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A B S T R A C T   

Due to climate change, the intensity, duration and frequency of heatwaves are likely to increase in the coming 
years. Excessive heat events can increase local urban heat island intensity affecting the health and wellbeing of 
urban dwellers vulnerable to heat stress. Heat-Health Warning Systems (HHWSs) have been developed to warn 
the public of impending heat events and to advise on preventable negative health outcomes. However, metrics 
upon which action triggers are made in HHWSs rely on reported critical outcomes, such as heat-related excess 
death. Thus, human exposure to heat is underestimated in current metrics and consequently, their capacity to 
prevent heat-related health risks remains uncertain, particularly indoors. This study investigates how indoor heat 
stress in urban dwellings at a city-scale can be modelled to enhance Heat-Health Warning and Planning. First, the 
effects of housing typologies on indoor thermal conditions are quantified in a local urban microclimate context. 
We then model the dynamic relationships between outdoor climate and indoor heat exposure to identify specific 
outdoor climatic thresholds as action triggers for alerting urban dwellers’ indoor heat stress. Based on urban 
microclimate data available for a city of Birmingham UK, a proof-of-principle study is presented. The result 
shows the presence of large variances in the heat-health action triggers across different housing typologies. This 
is further extended to consider the Birmingham climate projection scenarios provided by the UKCP18. Compared 
to the current UK Heat-Health Alert Service, we show how indoor heat stress warnings may look like and the 
implications for long-term heat-health planning.   

1. Introduction 

Climate change and associated extreme urban heat events in major 
cities have been closely monitored and analysed, pointing to a trend that 
the intensity, duration, and frequency are very likely to increase in the 
coming decades [1–3]. Consequently, there is increasing concern about 
the likelihood of increasing indoor heat exposure, leading to 
heat-related illness and even mortality [4,5]. This is particularly 
important to urban dwellers, considering the compounding effects of 
population ageing, intensified urban heat islands and increased fre-
quency of urban heatwave episodes. 

Historically, many parts of the world have already experienced un-
expected heat-related risks caused by events such as heatwaves, result-
ing in mortality and morbidity. The heatwave in Chicago in 1995 is 
reported to have caused 700 excess deaths in only one week [6], and 70, 
000 excess deaths were linked to the heatwave in Europe in 2003 [7], 
including 2000 in the UK alone [8] and 15,000 in France [9]. In South 
Korea, about 4.1% of increased excess deaths were observed to be 

related to heatwaves across the seven major cities from 2000 to 2007 
and it reached up to 8.4% in Seoul [10]. 

In response to climate change and heatwaves, the World Health 
Organisation’s (WHO) Regional Office for Europe developed Heat- 
Health Action Plans to help prevent adverse heat-related health ef-
fects, based on meteorological early warning systems and a heat-related 
health information plan, to inform long-term development and urban 
planning [11]. For instance, the UK’s Heat-Health Alert Service is part of 
the Heatwave Plan for England [12]. This is a plan intended to prepare 
for, alert people to, and prevent the major avoidable effects on health 
during periods of severe heat in England. The meteorological early 
warning is based on the exceedance of a certain threshold of a weather 
variable or index defined by the regional context. 

The existing warning system is in principle developed on the basis of 
an assessment of weather-health outcomes, such as human bio- 
meteorological responses [13]. However, these warnings tend to be 
entirely based upon outdoor climates at the regional or city scale, owing 
to the capacity of weather forecasting, representing less consideration of 
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urban climatic diversity [14]. More importantly, these warnings and 
plans do not explicitly account for the characteristics of the dwellings in 
which people, particularly vulnerable people, spend the overwhelming 
majority of their time. 

Several studies have assessed occupants’ indoor heat exposure and 
the corresponding health risks [15–18]. Building indoor thermal con-
ditions can be determined by multiple factors of heat (energy) flow 
pathways, such as building thermal characteristics and their geometric 
configuration, combined with internal heat loads derived from occu-
pants’ activities and related behaviours under on-site ambient climates 
[16,19]. The consideration of those pathways in Heat Health Plans is 
particularly important in the urban built environment where mechanical 
cooling has not been widely adopted yet (i.e., the UK households), 
especially when unexpected extreme heat events may occur [20,21]. 

The question therefore is how Heat-Health Plans can effectively ac-
count for urban dwellers’ indoor heat exposure, given the physical 
characteristics of their homes as well as spatial variations in the urban 
climatic. As noted earlier, this is significant given that people spend the 
majority of their life indoors: over 90% in developed countries [18,22], 
with around 66% of their time spent in their homes (i.e. [23]). The 
proportion of vulnerable groups staying in their homes could be much 
higher. A study highlighting the implication of the effects of indoor heat 
on health indicates that buildings are clear modifiers of the impacts of 
climate on health outcomes [24], so that building characteristics are one 
of the key drivers on heat exposure. 

This study intends first to provide evidence for why the Heat Health 
Warning Systems need to consider urban dwellers’ indoor heat expo-
sure, accounting for buildings’ thermal characteristics under urban cli-
matic diversity as a short-term Heat-Health Plan; then to suggest how 
those climate-building-heat flow pathways can contribute to enhancing 
mid- and long-term Heat-Health Plans. This can be achieved by quan-
tifying the effect of housing thermal characteristics and geometric 
configurations on indoor thermal conditions at local (microclimate) 
scale; then, modelling the relationship between outdoor climate and 
indoor heat exposure to identify specific outdoor climatic thresholds (as 
an action trigger) for urban dwellers’ indoor heat exposure (stress). We 
anticipate this will allow for mapping local differences in urban 
dwellers’ indoor heat exposure in present and future climates, 
enhancing the utility of Heat Health Planning for urban dwellers’ health 
and wellbeing. 

2. Indoor heat stress to enhance heat-health planning 

A literature review was first carried out to address what we know 
about indoor heat stress within the urban context, and why the effect of 
both building physical characteristics and urban climatic diversity on 
occupants’ indoor heat stress needs to be considered in enhancing Heat- 
Health Planning. 

2.1. Indoor heat stress in urban dwellings 

Most heat-related risk projections were developed on the basis of 
epidemiological studies of the relationship between external climate 
(temperature) and excess deaths [25,26]. Those heat-related risk 
(mortality) projections encompass a wide range of risk factors, such as 
personal health conditions and circumstances. In addition to mortality 
risks, attention should also be paid to human exposure to heat stress and 
illness, leading to potentially deteriorating chronic disease and hospi-
talizations [27]. This human exposure to heat affects entire populations 
[28] but it does not seem to be clearly quantified and reported, 
compared to heat-related excess deaths. 

A more comprehensive understanding of heat-related risk factors is 
crucial, to identify the specific triggers for interventions to mitigate 
potential heat-related risks. The ‘causal chain’ from heat exposure to 
heat death can be threefold [29]: Heat affects Heat stress with factors 
affecting exposure. Then Heat stress leads to Heat illness with factors 

affecting sensitivity to a given heat exposure. Finally, Heat illness results 
in Heat death with factors affecting access to treatment. This suggests 
that preventing heat stress is a key step towards avoid potential 
heat-related risks to public health. 

Heat is a complex physical phenomenon and air temperature alone 
does not sufficiently explain the reason for heat stress [30]. Factors of 
heat-related risk to public health include a large number of de-
terminants. Fundamentally in a bio-meteorological perspective, all 
relevant weather variables should be taken into account in terms of 
human thermoregulation but some associated factors, such as relative 
humidity [31], solar radiation [32] and wind [33] are rarely considered, 
compared to air temperature, despite them being substantially impactful 
to human thermal responses for public health (i.e., Universal Thermal 
Climate Index [34]. 

