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MUTATING SIGNED τ-EXCEPTIONAL SEQUENCES

ASLAK BAKKE BUAN AND BETHANY ROSE MARSH

Dedicated to the memory of Helmut Lenzing

Abstract. We establish some properties of τ-exceptional sequences for finite-

dimensional algebras. In an earlier paper we established a bijection between the set

of ordered support τ-tilting modules and the set of complete signed τ-exceptional se-

quences. We describe the action of the symmetric group on the latter induced by its

natural action on the former. Similarly, we describe the effect on a τ-exceptional se-

quence obtained by mutating the corresponding ordered support τ-tilting module via a

construction of Adachi-Iyama-Reiten.

Introduction

The usual notion of exceptional sequences in a module category over a finite-

dimensional algebra [8, 23] has some drawbacks. In particular, for some non-hereditary

algebras, complete exceptional sequences do not exist (see e.g. [6, Introduction]). In

[6], we introduced the notion of τ-exceptional sequences, motivated by τ-tilting the-

ory [2]. Such sequences can be regarded as an alternative generalisation of exceptional

sequences to the non-hereditary case with the property that complete τ-exceptional se-

quences always exist. We also introduced signed τ-exceptional sequences, motivated by

the concept of signed exceptional sequences for hereditary algebras [17], and the link to

picture groups [17, 18].

The aim of this paper is to establish further properties of (signed) τ-exceptional se-

quences, which we now proceed to discuss in more detail. Recall that a subcategory of a

module category is said to be a wide subcategory if it is closed under kernels, cokernels

and extensions (and therefore inherits an abelian structure). Let Λ be the path algebra

of an acyclic quiver with n vertices and modΛ the category of finite-dimensional left

Λ-modules. A Λ-module X is said to be exceptional if Ext1(X, X) = 0. If X is excep-

tional, then the subcategory X⊥0,1 consisting of modules Y such that Hom(X,Y) = 0 and

Ext1(X,Y) = 0 is known as the perpendicular category of X [14, §1]. By [14, Prop.

1.1], [24, Thm. 2.3], X⊥0,1 is a wide subcategory of modΛ equivalent to the module

category of the path algebra of a quiver with n − 1 vertices. An exceptional sequence

is a sequence (X1, . . . , Xr) where Xr is an indecomposable exceptional Λ-module and

(X1, . . . , Xr−1) is an exceptional sequence in X
⊥0,1

r .
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2 BUAN AND MARSH

If r = n, then an exceptional sequence (X1, X2, . . . , Xr) is said to be complete. Note

that a complete exceptional sequence gives rise to a flag of wide subcategories

0 = C0 ⊆ C1 ⊆ · · · ⊆ Cn = modΛ

where, for 1 ≤ i < n, we define Ci = (Xi+1 ∐ Xi+2 ∐ · · · ∐ Xn)⊥0,1 .

The article [17] introduced the notion of a signed exceptional sequence. Let Db(Λ)

denote the bounded derived category of modΛ. Since Λ is hereditary, every indecom-

posable object in Db(Λ) is of the form X[i], where [i] denotes the ith power of the shift

and X is an indecomposable Λ-module. We write |X[i]| = X.

A signed exceptional sequence in modΛ is a sequence (X1, X2, . . . , Xr) of indecom-

posable objects in Db(Λ) which are each of the form Y[ j] for j = 0 or j = 1 for

some Λ-module Y , where Xi = Y[1] is allowed only if |Xi| is relatively projective in

(|Xi+1| ∐ |Xi+2| ∐ · · · ∐ |Xr|)
⊥0,1 , and where (|X1|, |X2|, . . . , |Xr|) is an exceptional sequence.

In [17], signed exceptional sequences were introduced in order to define the cluster

morphism category of Λ, whose objects are the wide subcategories of modΛ. The mor-

phisms are described by the signed exceptional sequences. It is shown that the classifying

space of the cluster morphism category is a K(π, 1), where π is the picture group [18] of

Λ.

Now let Λ be an arbitrary finite-dimensional algebra over a field. Suppose that Λ

has n simple modules. The linchpin of the definition of τ-exceptional sequence is

the notion of a τ-perpendicular category [19, §1], which plays the role of the Geigle-

Lenzing perpendicular category in the general case. A Λ-module X is said to be τ-rigid

if Hom(X, τX) = 0. Then the τ-perpendicular category of X is the subcategory J(X)

consisting of modules Y such that Hom(X,Y) = 0 and Hom(Y, τX) = 0. By [4, Cor.

3.22], [10, Thm. 4.12] J(X) is a wide subcategory of modΛ. By [19, Thm. 3.8] J(X) is

equivalent to the module category of an algebra, which has n − 1 non-isomorphic sim-

ple modules if X is indecomposable. A τ-exceptional sequence in modΛ is a sequence

(X1, X2, . . . , Xr) of Λ-modules where Xr is τ-rigid and (X1, . . . , Xr−1) is a τ-exceptional

sequence in J(Xr) (regarded as a module category). Signed τ-exceptional sequences are

then defined in a similar way to signed exceptional sequences (see above, or Section 1).

A τ-exceptional sequence, or signed τ-exceptional sequence, is said to be complete if

it has n terms. Clearly, complete τ-exceptional sequences and signed τ-exceptional se-

quences exist for any finite-dimensional algebra. In [22], an interesting interpretation in

terms of standardly stratifying systems was given.

