoA. The

study classified several agents as mitochondrial toxins that had

not been annotated for this type of activity: Erb inhibitor TAK-

165, the fatty acid amide hydrolase (FAAH) inhibitor PF3845,

and arctigenin, a MEK and IkB inhibitor (Figure 2D), for which

the activity was then experimentally proved. Of note, PF3845

and arctigenin had been previously linked to impairment of mito-

chondria (Brecht et al., 2017; Romero et al., 2018).

MORPHOLOGICAL PROFILING IN BACTERIA

AND YEAST

Smallmolecules address targets indifferent organismsand, thus,

their bioactivity is not restricted to mammalian cells. Almost 10

years after the seminalwork byPerlman et al., a bacterial cytolog-

ical profiling (BCP) for MoA deconvolution of antibacterial agents

was reported (Nonejuie et al., 2013). Bacteria are much smaller

than eukaryotic cells and lack organelles, thus restricting the

number of general cellmorphologymarkers that canbedetected.

In the initially reported BCP, Escherichia coli lptD4213 cells were

treated for 2 h with 41 antibiotics, which are used in the clinic and
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target translation, transcription, DNA replication, lipid synthesis,

or peptidoglycans. Cells were stained for DNA, bacterial mem-

brane, and membrane permeability (Figure 3A). Fourteen fea-

tures were employed for the generation of cytological profiles.

Dimensionality reduction assisted activitymapping and success-

fully separated the antibiotics intodifferent bioactivity categories.

BCP differentiated between distinct mechanisms of action for

agents with common MoA. Three different subclasses of protein

translation inhibitors were detectable: inhibitors of peptide elon-

gation, compounds promoting mistranslation, or premature

chain termination. BCP differentiated DNA-replication inhibitors

into subclasses of intercalators, DNA-crosslinkers, and gyrase

A or gyrase B inhibitors. BCP detected three subgroups of cell-

wall synthesis inhibitors, four subgroups of membrane bioener-

getics-interfering compounds, and two subclasses of RNA tran-

scription inhibitors. The initial BCP has been further developed to

enrich profiles with more features (Htoo et al., 2019; Lamsa et al.,

2016), and was applied for different bacterial pathogens (Htoo

et al., 2019; Lamsa et al., 2016). Moreover, a group at Roche

adapted the assay for high-throughput use to identify small mol-

ecules that changebacterial phenotypeasanovel strategy for the

development of antibiotics (Zoffmann et al., 2019). The BCP

target/MoA space can be further extended by the use of GFP re-

porter strains, as few reference antibiotics failed to alter the

phenotype but changed gene expression. BCP was also em-

ployed for MoA deconvolution of less or unexplored compounds

and to uncover novel MoAs for already known antibiotics (Htoo

et al., 2019; Nonejuie et al., 2013; Zoffmann et al., 2019). In addi-

tion, BCP was coupled to rapid inhibition profiling (RIP) to

generate cytological profiles upon degradation of essential bac-

terial proteins (Lamsa et al., 2016). This combined approach can

detect similarity between profiles of antibiotics and profiles

induced by protein degradation and may be especially suited to

targets for which antibiotics do not exist. Coupling RIP to BCP

demonstrated a complex profile upon degradation of cytidylate

kinase (CMK), which is involved in DNA replication and wall

teichoic acid biosynthesis. The cytological profile of CMK degra-

dation matched the profile of simultaneous inhibition of both

processes with ciprofloxacin and tunicamycin, and suggests

complexprofiles for putativeCMK inhibitors due to targetingmul-

tiple biosynthetic pathways (Peters et al., 2018).

Morphological profiling can be also performed in yeast cells

using staining of DNA, actin, and the cell surface manno-pro-

tein (Figure 3B) (Ohya et al., 2005). Thereby, morphological

changes induced by 4,718 haploid mutants of non-essential

genes were explored. Deletion of functionally related genes

induced similar phenotypic signatures. In a follow-up study, hy-

droxyurea, concanamycin A, lovastatin, and echinocandin B

were profiled in yeast (Ohnuki et al., 2010). These compounds

were chosen to affect DNA metabolism, vacuolar ATPases,

lipid metabolism, and cell wall, respectively. The obtained pro-

files were compared with the phenotypes of the deletion mu-

tants using principal component analysis (PCA). Gene ontology

(GO) term enrichment was performed for the subset of deletion
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Figure 3. Morphological profiling of small molecules in bacteria or yeast (Nonejuie et al., 2013; Ohya et al., 2005)
Bacterial cells (A) or yeast (B) are exposed to small molecules prior to staining of cellular components, high-content imaging, and analysis to generate

morphological profiles. Mode-of-action clusters are identified based on profile similarity. For yeast (B), morphological profiles are generated for 4718 deletion

mutants, with which the profiles of small molecules are compared to deduce mode of action.
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mutants that displayed similarity to a given compound.

Thereby, hydroxyurea was linked to the GO term ‘‘DNA replica-

tion,’’ and the highest ranked mutant rnr4 codes for the target

of this compound, which is ribonucleotide reductase. Concana-

mycin A was correlated with the activity of a mutant subgroup

with the enriched GO term ‘‘vacuolar acidification,’’ which was

among the top five GO terms. In contrast, the top ten predicted

MoAs of lovastatin and echinocandin B were not related to the

corresponding target genes (hmg1 and fks1, respectively),

which may be attributed to the weak phenotypes induced by

the respective mutant target genes. Although this approach

was limited to the use of only four compounds and focused

on non-essential genes only, it demonstrates the feasibility of

morphological profiling in yeast and should be suitable for

profiling further compounds (Gebre et al., 2015). A reference

compound set would complement the genetic profile, as small

molecules may modulate only one of many functions of a target

protein and induced phenotypes may vary significantly from

simply removing the protein by gene deletion.

