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Feature Calibrating and Fusing Network for RGB-D

Salient Object Detection
Qiang Zhang, Qi Qin, Yang Yang*, Qiang Jiao*, Jungong Han

Abstract—Due to their imaging mechanisms and techniques,
some depth images inevitably have low visual qualities or have
some inconsistent foregrounds with their corresponding RGB
images. Directly using such depth images will deteriorate the
performance of RGB-D SOD. In view of this, a novel RGB-D
salient object detection model is presented, which follows the
principle of calibration-then-fusion to effectively suppress the
influence of such two types of depth images on final saliency
prediction. Specifically, the proposed model is composed of two
stages, i.e., an image generation stage and a saliency reason-
ing stage. The former generates high-quality and foreground-
consistent pseudo depth images via an image generation network.
While the latter first calibrates the original depth information
with the aid of those newly generated pseudo depth images and
then performs cross-modal feature fusion for the final saliency
reasoning. Especially, in the first stage, a Two-steps Sample
Selection (TSS) strategy is employed to select such reliable depth
images from the original RGB-D image pairs as supervision in-
formation to optimize the image generation network. Afterwards,
in the second stage, a Feature Calibrating and Fusing Network
(FCFNet) is proposed to achieve the calibration-then-fusion of
cross-modal information for the final saliency prediction, which
is achieved by a Depth Feature Calibration (DFC) module, a
Shallow-level Feature Injection (SFI) module and a Multi-modal
Multi-scale Fusion (MMF) module. Moreover, a loss function,
i.e., Region Consistency Aware (RCA) loss, is presented as an
auxiliary loss for FCFNet to facilitate the completeness of salient
objects together with the reduction of background interference
by considering the local regional consistency in the saliency
maps. Experiments on six benchmark datasets demonstrate the
superiorities of our proposed RGB-D SOD model over some state-
of-the-arts.

Index Terms—Salient object detection, RGB-D images, two-
steps sample selection, calibration-then-fusion, region consistency
aware loss

I. INTRODUCTION

S
ALIENT object detection (SOD) imitates the human vi-

sion system to identify the most visually appealing objects

or regions in an image. It has been widely applied in many

computer vision fields, such as object recognition [1], video

segmentation [2], person re-identification [3], visual tracking

[4] and image quality assessment [5].
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Fig. 1. Visualization of different types of RGB-D images and saliency
maps deduced from different input data. (a) RGB images; (b) Depth images;
(c) GTs; (d) Saliency maps deduced from RGB images; (e) Saliency maps
deduced from depth images; (f) Saliency maps deduced from RGB-D images.
In the 1

st and 2
nd rows, RGB and depth images are both of high visual

qualities. In the 3
rd and 4

th rows RGB images are of high visual qualities,
but depth images are of low visual qualities. In the 5

th and 6
th rows, RGB

and depth images contain inconsistent foreground salient objects.

More recently, with the rapid development of Convolu-

tional Neural Networks (CNNs), CNN based SOD models

have achieved significant advancements [6–9]. However, these

models are mainly designed for visible light images (i.e., RGB

images), which are powerless in some challenging or complex

scenes [10], [11], e.g., low contrasts between salient objects

and backgrounds, cluttered interference, and so on. Different

from RGB images that mainly provide some color and texture

information, depth images can provide additional geometric

structures, such as spatial cues and 3D layouts, which are

robust to light and color changing. Compared with RGB

information alone, additional depth information has shown the

potential to boost the SOD performance. So far, many methods

have introduced the depth information into SOD, achieving

encouraging results [12–23].

In fact, depth information plays a critical role in RGB-

D salient object detection, which directly dictates the per-

formance of subsequent saliency detection. However, depth

Copyright © 2023 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.
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Fig. 2. Visualization of some saliency maps obtained by different models.
Here, the depth images are of low visual qualities or have foreground
inconsistency with their corresponding RGB images. (a) RGB images; (b)
Depth images; (c) Generated pseudo depth images (d) D3Net [24]; (e) CDNet
[25]; (f) Ours; (g) GTs.

images are sometimes unreliable. For example, as shown in the

3rd and 4th rows of Fig. 1(b), some depth images have poor

visual qualities and contain affluent disturbing cues, which

cannot provide much valid spatial information for the cross-

modal information fusion. Besides such low-quality depth

images, there exists another kind of depth images that also

contain unreliable depth cues for RGB-D SOD. As shown

in the 1st and 2nd rows of Fig. 1(b) and Fig. 1(e), objects

that are closer to the depth camera usually tend to have

higher intensities than other objects and are more likely to

be regarded as potential salient objects in the depth images.

However, as shown in the 5th and 6th rows of Fig. 1(a) and

Fig. 1(d), such objects may not be always seen as the salient

ones in their corresponding RGB images. Here, we call these

depth images foreground-inconsistent ones for brevity in this

paper. As shown in Fig.1(f), directly using such low-quality

or foreground-inconsistent depth images in RGB-D SOD may

contaminate the results of RGB-D SOD.

Recently, some works have paid attention to the qualities

of depth images for saliency detection [20], [24–29]. For

example, Fan et al. [24] designed a depth depurator unit to

determine the qualities of depth images and discard those

depth images of low visual qualities in the pipeline. Differ-

ently, Jin et al. [25] first leveraged RGB images to generate

some meaningful depth images and then fused such features

extracted from the original and those generated depth images

for learning robust depth features. Thanks to that, as shown in

the 1st and 2nd rows of Fig. 2, these models may work well

for those depth images with low visual qualities. However,

they may be powerless for those scenes with foreground-

inconsistent depth images, as shown in the 3rd and 4th rows

of Fig. 2.

As a remedy for such an issue, in this paper, we propose

a two-stage RGB-D SOD model to effectively suppress the

influence of such two types of depth images on the final

saliency prediction via a principle of calibration-and-fusion.

Specifically, the proposed RGB-D SOD model is composed

of an image generation stage and a saliency reasoning stage.

In the image generation stage, we use the input RGB images

to generate their corresponding pseudo depth images via an

image generation network. In the saliency reasoning stage,

we first calibrate such unreliable information in the original

depth images with the aid of those generated pseudo depth

images and then perform cross-modal feature fusion for the

final saliency prediction.

Especially, in the image generation stage, we propose a

Two-steps Sample Selection (TSS) strategy to select those

high-quality and foreground-consistent depth images from the

original RGB-D image pairs as supervision information for

the image generation network. More details, in the first step

of TSS, such depth images with rich saliency cues will be first

selected from the input RGB-D image pairs in terms of the

Intersection of Unions (IoUs) between the predicted saliency

maps and their corresponding ground truths. On top of that,

in the second step, those foreground-inconsistent depth images

will be filtered out from such depth images with rich saliency

cues according to the true positive rates of their predicted

saliency maps. By doing so, such high-quality and foreground-

consistent depth images will be selected from the original

RGB-D image pairs. This will benefit the generation of some

pseudo depth images with more desirable depth information,

thus facilitating the subsequent depth information calibration

in the saliency reasoning stage.