Also, τ-exceptional sequences were used in [7] to define the morphisms in the τ-cluster

morphism category of the module category of a τ-tilting-finite algebra, whose objects are

the wide subcategories of the module category. This was extended to an arbitrary finite-

dimensional algebra in [5]. In [15, Thm. 4.16], it was shown that, if Λ is a Nakayama

algebra, the classifying space of the τ-cluster morphism category is a K(π, 1) for the

picture group [18] of Λ.

In this paper, we study some properties of τ-exceptional sequences. In Section 2, we

prove our first main result, Theorem 2.1, which is restricted to the case of τ-tilting fi-

nite algebras, i.e algebras with a finite number of basic τ-tilting modules. Under this
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assumption, we show that if (X1, X2, . . . , Xi, . . . Xn) and (X1, X2, . . . , X
′
i , . . . , Xn) are com-

plete τ-exceptional sequences, then X′i � Xi. We conjecture that this result holds without

this assumption.

Suppose now that Λ is an arbitrary finite-dimensional algebra. In [6, Thm. 5.4], it

was shown that there is a bijection between complete signed τ-exceptional sequences in

modΛ and ordered support τ-tilting objects in modΛ. Here a support τ-tilting object is

a pair (P,M) where P is projective, M is τ-rigid and Hom(P,M) = 0, and an ordered

support τ-tilting object is an ordering of the indecomposable summands of P and M

(retaining the information as to whether each object is a summand of P or M). Thus the

symmetric group acts naturally on the set of ordered support τ-tilting objects and hence,

via the bijection, on the set of complete signed τ-exceptional sequences. In Section 3,

we give an explicit description of the action of a simple transposition.

Support τ-tilting objects can be mutated (see [2, §2.3]), and thus so can ordered τ-

tilting objects. In Section 4, we describe the effect on the corresponding complete τ-

exceptional sequences, translated via the bijection above. We also combine the action

of the symmetric group and mutations to give an action of the larger mutation group

considered in [20].

Since the braid group on n strands acts transitively on the set of exceptional sequences

over a hereditary algebra [8, 23] with n simple modules up to isomorphism, a natural

question is whether this braid group acts transitively on the set of all signed τ-exceptional

sequences. In Section 5 we show that, for the Kronecker algebra, there is no transitive

action of the braid group on 2 strands (i.e. the infinite cyclic group) on the set of signed

τ-exceptional sequences which factors through the action of the mutation group referred

to above on the set of such sequences (although the mutation group itself does act transi-

tively). We also give an example showing that the obvious generalisation of the definition

of the braid action on exceptional sequences to the (signed) τ-exceptional case does not

work, at least without substantial modification.

We remark that after this paper appeared on arxiv.org, a paper by Hanson and

Thomas has appeared [16], where the authors used the theory of stability conditions

to prove Conjecture 2.7, i.e. they showed that the uniqueness property in Theorem 2.1

holds for arbitrary finite-dimensional algebras. We thank the referee for their helpful

comments on an earlier version of this paper.

1. Background

Let Λ be a finite-dimensional basic algebra, and denote by modΛ the category of

finite-dimensional left Λ-modules. We let τ denote the Auslander-Reiten translate on

modΛ. We assume any subcategories X to be full and closed under isomorphism; we

define X⊥ = {Y ∈ modΛ | Hom(X,Y) = 0} and define ⊥X dually.

Consider C(modΛ) = modΛ∐modΛ[1] as a full subcategory of the bounded derived

category Db(modΛ). For an indecomposable object U in C(modΛ), we set |U | = U if U

is in modΛ and |U | = U[−1] if U is in modΛ[1]. If U in C(modΛ) is basic, we denote

by rk(U) the number of indecomposable summands of U.

We recall some notions from [2, §0] (in some cases stated slightly differently, but

equivalently). A Λ-module M is called τ-rigid if Hom(M, τM) = 0. A (usually assumed

basic) object M ∐ P[1] in C(modΛ) is said to be a support τ-rigid object if M is a
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τ-rigid Λ-module and P is a projective Λ-module with HomΛ(P,M) = 0. An object

U = M ∐ P[1] is said to be a support τ-tilting object if rk(U) = rk(Λ). If, in addition,

P = 0, U is said to be a τ-tilting module.

Recall that a subcategory W of modΛ is said to be wide if it is closed under kernels,

cokernels and extensions. If a wide subcategory W of modΛ is equivalent to a module

category modΛ′, we set rk W ≔ rkΛ′.

Objects which are τ-rigid give rise to a particular class of wide subcategories.

Definition 1.1. [19, Defn. 3.3] For a support τ-rigid object U = M ∐ P[1] in C(modΛ)

the category

J(U) = (M ∐ P)⊥ ∩ ⊥(τM)

is called a τ-perpendicular subcategory.

In the following Theorem, (a) is from [10, Thm. 4.12], [4, Cor. 3.22] and (c) is from

[19, Thm. 3.8]. For (b), see [11, Prop. 4.12] and [12, Lemma 4.7].

Theorem 1.2. A τ-perpendicular subcategory J(U) of modΛ is:

(a) wide;

(b) functorially finite;

(c) equivalent to modΛU for some finite-dimensional algebra ΛU with rk(Λ) =

rk(U) + rk(ΛU).