CELL PAINTING

In this section we focus on the CPA, including all approaches that

broadly follow the canonical protocol of Bray et al. (2016). In the

CPA, subcellular compartments are stained with six different

dyes inonewell (Gustafsdottir et al., 2013):Hoechst 33342 (nuclei),

concanavalin A (ER), SYTO 14 (nucleoli), phalloidin (actin), wheat

germ agglutinin (Golgi), andMitoTracker DeepRed (mitochondria)

(Figure 4A). By subsequent image analysis, hundreds of features

are deduced from every channel, thereby generating numeric

data from the images, and combined into a morphological profile.

Often, adatapre-processingand feature selection step is included

followed by a final data-mining step whereby fingerprints are

further analyzed. The assay proceeds at reasonable medium

throughput (several tens of thousands), employs affordable dyes,

and has rapidly been developed into a widely applied morpholog-

ical profiling method (Boyd et al., 2020; Hughes et al., 2020; Nyff-

eler et al., 2020; Rohban et al., 2017).

Image acquisition

CPA was originally established in the U2OS cell line; however,

other cell lines are also suitable, for example, MCF7, HepG2,

A549, HTB-9, ARPE-19, 3T3, HeLa, SH-SY5Y, HUVEC, HMVEC

(human microvascular endothelial cell), primary human fibro-

blasts, and primary human hepatocyte/3T3-J2 fibroblast cocul-

tures (Bray et al., 2016; Gerlach et al., 2019; Hippman et al.,

2020; Willis et al., 2020). For adaptation to esophageal adeno-

carcinoma and different breast cancer cell lines, a live-cell Mito-

Tracker staining had to be replaced by a fixed-cell protocol to

avoid cell damage during the live-cell staining (Hughes et al.,

2020; Warchal et al., 2020). Reduction of phalloidin and/or

concanavalin A dye concentration with no loss in signal is

possible (Christoforow et al., 2019; Svenningsen and Poulsen,

2019). Most studies incubated cells with the compounds for 48

h, although some groups chose 20–24 h to cover the more direct

effects of compound treatment (Christoforow et al., 2019; Hipp-

man et al., 2020). For image acquisition, both wide-field (Im-

ageXpress XLS, Zeiss Celldiscoverer 7) and confocal systems

(Opera Phenix High Content Screening System) were used. In

the original protocol, five images were taken in five channels.

However, as the laser-based confocal systems offer only four

excitation wavelengths, the RNA and ER channels were either

imaged separately at the same wavelength using different off-

sets or only four images were taken, again with multiplexing of

the concanavalin and SYTO 14 dyes because the signals are

spatially well separated (Melillo et al., 2018; Nyffeler et al., 2020).

Fingerprint generation

To arrive at numerical data, cells are analyzed with regard to their

morphological features including size, shape, texture, and inten-

sity. Therefore, mostly the CellProfiler software is used (Carpen-

ter et al., 2006); however, further software tools are freely avail-

able as well (Bougen-Zhukov et al., 2017; Boutros et al., 2015).

In addition, the Harmony software of the Opera Phenix HCS sys-

tem was employed to deduce 1,300 cellular features (Nyffeler

et al., 2020; Willis et al., 2020). In the CellProfiler analysis pipe-

line, image segmentation based on the Hoechst channel is car-

ried out as a first step, followed by definition of the cytoplasm

based on the SYTO14 channel and subsequent calculation of

morphological features in the different channels.

Data aggregation on the median and normalization by Z trans-

formation is suggested in the Bray protocol and is adopted by

most authors. The fingerprint thus consists of an n-dimensional

vector of the Z scores of all (n) features (Figure 4B). Fingerprints

can be visualized as heatmaps or line plots, thereby allowing a

direct visual comparison of resulting phenotypic changes upon

treatment.

For fingerprint generation, all features can be used (Gustafs-

dottir et al., 2013) or an optional feature selection step may be

included in the analysis pipeline to exclude features that carry

no information (median absolute deviation [MAD] close to 0) or

are highly redundant (Pearson correlation >0.9 or >0.95) (Hughes

et al., 2020; Warchal et al., 2020). In addition to these technical

ways of feature selection, methods to reduce data dimension-

ality such as PCA or factor analysis help to save computing

time while preserving the variance in datasets.

To increase the robustness of the assay, a reproducibility

measure as feature selection criterion may be applied

Figure 4. Morphological profiling using the Cell Painting Assay
(A) Cell Painting Assay (CPA) workflow. Compound-treated cells are stained for mitochondria, actin, Golgi, plasma membrane (PM), nucleoli/RNA, ER, and

nucleus prior to automated image acquisition and analysis. Hundreds of numerical features are extracted to generate morphological profiles. Profiles are directly

compared or dimensionality reduction is performed to assist further analysis.

(B) Fingerprint generation. Cellular features are quantified on a cell-by-cell basis and are aggregated on image and well level by calculation of the median (random

numbers are shown). Data are then normalized by Z transformation. The Z score thereby represents a measure to what extent the median of compound-treated

cells deviates from the median of DMSO-treated cells (x-fold the median absolute deviation [MAD] of DMSO-treated cells). Fingerprints may contain all features

calculated during image analysis, or the feature set might has been reduced to exclude features that carry no information, are highly redundant, or highly variable.