Heat stress indices were initially developed for industrial and mili-
tary setting, e.g., ISO 7243 Web Bulb Globe Temperature Index [35]. 
According to Havenith and Fiala [36], existing climatic stress models 
(indices) may be classified by the setting for which they were developed: 
for occupational settings (industrial and military) at short-term immi-
nent risk (e.g., high workloads while wearing protective clothing); for 
perception of the circumstances and longer-term risk on a population 
basis, representing varied physiological responses to the ambient 
climate. For public weather services related to public health in partic-
ular, the Apparent Temperature (AP), Heat Index (HI) and Humidex 
were developed, with the purpose of advising the public on thermal 
condition/risk for short-time scales; mitigating the adverse health ef-
fects of extreme weather events, e.g., heat waves, as precautionary 
planning; increasing public awareness of climate change impacts on 
health, such as climate impacts in the health sector [36]. 

Common to those indices is some form of human heat balance model 
combined with heat (temperature) and humidity, but they differ from 
the climate contexts. For instance, the apparent temperatures (AP) are 
estimated as temperatures at a reference humidity, such as an absolute 
humidity measured at 14 ◦C of dew point temperature [37]. A simplified 
heat budget model of AP developed for hot climates is the Heat Index 
(HI), used by the National Weather Service in the United States. HI was 
developed by Rothfusz [38] based on regression analysis of the results of 
the Steadman heat budget model [39,40]. Similarly, Humidex (Hu-
midity Index) was developed by the Canadian Meteorological service, as 
an alternative to the heat index, being related to atmospheric moisture 
(the dew point temperature) [41]. 

Studies have predicted increases in outdoor human exposure to heat 
owing to the changing climate [42–44], leading to increased 
heat-related mortality [45]. However, relatively less attention has been 
paid to heat-related health risks arising from indoor heat stress [46]. A 
field study of low- and middle-income urban dwellings in New York 
highlights their indoor heat stress is strongly associated with outdoor 
climates and is predicted to reach a dangerous level when applied to 
historical heatwaves [15]. Similarly, more than 40% of monitored 
bedrooms (from 36 dwellings), where internal heat loads (gains) from 
home appliances are relatively sparse, were deemed to have overheated 
during a hot period in London [47]. Moreover, in the urban context, 
localised climatic diversity caused by the urban heat island (UHI) tends 
to be overlooked especially at night-time, when UHI intensity tends to be 
most pronounced [48]. 

However, indoor heat-related risks cannot be solely determined by 
the outdoor and indoor climates. Heat-related risk factors can be more 
severe for specific populations [29], such as the aged and ageing 
[49–51], those with clinical or pathophysiological factors of people with 
depression [52] and with diabetes [53]. These risks may be exacerbated 
by buildings with poor thermal characteristics and ventilating systems 
[54–56] which may be linked with indices of deprivation [57]. This 
suggests a need to deepen our understanding of local contexts in terms of 
demography, building characteristics and local urban climates to better 
anticipate heat-related health risks. 

C.-y. Yi et al.                                                                                                                                                                                                                                    
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2.2. Indoor heat exposure to enhance Heat Health Planning 

As noted earlier, the Heat Health (Action) Plan was developed to 
prevent adverse heat-related health effect, responding to climate change 
and extreme heat events. One of the core elements described in the Plan 
is accurate and timely alert systems as an immediate action as well as a 
reduction in indoor heat exposure [11]. Heat Health Warning Systems 
(HHWSs) are weather-based alerts that are designed to warn 
decision-makers and the public of impending extreme heat events and to 
advise on preventable negative health outcomes [58]. These systems 
determine the likelihood of exceedance of an ‘action trigger’, such as a 
threshold temperature or bio-meteorological index at which there could 
be significant health impacts, based on weather forecasting [58]. The 
action trigger is typically determined by the relationship between his-
torical heat and health outcomes, and the capacity of weather fore-
casting regionally, suggesting varied HHWSs from location to location 
[13,58]: i.e., daily maximum air temperature in England [59] and 
32.2oCHI of Heat Index in Switzerland [60]. The level of warning varies 
depending on the heat intensity, the duration and target populations 
(general or older). 

Metrics upon which action triggers in Heat Health Warning Systems 
(HHWSs) are determined are based on ‘historical’ (hence, reported) 
health outcomes under the ‘heat event’ or ‘heatwave’ at the individual 
city or county level, according to the capacity of weather forecasting in 
each country [58]. However, the use of historical health outcomes im-
plies a reliance on critical outcomes, such as heat-related excess death. It 
is difficult to directly attribute mortality occurrences to the human 
exposure to heat so that this can easily be ignored, and thus under-
estimated in current metrics [13]. Consequently, the predictive capacity 
of existing HHWSs to prevent heat-related risk remains uncertain [61], 
as shown in Table 1, especially for particular vulnerable groups, such as 
the 65+ year old category. 

In free-running built environments in the European urban context, 
indoor heat stress or heat exposure has been clearly monitored during 
(even mild) summers [62–64]. In line with the indoor heat stress risk, 
the Housing Health Safety Rating System [65] in the UK sets a threshold 
of 25oCAT, where mortality increases in likelihood, in line with increases 
in thermal stress, cardiovascular strain and trauma, and strokes. None-
theless, existing Heat Health Warning Systems are limited in their ability 
to account for indoor heat stress as their warnings are mainly based on 
outdoor climate forecasts only [58]. Studies highlight the strong needs 
for consideration of indoor heat stress in developing HHWSs as well as a 
reduction of indoor heat exposure [58,66]. 

Furthermore, urban settlements are well known to be subjected to 
urban heat islands (UHI), in which the urban air temperature can be 
significantly greater than its local rural counterpart, due to anthropo-
genic heat gains, enhanced shortwave radiation absorption and dimin-
ished longwave radiation emission and mean wind speeds. This UHI has 
a substantial impact on heat-related mortality [68,69] and thus, most 
heat-related mortality occurs in urban areas in which the UHI intensity 
is large [70]. This is particularly important where urban dwellers are not 
well adapted to warm climates, such as heating dominant countries, as 
epidemiological studies reveal that even small increases in temperature 
can substantially increase heat-related risks [71]. 

Under these circumstances, efforts have recently been made to 
develop HHWSs taking into account the urban heat island [14] and 
building indoor heat stress for specific older populations at room level in 
line with their lifestyle indoors [72]. However, as indicated earlier, a 
successful Heat Health Plan should also consider socio-demographic and 
building characteristics, to develop a heat-related health information 
plan, including where, when and who is at heat-related health risk, 
leading to mid- and long-term urban planning [11]. This suggests 
quantifying urban dwellings’ indoor heat exposure locally in present and 
future climates. This however brings considerable complexity, owing to 
the number and variance of the underlying parameters, and the fact that 
existing metrics are not fully fit for this purpose, as they rely on outdoor 

climate predictions. 
To this end, this study models urban dwellers’ indoor heat exposure 

to investigate the characteristics of indoor heat stress derived from 
housing with different physical characteristics and exposed to different 
urban microclimates, as a potential basis for enhancing the existing Heat 
Health Plan for urban dwellers. 

3. Materials and methods 

Here we propose to combine the virtues of dynamic building energy 
simulations with a technique to be practically deployed to the existing 
Heat Health Warning Systems (HHWSs), of which action triggers are 
currently made based upon the outdoor climate, to provide a basis for a 
high fidelity of indoor HHWSs as well as of mid- and long-term public 
Heat Health Planning. For this, we first estimated the effect of housing 
physical characteristics and urban microclimates on indoor heat stress 
(section 3.1). We then investigated the relationship between outdoor 
climate and indoor heat stress (section 3.2). The city of Birmingham in 
the UK was selected as a case study owing to the availability of historical 
high density urban meteorological datasets for summer periods in 2013, 
when a heatwave occurred [73]. 

3.1. Housing climate-energy-heat models in urban microclimatic contexts 

To effectively examine urban dwellers’ indoor heat stress, it is 
essential to obtain corresponding measurements of their indoor cli-
mates. However, obtaining such large-scale field measurements would 
be prohibitively expensive, if not impossible. We have therefore used 
dynamic building energy simulations of reference housings to estimate 
occupants’ indoor heat stress, for two distinctly different urban neigh-
bourhoods. The idea here is to account for the effect of building physical 
characteristics and urban climatic diversity on residential indoor ther-
mal environments in urban areas. 