Let W be a τ-perpendicular subcategory of modΛ. Since W is equivalent to a module

category, we can also consider the τ-tilting theory of W. Let C(W) = W ∐ W[1], as a

subcategory of Db(modΛ). Note that since W is an exact subcategory of modΛ, there is

a canonical isomorphism

HomDb(W)(X,Y[1]) ≃ HomDb(modΛ)(X,Y[1]),

for modules X,Y in W, so we can also consider C(W) as a subcategory of Db(W).

Note that in general τWX ; τX for a module X in W, and hence in general there exist

modules which are τ-rigid in W but not τ-rigid in modΛ (see e.g. [6, §1] or the end of

Section 5). But we do have the following. For a support τ-rigid object V = N ∐ Q[1] in

C(W) ⊆ C(modΛ), set

JW(V) = (N ∐ Q)⊥ ∩ ⊥(τWN) ∩W.

The following useful Lemma follows from [1, Prop. 5.8] (see also [2, Prop. 1.2]).

Lemma 1.3. Let W be a τ-perpendicular subcategory of modΛ, and assume X,Y lie in

W. Then the following hold:

(a) Hom(Y, τWX) = 0 if and only if Ext1(X,W ∩ Gen Y) = 0.

(b) X is τ-rigid in W if and only if Ext1(X,W ∩ Gen X) = 0.

Lemma 1.4. Let W
′ ⊆ W be τ-perpendicular subcategories of modΛ, and let X be an

object in W
′. If X is τ-rigid in W, then X is also τ-rigid in W

′.

Proof. By Lemma 1.3, X is τ-rigid in W implies Ext1(X,W ∩ Gen X) = 0. Hence also

Ext1(X,W′ ∩ Gen X) = 0, and applying Lemma 1.3 again we obtain that X is τ-rigid in

W
′. �
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The following bijection is crucial. It was proved in [6], and can be seen as a refinement

of [19, Thm. 3.16].

Theorem 1.5. [6, Prop. 5.6] Let W be a τ-perpendicular subcategory of modΛ, and let

U be a support τ-rigid object in C(W). Then there is a bijection EW

U from

{X ∈ ind(C(W)) | X ∐ U support τ-rigid in C(W)} \ ind U

to

{X ∈ ind(C(JW(U)) | X is support τ-rigid in C(JW(U))}.

We denote the inverse of EW

U by F W

U and, when W = modΛ, we denote the map in

Theorem 1.5 and its inverse simply by EU and FU .

Using the bijection in Theorem 1.5, the following was proved in [7, Thms. 1.4, 1.7]

for the τ-tilting finite case. It was generalised in [5, Thms. 6.4, 6.12] to arbitrary finite-

dimensional algebras.

Theorem 1.6. [5, 7] Let U ∐ V be a τ-rigid object in C(modΛ).

(a) We have JJ(U) (EU(V)) = J(U ∐ V).

(b) We have EU∐V = (E
J(U)

EU (V)
)EU:



X ∈ ind(C(modΛ)),

X ∐ U ∐ V support

τ-rigid in C(modΛ)


\ ind(U ∐ V)

EU

((

EU∐V //



X ∈ ind(C(J(U ∐ V))),

X support τ-rigid

in C(J(U ∐ V))





X ∈ ind(C(J(U))),

X ∐ EU(V) support

τ-rigid in C(J(U))


\ indEU(V)

E
J(U)

EU (V)

77

We also recall the following.

Lemma 1.7. [7, Lemma 4.5] Let V and W be wide subcategories of modΛ with V ⊆ W.

Then V is a wide subcategory of W.

2. Uniqueness

Let n be the number of simple Λ-modules. Recall that a complete τ-exceptional se-

quence in modΛ is a sequence (X1, X2, . . . , Xn) of indecomposable Λ-modules where Xn

is τ-rigid and (X1, . . . , Xn−1) is a τ-exceptional sequence in J(Xn). Moreover, a sequence

(X1, X2, . . . , Xn) of indecomposable objects in C(modΛ) is a signed τ-exceptional se-

quence, if (i) Xn is either a τ-rigid module or of the form P[1] for some projective Λ-

module P, and (ii) (X1, X2, . . . , Xn−1) is a signed τ-exceptional sequence in J(|Xn|). Note

that this means that Xn−1 is either τ-rigid in J(|Xn|) (i.e. τ-rigid in the equivalent module

category), or Xn−1 = P′[1], where P′ is (relative) projective in J(|Xn|), and so on.

Recall that Λ is said to be τ-tilting finite if it only has a finite number of indecompos-

able τ-rigid modules. In this section, we shall prove the following uniqueness result for

τ-exceptional sequences over such algebras:

Theorem 2.1. Let Λ be a τ-tilting finite algebra. Then the following hold.
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(a) Let (A1, A2, . . . , An) and (B1, B2, . . . , Bn) be complete τ-exceptional sequences in

modΛ. If, for some t ∈ {1, . . . , n}, we have Ai = Bi for all i , t, then also At = Bt.

(b) Let (A1, A2, . . . , An) and (B1, B2, . . . , Bn) be complete signed τ-exceptional se-

quences in C(modΛ). If, for some t ∈ {1, . . . , n}, we have |Ai| = |Bi| for all

i , t, then also |At| = |Bt|.

We first recall the following:

Theorem 2.2. Let Λ be a τ-tilting finite algebra. Then the following hold for any wide

subcategory W of modΛ.