In the saliency reasoning stage, we propose a novel Fea-

ture Calibrating and Fusing network (FCFNet) to effectively

calibrate the raw depth information and capture more re-

liable complementary information from the input RGB-D

images for final saliency prediction. More specifically, in

FCFNet, a Depth Feature Calibration (DFC) module is first

designed to calibrate such unreliable information contained

in the original depth images with the aid of the generated

pseudo depth images. On top of that, a Multi-modal and

Multi-scale Fusion (MMF) module is proposed to capture

the cross-modal complementary information and multi-scale

context information between the calibrated depth features and

the RGB features. As well, in order to make the FCFNet

computationally efficient, we just perform MMF on some

deeper levels (e.g., the last three levels in this paper) of RGB

and calibrated depth features. Accordingly, to avoid the loss of

some detailed information contained in the shallower levels of

features, which is vital for refining salient object boundaries, a

Shallow-level Feature Injection (SFI) module is also presented

to inject such detailed information contained in the shallower

levels (e.g., the first two levels in this paper) of features into

one deeper level (e.g., the third level in this paper) of features

in each unimodal feature extraction stream for refining the

boundaries of salient objects.

Finally, in addition to the networks, the loss functions are

also important for an SOD task. Especially, the Binary Cross

Entropy (BCE) loss [30] and the IoU loss [31] are two widely

used loss functions in the RGB-D SOD field. However, they

are both implemented in a pixel-wise way and ignore the

local regional consistency within the saliency maps, thus easily

leading to the incomplete detection of salient objects or the

introduction of disturbing backgrounds. In view of this, we

also design a new loss function, called Region Consistency

Aware (RCA), as an auxiliary loss function for our proposed
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FCFNet, in which the saliency consistency among the pixels

within the foreground salient object regions and the saliency

consistency among the pixels within the background regions

are simultaneously considered. Under the joint supervision of

the three loss functions, i.e., BCE, IoU and RCA, our FCFNet

will achieve more accurate saliency results.

Our main contributions are summarized as follows:

(1) We propose a calibration-then-fusion based two-stage

model for RGB-D salient object detection, in which the

influence of two types of depth images, i.e., low-quality ones

and foreground-inconsistent ones, on the saliency detection

is simultaneously considered. The results of comprehensive

experiments on six benchmark datasets demonstrate the supe-

riorities of our proposed model over existing ones.

(2) In the image generation stage, we propose a TSS

strategy to select those high-quality and foreground-consistent

depth images from the original input RGB-D image pairs as

supervision information for the generation network of pseudo

depth images.

(3) In the saliency reasoning stage, we propose a Feature

Calibrating and Fusing Network (FCFNet), which is achieved

by three dedicated modules, i.e., DFC, MMF and SFI, to first

calibrate those unreliable depth information and then capture

more cross-modal information from the RGB-D images for

final salient object detection.

(4)We design a novel auxiliary loss, i.e., RCA loss, for

our proposed FCFNet, in which the local regional consistency

within the foreground salient object regions and that within

the background regions are simultaneously considered. With

the collaboration of BCE, IoU and RCA, more complete

foregrounds and less disturbing backgrounds can be achieved

by FCFNet.

II. RELATED WORK

A variety of RGB salient object detection (SOD) meth-

ods have been proposed in recent years and have achieved

outstanding performance [7], [8], [10], [11], [32–36]. How-

ever, they rely only on RGB images, which makes them

powerless under some challenging scenarios (e.g., transparent

regions, cluttered backgrounds and low contrast). For that,

depth images, together with RGB images, are introduced to

the detection of salient objects, which has been proven to

be an effective approach for improving the performance of

SOD. In the past few years, various RGB-D SOD models [17–

20], [25–27], [37], [38], [39–43] have been proposed to boost

the performance of SOD by leveraging both RGB and depth

information.

Early RGB-D SOD methods rely on various types of

handcrafted features, such as contrast [13] and shape [45],

to detect the salient objects. However, these methods usually

suffer from unsatisfactory performance due to their limited

representation ability of handcrafted features. Recently, CNN-

based RGB-D SOD approaches [20], [21], [24], [37], [46]

have achieved a qualitative leap in performance due to the

powerful feature representation ability of CNNs. Such CNN-

based RGB-D SOD approaches may be mainly divided into

three categories, i.e., pixel-level fusion based, result-level

fusion based and feature-level fusion based ones. Especially,

feature-level fusion based RGB-D SOD models have become

the current mainstream in the past few years.

Most of these feature-level fusion based RGB-D SOD

methods focus on how to effectively integrate cross-modal

complementary information from RGB-D images for saliency

detection. For example, Chen et al. [16] proposed a novel

complementarity-aware fusion module to explicitly learn the

complementary information from the paired RGB-D im-

ages by introducing some cross-modal residual functions and

complementarity-aware supervisions. Zhou et al. [38] pro-

posed a cross-flow cross-scale adaptive fusion network to

detect salient objects in RGB-D images. Chen et al. [20]

proposed a novel network to explicitly model the potentiality

of depth images and effectively integrate the cross-modal

complementarity. Cong et al. [39] proposed an end-to-end

cross-modality interaction and refinement network for RGB-

D SOD by fully capturing and utilizing the cross-modality

information in an interaction and refinement manner. Xia et

al. [47] proposed a global contextual exploration network to

exploit the role of multi-scale features at a single fine-grained

level for RGB-D SOD.

Some recent works have also paid attention to the qualities

of input images. For example, Piao et al. [27] presented an

RGB-D SOD network based on knowledge distillation [12],

which can transfer the depth knowledge from the depth stream

to the RGB stream, reducing the influence of low-quality depth

images on the saliency detection results. Similarly, Chen et al.

[28] presented a depth quality aware sub-network to evaluate

the qualities of depth images before the cross-modal feature

fusion. Yang et al. [48] presented a Bi-directional Progressive

Guidance Network for RGB-D salient object detection, which

progressively and interactively suppresses the disturbing cues

within the multi-modal input images. Alternatively, Jin et al.

[25] and Chen et al. [26] suggested a promising way to

alleviate the influence of low-quality depth images on the

detection results by generating some high-quality depth images

as complements to the original depth images in RGB-D SOD.

Zhang et al. [29] exploited some valid priors to alleviate the

influence of low-quality depth images for the SOD task. These

methods may effectively reduce the influence of low-quality

depth images on the final saliency detection. However, they

still ignore the influence of such foreground-inconsistent depth

images on the RGB-D saliency detection. Differently, in our

proposed model, the influence of low-quality depth images

and that of foreground-inconsistent depth images on saliency

detection are simultaneously considered.

III. PROPOSED METHOD

A. Method Overview

The proposed two-stage RGB-D saliency detection model

is composed of an image generation stage and a saliency

reasoning stage. In the image generation stage, some high-

quality and foreground-consistent pseudo depth images will

be generated from the input RGB images by using an image

generation network. More specifically, a TSS strategy will

be employed to select such high-quality and foreground-

consistent depth images from the original input RGB-D images
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as the supervision information when training the image genera-

tion network. In the saliency reasoning stage, a novel FCFNet

is designed for SOD, which first calibrates such unreliable

depth information in the original depth images with the aid of

the generated pseudo depth images and then captures the cross-

modal complementary information for the saliency detection.

This is achieved by a DFC module, an SFI module and an

MMF module. Moreover, together with the BCE and IoU loss

functions, a new proposed RCA loss function will be employed

to train the FCFNet. In the following contents, we will discuss

the two stages in details.

B. Image Generation Stage

As discussed earlier, there may exist some low-quality and

foreground-inconsistent depth images in the RGB-D image

pairs. Directly using such depth images may degrade the

detection performance of RGB-D SOD model greatly. For

that, similar to [25], we also perform an image generation

network on the input RGB images to generate some high-

quality and foreground-consistent pseudo depth images, which

will be used to calibrate the original depth images in the subse-

quent saliency reasoning stage. More details, the same image

generation network [49] is employed in this stage to generate

pseudo depth images for simplicity, which is composed of

several cascaded FCNs and CNNs for discriminative depth

estimation.