The fingerprint is represented by a feature vector of all features’ Z scores and can be visualized as a color-coded heatmap. WGA, wheat germ agglutinin; ConA,

concanavalin A.
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(Woehrmann et al., 2013). To this end, each feature’s Z score is

compared across a set of compounds—for example, a set of

landmark compounds could be used to include multiple MoAs

and thus cover a broad range of phenotypic changes. If the Z

score shows a Pearson correlation R0.8 between repeats, the

respective feature is considered robust. Thereby, for instance,

a set of 579 robust features was defined (Christoforow et al.,

2019; Foley et al., 2020; Laraia et al., 2020; Schneidewind

et al., 2020; Zimmermann et al., 2019).

Fingerprint analysis

To generate knowledge from the morphological fingerprints,

different data-mining approaches have been applied. It is of

high interest to reveal whether a compound shows some bioac-

tivity or not, particularly in the analysis of newly synthesized com-

pound collections. Thus, a measure to decide the significance of

a morphological change upon treatment is required. In addition,

methods to compare fingerprints are needed to, for example,

group treatments by class.

Compounds initially were defined as active based on the fin-

gerprints’ Euclidean distance to the median control fingerprint

(Gustafsdottir et al., 2013). Subsequently, the multidimensional

perturbation value was developed as a single metric to measure

activity and similarity of treatments in high-throughput multidi-

mensional screens (Gerlach et al., 2019; Gerry et al., 2016; Hipp-

man et al., 2020; Hutz et al., 2013; Melillo et al., 2018; Nelson

et al., 2016; Wawer et al., 2014). In this method, two treatment-

specific subsets are compared (e.g., compound versus dimethyl

sulfoxide [DMSO] or different compounds). To this end, several

replicates are combined in amatrix, PCA is carried out, and com-
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upon dimensionality reduction.

ponents are scaled by the proportion of the

total variance that they explain. In this

adjusted PCA space, the Mahalanobis dis-

tance is calculated between the two treat-

ment groups. The mp value is then calcu-

lated by permutating treatment labels

1,000 times (disallowing the original label

configuration) and calculating Mahalano-

bis distances each time. The mp value is

equivalent to the percentage of permuted

Mahalanobis distances that are greater

than the original. Usually, an mp value of

less than 0.05 is deemed to be significant

for a treatment to be different from another

or for a compound to be active.

Hughes et al. (2020) used the Mahala-

nobis distance between compound-

treated cells versus DMSO controls for

primary hit detection in their different

esophageal adenocarcinoma (EAC) lines. To this end, they

used the first 15 principal components, which explain approxi-

mately 90% of the variation in the data across each cell line.

Hits are defined somewhat arbitrarily as having a Mahalanobis

distance of greater than 1,500 from the DMSO controls.

In an alternative approach to describe compound activity in

the CPA, an induction value was introduced. Induction is

calculated directly from the fingerprints by a feature-by-

feature comparison of Z scores (Christoforow et al., 2019; Fo-

ley et al., 2020; Laraia et al., 2020; Schneidewind et al., 2020;

Zimmermann et al., 2019). A significant change was defined

as a deviation of more than three times the MAD from the me-

dian of the DMSO controls. The induction value is then deter-

mined for every compound as the fraction of significantly

changed features (as a percentage). An induction of 5% or

higher was considered a valid indication that the morpholog-

ical change produced by the compound is meaningful.

Hierarchical clustering approaches are widely used to catego-

rize perturbations according to their MoA and are especially

powerful in providing an easy visualization of results as clustering

trees, thereby grouping the most similar phenotypes together

(Figure 5). Either the clustering is performed directly on the

morphological fingerprints using the cosine distance and single

linkage (Gustafsdottir et al., 2013), or Pearson or sometimes

Spearman correlations of Mahalonobis distances between treat-

ment pairs are used to generate the clusters (Gerlach et al., 2019;

Hughes et al., 2020). Other visualization methods include corre-

lation plots of the first two or three principal components after

PCA (Figure 5) or t-distributed stochastic neighbor embedding

analysis. Similar phenotypes are then located more closely
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together than more dissimilar phenotypes in the two- or three-

dimensional space.

Currently there is no standardized way of analyzing Cell

Painting data. The data-mining step is an especially active

area of research. It is to be expected that no ‘‘gold standard’’

will emerge but that the analysis workflows will also in

the future be dependent on the specific application of the

method.
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Figure 6. Examples of compounds profiled using CPA to map their MoA
(A and B) Chemical structures of cinchona derivative 1 (A) and autoquin (2) (B).

(C–E) CPA reveals mitochondria-targeting activity for furo-pyridones. (C) Chemical structures of furo-pyridone derivative 3 and aumitin (4). (D) Furo-pyridone

derivative 3 displayed dose-dependent activity in CPA and similarity to aumitin (4), which targets mitochondrial complex I. Inhibition of complex I was also

detected for 3. (E) Increase in mitochondrial superoxide by 3was employed to study the structure-activity relationship (SAR). A structure-phenotype relationship

(SPR) was obtained for the same compound collection, which paralleled the SAR (Christoforow et al., 2019).

(F) Chemical structure of the bicyclic peptide 5 that targets RbAp48.
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Identification and characterization of small-molecule

bioactivity by the CPA

The CPA has successfully been employed to identify MoAs or

even molecular targets of small molecules. Foley et al. (2020)

identified submicromolar pseudo-natural-product autophagy in-

hibitors bymerging the cinchona alkaloid scaffold with the indole

ring system to generate indocinchona alkaloids (see 1,

Figure 6A). Investigation of these compounds in the CPA indi-

cated high fingerprint similarity with two common reference

compounds. Fingerprint similarity was foundwith SAR405, an in-

hibitor of the PI3K VPS34 that is linked to autophagy. Inhibition of

VPS34 was validated by a direct kinase assay (IC50 � 350 nM).