(a) [10, Thm. 4.18] We have W = J(U) for some support τ-rigid object U in

C(modΛ).

(b) [19, Thm. 3.8, Thm. 3.16] The wide subcategory W is τ-tilting finite.

We next make the following observation, which holds for all finite-dimensional alge-

bras:

Lemma 2.3. If (A1, A2, . . . , An) is a complete signed τ-exceptional sequence, then

(|A1| , |A2| , . . . , |An|) is a complete (unsigned) τ-exceptional sequence.

Proof. We first claim that (A1, A2, . . . , An−1, |An|) is a signed τ-exceptional sequence.

If |An| is projective, then J(|An| [1]) = J(|An|). Hence the initial claim follows from

the definition of signed τ-exceptional sequences. The same argument gives that also

(A1, A2, . . . , An−2, |An−1| , |An|) is a signed τ-exceptional sequence, and so on. �

It is clear that Lemma 2.3 and Theorem 2.1 (a), imply Theorem 2.1 (b), so it is enough

to prove Theorem 2.1 (a).

In the remainder of this section, we will prove Theorem 2.1 (a). So, we assume for the

remainder of the section that Λ is τ-tilting finite.

We then have the following:

Lemma 2.4. Let W, W
′ be wide subcategories of modΛ with W

′ ⊆ W. Then:

(a) We have rk W
′ ≤ rk W;

(b) If rk W = rk W
′ then W = W

′.

Proof. For (a), we note that, by Lemma 1.7, W
′ is a wide subcategory of W. By Theo-

rem 2.2, W
′ is of the form JW(U) for some τ-rigid object U in W. Hence, by Theorem 1.2,

rk W
′
= rk W−r ≤ rk W, where r is the number of non-isomorphic indecomposable direct

summands of U.

For (b) suppose, in addition, that rk W = rk W
′. Then r = 0 in the above, so U = 0 and

we have W = W
′ as required. �

We give an alternative proof of (a) at the end of this section.

Lemma 2.5. If (A1, A2, . . . , An−1, An) and (A1, A2, . . . , An−1, A
′
n) are complete τ-

exceptional sequences in modΛ, then An = A′n.

Proof. The result is clear for n = 1, so we may assume that n ≥ 2. Let Wn = modΛ,

Wn−1 = JWn
(An) = J(An), Wn−2 = JWn−1

(An−1), . . ., W1 = JW2
(A2). By Proposition 1.2,

we have rk Wi = i for 1 ≤ i ≤ n. For 0 ≤ i ≤ n − 1, let Xi = Wi+1 ∩ J(A′n), so

X0 ⊆ X1 ⊆ · · · Xn−1 = J(A′n).
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By Proposition 1.2, we have rk J(An) = rk J(A′n) = n−1. We haveXn−2 = J(An)∩J(A′n).

Assume, for a contradiction, that rkXn−2 ≤ n−2. Note that A1, . . . , An−1 ∈ J(A′n). Fix 1 ≤

i ≤ n − 2. Since Ai+1 ∈ Wi+1 = JWi+2
(Ai+2), we have Ai+1 ∈ Xi = Wi+1 ∩ J(A′n). However,

Ai+1 < Wi = JWi+1
(Ai+1), since Hom(Ai+1, Ai+1) , 0, so Ai+1 < Xi−1 = Wi ∩ J(A′n). Since

Wi ⊆ Wi+1 we see that Xi−1 ⊆ Xi but Xi−1 , Xi. Hence, by Lemma 2.4, we have

rkXi−1 < rkXi. Since rkXn−2 ≤ n − 2, it follows that rkXi ≤ i for 0 ≤ i ≤ n − 2.

In particular, this means that X0 = W1 ∩ J(A′n) = JW2
(A2) ∩ J(A′n) is zero. But this

gives a contradiction, since 0 , A1 ∈ X0. Hence we must have rkXn−2 ≥ n − 1.

Since Xn−2 ⊆ J(An), it follows again from Lemma 2.4 that rkXn−2 ≤ rk J(An) = n − 1,

so rkXn−2 = n − 1. Since Xn−2 ⊆ J(An) and Xn−2 ⊆ J(A′n), Lemma 2.4 implies that

J(An) = J(An) ∩ J(A′n) = J(A′n), and hence An = A′n by [7, Proposition 10.7]. �

We note the following:

Corollary 2.6. Let W and W
′ be wide subcategories of modΛ, and assume that

(A1, A2, . . . , Am) is a complete τ-exceptional sequence in both W and W
′. Then we have

W = W
′.

Proof. This follows using the same argument as in the proof of Lemma 2.5, replacing

J(An) with W, J(A′n) with W
′ and replacing A1, A2, . . . An−1 with A1, A2, . . . , Am.

�

We can now complete the proof of Theorem 2.1 (a), and hence the main theorem of

this section.

Proof of Theorem 2.1 (a). If t = n, this follows directly from Lemma 2.5. Assume t ∈

{1, . . . , n−1}. Let WA
n = J(An), and for j ∈ {t, . . . , n−1} define recursively W

A
j = JW

A
j+1

(A j).