The two selected urban neighbourhoods (Appendix A.1) expressed 
the largest differences in the Mean of the recorded air temperature and 
of the estimated Universal Thermal Climate Index (UTCI, a multi-node 
physiological heat balance model between human body and the 
ambient environment, see Appendix 1 in more detail) during July and 
August in 2013 over the available high density urban meteorological 
datasets in Birmingham.1 W007 is the thermally warmest neighbour-
hood while W011 is the relatively coolest area in the city of Birmingham. 
The name of weather stations we used follows those published Warren 
et al. [73]. This assumes that the effect of urban neighbourhood climatic 
diversity on urban dwellings’ indoor thermal conditions can possibly be 
distributed within these two extremes of the urban microclimate. 

Secondly, this study used existing standards and references of 
housing physical characteristics and occupancy internal heat load pro-
files. For instance, the UK domestic reference buildings developed by 
Allen and Pinney [74] were used for housing geometric configurations 
and thermal characteristics (See Appendix B.1 for detailed input pa-
rameters of building physical configurations as reference housing types 
used in this study). There are 5 types of housing identified and each 
housing type contains 4 types of insulation, giving 20 combinations of 
reference housings. 

Building heat (energy) flow pathways also depend upon internal heat 
gains generated by a wide range of indoor heat sources, such as occu-
pants’ presence (and associated metabolic heat gains) and their use of 
appliances and lighting. Reasonably acceptable scheduling profiles of 
those heat sources and their placement of room (thermal zone) would be 
important to meet agreeable model reliability in estimating households’ 

indoor thermal conditions [75,76]. 
We used an existing stochastic model to generate these internal heat 

1 Available at: https://data.ceda.ac.uk/badc/hitemp/data/WXT_Data/ 
WXT_Data_BADCcsv. 
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gain schedules for UK housing. This model is integrated within the UK 
Energy Hub (EnHub), an open-source simulation platform.2 To support 
the formulation of housing stock decarbonisation strategies, initially 
developed by Sousa et al. [77] and further enhanced by Sousa and 
Robinson [78]. EnHub was developed in response to a lack of modularity 
and transparency in housing stock energy models, as well as to facilitate 
dynamic energy simulations of stocks of housing [79]. This enables us to 
effectively replace the conventional aggregated average internal load 
with a synthetic representation of various usage profiles depending on 
household activities and circumstances [78]. This is based on a set of 
eleven energy-related activity categories. See Appendix B.2 for further 
details. 

3.2. Modelling indoor heat stress in relation to outdoor climate 

Given the measurement of outdoor climate and the estimations of 
residential indoor thermal conditions, we quantified the effect of local 
climates on indoor heat stress in each of reference 20 housing types. The 
Heat Index (HI, oCHI) was used as an indicator of occupants’ indoor heat 
stress,3 as it is developed for hot climates, considering the time frame of 
climate change projections for enhancing the Heat-Health Plan in this 
study. We used the U.S. National Weather Service’s metric4 to estimate 
the heat index based on its coherence with the original concept of 
Steadman’s apparent temperature [80]. 

As presented earlier, there are two input parameters, air temperature 
and relative humidity, which are available at outputs of the building 
energy-climate modelling proposed in this study. The effect of HI (oCHI, 
https://www.weather.gov/ama/heatindex), under ‘shade’ conditions 
can be interpreted to four classifications.  

• Caution (27–32): Fatigue is possible with prolonged exposure and 
activity. Continuing activity could result in heat cramps.  

• Extreme Caution (32–41): Heat cramps and heat exhaustion are 
possible. Continuing activity could result in heat stroke.  

• Danger (41–54): Heat cramps and heat exhaustion are likely; heat 
stroke is probable with continued activity.  

• Extreme Danger (over 54): Heat stroke is imminent. 

The daily timeline was divided into night-time (10pm – 6am) and 
daytime (6am–10pm) due to the different household occupants’ activ-
ities (Appendix B.2): i.e., night-time accounts for sleeping (10pm-6am), 
while daytime for other activities (6am-10pm), which also accounts for 
internal heat gains derived from occupants’ activities. Accordingly, the 
indoor heat index (HI) was calculated in the consideration of spatial- 
temporal occurrence of activities. Thus, the residential thermal zones 
(rooms) simulated were differently applied into calculating indoor HI as 
inputs of indoor climatic outcomes simulated. For instance, for the 
night-time HI estimations, hourly bedroom air temperature and relative 
humidity datasets were used, while for daytime HI, a living room was 
used due to the dominant occurrence of residential indoor activities. 

We selected air temperature (oCAT) as an indicator of outdoor 
climate, in response to the existing national (or regional) weather ser-
vice for public health in the UK. This was to evaluate how our modelling 
approach addresses how the effects of outdoor air temperature on indoor 
heat stress can practically be deployable to the existing Heat Health 
Warning Systems, which allows for instant implementations of the 
current systems as a short-term intervention, as well as for enhancing 
Heat-Health Planning as mid and long-term, considering the availability 
of future climate projections. 

However, the question here is how the outdoor air temperature can 
effectively account for the indoor heat stress (spatially and temporally), 
which may be substantially dynamic in each housing type. Owing to the 
complex nature of building energy (heat) flow pathways, the relation-
ship between outdoor climate and indoor heat stress may not be linearly 
fitted. We therefore first investigated the characteristics of indoor heat 
stress with respect to urban climates in different types of housing: 1) to 
assess whether there is significant difference in indoor heat stress of each 
of our 20 housing types under the different urban microclimates 
selected; 2) to evaluate whether the current daily Max. Temperature- 

Table 1 
Estimated excess all-cause mortality during recent heatwave episodes in England. (): proportion of excess mortality of the 65+ years old to total. Lv.: level of heatwave 
episode. Days: number of days in each heatwave episode. No. Mort.: number of mortality (Source from [67]).   

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5 Total No. 
Mort./day 

2016 Lv., Days Lv.3, 5 Lv.3, 5 Lv.3, 6 – –  

No. Mort. 612 (100%) 296 (100%) x – – 56.8 (100%) 
2017 Lv., Days Lv.3, 8 CET20, 3 – – –  

No. Mort. 666 (89.8%) 222 (81.1%) – – – 80.7 (87.6%) 
2018 Lv., Days Lv.3, 3 Lv.3, 11 Lv.3, 9 CET20, 9 –  

No. Mort. 210 (89.5%) 337 (78.9%) 455 (89.9%) 165 (63.0%) – 36.5 (82.8%) 
2019 Lv., Days CET20, 3 Lv.3, 8 Lv.3, 7 – –  

No. Mort. 16 (25.0%) 496 (115.3%)a 361 (88.6%) – – 48.5 (102.6%) 
2020c Lv., Days Lv.3, 5 CET20, 3 CET20, 11 – –  

No. Mort. 576 (94.6%) 246 (86.6%) 1733 (85.5%) – – 134.4 (87.8%) 
2021c Lv., Days Lv.3, 8 CET20, 4 – – –  

No. Mort. 916 (92.8%) 719 (86.2%) – – – 136.3 (89.9%) 
2022c Lv., Days Lv.3, 4 Lv.4, 16 Lv.3, 7 Lv.3, 10 CET20, 3  

No. Mort. 187 (113.4%)a 1256 (94.7%) −157 (79%)b 1633 (90.0%) 119 (78.2%) 76.0 (93.5%) 
Heatwave Alert Levels and Defining episodes of heat [12]. 
- Level 3 (Lv.3): ‘Heatwave action’ - temperature reached in one or more Met Office National Severe Weather Warning Service regions. 
- Level 4 (Lv.4): ‘Major incident – Emergency response’ – central government will declare a Level 4 alert in the event of severe or prolonged heatwave affecting sectors 
other than health. 
- CET20: day(s) when the mean Central England Temperature (CET) is greater than 20 ◦C. 

a More than 100% is the case when the excess mortality of 0–64 years olds is minus. 
b Minus is the case when the excess mortality of both 0 to 64 and 65+ years olds is minus. 
c Excess all-cause mortality (Heatwave and COVID-19). 