In addition to the image generation network, the supervision

information also plays an important role on the qualities of

generated images. Considering that, in this stage, we present

a Two-steps Sample Selection (TSS) strategy to select those

depth images with high visual qualities and foreground con-

sistency from the input RGB-D image pairs as the supervision

information for the image generation network. Fig. 3 illustrates

the diagram of the proposed TSS strategy, and the specific

details are as follows.

Step1: Select depth samples Da containing more saliency

cues from the input RGB-D image pairs via the IoUs [31]

between the saliency maps predicted by depth images and

their ground truths (GTs). This is due to the following con-

siderations. The IoUs can measure the consistency between

the depth saliency maps and their corresponding GTs, further

reflecting the amount of saliency information contained in the

depth images to some extent.

Specifically, we first train an encoder-decoder network to

predict the depth saliency maps Pd. Here, the VGG network

[50] is employed as the encoder and the decoder part of U-

Net [51] is employed as the decoder. After that, for each

original depth image (e.g., the k-th depth image), we compute

the IoU value D
k
iou between the saliency map P

k
d and its

corresponding ground truth GT
k, i.e.,

D
k
iou =

P
k
d ∩GT

k

P
k
d ∪GT

k
. (1)

Finally, those depth images with more saliency cues, i.e., with

D
k
iou ≥ th1, are selected from the original RGB-D image

pairs, obtaining a new depth image set Da. Here, the threshold

th1 is experimentally set to 0.9 in this paper.

Original depth images

𝐷𝑖𝑜𝑢𝑘 ≥ 0.90
Select Abandon

𝑇𝑃𝑑𝑘 > 𝑇𝑃𝑟𝑘
Select Abandon

Fig. 3. Diagram of the proposed TSS strategy.

Step2: Select those high-quality and foreground-consistent

depth images from Da by further computing the true positive

rates TPd of their predicted saliency maps, obtaining the final

depth image set Db as supervision information for the image

generation network.

Specifically, we first feed RGB images to the re-trained

SOD network mentioned in the first step for predicting RGB

saliency maps Pr. Then, for each depth image in Da, we

calculate the positive rate TP
k
d of its depth saliency map P

k
d ,

as well as the positive rate TP
k
r of its corresponding RGB

saliency map P
k
r , i.e.,

TP
k
d =

P
k
d ∩GT

k

GT
k

,TP
k
r =

P
k
r ∩GT

k

GT
k

. (2)

Finally, we select those depth images with TP
k
d > TP

k
r from

the depth samples set Da as the final depth samples set Db. As

shown in Fig. 3, such high-quality and foreground-consistent

depth images can be effectively selected from the original

RGB-D image pairs by using our proposed TSS strategy. On

top of that, we further select those RGB images corresponding

to such finally selected depth images from the original RGB-D

images, obtaining a new set of RGB-D image pairs RD.

Given the RGB-D image set RD constructed above, the

image generation network in [49] is re-trained in this paper.

Here, the selected RGB images are used as the inputs of
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(a) (b) (c) (d)

Fig. 4. Visualization of the pseudo depth images obtained by using our
proposed TSS strategy. (a) RGB images; (b) Depth images; (c) Generated
pseudo depth images; (d) GTs for saliency maps.

the image generation network and their corresponding depth

images are used as the supervision information. After training,

we feed all of the RGB images contained in the original RGB-

D image pairs into the re-trained image generation network

to produce their corresponding high-quality and foreground-

consistent pseudo depth images. These generated pseudo depth

images will be used to calibrate the original depth images

in the subsequent saliency reasoning stage. As shown in

Fig. 4, compared to those original low-quality or foreground-

inconsistent depth images, the generated pseudo depth images

usually have higher visual qualities or have better foreground

consistency with their corresponding RGB images.

C. Saliency Reasoning Stage

In the saliency reasoning stage, the original depth features

are first calibrated by using those pseudo depth images gen-

erated from the first stage and then fused with the RGB

features for better capturing the cross-modal complementary

information within the multi-modal RGB-D images. To this

end, we propose a Feature Calibrating and Fusing Network

(FCFNet) in this stage for saliency detection

Specifically, as shown in Fig. 5, the proposed FCFNet

contains three key components: a DFC module, an MMF

module and an SFI module. First, a VGG16 based three-

stream encoding network is deployed to simultaneously extract

hierarchical features from RGB images, original depth images

and pseudo depth images, which are denoted as ri, d
i
o and d

i
pse

(i = 1,2,3,4,5), respectively. Here, i denotes the feature level

index. After that, the DFC module is employed to calibrate

such original depth features d
i
o with the aid of the pseudo

depth features d
i
pse, obtaining the calibrated depth features

d
i. Subsequently, several MMF modules are performed on the

RGB features ri and the calibrated depth features d
i, achieving

cross-modal feature fusion. Especially, considering the trade-

off between the computational complexity and the saliency

detection performance, the MMF module is only performed on

the last three levels as in [52].Meanwhile, to avoid the loss of

some detailed information from the shallower levels during the

cross-modal feature fusion, the proposed SFI module is further

employed to inject such valuable unimodal features from the

shallower levels (i.e, the first two levels) into the middle level

(i.e., the third level) of unimodal features before they are

fused. Finally, the fused cross-modal features are integrated

in a progressive way, and some auxiliary loss functions are

applied to facilitate the optimization, obtaining three levels of

saliency maps S
(t) (t = 3,4,5). Here, S

(3) is taken as the final

saliency map in this paper. Especially, the existing BCE, IoU

and our proposed RCA loss functions are jointly performed

on FCFNet for better saliency detection results. Details about

these components mentioned above are seen in the following

contents.

1) Depth Feature Calibration Module: As discussed

earlier, there may exist some low-quality or foreground-

inconsistent depth images in the original RGB-D image pairs.

Directly using the features extracted from the original depth

images may easily deteriorate the performance of an RGB-D

SOD model. In order to address such a problem, as shown in

Fig. 6, we propose a Depth Feature Calibration (DFC) module

to calibrate such original depth features with the aid of the

generated pseudo depth images before they are fed into the

cross-modal feature fusion module.

Specifically, we first initially suppress those unreliable cues

contained in original depth features d
i
o by utilizing the ex-

tracted pseudo depth features d
i
pse to re-weight the importance

of unimodal features in the channel dimension. More specific,

the original depth features d
i
o and the pseudo depth features

d
i
pse are first concatenated to learn a set of channel-wise

weights via convolution and global average pooling operations,

i.e.,

W
i = σ(GAP(Conv3(Cat(d

i
o,d

i
pse), α))), (3)

where GAP(∗) denotes the global average pooling. σ(∗)
refers to the Sigmoid operation. W

i denotes the channel-

wise weights for the i-th level of original depth features

d
i
o. Conv3(∗, α) denotes a 3×3 convolutional layer with its

parameters α. Cat(∗, ∗) denotes the concatenation operation.