Target engagement was proved using a cellular thermal shift

assay, which showed a compound-induced thermal stabilization

of VPS34. This study underlines the potential of CPA for target

identification of small molecules. Similarly, the target hypothesis

for the bacterial toxin protein phenomycin could be confirmed

using a combination of CPA and direct measurement of cellular

protein synthesis. The morphological profile of phenomycin was

highly similar to those of inhibitors of the eukaryotic ribosome

such as cycloheximide, emetine, and homoharringtonine. Inhibi-

tion of protein synthesis was confirmed using a puromycin-

based assay that quantifies newly synthesized proteins (Hansen

et al., 2020).

Laraia et al. (2020) discovered the cinchona alkaloid-derived

autophagy inhibitor autoquin (Figure 6B) . All attempts to find

the target via proteomic approaches failed. CPA revealed high

similarity between the morphological fingerprints of autoquin

and perphenazine (a non-selective GPCR ligand), loperamide

(an opioid receptor agonist), and toremifene (an estrogen recep-

tor ligand), which are known lysosomotropic compounds. The ly-

sosomotropic action of autoquin was confirmed as well as the

functional inhibition of sphingomyelinase and acid ceramidase.

These findings highlight the suitability of the CPA for the identifi-

cation of non-protein targets of small molecules, for which pro-

teomic approaches are ineffective.

Likewise, the work of Christoforow et al. (2019) on pseudo-

natural products showed that CPA can reveal an underlying

mechanism as a common MoA. A collection of pyrano-furo-pyr-

idones was analyzed by CPA. Fingerprint similarities to a

plethora of reference compounds were identified to be involved

in signaling pathways, such as Wnt or Hedgehog, or metabolic

regulation, such as glucose uptake, autophagy, or mitochondrial

respiration. As reactive oxygen species (ROS) might be involved

in all of the pathways, the pyrano-furo-pyridones were analyzed

concerning modulation of ROS formation. The pyrano-furo-pyr-

idone 3 (Figure 6C) indeed induced mitochondrial superoxide

formation and is a structurally novel inhibitor of mitochondrial

complex I (Figures 6D and 6E). Thus, compounds with different

annotated cellular targets may cause shared physiological re-

sponses if the cellular targets are involved in a common MoA.

CPA was used to identify compounds that showed similar

morphological fingerprints compared with the iron chelator de-

feroxamine (Schneidewind et al., 2020). Interestingly, besides

other iron-chelating compounds, inhibitors of topoisomerase,

poly(ADP-ribose)-polymerase, lysine-specific histone demethy-

lase 1, or folic acid analogs and DNA-intercalating agents dis-

played related morphological profiles. Closer analysis revealed

modulation of the cell cycle as a unifying mechanism either via

inhibition of cell-cycle regulators, the iron dependence of cell-cy-

cle regulatory enzymes, or interference with DNA synthesis. Hi-

erarchical clustering of morphological fingerprints nevertheless

revealed subclusters that matched with the individual mecha-

nism of action. In addition, CPA successfully identified novel

cell-cycle modulators by screening an in-house library and

searching for fingerprints with similarity to the fingerprint of de-

feroxamine. Likewise, screening of an in-house library revealed

a new class of tubulin-targeting cyclic sulfonamides as novel

mitotic inhibitors upon searching with the profiles of known

tubulin binders (Zimmermann et al., 2019). The application of

CPA has recently extended to investigation of new drug modal-

ities (Valeur et al., 2017): CPA demonstrated bioactivity for a cell-

permeable bicyclic peptide 5 (Figure 6F) that binds to retinoblas-

toma-binding protein RbAp48 and inhibits its interaction with the

scaffold protein MTA1. Profile comparison revealed similarity to

reference compounds that increase the levels of p53, which was

also confirmed for the RbAp48-targeting peptide and is in line

with epigenetic regulation (’t Hart et al., 2020).

These examples demonstrate that it is possible to employ CPA

as a screening tool to search for different chemotypes with

desired MoA through comparing profiles with the data recorded

for reference compounds. Following the same rationale, com-

pounds could also be excluded from hit sets if they show similar-

ity to profiles of unwanted mechanisms of action. For the infer-

ence of targets or mode of actions by CPA, the comparison

with well-annotated reference libraries is of utmost importance.

Commonly used reference sets include known drug collections

such as the LOPAC (Library of Pharmacologically Active Com-

pounds) or Prestwick Chemical library. However, as many

known drugs display polypharmacology, which is often not re-

flected in the annotation of the compound, this deduction step

may be complicated. Inclusion of target-specific chemical

probes in profiling campaigns might thus offer additional benefit

for CPA analysis. Likewise, integrating activity annotation, for

example from the ChEMBL database in CPA analysis, could be

a helpful step toward an efficient MoA disclosure.

Relating phenotype to structure

Morphological fingerprints obtained via CPA can reveal struc-

ture-phenotype relationships (SPR) and even qualitative struc-

ture-activity relationships (SAR). Analogous to SAR, SPR de-

scribes differences in phenotypes brought about by structural

features of compounds. Using dose-dependent measurements,

Christoforow et al. (2019) found that most compounds showed

an increase in the number of changed cellular features with

increasing concentration. Potency trends revealed by SPR

correlated with trends in SAR obtained in a functional assay

(Figure 6E). Thus, through identification of SPRs, CPA can guide

synthesis decisions to inform hit expansion and optimization.