2 Available at: https://github.com/EnHub-UK/TUS-to-HSEM-converter. 
3 However, there is a growing need for further development of the HI, ac-

counting for indoor environments, such as occupancy characteristics and ac-
tivities, and particular distinction of night-time due to increased sensitivity to 
heat stress for sleeping [66].  

4 Available at: https://www.wpc.ncep.noaa.gov/html/heatindex_equation. 
shtml. 
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based metric of heat health warning systems (HHWSs) can be applicable 
to developing the indoor HHWSs; 3) to reveal whether there are 
distinctive features in the indoor heat stress between single hot days and 
consecutive warm (or hot) spells, and thus it should be divided in the 
modelling process; 4) to decide whether the different daily timeframe 
must be considered to account for the effect of building thermal char-
acteristics, e.g., times before or after the outdoor Max. Temperature. 

Then, a probabilistic approach to examining the relationship be-
tween outdoor climate and indoor heat stress (i.e., “caution”, where HI is 
greater than 26.7oCHI vs. No heat stress) was performed to identify the 
thresholds of outdoor temperature leading to indoor heat stress, using a 
binary logistic regression modelling. This is because logistic regression 
effectively accounts for the distribution of indoor thermal conditions 
with probabilities alongside their location (microclimate) and housing 
types (building physical characteristics). 

Finally, K-fold cross validation was used to assess the predictive ac-
curacy. Samples were split into two cases derived from the two urban 
climates of W007 and W011 for both training and validating samples, 
(hence, K = 2). This was because we selected two extreme urban 
neighbourhoods to assess the effect of the localised weather conditions 
on the indoor heat stress. Therefore, our intention was to identify a 
certain threshold of outdoor air temperature as action trigger for 
warning indoor heat stress (Caution heat stress, HI > 26.7oCHI) at 
neighbourhoods to city scale, and finally, to draw local difference in 
indoor heat exposure in future climates for enhancing long-term Heat 
Health Plan. 

4. Results 

4.1. Characteristics of indoor heat stress relating to urban climates and 
building characteristics 

We first examined the effect of urban microclimate (air temperature, 
oCAT) and building characteristics on residential indoor heat stress (heat 
index, oCHI), where our 20 housing types were simulated under the two 
extreme urban climates during summer months (July and August). 

The city of Birmingham selected for the case study in 2013 shows 
only one type of heat stress effect estimated in all housing types, which is 
‘Caution’ (26.7oCHI < HI < 32oCHI) during the daytime (6am-10pm) 
only, as shown in Fig. 1. Also, there was no heat index predicted above 
26.7oCHI after 3rd of August. Thus, this study excluded samples of the 
night-time exposure to heat as well as the daytimes after 3rd of August. 
Regarding the occurrence of indoor heat stress, there was one charac-
teristic of outdoor air temperature found between single hot days and 
consecutive hot spell days. For instance, during 12–19 July, indoor heat 
stress was predicted under the relatively lower outdoor temperatures 
than those of single hot days. It suggests that a single outdoor 

temperature can be an inadequate marker for the effects of heat accu-
mulation within the building structure and how this propagates to the 
indoor climate and corresponding heat stress. 

Cumulative distribution function (CDF) was performed to investigate 
the cumulative probabilities less than 26.67oCHI of each of 20 housings 
between W007 and W011. As shown in Table 2, the difference in the 
effect of two extreme urban climates on indoor heat stress is clearly 
observed in all housing types. In addition, we observe a difference in the 
density of CDF between the two urban climates, as illustrated in Fig. 2, 
suggesting the effect of building characteristics on indoor heat stress can 
possibly be large particularly under the relatively mild-warm climate. 

Also, there were large variations of cumulative probabilities less than 
26.67oCHI in each of housings, but common to insulation existence (and 
non-), there was similarity of cumulative probabilities as well as per-
centage (%) of ‘Caution’ hours to total occupations in the same housing 
types. On average, the difference of the effect of the insulation types 
(cavity and solid) on indoor heat stress was not significant, as Sig. > 0.05 
in all cases (See the differences (T-test) in indoor heat stress (oCHI) be-
tween the cavity and solid insulation in each housing type in Appendix 

Fig. 1. Distribution of Hourly indoor heat index (HI, oCHI) of 20 housing types and outdoor air temperature (oCAT) of W007 (warmest urban climate selected in the 
city of Birmingham). 

Table 2 
Cumulative probabilities less than 26.67oCHI (Caution indoor heat stress) and 
percentage (%) of ‘Caution’ hours to total occupations for daytime in each of 20 
housings for W007 and W011, 3 July – 2 August, where values for W011 are 
presented in parentheses. *Cavity insulated (Cav-Ins); cavity uninsulated (Cav- 
Unins); Solid insulated (Sol-Ins); Solid uninsulated (Sol-Unins).  

Cumulative probabilities  
Bungalow Detached Semi- 

Detached 
Mid- 
Terraced 

Mid-Flat 

Cav-Ins 0.91 
(0.97) 

0.87 
(0.92) 

0.86 (0.90) 0.86 (0.90) 0.88 
(0.94) 

Cav- 
Unins 

0.86 
(0.91) 

0.85 
(0.90) 

0.84 (0.89) 0.86 (0.89) 0.88 
(0.92) 

Sol-Ins 0.92 
(0.97) 

0.87 
(0.93) 

0.86 (0.90) 0.86 (0.90) 0.88 
(0.93) 

Sol- 
Unins 

0.85 
(0.90) 

0.84 
(0.89) 

0.84 (0.89) 0.85 (0.89) 0.88 
(0.92)  

% of hours of ‘Caution’ indoor heat stress  
Bungalow Detached Semi- 

Detached 
Mid- 
Terraced 

Mid-Flat 

Cav-Ins 9.48 (1.01) 10.89 
(4.03) 

11.90 (5.44) 13.10 
(6.45) 

11.69 
(4.64) 

Cav- 
Unins 

12.90 
(6.05) 

13.71 
(6.86) 

14.92 (8.67) 13.10 
(5.65) 

12.50 
(8.07) 

Sol-Ins 7.86 (1.41) 11.09 
(4.23) 

12.10 (5.44) 12.70 
(6.25) 

11.29 
(4.64) 

Sol- 
Unins 

13.71 
(6.45) 

14.11 
(7.06) 

14.72 (8.07) 13.31 
(7.06) 

12.70 
(8.07)  
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C.1). 
Following the examination of the effect of urban microclimate and 

building characteristics on residential indoor heat stress, we further 
investigated whether the different daily timeframe must be considered 
in modelling indoor heat stress with respect to outdoor temperature to 
account for the effect of building thermal characteristics, e.g., sampling 
hours before or after the outdoor Max. Temperature. This is since there is 
a complexity in the heat flow pathways to building indoors as internal 
heat gains derived from occupants’ activities and building thermal mass 
also play a key role in building indoor thermal conditions. For instance, 
Fig. 3 shows the different linear fits (slopes) between hourly outdoor 
temperatures and the indoor heat index according to stepwise re-
gressions in different timeframes (aggregating all housing types over the 
indoor heat stress days). The amplitude of the indoor temperature signal 
exhibits the expected dampening as well as a shift in phase. 