With the channel-wise weights, the initially calibrated depth

features d
i
ic are obtained by

d
i
ic = W

i ⊗d
i
o ⊕(1−W

i)⊗ d
i
pse, (4)
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Conv1_2 Conv2_2 Conv3_4 Conv4_4 Conv5_4

RGB

SFI

MMF MMF MMF

DFC DFC DFC DFC

Conv1_2 Conv2_2 Conv3_4 Conv4_4 Conv5_4

Conv1_2 Conv2_2 Conv3_4 Conv4_4 Conv5_4

Depth

Pseudo-depth

Decoder_1 Decoder_3Decoder_2

GT

SFI

SFI
Shallow-level Feature 

Injection Module
DFC

Depth Feature 

Calibration Module
MMF

Multi-Modal Multi-Scale 

Fusion Module

Flow of 

RGB Data

Flow of Original 

Depth Data

Flow of Generated 

Depth Data

Deep 

Supervision

Flow of 

Cross-Modal
Flow of Decoder

Flow of Enhanced 

Depth  Data Output

Flow of Decoder 

Supplement

DFC

S(5) S(4) S(3)

Decoder

Fig. 5. Diagram of the proposed FCFNet. First, RGB features, original depth features and pseudo depth features are extracted from the three-stream backbone
network, respectively. Then, original depth features and pseudo depth features are fed into the DCF module to calibrate those original depth features. Next,
unimodal RGB features and calibrated depth features are fused via the proposed MMF module to capture cross-modal complementary information and multi-
scale context information. In addition, in order to avoid the loss of some detailed information contained in the shallower levels of features, the SFI module is
applied to inject such important detailed information from the first two levels into the third level before performing cross-modal feature fusion. Finally, those
cross-modal features are fed into the decoder to progressively achieve saliency reasoning.

DFC𝑑𝑜𝑖 C

C

𝑑𝑝𝑠𝑒𝑖

𝑑𝑝𝑠𝑒𝑖

di

MaxPool

AvgPool

MaxPool Max Pooling AvgPool Average Pooling

Element-wise multiplication Element-wise addition C Concatenation

Global Average Pooling

Wi

1-WiConv3×3 SigmoidGAP

GAP

Conv7×7 Sigmoid

Fig. 6. Architecture of the proposed DFC.

where ⊗ denotes the element-wise multiplication and ⊕ de-

notes the element-wise addition. 1 denotes an all-one vector

with the same size as W
i.

Then, the pseudo depth features d
i
pse are further applied to

calibrate d
i
ic via a spatial-attention mechanism, achieving the

salient content alignment, i.e.,

d
i
en = d

i
ic ⊗W

i
sa(d

i
pse)⊕ d

i
ic, (5)

where Wsa(∗) denotes the spatial weight generation function

[53], i.e.,

W
i
sa(d

i
pse) = σ(Conv7(Cat(Avg(d

i
pse),Max(d

i
pse)), ω)).

(6)

Here, Conv7(∗, ω) denotes a 7×7 convolutional layer with its

parameters ω. Avg(∗) denotes the average pooling operation

along the channel dimension. Max(∗) denotes the max pooling

operation along the channel dimension.

Finally, the pseudo depth features d
i
pse are further em-

bedded into the enhanced depth features d
i
en via a skip

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 7. Visualization of calibrated depth features. (a) RGB images; (b)
Original depth images; (c) Generated pseudo depth images; (d) Original depth
features d

1
o; (e) Initially calibrated depth features d

1

ic; (f) Enhanced depth

features d
1
en; (g) Finally calibrated depth features d

1; (h) GTs for saliency
maps.

connection, obtaining the finally calibrated depth features d
i,

i.e.,

d
i = d

i
pse ⊕d

i
en . (7)

Fig. 7 visualizes the calibration of original depth features

with the aid of the extracted pseudo depth features in the DFC

module. Compared with the original depth features in Fig. 7

(d), the finally calibrated depth features in Fig. 7 (g) contain

more reliable depth information about the salient objects, while

suppressing disturbing cues within the background regions.
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C𝑟1
𝑟2

Max_pool

Average_pool𝑟3
Max_pool Max Pooling Average_pool Average Pooling Downsample

R𝑒𝑛3C

SFIConv3×3

SigmoidConv7×7

Conv3×3 Conv3×3

Fig. 8. Architecture of the proposed SFI.

2) Shallow-level Feature Injection Module: As afore-

mentioned, we only perform the cross-modal feature fusion

on the last three levels of unimodal features for reducing

computational complexity. However, doing that will lose some

important detailed information from shallower levels, which is

crucial for refining the boundaries of salient objects. In view

of this, we design an SFI module that selectively injects those

valuable unimodal features from the first two levels into the

third level of unimodal features.

Fig. 8 illustrates the details of the proposed SFI module,

where the injection of shallower-level RGB features is taken

as an example. As shown in Fig. 8, in SFI, the first two levels

of unimodal RGB features are first concatenated to obtain the

shallower levels of fusion features rsl, i.e.,

rsl = Conv3(Cat(Conv3(Down(r1), ε), r2), β), (8)

where Down(∗) denotes the downsample operation. Conv3(∗,

ε) and Conv3(∗, β) denote two 3×3 convolutional layers with

their parameters ε and β, respectively.

The same spatial-attention mechanism mentioned in the

DFC module is then applied to the third level of RGB features

r3 for selecting those valuable detailed information from rsl.

Finally, such selected RGB features are further injected into

the third level of RGB features, obtaining the enhanced RGB

features r3en. The process can be described as:

r
3
en = Conv3(Down(rsl), γ)⊗Wsa(r

3)⊕ r
3, (9)

where r3en denotes the third level of enhanced RGB features.

Conv3(∗, γ) denotes a 3×3 convolutional layer with its

parameters γ. Accordingly, we also obtain the middle level

of enhanced depth features d
3
en.

3) Multi-modal Multi-scale Fusion Module: Employing

those simple fusion strategies is hard to fully exploit comple-

mentary information within RGB-D image pairs. Considering

that, we propose a Multi-modal Multi-scale Fusion (MMF)

module to achieve the fusion of RGB and calibrated depth

features, where the unimodal features (ri and d
i) are first

fused and then enhanced from a cross-scale perspective for

achieving better saliency detection results. As shown in Fig.

9, in MMF, a weighted channel attention mechanism is first

employed to re-weight and fuse the corresponding channels

of unimodal features from different modalities, resulting in

initially fused features. Afterwards, a Multi-Scale Attention

(MA) module is designed, where the initially fused features

are fed into four parallel branches to capture their multi-scale

contextual information for dealing with the challenge of object

scale variations in the scenes. Meanwhile, the importance of

those extracted multi-scale features is re-assigned to obtain the

finally fused features.

Specifically, unimodal features ri and d
i are first concate-

nated and then fed into some convolution layers to learn

the channel-wise relative importance weights, which can be

formulated as:

F
i = CB(Cat(ri,d

i), ϕ), (10)

W
i
fus = σ(MLP(GAP(F

i), η)+MLP(GMP(F
i), ψ)), (11)

where i = 3, 4, 5. Especially, when i = 3, r3 and d
3 are the

enhanced unimodal features (r3en and d
3
en) obtained by the

SFI module, respectively. F
i denotes the concatenated features

of ri and d
i. CB(∗, ϕ) denotes a convolutional blocks with

its parameters ϕ, which contains two 3 × 3 convolutional

layers. MLP(∗, η) and MLP(∗, ψ) denote two fully connected

blocks with their parameters η and ψ, respectively. GAP(∗)
and GMP(∗) denote the global average pooling operation and

the global max pooling operation, respectively. W
i
fus denotes

a set of channel-wise weights. With the obtained channel-wise

weights W
i
fus, the fused features are obtained by

F
i
fus = r

i ⊗W
i
fus +d

i ⊗(1−W
i
fus), (12)

where F
i
fus denotes the i-th level of initially fused features.

1 denotes an all-one vector with the same size of W
i
fus.

On top of that, as illustrated in the bottom row of Fig. 9,

four parallel convolution layers with different kernel sizes are

performed on the initially fused features F
i
fus, obtaining four

scales of features, i.e.,

F
i
m = Convm(F

i
fus, θm), (13)

where Convm(∗, θm) denotes a convolutional layer with kernel

size of m × m (m = 3, 5, 7, 9). θm refers to their parameters.