Toward performance-diverse libraries

Efforts to maximize the efficiency of screening collections for

cell-based and biochemical screening were guided by CPA

and defined early applications of this assay for analysis of

small-molecule bioactivity. Contrary to the assumption that

chemical structure diversity automatically leads to a diverse bio-

logical performance of a library, CPA results suggested the use

of morphological profile diversity to assemble libraries with
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diverse assay-performance patterns (Figure 7A) (Wawer et al.,

2014). Selection of compounds with diverse CPA profiles led to

higher screening performance diversity than random selection

or selection of diverse chemical structures. Similarly, the extent

of morphological changes can be correlated to structural fea-

tures of chemical compounds. Thus, triads of constitutional iso-

mers or functionalized stereoisomeric azetidines or of reduced

flavones were analyzed by CPA (Figure 7B) (Gerlach et al.,

2019; Gerry et al., 2016; Melillo et al., 2018). Differential activity

within the compound series could be detected with higher con-

centrations of compounds being associated with larger activity

scores; for example, within the collection of isomeric triads, azir-

idines and amines were enriched in the active compound set as

compared with pyrroles (Gerry et al., 2016).

By calculating Pearson correlation coefficients, differences in

themorphological profilesof activecompoundscouldbedetected

implying differences in MoA. Also, differences in morphological

profiles arising from stereoisomerism were revealed—for

example, profiles of cis-isomer azetidinesweremore highly corre-

latedwitheachother thanwith trans-isomerprofiles andviceversa

(Melillo et al., 2018). PCA showed that appendage and stereo-

chemical diversity synergize to increase performance diversity

(Gerlach et al., 2019). In a recent follow-up study, the correlation

of biological activity with chemical properties of the compounds

was analyzed more extensively (Hippman et al., 2020). To this

end, 82 novel nitrogen-containing benzopyran andbenzofuran fla-

vonoids, which displayed considerable diversity of physicochem-

ical properties, were profiled. A correlation of activity values with

clogP and tPSA was found for some series only. Upon pairwise

comparison of profiles of 26 scaffold pairs and 31 stereoisomeric

pairs, only 12 out of 31 stereoisomeric pairs were significantly dis-

similar. Thus, variation in the scaffold seems more important for

biological performance diversity than stereochemical diversity,

and including molecules with diverse physicochemical properties

in a library will likely maximize its performance diversity. Together,

these results highlight that CPA has great potential to guide the

design and characterization of the performance diversity of com-

pound sets. Performance-diverse libraries potentially yield

improved hit rates compared with larger compound libraries, and

thus have the promise to greatly advance probe discovery efforts.

Future trends will likely include algorithms to predict whether a

compound is supposed to be active or not solely based on the

chemical features of a compound via comparison with the chem-

ical features of a profiled reference set. Published CPA image sets

have already been used for this purpose (Bray et al., 2017). How-

ever, as experimental proof of the predicted compound activity

is lacking, it is currently not possible to evaluate this approach

further (Hofmarcher et al., 2019).

Personalized medicine

CPA has been employed to profile clinically relevant cancer cell

lines with the goal of advancing drug repurposing and pharma-

cogenomic studies. To identify novel compounds with selective

activity against EAC, the phenotypic response of six EAC and

two tissue-matched control cell lines was profiled against nearly

20,000 compounds using CPA combined with machine learning

(Hughes et al., 2020). From the annotated compound collection,

HDAC inhibitors, microtubule disruptors, and antimetabolites

were identified as hits in all of the EAC cell lines. Selective activity

of antimetabolites against EAC cell lines relative to tissue-

matched controls was confirmed using dose-response mea-

surements in a nuclei count assay. From the diverse proprietary

screening set, a number of hits could be retrieved that showed

selective activity on a fraction of the EAC cell lines. Interestingly,

these compounds did not cluster with the reference library and

may thus be targeting novel esophageal cancer biology.

Warchal et al. (2020) profiled a set of eight genetically distinct

human breast cancer cell lines, which were classified into three

clinical subtypes, by CPA. The TCCS (Theta Comparative Cell

Scoring) method was used to identify differential phenotypic re-

sponses between pairs of cell lines upon treatment. Among the

top scoring compounds, a series of four known serotonin recep-

tor modulators was revealed. Further analysis by expression

profiling and pathway network analysis revealed regulators of

the cell cycle as downregulated genes and an upregulation of

the tumor necrosis factor receptor 1 (TNFR1) signaling pathway,

suggesting an induction of apoptosis via TNF signaling. Thus, a

potential drug-repurposing opportunity for serotonin modulators

in breast cancers has been revealed by CPA.

The two studies described above used established cancer cell

lines in CPA analysis. Ultimately, to reach toward a truly person-

alized approachwith direct clinical relevance, it will be necessary

to profile primary patient-derived cells. The existing results and

developed methodologies, however, make it very probable that

this step will be taken soon.

Environmental toxicology

CPA has been evaluated for the characterization of biological ac-

tivity and potency of environmental chemicals for potential use in

in vitro safety assessments.

A set of 462 chemicals from the ToxCast library were screened

in U2OS cells in concentration-response mode. Nyffeler et al.

(2020) then used concentration-response modeling to determine

in vitro thresholds for chemical bioactivity. Therefore, 1,300 fea-

tures were grouped by channel, module, and compartment into

49 categories. If 30% of features within one category were

responsive to treatment, that category was defined as affected.