Nonetheless, there is a great interest in developing high-resolution 
(e.g., hourly) predictions of indoor heat stress, according to the corre-
sponding outdoor temperatures, which also account for the effects of a 
building’s characteristics and the activities of its occupants. This is since 
public health planning can potentially provide useful guidelines in 

relation to the internal heat sources to mitigate indoor heat-related 
health risk. As seen in Fig. 3, the indoor heat stress typically appeared 
before the daily Max. Temperature (also seen in Table 3), and lasted 
longer times, implying the prolonged exposure to heat stress. Further-
more, this exposure time frame may be unique to each type of building. 
We examined the frequency (proportions) of indoor heat stress 
appearing before the Max. Temperature. Table 3 shows that all housing 
types have very high proportions, except insulated Bungalows, 

Fig. 2. Plots for cumulative distribution function less than 26.67oCHI (Caution indoor heat stress) in each of 20 housings between W007 (a) and W011 (b), 3 July – 

2 August. 

Fig. 3. Differences in stepwise regression linear fits and slops between outdoor air temperature (a) and indoor heat index (b) in different timeframes, in case of 
aggregate all 20 housings over the indoor heat stress days. 

Table 3 
Frequency (proportions) of indoor heat stress appearing before the daily outdoor 
Max. Temperature in each housing.   

Bungalow Detached Semi- 
Detached 

Mid- 
Terraced 

Mid- 
Flat 

Cav-Ins 0.62 0.86 0.86 0.93 1.00 
Cav- 

Unins 
0.94 1.00 0.95 0.93 1.00 

Sol-Ins 0.58 0.86 0.86 1.00 1.00 
Sol-Unins 1.00 1.00 0.95 0.94 1.00  
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suggesting a need for modelling high-resolution predictions of indoor 
heat stress, corresponding to the hourly outdoor temperatures before the 
daily Max. Temperature. 

In following subsections, we performed two types of modelling to 
identify the outdoor temperatures affecting the occurrence of indoor 
heat stress in each housing. One is the daily Max. Temperature-based 
models, which is designed to be directly applicable and deployable to 
the existing heat health warning systems discussed in Section 2 as a 
short-term intervention (Section 4.2). Another is the hourly 
temperature-based model, which is designed to identify specific 
thresholds of outdoor hourly temperature before the daily Max. Tem-
perature (Section 4.3). 

4.2. Daily max. Temperature-based models 

Using our simulation results we have performed a binary (No heat 
stress vs. Caution heat index) logistic regression to model the Birming-
ham’s residential indoor heat stress with respect to daily outdoor Max. 
Temperature. This is to examine the distribution of indoor heat stress 
with probabilities in responding to the daily Max. Temperature. Samples 
were selected based on days for occurrence of the indoor heat stress in 
each housing type, and daily Max. Temperature were given accordingly. 

Fig. 4 (a) suggests a useful understanding of how daily outdoor Max. 
Temperature can probabilistically affect the indoor heat stress. Although 
it presents 26.8 ◦C at P (0.5), it is questionable whether the median value 
can be standard definition of an acceptable threshold as population 
characteristics and the compositions are not considered. For instance, 
attention should be paid around 26 ◦C (even the lower) at P (0.1), where 
the likelihood of indoor heat stress appeared, leading to potential heat- 
related health risk to specific populations vulnerable to heat exposure. 

We also modelled this at the individual housing level. Fig. 4 (b) 
shows that given the study year of 2013, specific but various thresholds 
of outdoor daily Max. Temperature were identified in each housing, 
which should be compared to a single existing threshold of Heat Health 
Warning System (HHWS). This suggests consideration of the diversity of 
outdoor-indoor heat transition at building level in enhancing Heat- 
Health planning. 

Such diversity was also found between single hot days and consec-
utive hot spell days in terms of the daily occurrence of indoor heat stress 
according to the daily Max. Temperatures as previously highlighted in 
Fig. 1. Fig. 5 shows the daily outdoor Max. Temperature during single 
hot days (as thresholds for daily indoor heat stress occurrence) tends to 
be higher than those during consecutive hot spell days. This, however, 
needs further confirmations based on larger samples and other years. 

4.3. Hourly outdoor temperature-based models 

Given the finding that the actual indoor heat stress appeared earlier 
than the time of daily Max. Temperature, we also performed the hourly 
temperature-based models to probabilistically predict specific thresh-
olds of outdoor temperature before the daily Max. Temperature in each 
housing. Samples were selected based on an hourly timeframe made up 
to the time of daily Max. Temperature. This allowed binary models to 
effectively account for the occurrence of the indoor heat stress affected 
by the hourly outdoor temperatures in different timeframe, such as no 
stress – first appearance – lasting by the time of Max. Temperature. 

Table 4 shows detailed parameters estimates of binary logistic 
models in each housing. This suggests a useful understanding for the 
relationship between the hourly outdoor air temperature and the cor-
responding indoor heat stress which varies in each of housings, where 
the timeframe is before the daily Max. Temperature during the daytime. 

It shows that the predicted probabilities of the ‘Caution’ HI are well 
fitted to their observed proportions with respect to outdoor temperature. 
Common to all housings, an increase of the outdoor air temperature is 
associated with an increase in the probability of ‘Caution’ heat index but 
their magnitude (Exp(B) for outdoor temperature) varies. This led that 
the specific outdoor temperatures were differently identified for indoor 
heat stress occurrence probabilistically. Of those 20 housings, two 
insulated bungalows had distinctively higher outdoor temperature in 
each of probabilities for indoor heat stress occurrence, even compared to 
the uninsulated bungalows. However, the effect of insulations on indoor 
heat stress and the corresponding outdoor climate can be inconclusive in 
this study. This is since these have very different morphologies and 
fabrics, effecting surface to volume ratio and overall building volumetric 
heat loss coefficients. 

4.4. Model validation and predictive accuracy 

We performed independent two-fold cross validation to assess the 
predictive accuracy at the scale of each building level for the daytime. 
Samples were split into two cases derived from the two urban climates of 
W007 and W011 for both training and validating samples as we used 
models for one typology in one location to estimate outcomes for the 
same typology in other location: hence, K = 1 (W007 training to W011 
testing) and K = 2 (W011 training to W007 testing). This was to evaluate 
the model applicability to different urban climatic contexts as well as 
predictive accuracy. Training datasets were used to identify the specific 
thresholds of outdoor temperature affecting indoor heat stress in each of 
housings. Then, the identified were applied into testing samples to 

Fig. 4. (a) Probabilities of indoor Heat Index of ‘Caution’ (HI > 26.7oCHI) fitted with outdoor daily Max. Temperature (oCAT) at aggregation of all housings with their 
95% confidence intervals (dash lines) and observed proportions of ‘Caution’ HI with their binomial 95% confidence intervals. (b) Thresholds of outdoor daily Max. 
Temperature with respect to the occurrence of the indoor heat stress in each housing. 
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calculate proportion of predicted correctly classified outcomes (% of 
correct at P = 0.5). 

To assess how the predicted outdoor temperatures identified from 
training samples (W007 or W011) can correctly predict the testing 
samples (W011 or W007 respectively), we checked the sensitivity (true 
positive rate) and specificity (true negative rate) (e.g., Haldi and Rob-
inson [81]). Thus, we obtained (i) truly positive (TP), (ii) falsely positive 
(FP), (iii) truly negative (TN), (iv) falsely negative (FN). We computed 
TPR (true positive rate) = TP/(TP + FN) and FPR (false positive rate) =
FP/(FP + TN); SPC (specificity) = 1 – FPR; ACC (accuracy) = (TP +
TN)/(P + N), where P is the number of the positive (‘Caution’ Heat 
Index) and N is the number of the negative. Two insulated bungalows 
were excluded as there was no indoor heat stress observed under W011. 
Table 5 shows the outcomes of the model validation. 

The result of the cross validation shows the proportion of correct in 
testing samples assessed by the thresholds identified by training sample 
are reasonably acceptable for the model reliability. Though the accuracy 
(ACC) of K = 2 is relatively less than that of K = 1, there is no consid-
erable difference found in between the two folds. However, particular 
attention should be paid in case of the aggregated all housings, where K 
= 1 fold has much lower accuracy, suggesting less ability to apply a 
single threshold into the diverse housings. Therefore, it can be 
concluded that the fitted binary logistic regression model (Table 4) has a 
predictive capacity in “Caution of Heat index” with respect to the 
identified daytime outdoor temperature (0.5 probability to cut) only at 
individual housing type independently. 