F
i
m (m = 3, 5, 7, 9) denotes different scales of features in the

i-th level.

In addition, considering that different scales of features have

certain contributes for final saliency prediction, we propose

a scale-aware attention mechanism to adaptively fuse those

multi-scale features. Specially, we first feed the multi-scale

features into several SE blocks [54], obtaining their scale

attention weights V
i
m (m = 3, 5, 7, 9), respectively. Then the

softmax function is performed on V
i
m to obtain the multi-

scale weight vector W
i, which reflects the feature importance

of different scales. Finally, the multi-scale features are re-

weighted by using such importance weight vector, achieving

the finally enhanced cross-modal features F
i in the i-th

level. Mathematically, the whole process can be expressed as

follows:

V
i
m = SE(F

i
m), (14)

W
i = Softmax(Cat(V

i
3,V

i
5,V

i
7,V

i
9)), (15)

F
i = Cat(W

i ⊗Cat(F
i
3,F

i
5,F

i
7,F

i
9)). (16)

Here, SE (∗) denotes the SE block in [54].
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Fig. 9. Architecture of the proposed MMF.

4) Loss Function:

RCA Loss: The BCE loss [30] and IoU loss [31] are

two widely used loss functions in SOD, which provide some

pixel-level constraints to force the predicted results close to

the GTs. However, they usually ignore the local regional

consistency within the saliency maps, resulting in inaccurate

saliency detection results. In view of this, we propose a

novel auxiliary loss function, i.e., Region Consistency Aware

(RCA) loss, where the local regional consistency within the

foreground regions and the local regional consistency within

the background regions are simultaneously considered.

For that, we first compute the false negative (FN) part in the

foreground salient object regions and the false positive (FP)

part in the background regions by using Eq. (17) and Eq. (18),

respectively. In Eq. (17) and Eq. (18), S denotes the predicted

saliency map and G denotes its corresponding ground truth. |·|
denotes the aboslute value of a number. Given FN and FP,

the proposed RCA loss ℓrca is computed by using Eq. (19)

to enhance the local regional saliency consistency within the

foreground salient object regions as well as in the background

regions by reducing the saliency differences between each

pixel and its surrounding pixels.

FN = |(G− S)⊗G| , (17)

FP = |(S−G)⊗ (1−G)| , (18)

ℓrca = 1
H×W

H
∑

i=1

W
∑

j=1

∣

∣FN−Avgspa(FN)
∣

∣+

1
H×W

H
∑

i=1

W
∑

j=1

∣

∣FP−Avgspa(FP)
∣

∣.

(19)

In Eq. (19), Avgspa(∗) denotes the 7 × 7 average pooling

operation along the spatial dimension. H and W denote the

height and width of the saliency map, respectively. 1 denotes

an all-one vector with the same size as G. The proposed

RCA loss is beneficial for facilitating the completeness of

salient objects and suppressing the introduction of disturbing

backgrounds in the saliency map. This will be verified in the

experimental part.

Total Loss: Given the proposed RCA loss ℓrca, a joint loss

function (Ljoint) will be employed in this paper to train our

proposed FCFNet, which is defined by

Ljoint(S,G) = ℓbce(S,G) + ℓiou(S,G) + λ ∗ ℓrca(S,G),
(20)

where ℓbce (∗) and ℓiou(∗) denote the BCE loss and IoU loss,

respectively. The hyper-parameter λ is experimentally set to

15 in the paper.

As shown in Fig. 3 and similar to that in [62], multi-level

supervisions are also performed on saliency maps S
(i)(i =

3, 4, 5) in our proposed model, which are deduced from the

side-output features of each decoder through a 1×1 convolu-

tional layer and a Sigmoid function. Therefore, the total loss

function Ltotal is expressed by

Ltotal =
5
∑

i=3

(Ljoint(Up(S(i)),G)). (21)

Here, Up(∗) denotes the bilinear upsampling operation.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Evaluation Metrics

1) Datasets: We evaluate the proposed model on six

benchmark datasets, including DUT-RGBD [55], NJU2K [63],

NLPR [64], STERE [65], LFSD [66] and RGBD135 [13].

DUT-RGBD [55] consists of 1200 paired images captured by

Lytro camera in real-life scenes. This dataset is split into 800

training data and 400 testing data. NJU2K [63] consists of

1985 RGB-D stereo images, which are collected from 3D

movies, the Internet and Photographs. NLPR [64] consists

of 1000 images pairs captured by Kinect under different

illumination conditions. STERE [65] consists of 1000 stereo-

scopic images, where the depth images are estimated from the

stereo images. LFSD [66] consists of 100 images with depth
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TABLE I
QUANTITATIVE COMPARISONS OF OUR PROPOSED MODEL WITH 21 STATE-OF-THE-ART RGB-D SALIENCY MODELS ON SIX BENCHMARKS DATASETS.

THE BEST THREE RESULTS ARE SHOWED IN RED, GREEN AND BLUE COLORS, RESPECTIVELY.

Datasets Metric MMCI TANet DMRA CPFP D3Net ICNet A2dele S2MA DRLF FRDT JL-DCF SSF DQSD CCAFNet DFMNet TMFNet CIRNet GCENet CFIDNet HINet DCMF Ours
[18] [17] [55] [56] [24] [19] [27] [57] [58] [59] [60] [52] [28] [38] [21] [61] [39] [47] [40] [41] [42] (Ours)

Fβ ↑ 0.852 0.874 0.886 0.877 0.900 0.891 0.873 0.889 0.883 0.898 0.904 0.896 0.897 0.910 0.913 0.882 0.916 0.915 0.920 0.913 0.888 0.923
adpF↑ 0.812 0.844 0.872 0.837 0.840 0.867 0.874 0.836 0.856 0.878 0.883 0.885 0.840 0.886 0.883 0.874 0.890 0.890 0.889 0.887 0.881 0.891

NJU2K Eξ ↑ 0.915 0.925 0.927 0.923 0.936 0.926 0.916 0.930 0.926 0.933 0.944 0.935 0.936 0.943 0.949 0.910 0.947 0.947 0.913 0.945 0.925 0.953
adpE↑ 0.878 0.896 0.920 0.917 0.892 0.904 0.897 0.896 0.900 0.917 0.912 0.912 0.934 0.919 0.907 0.902 0.918 0.919 0.928 0.922 0.925 0.929

Sα ↑ 0.858 0.878 0.886 0.878 0.900 0.894 0.869 0.894 0.866 0.898 0.910 0.899 0.899 0.909 0.912 0.910 0.916 0.914 0.914 0.915 0.913 0.918
MAE ↓ 0.079 0.060 0.051 0.053 0.046 0.052 0.051 0.053 0.055 0.048 0.038 0.043 0.050 0.37 0.039 0.041 0.039 0.038 0.038 0.039 0.043 0.034

Fβ ↑ 0.815 0.863 0.880 0.867 0.897 0.908 0.880 0.902 0.870 0.867 0.915 0.896 0.898 0.908 0.910 0.867 0.914 0.907 0.910 0.906 0.875 0.911
adpF↑ 0.747 0.795 0.854 0.821 0.834 0.867 0.870 0.847 0.829 0.863 0.875 0.875 0.842 0.880 0.878 0.854 0.873 0.876 0.875 0.875 0.854 0.879