Median benchmark concentrations of all affected categories

were calculated, and the most sensitive category was defined

as the point of departure. Point-of-departure values were then

converted to administered equivalent doses (AEDs) using

reverse dosimetry for the comparison with standard toxicology

measurements. In many instances (68%), the CP-derived

AEDs were either more conservative than or comparable with

Figure 7. Performance-diverse libraries
(A) Biological profiling can assist the generation of performance-diverse screening libraries. Wawer et al. (2014) compared compound subsets with maximal

structural diversity and maximal biological profile diversity regarding their performance in various HTS campaigns. While the structural diversity subset did not

perform better than a random subset, the profile diversity subset showed increased hit rates in a broad range of assays.

(B) Different libraries with diverse chemical properties were analyzed using CPA. The study of systematic variations of chemical features on morphological profile

diversity may inform synthesis decisions in the future.
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the in vivo effect values. Later, the method was transferred to a

set of biologically distinct cancer cell lines, which turned out to

show quite similar results when treated with 14 reference chem-

icals (Willis et al., 2020). CPA was found to be an efficient, cost-

effective, and reproducible method for characterizing the biolog-

ical activity and potency of environmental chemicals.

DISCUSSION AND OUTLOOK

Cellular profiling approaches have become indispensable sour-

ces of information for a holistic view on a given cellular state

and have been extended in recent years to phenomics ap-

proaches, i.e., morphological profiling. Whereas analysis and

interpretation of gene or protein expression profiling data in a

biological context are well established, comprehension of

morphological profiles is only emerging. First lessons concern-

ing morphological profiling of small molecules have been

learned, and the stage is set for extension to new horizons.

Morphological profiling is feasible for and accessible to

numerous laboratories, and this applies to both the wet-lab pro-

cedure and computational analysis. The use of fluorescent dyes

to stain cellular components instead of gene-encoded fluores-

cent tags simplifies the experimental protocol and the pre-

work, although it is limited by the number of available dyes and

the number of channels for their recording. Several algorithms

have been developed for image-based feature extraction and

have been made available to the public. Computational tools,

such as machine learning and statistics methodologies, are

well established and have been implemented in the data analysis

workflow to map profile similarities and bioactivity clusters, and

to predict MoA. In principle, profiling of large numbers of small

molecules, assessment of their bioactivity, assignment to a given

bioactivity cluster, and, thus, prediction of their targets and MoA

are possible. Ideally, these predictions would subsequently be

experimentally validated. However, in reality, unbiased mapping

of bioactivity for each bioactive compound will remain chal-

lenging and limited in the near future. This is partly due to the

limited target space (Finan et al., 2017) that is occupied by small

molecules with known MoA. In addition, interpretation of

morphological profiles and biological similarities even for anno-

tated, well-explored reference compounds often is not conclu-

sive. In fact, there is a crucial difference between morphological

profiling and omics approaches: whereas the number of protein-

coding genes and proteins that can be expressed has been

determined for a variety of cases, the total number of relevant

morphology-related parameters is not known. In addition,

knowledge of regulation of gene and protein expression is avail-

able and thus can link altered gene or protein expression to up-

stream regulators. Unfortunately, a similar bottom-up deconvo-

lution is much more difficult for connecting altered

morphological parameters (as equivalent to altered gene or pro-

tein abundance) to upstream regulation. Nonetheless, informa-

tive and valid conclusions can be deduced from the reported

morphological profiling approaches and are invaluable for further

explorative work.

Detected cellular components

In morphological profiling, usually only few selected cellular

components or targets are analyzed and their number is limited

due to spectral overlap of dyes if concurrent visualization is used.

The CPA is one of the most efficient and well-explored methods

to obtain maximal information on the cellular state (Rose et al.,

2018). Several approaches go beyond the restriction to available

fluorescent probes and channels and use genetic methods to la-

bel and visualize endogenous proteins. However, this is not

applicable to all cell lines and often requires extensive pre-

work to generate the cell lines and the parallel use of several

cell lines (Cox et al., 2020; Kang et al., 2016). Of note, some of

these cell lines are commercially available (Cox et al., 2020).

The MoA prediction accuracy depends on the type and the

number of employed markers (Kang et al., 2016), although the

perturbing activity of small molecules can be detected even

when the respective target is not visualized. For example,

including a tubulin stain assists the detection of tubulin-targeting

agents. However, this is feasible also in approaches that lack

tubulin visualization such as using stains for DNA only (Futamura

et al., 2012) or in combination with actin (Breinig et al., 2015),

phospho-histone H3, and EdU (Young et al., 2008), among

others (Gustafsdottir et al., 2013; Perlman et al., 2004). The use

of a tubulin stain, however, apparently allows differentiation be-

tween microtubule stabilizers and destabilizers (Adams et al.,

2006; Caie et al., 2010). A DNA stain alone enables classification

of various reference compounds according to their MoA, and

additional stains increase the accuracy of clustering (Reisen

et al., 2015; Rose et al., 2018). Whereas one or few stains usually

group compounds in broad clusters, detection of more cellular

components may enable differentiation between distinct MoAs

(Schneidewind et al., 2020).

Compound concentrations

The MoA of compounds depends on the employed concentra-

tion, the incubation time, and the genotype of the cell line (Adams

et al., 2006). Compounds often display similar profiles at different

concentrations. However, small molecules can provoke distinct

morphological changes at different concentrations. Microtubule

stabilizers could be distinguished from destabilizers only at high

concentrations (Adams et al., 2006). Dissimilar profiles at

different concentrations usually result from polypharmacology

(Gerry et al., 2016). Cytochalasin A clustered at low concentra-

tions with actin-targeting agents, while its profile at high concen-

tration was similar to tubulin-interfering compounds (Adams

et al., 2006). Rotenone clusters at low concentration with mito-

chondrial toxins, whereas it is part of the tubulin cluster at high

concentrations (Cox et al., 2020). Thus, analyzing the profiles

of the separate concentrationsmay provide additional bioactivity

information (Gerry et al., 2016). Compared with unexplored small

molecules, reference compounds often display morphological

activity at lower concentration as they may be optimized

regarding potency. If the respective target is absent in the

used cell line, compounds are active at higher concentration

due to off-target activity (Cox et al., 2020).