4.5. Short-mid-long-term indoor heat-health planning 

Combining with urban heat islands as a result, the localised outdoor 
climate impacts on indoor thermal conditions needs to be better un-
derstood to inform urban dwellings’ heat stress. Given the identified 
daytime outdoor air temperature with different probabilities as action 
triggers for each of housings (Table 4), the present model capacity to 
account for local climatic impact on indoor heat stress allows imple-
mentation of the indoor heat stress alert locally as part of the short-term 
indoor Heat-Health Planning. Also, a benefit of probabilistic approach to 
modelling action triggers is that a decision for indoor heat stress warning 
can be made upon probabilities based on the identified outdoor climates 
for the distribution of households’ indoor heat stress. 

Fig. 6 graphically illustrates how the urban dwellings’ indoor heat 
health warnings can vary depending on housing characteristics at urban 
neighbourhood scale (W007 and W011), as an example of the city of 
Birmingham’s indoor heat stress alert for July and August in 2013 for 
general populations. This should be compared to the application of the 
existing UK Heat-Health Warning System into two neighbourhoods, 
where the action triggers of 30oCAT of daily Max. Air temperature for 
daytime are equally applied to. 

Furthermore, the ability of modelling indoor heat stress with respect 
to outdoor climate can potentially be extended for the mid- and long- 
term Heat-Health Planning, given the availability of daily Max. Tem-
perature projected for future climate at local scale. For instance, UK 
Climate Projections (UKCP18) provides the most up-to-date assessment 
of how climate of the UK (and global) may change over the 21st century 

Fig. 5. Probabilities of indoor Heat Index of ‘Caution’ (HI > 26.7oCHI) fitted with outdoor daily Max. Temperature (oCAT) at aggregation of all housings, and 
thresholds of outdoor daily Max. Temperature with respect to the occurrence of the indoor heat stress in each housing between single hot days (a) and consecutive hot 
spell days (b). 
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(see Met Office Hadley Centre [82] in more detail). Especially, UKCP18 
provides local (2.2 km) climate change projections simulated under 
RCP8.5 (representative concentration pathway), downscaling from the 
12 km simulations using HadREM3-RA11 M, including 12 members of 
convection permitting models in Met Office Hadley Centre climate 
model [83]. This local model is re-gridded to 5 km resolutions for the 
UK’s OSGB (ordnance survey national grid, which is a system of 
geographic grid references used in Great Britain), and daily Max. Tem-
perature is available. Further data available can be seen at https://u 
kclimateprojections-ui.metoffice.gov.uk/ui/home. 

Given the availability of future daily Max. Temperature projected at 

local scale, we assessed the local differences in the urban dwellings’ 

indoor exposure to heat stress of the two selected OSGBs’ areas, where 
W007 (SP075875, OSGB grid reference) and W011 (SP025775) weather 
stations are placed in (Fig. 7). Here we used 26.78 ◦C of outdoor daily 
Max. Temperature identified at Fig. 4 (a), as an example of threshold to 
count the number of days of indoor exposure to heat stress, ‘Caution’ (HI 
> 26.7oCHI) during summer period, 1st Jun to 15 Sep defined by Heat-
waves Plan for England. Due to the uncertainties in selecting which 
scenario would best fit to local context in future years, we used all 12 
climate change model outputs in counting to present the overall trend of 
heat exposure locally. 

Table 4 
Daytime (7am-10pm) parameter estimates of binary logistic regression of hourly indoor heat index (HI > 26.67oCHI, Caution) with respect to the corresponding 
outdoor temperature (θout, oC) before the daily Max. Temperature, and probabilistic thresholds of outdoor temperature on indoor heat index for “Caution”. ** 
Sig.<0.001. Area under ROC curve (AUC); Nagelkerke’s generalised R2.    

B (Std.E) AUC % of correct, cut at P (0.5) R2 
θout (oC) in P(i) with 95%CI 

Constant θout (oC) No Stress Stress i = 0.1 i = 0.3 i = 0.5 
Bun-galow Cav-Ins −27.75**(6.15) .96**(.22) .943 97.7 16.7 .444 26.59 28.00 28.88 ± 1.30 

Cav-Unin −127.55**(30.20) 4.73**(1.12) .994 97.9 88.4 .890 26.51 26.79 26.96 ± .20 
Sol-Ins −35.29**(8.21) 1.22**(.30) .956 98.2 26.7 .505 27.03 28.14 28.83 ± 1.10 
Sol-Unin −139.73**(34.72) 5.19**(1.29) .995 98.4 88.6 .900 26.49 26.75 26.92 ± .18 

Deta-ched Cav-Ins −130.21**(31.31) 4.75**(1.14) .994 99.0 87.5 .877 26.94 27.22 27.40 ± .19 
Cav-Unin −207.20**(62.39) 7.73**(2.33) .997 98.9 91.5 .931 26.52 26.69 26.80 ± .13 
Sol-Ins −148.62**(36.73) 5.45**(1.35) .995 99.0 97.1 .901 26.87 27.12 27.27 ± .17 
Sol-Unin −207.20**(62.39) 7.73**(2.33) .997 98.9 91.5 .931 26.52 26.69 26.80 ± .13 

Semi-Deta-ched Cav-Ins −183.22**(51.29) 6.70**(1.88) .997 98.5 93.9 .919 27.03 27.23 27.36 ± .17 
Cav-Unin −106.45**(23.72) 3.98**(.89) .991 98.4 90.0 .877 26.16 26.50 26.72 ± .19 
Sol-Ins −231.09**(69.97) 8.51**(2.58) .998 99.0 94.6 .944 26.92 27.07 27.17 ± .15 
Sol-Unin −198.82**(58.88) 7.43**(2.20) .997 97.8 91.7 .929 26.47 26.65 26.77 ± .14 

Mid-Terra-ced Cav-Ins −236.94**(76.23) 8.78**(2.83) .998 99.5 90.2 .942 26.75 26.90 27.00 ± .14 
Cav-Unin −247.63**(78.19) 9.13**(2.89) .999 99.5 94.7 .949 26.88 27.03 27.12 ± .14 
Sol-Ins −236.94**(76.23) 8.78**(2.83) .998 99.5 90.2 .942 26.75 26.90 27.00 ± .14 
Sol-Unin −196.99**(57.81) 7.31**(2.15) .997 98.4 90.7 .929 26.64 26.82 26.94 ± .14 

Mid- Cav-Ins −447.89**(221.2) 16.58**(8.20) .999 99.5 92.5 .969 26.88 26.96 27.01 ± .12 
flat Cav-Unin −65.11**(12.23) 2.43**(.46) .981 98.9 89.6 .799 25.91 26.47 26.82 ± .25  

Sol-Ins −445.04**(215.7) 16.45**(7.99) .999 99.5 94.9 .972 26.92 27.00 27.05 ± .12  
Sol-Unin −64.32**(12.02) 2.40**(.45) .981 97.8 89.8 .799 25.87 26.44 26.78 ± .25  

All Housings −81.40**(3.66) 3.00**(.14) .987 98.4 85.9 .818 26.39 26.84 27.13 ± .05  

Table 5 
Daytime model validation parameters: true positive rate (TPR, %); false positive rate (FPR, %); Accuracy (ACC, %); Proportion of positive (heat stress) to total N (Prop. 
P, %).   