NLPR Eξ ↑ 0.913 0.941 0.947 0.932 0.952 0.945 0.953 0.930 0.945 0.963 0.953 0.952 0.956 0.961 0.944 0.963 0.947 0.953 0.950 0.957 0.940 0.960
adpE↑ 0.884 0.916 0.941 0.917 0.932 0.941 0.945 0.937 0.926 0.942 0.952 0.946 0.934 0.948 0.947 0.926 0.949 0.949 0.948 0.948 0.940 0.949

Sα ↑ 0.856 0.886 0.899 0.888 0.912 0.923 0.896 0.915 0.896 0.914 0.926 0.914 0.916 0.921 0.923 0.921 0.923 0.919 0.922 0.922 0.922 0.924
MAE ↓ 0.059 0.041 0.031 0.036 0.030 0.028 0.028 0.030 0.032 0.029 0.024 0.026 0.029 0.026 0.026 0.027 0.025 0.025 0.026 0.026 0.029 0.024

Fβ ↑ 0.767 0.790 0.898 0.779 0.793 0.850 0.892 0.901 0.801 0.903 0.911 0.924 0.827 0.913 0.747 - 0.929 0.923 - - 0.928 0.931
adpF↑ 0.753 0.778 0.793 0.793 0.755 0.830 0.891 0.886 0.803 0.901 0.882 0.904 0.818 0.903 0.751 - 0.909 0.909 - - 0.906 0.910

DUT Eξ ↑ 0.859 0.861 0.933 0.829 0.829 0.899 0.930 0.937 0.856 0.941 0.943 0.951 0.878 0.943 0.844 - 0.954 0.951 - - 0.950 0.956
adpE↑ 0.855 0.866 0.868 0.868 0.821 0.897 0.924 0.921 0.872 0.938 0.931 0.946 0.889 0.940 0.850 - 0.945 0.945 - - 0.943 0.949

Sα ↑ 0.791 0.808 0.889 0.773 0.773 0.852 0.885 0.903 0.826 0.910 0.881 0.915 0.845 0.903 0.791 - 0.922 0.918 - - 0.920 0.924
MAE ↓ 0.113 0.093 0.048 0.076 0.098 0.072 0.042 0.043 0.080 0.039 0.055 0.033 0.072 0.037 0.092 - 0.034 0.035 - - 0.035 0.032

Fβ ↑ 0.863 0.861 0.857 0.874 0.891 0.898 0.879 0.882 0.878 0.880 0.898 0.890 0.886 0.887 0.904 - 0.903 0.900 0.903 0.883 0.872 0.906
adpF↑ 0.829 0.835 0.831 0.830 0.859 0.864 0.832 0.856 0.845 0.855 0.862 0.861 0.839 0.860 0.863 - 0.862 0.866 0.864 0.835 0.866 0.868

STERE Eξ ↑ 0.927 0.923 0.916 0.925 0.938 0.942 0.928 0.932 0.929 0.927 0.942 0.936 0.935 0.934 0.948 - 0.945 0.940 0.924 0.933 0.930 0.947
adpE↑ 0.901 0.906 0.933 0.918 0.904 0.938 0.913 0.918 0.920 0.899 0.916 0.923 0.908 0.921 0.926 - 0.925 0.925 0.921 0.923 0.926 0.927

Sα ↑ 0.873 0.871 0.845 0.879 0.899 0.903 0.879 0.890 0.888 0.901 0.900 0.893 0.892 0.892 0.908 - 0.905 0.899 0.901 0.892 0.903 0.906
MAE ↓ 0.068 0.060 0.063 0.051 0.046 0.045 0.045 0.051 0.050 0.043 0.042 0.044 0.051 0.044 0.040 - 0.043 0.040 0.043 0.049 0.043 0.038

Fβ ↑ 0.771 0.796 0.856 0.826 0.810 0.871 0.835 0.835 0.828 0.855 0.867 0.866 0.847 0.832 0.866 0.846 0.873 0.849 0.865 0.847 0.771 0.876
adpF↑ 0.779 0.794 0.849 0.813 0.800 0.861 0.833 0.803 0.823 0.847 0.840 0.840 0.842 0.832 0.863 0.843 0.849 0.850 0.849 0.838 0.768 0.851

LFSD Eξ ↑ 0.839 0.847 0.900 0.872 0.862 0.903 0.879 0.873 0.873 0.899 0.902 0.900 0.878 0.876 0.902 0.865 0.906 0.883 0.902 0.888 0.842 0.913
adpE↑ 0.840 0.845 0.899 0.867 0.833 0.891 0.869 0.863 0.856 0.889 0.882 0.895 0.882 0.871 0.891 0.851 0.899 0.885 0.891 0.886 0.822 0.902

Sα ↑ 0.787 0.801 0.847 0.828 0.825 0.868 0.836 0.837 0.834 0.857 0.833 0.859 0.851 0.826 0.870 0.849 0.869 0.846 0.870 0.852 0.870 0.875
MAE ↓ 0.132 0.111 0.075 0.088 0.095 0.071 0.074 0.094 0.089 0.073 0.084 0.066 0.085 0.087 0.068 0.084 0.069 0.079 0.070 0.076 0.068 0.061

Fβ ↑ 0.822 0.827 0.888 0.846 0.885 0.913 0.867 0.935 0.869 0.868 0.926 0.883 0.927 0.937 0.932 0.892 - 0.925 0.934 - 0.901 0.939
adpF↑ 0.750 0.794 0.857 0.818 0.874 0.877 0.868 0.893 0.868 0.861 0.886 0.882 0.881 0.904 0.895 0.876 - 0.904 0.898 - 0.896 0.908

RGBD135 Eξ ↑ 0.928 0.910 0.945 0.923 0.946 0.960 0.923 0.973 0.940 0.942 0.969 0.941 0.973 0.977 0.973 0.968 - 0.966 0.943 - 0.967 0.980
adpE↑ 0.899 0.919 0.942 0.927 0.956 0.945 0.919 0.971 0.932 0.923 0.966 0.946 0.967 0.975 0.971 0.965 - 0.966 0.940 - 0.967 0.978

Sα ↑ 0.848 0.858 0.901 0.872 0.898 0.920 0.885 0.937 0.895 0.902 0.924 0.905 0.935 0.938 0.938 0.936 - 0.926 0.917 - 0.881 0.939
MAE ↓ 0.065 0.046 0.029 0.038 0.031 0.027 0.028 0.021 0.030 0.028 0.021 0.025 0.021 0.018 0.019 0.021 - 0.018 0.023 - 0.023 0.017

information and human-labeled ground-truths. RGBD135 [13]

consists of 135 RGB-D images from seven indoor scenarios.

2) Evaluation Metrics: To quantitatively evaluate the effec-

tiveness of our proposed model, we use some standard metrics,

including Precision-Recall (PR) [67] [68], Mean Absolute

Error (MAE) [69], maximum F-measure (Fβ) [67], adptive

F-measure (adpF) [67], S-measure (Sα) [70], maximum E-

measure (Eξ) [71] and adptive E-measure (adpE) [71]. Larger

values of Fβ , Sα, Eξ, adpF, adpE and smaller values of MAE

are more desirable for an SOD method.

B. Implementation Details

We implement the proposed model by PyTorch [72] with

an NVIDIA 1080Ti GPU. As the same splitting way in [27]

[55], we select 800 samples from DUT-RGBD [55], 1485

samples from NJU2K [63] and 700 samples from NLPR [64]

for training. The remaining images in the three datasets and

those images in the remaining two datasets are all for testing

to verify the performance of different models. At the training

and testing phase, all the input images are resized to 224×224.