Define similarly W
B
n = J(Bn) and W

B
j = JW

B
j+1

(B j). Then W
A
t+1
= W

B
t+1
≔ W

′, and

W
′ ≃ modΛ′ for a finite-dimensional algebra Λ′, and we have that (A1, A2, . . . , At−1, At)

and (B1, B2, . . . , Bt−1, Bt) = (A1, A2, . . . , At−1, Bt) are complete exceptional sequences in

W
′. Hence, we obtain that At = Bt by Lemma 2.5. �

We note that the uniqueness property of Theorem 2.1 also holds for arbitrary finite-

dimensional hereditary algebras, by [8, Lemma 2], and we conjecture that the assumption

on τ-tilting finiteness should not be necessary.

Conjecture 2.7. The statement of Theorem 2.1 holds for all finite-dimensional algebras.

An alternative proof of Lemma 2.4 (a) can be given using the theory of bricks. Recall

that a Λ-module M is called a brick if End(M) is a division algebra. A set of isoclasses

of pairwise Hom-orthogonal bricks is called a semibrick. Let C be a full subcategory

of modΛ. We denote by T (C) the smallest torsion class containing C, by Gen(C) the

collection of modules obtained as quotients of finite direct sums of modules in C, and by

Filt(C) the category of modules with filtrations by modules in C. By the argument in [21,

Lemma 3.1], T (C) = Filt(Gen(C)). A semibrick S is called left finite [3, Definition 1.2]

if T (S ) is functorially finite. Let nΛ denote the number of isomorphism classes of simple

Λ modules. We recall:

Proposition 2.8. [3, 1.10] If S is a left finite semibrick, then |S | ≤ nΛ.
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Proposition 2.9. [9, 1.2] Let A be a τ-tilting finite algebra, and let T be a torsion class

in mod A. Then T is functorially finite.

Proof of Lemma 2.4 (a). Note that, by [19, Thm. 3.8], W ≃ modΛ′ for some finite-

dimensional algebra Λ′. Let S be the set of isoclasses of simple objects in W
′. Then S is

a semibrick in W. By [7, Prop. 4.2(b)], Λ′ is τ-tilting finite. Hence, by Proposition 2.9,

S is left-finite in W. By Proposition 2.8, rk(W′) = |S | ≤ rk(W). �

3. Transposition

We now return to the general case, where Λ is an arbitrary finite-dimensional algebra.

A sequence (T1,T2, . . . ,Tr) of indecomposable objects in C(modΛ) is called an ordered

τ-rigid object if ∐r
i=1

Ti is a τ-rigid object, and an ordered support τ-tilting object if

r = n := rkΛ. The symmetric group acts on the set of ordered support τ-tilting objects

in a wide subcategory W of modΛ, by reordering. We recall the following theorem from

[6].

Theorem 3.1. [6, Thm. 5.4] For each τ-perpendicular subcategory W of modΛ, there

are mutually inverse bijections

{ordered support τ-tilting objects in W }

ψW ↓ ↑ φW

{complete signed τ-exceptional sequences in W}

In the case W = modΛ, we write ψ for ψmodΛ and φ for φmodΛ. In this section, we will

describe the action of the symmetric group on complete signed τ-exceptional sequences

in a τ-perpendicular subcategory W of modΛ induced by the bijections above.

Remark 3.2. If ψ(T1,T2, . . . ,Tn) = (A1, . . . , An), define (as in the proof of Lemma 2.5):

Wn−1 = J(An),

Wn−2 = JWn−1
(An−1),

...

W j = JW j+1
(A j+1),

...

W1 = JW2
(A2).
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Then we have

An = Tn,

An−1 = EAn
(Tn−1),

An−2 = E
Wn−1

An−1
EAn

(Tn−2),

...

An− j = E
Wn− j+1

An− j+1
. . .E

Wn−1

An−1
EAn

(Tn− j),

...

A1 = E
W2

A2
. . .E

Wn−1

An−1
EAn

(T1).

Lemma 3.3. With notation as above we have

Wn−i = J(Tn ∐ Tn−1 ∐ · · · ∐ Tn−i+1),

for i = 1, . . . , n − 1.

Proof. This follows from repeated use of Theorem 1.6 (a). �

Let Λ be an algebra of rank n, and let T Λo be the set of ordered basic support τ-

tilting objects in C(modΛ). There is a natural action of the symmetric group S n on TΛo ,

given by πi(T1, . . . ,Tn) = (T1, . . . ,Ti−1,Ti+1,Ti,Ti+2, . . . ,Tn), where πi denotes the simple

transposition (i i + 1).

Theorem 3.4. (a) If S = (A1, . . . , An) is a signed τ-exceptional sequence, then for

i ∈ {1, . . . , n − 1} we have that

π̃i(S) ≔ (A1, . . . , Ai−1,E
(i)(Ai+1),F (i)(Ai), Ai+2, . . . , An)

is a signed τ-exceptional sequence, where

F (i)
≔ F

Wi+1

Ai+1

and

E(i)
≔ E

Wi+1

F (i)(Ai)

for i ∈ {1, . . . , n − 2} and where F (n−1)
≔ FAn

and E(n−1)
≔ EF (n−1)(An−1).

(b) For each i ∈ {1, . . . , n − 1} we have π̃iψ = ψπi.

Lemma 3.5. Let (B,C) be an ordered τ-rigid object in C(modΛ). Then we have that

E
J(C)

EC(B)
EC = E

J(B)

EB(C)
EB.

Proof. By applying Theorem 1.6 (b) twice, we obtain

E
J(C)

EC(B)
EC = EC∐B = EB∐C = E

J(B)

EB(C)
EB.