Cell lines

Compounds may lead to different morphological perturbations

and profiles in cell lines of different origin andwith different geno-

type. These differences may range from inactivity in certain cell

lines (Cox et al., 2020) to completely dissimilar profiles (Tanaka

et al., 2005), and are most likely attributable to the lack of the
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engaged target, different target abundance, post-translational

modifications, and pathway redundancy. Thus, compounds

may have unique signatures or combinations of altered features

acrossmultiple cell lines (Adams et al., 2006).MoA prediction ac-

curacy is cell-line dependent and increases when multiple cell

lines are used (Futamura et al., 2012; Rose et al., 2018). Profiles

may compile all changes induced in different cell lines to obtain

comprehensive profiles; however, additional cell lines should be

included if they expand the kind of detected MoA—for example,

glucocorticoids and mitochondrial toxins cause more predictive

phenotypes in A549 cells than in HepG2 or WPMY1 cells (Cox

et al., 2020).

Morphological profiling can be applied not only to human cell

lines and has been adapted to different bacterial strains (Htoo

et al., 2019; Lamsa et al., 2016; Nonejuie et al., 2013) and yeast

(Ohnuki et al., 2010; Ohya et al., 2005). These approaches will

extend the targeted bioactivity space of small molecules to

non-mammalian targets and may provide valuable starting

points in the quest for antibiotics (Zoffmann et al., 2019). More-

over, the next step of morphological profiling in physiologically

more relevant systems such as organoids has already been

taken (Betge et al., 2019), and platforms have been developed

to track changes over time (Cox et al., 2020; Kang et al., 2016).

Clustering and identified bioactivity clusters

Morphological profiles can be analyzed for similar patterns to

define clusters of bioactivity. An unsupervised machine-learning

approach is employed when the expected output is not known

(Grys et al., 2017) and has been used in various studies (Gustafs-

dottir et al., 2013; Young et al., 2008). However, for correct MoA

assignment to detected profile groups, clusters have to be eval-

uated and validated (Grys et al., 2017). To avoid misinterpreta-

tion, the bioactivity of each cluster is ideally defined by a rich

set of reference compounds, which are structurally different

but have common annotated bioactivity. It is expected that small

molecules with similar activity should cluster together. One refer-

ence compound, even if profiled at different concentrations, is

not sufficient to reliably draw biological conclusions without prior

profiling knowledge. Structurally different landmark compounds

for the same target should be enriched in the respective cluster

to claim bioactivity. Usually, not all reference compounds with

common target are grouped into the same cluster. Polypharma-

cological compounds will be assigned to the phenomically most

dominant activity only or may not be linked to any activity cluster

if reference compounds with similar profiles were not assayed

(Cox et al., 2020). Morphological profiles of such compounds

are complex, reflect modulation of multiple targets, and require

deconvolution of their influence on specific targets (Cox et al.,

2020). Apparently ‘‘misclassified’’ compounds most likely have

different targets, and the assignment to a bioactivity cluster is

due to activity different from the nominal target. In fact, the

occurrence of such outliers within clusters is very informative

and directly points toward an additional MoA of reference com-

pounds. There is a high demand to annotate available reference

compounds in as much detail as possible, e.g., in a collective

community effort. Several studies have already implemented

structure-based target prediction (Young et al., 2008) or

ChEMBL bioactivity data (Cox et al., 2020; Hofmarcher et al.,

2019) to better correlate the observed phenotypes and targets.

However, only rarely is complete bioactivity information available

in one database, and non-protein targets are often disregarded

in structure-based target prediction approaches, e.g., iron che-

lators (Schneidewind et al., 2020).

Detected bioactivity strongly depends on the screened com-

pounds. This is particularly important when comparing the

bioactivity clusters that were identified by means of reference

compounds (Table S3). The ability of the described approaches

for morphological profiling to detect given bioactivity can only be

assessed by careful inspection and comparison of the screened

references between the different methods. Of note, not all refer-

ence compounds induce morphological changes and, thus, may

be inactive in morphological profiling. Lack of activity may be

attributed to the employed biological system (target not ex-

pressed or target present only in different species), lack of stim-

ulus (that activate the modulated process), treatment time, con-

centration, or lack of tractability of phenotypes with the

visualized cellular components.

Handling multidimensional data often requires dimensionality

reduction to enable data reduction by retaining most of the infor-

mation. This approach is employed for clustering of compounds

with similar profiles. However, clusters defined by this method

do not always reveal the underlying MoA. Whereas it is straight-

forward to assign the MoA to a cluster of compounds with com-

mon annotated target or MoA, it may be particularly challenging

to define the bioactivity of a cluster that is composed of small

molecules with no obvious common target or activity. The

lower-dimensional feature space may be difficult to interpret

and thus may not be suitable to foster understanding or interpre-

tation of the detected cluster (Bougen-Zhukov et al., 2017). It is

essential to define MoA clusters based on as many as possible

compounds with common MoA. However, annotated com-

pounds are limited in number, and often only few reference com-

pounds for a given target or MoA are employed. Caution should

be taken when assigning an MoA to a cluster based on one or

few landmark compounds, and one should carefully consider

already published MoA clusters and compounds associated

therewith. Single outliers, however, should not question the

MoA of a cluster if the cluster is composed of a sufficient number

of structurally diverse reference compoundswith common anno-

tated targets or MoA (Cox et al., 2020).