Random horizontal flipping and random vertical flipping are

adopted for data augmentation. The image generation network

is trained with Adam optimizer [73], where the batch size,

learning rate and weight decay are set to 4, 1e-4 and 4e-

5, respectively. The FCFNet is trained with the Stochastic

Gradient Descent (SGD) optimizer [74]. Here, the batch size,

momentum and weight decay of the SGD optimizer are set

to 5, 0.9 and 5e-4, respectively. Meanwhile, the learning rate

is set to 1e-4, which is divided by 10 after 35 epochs. The

maximum epochs of our network is 70.

C. Comparison with State-of-the-Art Models

We compare our proposed model with 21 state-of-the-art

RGB-D SOD methods, including MMCI [18], TANet [17],

DMRA [55], CPFP [56], D3Net [24], ICNet [19], A2dele

[27], S2MA [57], DRLF [58], FRDT [59], JL-DCF [60], SSF

[52], CMWNet [75], DQSD [28], DFMNet [21], CCAFNet

[38], CIRNet [39],GCENet[47], CFIDNet [40], HINet [41]

and DCMF [42]. For fair comparisons, the saliency maps of

these SOTA models are obtained from their authors or the

deployment codes provided by their authors.

Some visualization results are illustrated in Fig. 10. As

shown in the first two rows of Fig. 10, all of the methods men-

tioned here perform well for those images with simple scenes.

However, as shown in the 3rd, 4th, 5th and 6th rows of Fig.

10, when the depth images have low visual qualities or have

some inconsistent foregrounds with their corresponding RGB

images, those SOTA methods cannot obtain desirable detection

results. For example, some salient objects are not completely

detected, or parts of the backgrounds are not well suppressed

during the saliency detection. Moreover, as shown in the last

two rows of Fig. 10, when the scenarios have multiple objects,

most SOTA models fail to achieve complete detection for all

salient objects. While our method can still effectively detect

the salient objects for these challenging scenes. This may be

due to the fact that such undesirable information in the original

low-quality or foreground-inconsistent depth images are well

calibrated by using those generated pseudo depth images. As

well, the multi-scale context information may be effectively

exploited for saliency detection in our method because of the

proposed MMF module. As shown in Table I and Fig. 11, it

can be easily seen that our proposed model outperforms those

SOTA methods in terms of the five metrics, i.e., Fβ , Sα, Eξ,

MAE and PR curves on the NJU2K [63], DUT-RGBD [55]

and LFSD [66] datasets. For NLPR [64] and STERE [65], our

proposed model also achieves competitive results with these

SOTA methods.

D. Ablation Study

Actually, our proposed method consists of two stages, i.e.,

an image generation stage and a saliency reasoning stage.
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RGB Images and Low-quality Depth Images

Multi objects

RGB Images and foreground-inconsistent Depth Imgaes

Simple RGB Images and Accurate Depth Images

(a) (b) (c) (e)(d) (f) (h)(g) (i)

(j)

(l)(k) (m) (p)(n) (o) (r) (s) (t)(q) (l) (m) (n) (o)(j) (p)

Fig. 10. Visual comparisons of different methods. (a) RGB images; (b) Depth images; (c) MMCI [18]; (d) TANet [17]; (e) CPFP [56]; (f) DMRA [55]; (g)
D3Net [24]; (h) SSF [52]; (i) ICNet [19]; (j) A2dele [27]; (k) S2MA [57]; (l) DRLF [58]; (m) FRDT [59]; (n) CMWNet [75]; (o) CCAFNet [38]; (p) JL-DCF
[60]; (q) DQSD [28]; (r) DFMNet [21]; (s) CIRNet [39]; (t)GCENet [47]; (l) CFIDNet [40]; (m) HINet [41]; (n) DCMF [42]; (o) FCFNet (Ours); (p) GTs.

(a) DUT-RGBD [51] (b) NLPR [60] (c) NJU2K [59]

(d) LFSD [62] (e) RGBD135 [13] (f) STERE[61]

Fig. 11. Quantitative comparisons of our proposed method with other methods on six benchmark datasets.

Thus, we conduct two sets of ablation experiments on the

NJU2K dataset [63] to verify the effectiveness of each com-

ponent contained in each stage, respectively. First, we verify

the effectiveness of the TSS strategy proposed in the image

generation stage. Then, we verify the effectiveness of each

component in FCFNet proposed in the saliency reasoning

stage.

(1) Validity of TSS strategy

In order to demonstrate the effectiveness of the proposed

TSS strategy, we first construct a baseline model, denoted

as ‘B’, where the DFC and SFI modules, together with the

RCA loss, are removed from FCFNet. As well, MMF is

replaced with some element-wise addition operations. On top

of that, we construct four versions of our proposed TSS

strategy by using different sample selection ways, i.e., TSS

(w/o ‘step1’ and ‘step2’), TSS (w/o ‘step1’), TSS (w/o ‘step2’)

and TSS. In TSS (w/o ‘step1’ and ‘step2’), ‘step1’ and ‘step2’
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TABLE II
QUANTITATIVE EVALUATION OF ABLATION STUDIES OF TSS ON NJU2K

DATASET.

Methods MAE Fβ Sα Eζ

B 0.042 0.907 0.906 0.941

B+TSS (w/o ‘step1’ and ‘step2’) 0.042 0.906 0.905 0.942
B+TSS (w/o ‘step1’) 0.040 0.905 0.907 0.941
B+TSS (w/o ‘step2’) 0.040 0.907 0.907 0.941

B+TSS 0.039 0.913 0.909 0.945

are simultaneously removed from our proposed TSS strategy,

which means that we use all original depth images as the

supervision information for the image generation network. In

TSS (w/o ‘step1’) and TSS (w/o ‘step2’), ‘step1’ and ‘step2’

are removed from our proposed TSS strategy, respectively.

The corresponding quantitative results of different versions

are provided in Table II. It can be seen that the method of using

all original depth images as the supervision information even

deteriorates the performance of ‘B’. This is due to the fact that

those original low-quality depth images will contaminate the

qualities of the generated pseudo depth images, thus leading to

unsatisfactory results. Compared to utilizing all original depth

images as supervision information, the performance of ‘B’ is

enhanced after employing the proposed TSS, which indicates

the validity of TSS. Meanwhile, we can also observe that

the performance of ‘B+TSS’ is degraded when the ‘step1’ or

‘step2’ is removed, which indicates that each selection step is

beneficial for the generation of pseudo depth images.

Furthermore, as shown in Fig. 12, we also provide some

visual comparisons of the generated pseudo depth images to

further verify the validity of TSS. As shown in Fig. 12(c),

since those original low-quality and foreground-inconsistent

depth images are utilized to supervise the image generation

network, the pseudo depth images generated by TSS (w/o

‘step1’ and ‘step2’) still have low visual qualities or have

foreground inconsistency with their corresponding RGB im-

ages. Differently, as shown in the first two rows of Fig. 12(e),

the visual qualities of the pseudo depth images generated by

TSS (w/o ‘step2’) are significantly improved by removing

those low-quality depth images as supervision information.

However, as shown in the last two rows of Fig. 12(e), such

method may fail for those depth images that have inconsistent

foregrounds with their corresponding RGB images. Similar

phenomena are reported for TSS (w/o ‘step1’). Specifically,

the pseudo depth images generated by TSS (w/o ‘step1’) have

consistent foregrounds with their corresponding RGB images

but their visual qualities still have large room for improvement.

By comparing Fig. 12(d), Fig. 12(e) and Fig. 12(f), it is easily

observed that better pseudo depth images can be obtained by

using the TSS strategy than by other versions. This indicates

that our proposed TSS strategy can better select those high-

quality and foreground-consistent depth images for supervising

the image generation network than TSS (w/o ‘step1’) and TSS

(w/o ‘step2’) do, thus generating better pseudo depth images

for calibrating the original depth information.