�

Proposition 3.6. Let (T1, . . . ,Tn) be an ordered support τ-tilting object in C(modΛ),

and assume that ψ(T1, . . . ,Tn) = (A1, . . . , An). Then

ψ(πn−1(T1, . . . ,Tn)) = (A1, . . . An−2,EFAn (An−1)(An),FAn
(An−1)).
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Proof. Let (B1, B2, . . . , Bn) = ψ(πn−1(T1, . . . ,Tn)) = ψ(T1, . . . ,Tn−2,Tn,Tn−1). We need

to show that

(i) Bn = FAn
(An−1),

(ii) Bn−1 = EFAn (An−1)(An), and

(iii) B j = A j, for 1 ≤ j ≤ n − 2.

Note that, by Remark 3.2, we have that Bn = Tn−1, An = Tn and that An−1 = ETn
(Tn−1).

Hence, we have FTn
(An−1) = FTn

ETn
(Tn−1) = Tn−1 = Bn, which proves claim (i). More-

over, it also follows from Remark 3.2 that Bn−1 = ETn−1
(Tn) = EFTn (An−1)(An), which proves

claim (ii).

It remains to prove that B j = A j for j ≤ n − 2. Apply Lemma 3.5, with B = Tn−1 and

C = Tn to obtain that

E
J(Tn)

ETn (Tn−1)
ETn
= E

J(Tn−1)

ETn−1
(Tn)
ETn−1

.

It now follows directly, from Remark 3.2 and Lemma 3.3, that B j = A j for j ≤ n −

2. �

Proof of Theorem 3.4. By Proposition 3.6, it follows that both (a) and (b) hold for i =

n−1. Assume i < n−1. Then (A1, . . . , Ai−1) is a complete signed τ-exceptional sequence

for the τ-perpendicular subcategory Wi−1, as defined in Remark 3.2. Finally, Proposition

3.6 implies that both (a) and (b) hold also in this case. �

4. Mutation

For a fixed positive integer n, consider the group Gn = 〈µ1, . . . , µn | µ
2
i = e〉 (as in [20,

§1]). Let Λ be a fixed algebra of rank n.

Mutation of support τ-tilting objects (as in [2, Thm. 2.18]) induces a mutation on the

set T Λo of ordered basic support τ-tilting objects in C(modΛ), which can be regarded as

an action of Gn on T Λo and hence, via the bijections in Theorem 3.1, an action on the set

of complete signed τ-exceptional sequences.

The following result follows from [2, Thm. 2.18].

Proposition 4.1. [2, Thm. 2.18] Let T = (T1, . . . ,Tn) be an ordered support τ-tilting

object in C(modΛ). Let i ∈ {1, . . . , n}. Then there is a unique indecomposable object

T ∗i in C(modΛ) such that T (i) = (T1, . . . ,Ti−1,T
∗
i ,Ti+1, . . . ,Tn) is an ordered support

τ-tilting object with T ∗i ; Ti.

With T and T (i) as above, we set µi(T ) = T (i). This defines a G-action on T Λo . We now

describe the corresponding action on the set of complete signed τ-exceptional sequences.

For a complete signed τ-exceptional sequence S = (A1, . . . , An), let

s1(S) = (Ã1, A2, . . . , An),

where

Ã1 =


A1[1] if A1 ∈ modΛ;

A1[−1] if A1 ∈ modΛ[1].

Moreover, for j > 1, let s j(S) = π̃ j−1π̃ j−2 . . . π̃1s1π̃1 . . . π̃ j−2π̃ j−1(S).

We make the following observation:
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Lemma 4.2. Let Λ be an algebra with a unique simple module. Then the projective

cover of the simple module is the unique indecomposable τ-rigid Λ-module.

Proof. Let S be the unique simple Λ-module, and suppose that X is a non-projective

indecomposable τ-rigid Λ-module. Then Ext1(X,M) , 0 for some Λ-module M. Since

M must be constructed from S by repeated extensions with S , it follows that Ext1(X, S ) ,

0. Since X is also constructed from S by repeated extensions with S , we have that S is a

factor of X, so Ext1(X,Gen X) , 0. By Lemma 1.3, X is not τ-rigid. �

We now have:

Lemma 4.3. If S = (A1, A2, . . . , An) is a signed τ-exceptional sequence, then so is s j(S)

for each j = 1, . . . , n. Moreover S and s1(S) are the only signed τ-exceptional sequences

of the form (X, A2, . . . , An) for some object X in C(modΛ).

Proof. Define WA
j , for j = 1, . . . , n, as in the proof of Theorem 2.1 (a). By repeated appli-

cation of Theorem 1.2, WA
j is equivalent to a module category over a finite-dimensional

algebra of rank j − 1 for j = 1, . . . , n. Hence W
A
2

is equivalent to the module category of

a finite-dimensional algebra with a unique simple module. By Lemma 4.2, W
A
2
, regarded

as a module category, has a unique indecomposable τ-rigid module, given by the unique

indecomposable projective module. This proves that s1(S) is a signed τ-exceptional se-

quence, and also that S and s1(S) are the only signed τ-exceptional sequences of the

form (X, A2, . . . , An), i.e. the claim for j = 1.

The claim for j > 1 follows by combining this with Theorem 3.4 (a). �

Proposition 4.4. With notation as above siψ = ψµi holds for all i = 1, . . . , n.