Training, W007→ Testing, W011 (K = 1, NW011 = 117) Training, W011→ Testing, W007 (K = 2, NW007 = 115) 
TPR FPR ACC Prop. P TPR FPR ACC Prop. P 

Bungalow Cav_Unins 90.9 2.9 95.7 11.1 90.3 2.4 94.8 26.1  
Sol_Unins 90.9 2.9 95.7 11.1 93.6 2.4 95.7 27.0 

Detached Cav-Ins 70.0 0.0 96.6 6.0 100.0 8.3 92.2 21.7  
Cav_Unins 92.9 2.0 96.6 12.8 93.8 2.4 95.7 27.8  
Sol-Ins 80.0 0.0 97.4 6.8 100.0 5.4 94.8 23.5  
Sol_Unins 92.9 2.0 96.6 12.8 93.8 2.4 95.7 27.8 

Semi- Cav-Ins 80.0 0.0 97.4 6.8 95.5 4.4 94.8 21.7 
detached Cav_Unins 87.5 2.0 95.7 13.7 96.9 3.7 95.7 29.6  

Sol-Ins 90.0 0.9 97.4 8.6 100.0 1.1 98.3 23.5  
Sol_Unins 87.5 1.0 96.6 12.8 93.8 3.7 94.8 28.7 

Mid- Cav-Ins 100.0 1.9 97.4 10.3 96.4 2.3 96.5 25.2 
terraced Cav_Unins 90.0 0.0 98.3 7.7 100.0 7.6 93.0 25.2  

Sol-Ins 100.0 1.9 97.4 10.3 96.4 2.3 96.5 25.2  
Sol_Unins 100.0 3.8 95.7 12.0 93.6 0.0 97.4 25.2 

Mid- Cav-Ins 100.0 0.9 98.3 9.4 93.6 0.0 97.4 25.2 
flat Cav_Unins 92.9 3.9 94.9 14.5 96.8 1.2 97.4 27.0  

Sol-Ins 100.0 0.9 98.3 9.4 90.3 0.0 96.5 24.4  
Sol_Unins 92.9 3.9 94.9 14.5 96.8 2.4 96.5 27.8  

All Housings 85.5 34.4 11.5 9.5 65.4 24.1 75.8 24.6  
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Finally, Fig. 7 provides evidence for why Heat-Health Planning needs 
to account for the unban dwellings’ indoor heat stress at local level as 
well as the mid- (2021–2040) and long-term (2061–2080) difference. 
Furthermore, even within a single local climatic context, the diversity of 

urban dwellings’ indoor exposure to heat stress at each housing level can 
possibly be more dynamic as we investigated earlier. This suggests that 
better understanding of the relationship between climate, buildings and 
people pathway will protect and promote urban dwellings’ health and 

Fig. 6. As a short-term planning, probabilities-based (colour-coded) Indoor Heat Health Warning System (iHHWS) for general populations of each housing type in 
the city of Birmingham on 3rd July - 2nd August in 2013 at neighbourhood scale (W007 and W011), compared to the current HHWS determined by the existing 
action triggers of 30oCAT of daily maximum air temperature for daytime. 

Fig. 7. Local differences in the predicted days of the urban dwellings’ indoor exposure to heat stress, ‘Caution’ (HI > 26.7oCHI) for summer period (1st June to 15 
Sep) at the selected two local areas (5 km * 5 km resolutions), where W007 (SP075875) and W011 (SP025775) weather stations are placed in, according to 
the UKCP18. 
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wellbeing over the time frame of climate change projections. Thus, heat- 
health planning will have better capacity to assess and identify when, 
where, and who is at the heat-related risk (e.g., heat stress) in present 
and future climate, and thus, to effectively develop on-site and context- 
sensitive environmental design as adaptation or mitigation strategies. 

5. Discussion 

This proof-of-principle study illustrates the viability of using a 
housing stock energy modelling platform to evaluate indoor heat health. 
Whilst a statistical model can be estimated to trigger indoor heat health 
alerts, the diversity amongst housing typologies suggests that this pro-
cess would be more reliable if performed using a full model of the 
housing stock; as is the case for the 1024 archetypes with which the UK 
housing stock is represented using EnHub [77]. However, the de-
pendency of the heat health triggers on microclimate (and on future 
climate) suggests that a finer spatial discretisation of the UK climate 
would be desirable for this purpose. More work also needs to be con-
ducted to empirically determine the thresholds used to trigger indoor 
heat health warnings, perhaps even for different classes of population 
vulnerability. If this work is done, we would have a solid basis with 
which to evaluate the effectiveness of renovation measures to reduce 
this vulnerability through passive means. 

For instance, general principles applicable to Heat-Health Planning 
developed in WHO [11] suggest long-term approaches to mitigating 
climate change and reducing its impact by adapting the built environ-
ment. This implies that long-term plans should contribute to the global 
target of Net Zero CO2 emissions by 2050, consistent with limiting 
warming to 1.5 ◦C above the preindustrial level [84]. Given the capacity 
of the proposed modelling strategy to identifying which housing (and for 
whom) is at risk, specific urban planning interventions may be effec-
tively developed e.g., green infrastructure and enhanced urban shading 
and ventilation. Those can be efficiently synergised with passive cooling 
measures and on-site green energy (e.g., reversible heat pumps coupled 
with PV panels) solutions developed at the building level. 

Also, successful Heat-Health Plan (or Adverse Weather-Health Plan) 
requires further consideration of other built environments. It cannot 
only be limited into free-running buildings. In the mechanically cooled 
dwelling context, the households’ cooling energy affordability, such as 
deprivation would play a key role in maintaining indoor thermal com-
fort [85]. This suggests careful consideration of individual or local 
specific socio-economic circumstances, which also can be integrated to 
cold stress for heating period based on the heating energy affordability. 
Given that the UK is a heating dominant country, for instance, heat 
decarbonisation is becoming a national priority. Especially, many older 
people, relatively more vulnerable to thermal related health risk than 
general populations, are in fuel poverty and thus, cold-related stress 
probably causes more excess deaths than heat-related stress. The prob-
lems are entirely symmetrical in both cold and heat characters. 

Other indices (e.g., universal thermal climate index, UTCI [34]) 
would be a useful indicator to cover a wide range of regional climatic 
conditions from hot to cold for application in the fields of human 
biometeorology though UTCI itself is a complicated multi-node physi-
ological model, which should in principle be calibrated for regional 
populations specifically [86]. For instance, the effects of other 
bio-meteorological parameters (e.g., radiation, wind and humidity) on 
human thermal regulation can be further considered in indoor heat 
stress assessment, as described earlier in Section 2.1. This may then be 
complemented with a more refined representation of the urban micro-
climate within the urban canopy, to investigate the effectiveness of local 
shading, ventilation and the contribution of evapotranspiration from 
green infrastructure to mitigate occupants’ heat stress indoors. Such 
micro-level approaches may be particularly desirable for vulnerable 
populations who may be less able to regulate their indoor environment 
effectively e.g., older people residing in care settings; particularly those 
in free-running care homes in the European context. Indeed, the World 

Health Organisation highlights that more research is needed on over-
heating risk and adaptive solutions [87]. 

6. Conclusions 

In this paper, we have discussed a strong requirement of a new and 
rigorous framework for enhancing the existing Heat-Health Planning. 
This requires to effectively provide evidence of local difference in urban 
dwellings’ indoor heat-related (even cold-) health risk locally over the 
time frame of climate change projections. Such weather-related public 
health plan needs to consider building physical characteristics and 
urban climate diversity as well as population compositions and char-
acteristics (e.g., age and fuel poverty). To explicitly account for the ef-
fect of those parameters on a city’s heat-related health risk, a bottom-up 
approach to housing stock energy modelling is suggested particularly at 
urban neighbourhood scale due to localised microclimate variability. 

The analytical modelling used in investigating characteristics of 
urban dwellings’ indoor heat stress shows that the observed outdoor air 
temperature probabilistically accounts for the distribution of indoor 
heat stress locally in present and future climates but more importantly 
this relationship is only applicable when the type of house is explicitly 
modelled. A further application of this approach to the specific pop-
ulations can be achieved by archetype development carefully charac-
terised for those populations with model inputs where they are living in 
(building characteristics and local climate). Thus, it will deepen our 
understanding of downscaled heat-related risk up to neighbourhoods 
with consideration of building characteristics and the populations, 
leading to enhancing the existing Heat-Health Planning. 