(2) Validity of each component in FCFNet

Specifically, the following five models are mainly involved

in our ablation study to demonstrate the effectiveness of each

(a) (b) (c) (d) (e) (f) (g)

Fig. 12. Visualization of our proposed TSS strategy with different versions.
(a) RGB images; (b) Depth images; (c) Generated pseudo depth images by
using TSS (w/o ‘step1’ and ‘step2’); (d) Generated pseudo depth images by
using TSS (w/o ‘step1’); (e) Generated pseudo depth images by using TSS
(w/o ‘step2’); (f) Generated pseudo depth images by using TSS; (g) GTs for
saliency maps.

TABLE III
QUANTITATIVE EVALUATION OF ABLATION STUDIES OF FCFNET ON

NJU2K DATASET.

Methods MAE Fβ Sα Eζ

FCFNet w/o SFI 0.036 0.921 0.915 0.950

FCFNet w/o DFC 0.036 0.923 0.917 0.951

FCFNet w/o MMF 0.037 0.911 0.911 0.945

FCFNet w/o RCA 0.037 0.920 0.913 0.948

FCFNet 0.034 0.924 0.918 0.952

component in FCFNet:

- FCFNet w/o DFC: FCFNet without the DFC module.

- FCFNet w/o SFI: FCFNet without the SFI module.

- FCFNet w/o MMF: Replacing the MMF module with

element-wise addition in FCFNet.

- FCFNet w/o RCA: FCFNet without the RCA loss.

- FCFNet: Our proposed model.

(a) (d)(c) (e) (f)(b)

Fig. 13. Visual comparisons between FCFNet w/o DFC and FCFNet. (a) RGB
images; (b) Depth images; (c) Generated pseudo depth images; (d) Saliency
maps obtained by FCFNet w/o DFC; (e) Saliency maps obtained by FCFNet;
(f) GTs. The red boxes indicate the obvious differences.

Validity of DFC: In FCFNet w/o DFC, the features ex-
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(a) (b) (c) (d) (e)

Fig. 14. Visual comparisons between FCFNet w/o SFI and FCFNet. (a) RGB
images; (b) Depth images; (c) Saliency maps obtained by FCFNet w/o SFI;
(d) Saliency maps obtained by FCFNet; (e) GTs. The red boxes indicate the
obvious differences.

TABLE IV
QUANTITATIVE EVALUATION OF ABLATION STUDIES OF MMF ON NJU2K

DATASET.

Methods MAE Fβ Sα Eζ

MMF w/o MA 0.036 0.915 0.911 0.949
MMF w/o MA + ASPP 0.036 0.919 0.916 0.951

MMF w/o MA + DASPP 0.038 0.916 0.913 0.948

MMF 0.034 0.923 0.918 0.953

tracted from the original depth images will be directly fed into

the subsequent fusion module to achieve saliency prediction.

As shown in Table III, we can observe that the performance of

FCFNet w/o DFC is worse than the proposed FCFNet. This

indicates that the effectiveness of our DFC module for the

calibration of original depth features. Furthermore, as shown in

Fig. 13, it can be observed that the influence of those unreliable

information from the original depth image can be effectively

reduced with the introduction of DFC.

Validity of SFI: As reported in Table III, SFI also promotes

the performance of saliency detection by injecting the detailed

information from the shallower levels into the middle level of

features. Intuitively, as shown in Fig. 14, the detected salient

objects achieve sharper boundaries by virtue of our proposed

SFI module. This indicates that SFI can effectively exploit the

detailed information contained in the shallower-level features

for better saliency prediction results.

Validity of MMF: It can be seen from the quantitative

results in Table III that replacing our proposed MMF module

with element-wise addition operation will decrease the perfor-

mance of FCFNet. This demonstrates that MMF can facilitate

the cross-modal and multi-scale complementary information

exploration for SOD. Moreover, we also provide some visual

comparisons to verify the effectiveness of our proposed MMF

module in Fig. 15, which demonstrates that multiple salient

objects can be simultaneously detected by using our proposed

MMF module.

Especially, in order to further demonstrate the validity of

MMF for multi-scale information exploitation, we construct

different versions of our proposed MMF module by keeping

CF unchanged and replacing MA with different modules,

which are denoted as MMF w/o MA, MMF w/o MA+ASPP

and MMF w/o MA+DASPP, respectively. In MMF w/o MA,

MA is directly removed from our proposed MMF, which de-

notes that we do not further exploit the multi-scale contextual

(a) (b) (c) (d) (e)

Fig. 15. Visual comparisons between FCFNet w/o MMF and FCFNet. (a)
RGB images; (b) Depth images; (c) Saliency maps obtained by FCFNet w/o
MMF; (d) Saliency maps obtained by FCFNet; (e) GTs. The red boxes indicate
the obvious differences.

(a) (b) (d) (e)(c)

Fig. 16. Visual comparisons between FCFNet w/o RCA and FCFNet. (a) RGB
images; (b) Depth images; (c) Saliency maps obtained by FCFNet w/o RCA;
(d) Saliency maps obtained by FCFNet; (e) GTs. The red boxes indicate the
false positive regions and the blue boxes indicate the false negative regions.

information for SOD. In MMF w/o MA+ASPP, the ASPP

module is added to MMF w/o MA, where the dilation rates

are set to 6/12/18/24 according to the literature [76]. In MMF

w/o MA+DASPP, the DASPP module is added to MMF w/o

MA, where the dilation rates are set to 3/6/12/18/24 according

to the literature [77]. As shown in Table IV, our proposed

MMF obtains better performance than other modules. This

indicates that MMF can more effectively capture the multi-

scale information from the cross-modal RGB-D features via

the proposed MA sub-module for SOD.

Validity of RCA: As shown in Table III, the performance of

SOD is significantly degraded after removing the RCA loss.

This can be also verified in Fig. 16. As shown in the 1st

row of Fig. 16, incomplete foregrounds are easily obtained if

the RCA loss is removed from the joint loss function defined

by Eq. (20). Similarly, as shown in the 2nd row of Fig. 16,

some backgrounds are also mistakenly detected as salient ones

without using the proposed RCA loss function in FCFNet. This

indicates that the local regional saliency consistency within

the foreground salient object regions as well as within the

background regions is beneficial for the accurate segmentation

of salient objects, thus achieving better saliency results by

using our proposed RCA loss.
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V. CONCLUSION

In this paper, a two-stage RGB-D salient object detection

model has been presented, which is composed of an image

generation stage and a saliency reasoning stage. In the image

generation stage, owing to the proposed TSS strategy, high-

quality and foreground-consistent pseudo depth images can

be generated from the input RGB images. In the saliency

reasoning stage, the original depth features are first calibrated

by using the generated pseudo depth images via the proposed

DFC module and then fused with the RGB features for

saliency prediction via the proposed SFI and MMF modules.

By virtue of the proposed calibration-then-fusion strategy,

the influence of such low-quality depth images as well as

that of those foreground-inconsistent depth images on the

saliency prediction can be greatly reduced. Moreover, thanks

to the proposed RCA auxiliary loss function in the saliency

reasoning stage, where the local regional saliency consistency

within the foreground salient object regions and that within the

background regions are both considered, more complete salient

objects and less disturbing backgrounds can be obtained in the

final saliency maps. Experimental results on six benchmark

datasets demonstrate the validity of our proposed RGB-D SOD

model, especially when the depth images have low visual

qualities, or have some inconsistent foregrounds with their

corresponding RGB images in the scenes.
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