Bioactivity clusters may not be based on single targets but

rather on similar MoA (DNA synthesis inhibition) or pathway

modulation (PI3K-mTOR). Several clusters were identified in

most studies and are considered as ‘‘low-hanging fruits,’’ e.g.,

tubulin, HDAC, mTOR, HSP90, proteasome, and DNA synthesis

(see Table S3) (Kang et al., 2016; Moffat et al., 2014). Additional

reported clusters contain compounds targeting actin, protein

synthesis, kinases (MEK, p38, Aurora kinase), HMGCR, Na+/

K+-ATPases, and the mitochondrial proton gradient (Table S1).

Profiling approaches are promising strategies for deorphani-

zation of dark chemical matter (DCM), i.e., small molecules

that show inactivity in more than 100 target- and cell-based as-

says (Wassermann et al., 2015, 2017). DCM inactivity may stem

from the bias in employed screened targets and processes

(Wassermann et al., 2015). DCM may be highly specific and

non-promiscuous compounds with unprecedented biological

profiles (Wassermann et al., 2015, 2017). Thus, morphological

profiling in mammalian cells but also in bacteria or yeast is
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suitable for the discovery of unique biological profiles using DCM

across different species and for covering very broad target

space that is not restricted to protein targeting.

Data integration

Morphological profiling can be regarded as complementary to

omics technologies and adds bioactivity information to the activ-

ity catalog of small molecules that may encompass transcrip-

tomics, proteomics, metabolomics, and low-content phenotypic

or target-centered data. Integration of these data-rich ap-

proaches (Wawer et al., 2014) with target-based data, e.g., inhi-

bition data for kinase inhibitors (Woehrmann et al., 2013) and

target prediction based on chemical similarity (Young et al.,

2008), will further inform the bioactivity-to-cluster assignment.

Structure-activity/phenotype correlation

Phenotypic profiles correlate more significantly with the predicted

activity and target than morphological profiles and chemical sim-

ilarity (Young et al., 2008). Thus, a structurally diverse compound

collectionwill not necessarily lead to diversity in bioactivity (Kremb

and Voolstra, 2017). The SPR can be deduced from morpholog-

ical profiling (Christoforow et al., 2019) andmay be physiologically

more relevant, as small structural changes can influence various

cellular processes (Gerry et al., 2016; Kremb and Voolstra,

2017; Melillo et al., 2018). It is essential to have quantitative mea-

sures for bioactivity and profile similarity, e.g., the proportion of

altered parameters (Christoforow et al., 2019; Foley et al., 2020;

Laraia et al., 2020; Schneidewind et al., 2020; Zimmermann

et al., 2019). However, SPR data may be difficult to interpret, as

time and dose may influence individual parameters differently;

thus, extracting and analyzing specific features instead of whole

profiles may be advantageous (Boyd et al., 2020).

Resource sharing

The profiling community would benefit from sharing data,

methods, and software code (Caicedo et al., 2017), and initia-

tives for data sharing for reuse and cross-analysis (Chessel

and Salas, 2019) (Bray et al., 2017) and studies derived thereof

(Hofmarcher et al., 2019) have been already launched. Of note,

the Broad Institute disclosed a Cell Painting image dataset for

30,616 compounds (Bray et al., 2017) and launched the aca-

demic-industry cell imaging consortium JUMP-CP (Joint Under-

taking in Morphological Profiling with Cell Painting) to accelerate

drug discovery by creating reference datasets for genetic and

small-molecule perturbations using Cell Painting.

In conclusion, morphological profiling has gained a firm place

in the analysis of small molecules for bioactivity and can deliver

essential information in the evaluation of unexplored compounds

by demonstrating morphological activity, predicting the MoA or

even target. Moreover, it provides valuable evidence for poly-

pharmacology and may link landmark compounds to a yet unan-

ticipated bioactivity. The current challenge is to comprehensively

annotate reference and other bioactive compounds, extend the

number of predictable modes of action and targets, and explore

outliers and compounds with unique profiles. In addition, it

would be very interesting to evaluate the bioactivity of DCM us-

ing morphological profiling, which might yield unique profiles

and, thus, lead to unprecedented targets and MoAs. Harvesting

these ‘‘high-hanging’’ fruits promises to provide mechanistic un-

derstanding underlying morphological profiles.

SIGNIFICANCE

Bioactive small molecules are indispensable for medicinal

and chemical biology research and are usually identified in

biased, i.e., biological context-dependent, assays. Com-

pounds are often characterized in a small number of target-

and/or cell-based assays to confirm their activity and

address off-target effects. Profiling approaches can detect

hundreds of altered parameters that describe a perturbed

cellular state and can assess activity of small molecules

on different targets, pathways, or biological processes

simultaneously. Similar profiles have been linked to similar

targets or modes of action. Morphological profiling is an

accessible and high-throughput technique to assess

morphological changes and enables detection of bioactivity

and prediction of target or mode of action early on in the

development of compound collections. Application of this

approach may further guide the design and synthesis of

new bioactive compounds by exploring the structure-

phenotype relationship. Various mode-of-action clusters

have beenmapped and employed to assign bioactivity to un-

explored small molecules along with detection of unantici-

pated activity for well-characterized agents. Thus, morpho-

logical profiling holds promise to provide a more holistic

view on the bioactivity of thousands of compounds and to

prioritize compounds that are more selective with regard

to the targeted bioactivity space.
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