Proof. Consider first the case i = 1, and assume that ψ(M1,M2, . . . ,Mn) =

(A1, A2, . . . , An). We have µ1(M1,M2, . . . ,Mn) = (M∗
1
,M2, . . . ,Mn), where M∗

1
; M1,

and so ψµ1(M1,M2, . . . ,Mn) = ψ(M∗
1
,M2, . . . ,Mn) = (X, A2, . . . , An), for some object X.

The claim for i = 1 now follows from Lemma 4.3.

For j > 1, we first note that µ j = π j−1π j−2 . . . π1µ1π1 . . . π j−2π j−1.

Next we note that, by repeated applications of Theorem 3.4, we have that

π̃1 . . . π̃ jψ = ψπ1 . . . π j.

Combining this with the above we obtain

s jψ = (̃π j−1π̃ j−2 . . . π̃1s1π̃1 . . . π̃ j−2π̃ j−1)ψ

= (̃π j−1π̃ j−2 . . . π̃1s1)(̃π1 . . . π̃ j−2π̃ j−1ψ)

= (̃π j−1π̃ j−2 . . . π̃1s1)(ψπ1 . . . π j−2π j−1)

= (̃π j−1π̃ j−2 . . . π̃1)(s1ψ)(π1 . . . π j−2π j−1)

= (̃π j−1π̃ j−2 . . . π̃1)(ψµ1)(π1 . . . π j−2π j−1)

= (̃π j−1π̃ j−2 . . . π̃1ψ)(µ1π1 . . . π j−2π j−1)

= (ψπ j−1π j−2 . . . π1)(µ1π1 . . . π j−2π j−1)

= ψ(π j−1π j−2 . . . π1µ1π1 . . . π j−2π j−1)

= ψµ j.
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�

King and Pressland [20, Defn. 1.2] consider the following group:

Definition 4.5. [20] Let Mn = S n ⋉Gn be the mutation group of degree n, where S n acts

on Gn via σ(µi) = µσ(i).

They show that this group acts naturally on labelled (i.e. ordered) seeds in a cluster

algebra [13] via permutation and mutation. The mutation of support-τ-tilting objects

in [2, §2.3] can be regarded as a generalisation of cluster mutation, so it is natural to

consider the action of the mutation group in this context. Note that, for an ordered

support τ-tilting object T , we have σ(µiT ) = µσ(i)(σT ) for a permutation σ and mutation

µi, so Mn acts on the set of all ordered support τ-tilting objects, T Λo .

We get an induced action of the mutation group on the set of signed τ-exceptional

sequences.

Theorem 4.6. Let S = (A1, A2, . . . , An) be a signed τ-exceptional sequence. The opera-

tions

π̃i(S) ≔ (A1, . . . , Ai−1,E
(i)(Ai+1),F (i)(Ai), Ai+2, . . . , An),

s1(S) = (Ã1, A2, . . . , An),

and, for j = 2 . . . , n,

s j(S) = π̃ j−1π̃ j−2 . . . π̃1s1π̃1 . . . π̃ j−2π̃ j−1(S),

define an action of the mutation group Mn on the set of signed τ-exceptional sequences.

Proof. As already noted, Mn acts on the set of ordered support τ-tilting objects, and the

result hence follows directly from combining Theorem 3.4 and Proposition 4.4 with the

fact that ψ is a bijection between the set of ordered support τ-tilting objects and the set

of signed τ-exceptional sequences (Theorem 3.1). �

5. Examples relating to braid actions

Note that the braid group, Bn, on n strands, has the symmetric group S n as a quotient.

Since S n is a subgroup of the mutation group Mn = S n ⋉ Gn, it follows that Bn acts

naturally on the set of all ordered support τ-tilting objects T Λo and thus on the set of all

complete signed τ-exceptional sequences for Λ, by Theorem 3.1. However, this action

is highly non-transitive in general, since the braid group is only permuting the possible

orderings of each support τ-tilting object.

It is therefore natural to ask whether there is a transitive action. In the first part of

this section, we give an example to show that, at least via the mutation group, this is not

possible: we give an algebra for which there is no transitive action of B2 which factors

through the action of M2 on T Λo .

Let Q be the Kronecker quiver 1 //
//
2 , and letΛ be the corresponding path algebra.

Let Pi (respectively, Ii), for i = 1, 2 be the indecomposable projective (respectively,

injective) Λ-modules corresponding to the vertices of Q. Then the τ-tilting (equivalently,

tilting) Λ-modules are the modules τ−rP1 ∐ τ−rP2, τ−rP1 ∐ τ−(r+1)P2, τrI1 ∐ τrI2 and

τr+1I1 ∐ τrI2, for r = 0, 1, 2, . . .. The support τ-tilting (equivalently, support tilting)
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objects over Λ which are not τ-tilting are I1 ∐ P2[1], P1[1] ∐ P2 and P1[1] ∐ P2[1]. In

particular, note that Λ is not τ-tilting finite.

The mutation group (see Definition 4.5) is M2 = S 2 ⋉ G2, where S 2 = {1, σ} is the

symmetric group of degree 2 and G2 = 〈µ1, µ2 : µ2
1
= µ2

2
= e〉. We have σµ1 = µ2σ and

σµ2 = µ1σ. The action of M2 on the set T Λo of ordered basic support τ-tilting objects is

shown in Figure 1, from which it can be seen that this action is transitive. However, we

have the following.

Proposition 5.1. There is no transitive action of the braid group on two strands on T Λo
which factors through the action of M2 on T Λo .

Proof. Note that the braid group B2 on two strands is isomorphic to the infinite cyclic

group. If there was a transitive action of B2 on T Λo factoring through the action of M2

on T Λo , then there would be a subgroup of M2 which is a quotient of B2 which acted

transitively on T Λo . Such a subgroup would have to be cyclic.

The elements of M2 are of the form

σεµiµσ(i)µi · · · µi

and

σεµiµσ(i)µi · · · µσ(i),

where i ∈ {1, 2} and ε ∈ {0, 1}. It is easy to check from the description of the action of

M2 (see Figure 1) that, for each of these elements, the (infinite) cyclic group it generates

does not act transitively on T Λo . �

Corollary 5.2. There is no transitive action of the braid group on two strands on the set

of all signed τ-exceptional sequences which factors through the action of M2 on the set

of all such sequences.

The transitive braid group action on the set of complete exceptional sequences for a

hereditary algebra arises in the following way [8, Lemma 9,Theorem], [23, §5,§7]. Write

the braid group Bn on n strands in the usual way as

Bn =

〈
σ1, . . . , σn−1 :

σiσ j = σ jσi, |i − j| > 1;

σiσ jσi = σ jσ jσi, |i − j| = 1

〉
.

Given a complete exceptional sequence (X1, . . . , Xn) and 1 ≤ i ≤ n, there is a unique

complete exceptional sequence of the form (X1, . . . , Xi−1, Xi+1,Y, Xi+2, . . . , Xn) for some

exceptional indecomposable module Y . The left version of the action of the braid group

is given by:

σi(X1, . . . , Xn) = (X1, . . . , Xi−1, Xi+1,Y, Xi+2, . . . , Xn).

If n = 2, this means, in particular, that if (X1, X2) is a complete exceptional sequence then

there is an exceptional sequence of the form (X2,Y).

However, if (X1, X2) is a complete τ-exceptional sequence, it can be the case that there

is no τ-exceptional sequence of the form (X2,Y), i.e. it can happen that X2 < J(Y) for all

indecomposable τ-rigid modules Y . We illustrate this point with the following example

from [6, §6.2].
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...

τ−1P1, τ
−1P2OO

µ1

��

��
µ2

OO

oo
σ

// τ−1P2, τ
−1P1OO

µ2

��

��
µ1

OO

P1, τ
−1P2OO

µ2

��

oo
σ

// τ−1P2, P1OO

µ1

��
P1, P2OO
µ1

��

oo
σ

// P2, P1OO
µ2

��
P1[1], P2OO

µ2

��

oo
σ

// P2, P1[1]
OO

µ1

��
P1[1], P2[1]

OO
µ1

��

oo
σ

// P2[1], P1[1]
OO

µ2

��
I1, P2[1]

OO
µ2

��

oo
σ

// P2[1], I1OO
µ1

��
I1, I2OO
µ1

��

oo
σ

// I2, I1OO
µ2

��
τI1, I2OO
µ2

��

oo
σ

// I2, τI1OO
µ1

��
τI1, τI2OO

µ1

��

oo
σ

// τI2, τI1OO

µ2

��...

Figure 1. The action of M2 on TΛo for the Kronecker algebra Λ.

Let Γ be the algebra given by the path algebra of the quiver 1
α

// 2
βoo

, subject to the

relation βα = 0. The τ-exceptional sequences over Γ were given in [6, §6.2]. They are:
(
1,

2
1
2

)
,
(
2, 1

2

)
,
(

2
1 , 2
)
,
(

1
2 , 1
)
.

We make the following observation.

Lemma 5.3. For the algebra Γ, which has complete τ-exceptional sequences of length 2,

there is a τ-rigid indecomposable module X such that there is no complete τ-exceptional

sequence of the form (X,Y) for some τ-rigid module Y.
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Proof. This can be seen from the list of τ-exceptional sequences in mod Γ above, since

the module P2 =
2
1
2

, despite being τ-rigid, does not occur as the first term in any of the

complete τ-exceptional sequences in the list. �

Note that it follows that P2 also does not occur as the first term in a complete signed

τ-exceptional sequence.

The phenomenon described above also occurs with the right version [8, 23] of

the action of the braid group. Given a complete exceptional sequence (X1, . . . , Xn)

and 1 ≤ i ≤ n, there is a unique complete exceptional sequence of the form

(X1, . . . , Xi−1,Y, Xi+1, Xi+2, . . . , Xn) for some exceptional indecomposable module Y . The

right version of the action of the braid group is given by:

σi(X1, . . . , Xn) = (X1, . . . , Xi−1,Y, Xi+1, Xi+2, . . . , Xn).

If n = 2, this means, in particular, that if (X1, X2) is a complete exceptional sequence then

there is an exceptional sequence of the form (Y, X1).

We can see from the list above that, although ( 2
1 , 2) is a complete τ-exceptional se-

quence for Γ, there is no such sequence of the form (Y, 2
1 ). This is because, although 2

1 is

τ-rigid in J(2), it is not a τ-rigid Γ-module. In the hereditary case, where a module M is

τ-rigid if and only if Ext1(M,M) = 0, a module in J(Y) = Y⊥0,1 is τ-rigid in J(Y) if and

only if it is τ-rigid in modΛ, but, as we see here, this is not true in general.
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