To what extent, this framework would be further specified based on 
the development of reliable heat stress index (or guideline) for occu-
pants’ exposure to heat (or cold), which represents the variation of age, 
gender, and personal health conditions in urban populations. For 
instance, older people have generally impaired thermoregulation, 
making them exposed to the impact of even moderate fluctuations in 
thermal environments [88]. Prolonged exposure to thermally uncom-
fortable indoor can have an adverse impact on pre-existing disease and 
health conditions under extreme weather events [49]. Applying the 
suggested framework into older people, (specifically older-old or frail 
populations with and without dementia residing care homes as dis-
cussed earlier) requires a full set of modelling inputs, such as care home 
archetype development and reliable heat stress index specified for and 
applicable to those populations. Especially, existing thermal related 
indices have been mainly established through measurements made upon 
healthy adults. It is unclear if they are sufficiently applicable to older 
populations with and/or without dementia [89]. Successful public 
health interventions for extreme weather to vulnerable populations can 
be made through identifying thermal (heat-cold) exposure and the 
health outcomes, leading to a wider Heat Health Action Plan, which 
includes not only Heat Health Warning Systems but also long-term el-
ements, such as education, seasonal awareness and the development of 
workable intervention strategies for extreme heat events [58]. 
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Appendix A. Universal Thermal Climate Index 

A.1. Differences (T-test) in air temperature (oCAT) and Universal Thermal Climate Index (UTCI, oCUTCI) between the selected two weather stations of W007 
and W011, and total hours of outdoor thermal (cold or heat) stress according to the effect of UTCI during July and August in 2013. (): W011    

N Mean St. Dev. Sig. Eta squared Magnitude of effect size Hours_Cold stress Hours_Heat stress 
Day- Air Temp 992 19.32 (18.24) 3.79 (3.79) <.001 .039 Medium – – 

time UTCI 992 18.31 (17.60) 3.64 (3.75) <.001 .018 Medium 0 (8) 40 (16) 
Night Air Temp 496 15.40 (14.29) 2.12 (2.07) <.001 .124 Large – – 

time UTCI 496 15.37 (14.78) 2.27 (2.50) <.001 .030 Medium 0 (9) 0 (0)  

The Universal Thermal Climate Index (UTCI, oCUTCI) has been developed through an initiative of ISB (International Society of Biometeorology) 
Commission 6 with an extension to COST (a European programme promoting Cooperation in Science and Technology) Action 730, including 45 
scientists from 23 countries, based on a strong demand of a universal index which would cover a wide range of regional climatic conditions from hot to 
cold for application in the fields of human biometeorology [34,36]. Though UTCI may need to be calibrated regionally to ensure the applicability to 
local populations [86], it is based on a complex multi-node physiological model [90,91], which accounts for the heat exchange between human body 
and the ambient environment (combination of air temperature, wind, radiation and humidity), and hence the associated responses of thermal stress. 

Appendix B. Modelling inputs for building energy simulations 

B.1. Detailed thermal characteristics and geometric configurations of reference housings (source from Ref. [74])  

Floor plan by housing type 
Bungalow (64.07m2) Detached (98.52m2) Semi-detached (79m2) Mid-terraced (73.92m2) Mid-flat (72m2) 

(m, ↑: North, floor height:3 m)   

Insulation type (U-value, W/m2*K)  
External wall Ground floor Roof Internal floor glazing Door Internal wall 

Cav-Ins 0.499 0.764 0.136 1.482 1.450 2.3 1.88 
Cav-Unin 1.417 0.764 0.353 1.482 4.303 2.3 1.88 
Sol-Ins 0.283 0.764 0.136 1.482 1.450 2.3 1.88 
Sol-Unin 2.114 0.764 0.353 1.482 4.303 2.3 1.88  
Windows ratio to wall (%)  

Bun-galow Deta-ched Semi-deta Mid-terra Mid-flat 
South 9.03 14.97 12.00 11.24 16.05 
East – – – – – 

West 3.70 1.81 1.81 – – 

North 24.83 22.41 19.82 22.87 28.43  
Surface ratio to Volume (%) 

(continued on next page) 
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(continued ) 
Surface ratio to Volume (%)  

Bun-galow Deta-ched Semi-deta Mid-terra Mid-flat  
Bun-galow Deta-ched Semi-deta Mid-terra Mid-flat 

South 13.79 10.04 12.84 13.45 8.08 
East 10.75 15.38 – – – 

West 10.35 15.10 17.85 – – 

North 11.38 9.16 11.46 11.69 6.89 
* Infiltration of room to external (ach/h): Living (1), Kitchen/Dining (2), Bedroom (0.5), Bathroom (2), Hall and Entry (1.5). 
** Infiltration between rooms is set to 1ach/h. 

B.2. Internal heat load profiles. (a) Mean time-dependent (hourly) profile (proportions) of occupancy scheduling for utilising home appliances and lighting, 
and (b) accordingly, Mean hourly energy use intensity (W/m2) profile for internal heat gains with their 95% confidence intervals

Although internal heat load profiles help to initially emulate the existing asymmetry or complexity in the variety of energy flows, they are often and 
expectedly limited to represent unpredictable occurrence of internal heat sources in large scale housing stock energy modelling. Recently, the state-of- 
the-art method in modelling internal heat load profiles seems indeed to agree with a stochastic approach by the use of non-homogeneous Markov- 
chains [92,93], which is able to represent unpredictable events with a reasonable computational cost. This is particularly more pertinent at large scale 
of building energy-climate modelling, because it provides a means to represent usages and activities comprehensively under the complexity of heat 
loads profiles, i.e., [76]. 

The EnHub contains programmed codes, written in R (the statistical computing software) for processing data to represent the housing stock 
characteristic readily available for dynamic building simulation platform, employing the EnergyPlus engine [77]. For instance, the UK Time Use 
Survey (TUS) data [94], which is the national scale of household survey about how people (aged 8 and more) in the UK spend their time at home, can 
be employed to generate heat load profiles as a function of household and housing characteristics. These profiles directly link to the corresponding 
modules in EnHub and are then accessed by EnergyPlus during the simulation. The implementation is publicly available at https://github.com/E 
nHub-UK/TUS-to-HSEM-converter, which is the EnHub-UK/TUS-to HSEM-converter, making the Jaboob’s stochastic model [95] more producible. 

B.2. Shows the internal heat load profiles used in this study as an example, aggregated time-dependent hourly profile of all scheduling home 
appliances and lighting with their applied energy use intensity (W/m2). Given the energy use intensity profiles, 0.25 of radiant fraction was assumed 
for internal sensible heat gains derived from the energy use of electricity home appliances [96]. Similarly for lighting, the approximate fraction value 
of return air, radiant and visible assumed in this study is 0.21, 0.08 and 0.79 respectively. The opening scheduling of windows and doors was set to 
26 ◦C of indoor temperature. 

Appendix C. Characteristics of indoor heat stress in each of 20 housings 

C.1. Differences (T-test) in indoor heat stress (oCHI) between the cavity and solid insulation in each housing type. (): Solid insulation; N = 352, total daytime 
hours in heat stress days, 16 h × 11 days × 2 weather station neighbourhoods   

Mean St. Dev. t (df = 702) Sig. 
Bungalow Ins 25.49 (25.39) 1.09 (1.13) 1.202 .230 

Unins 25.91 (25.83) 1.25 (1.39) .781 .435 
Detached Ins 25.92 (25.93) 1.08 (1.10) −.078 .938 

Unins 26.09 (26.02) 1.16 (1.29) .773 .440 
Semi-detached Ins 26.10 (26.17) .98 (.96) −1.003 .316 

(continued on next page) 
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(continued )  
Mean St. Dev. t (df = 702) Sig. 

Unins 26.24 (26.21) 1.05 (1.08) .329 .742 
Mid-Terraced Ins 26.20 (26.20) .98 (.98) −.030 .976 

Unins 26.16 (26.15) 1.00 (1.02) .176 .860 
Mid-Flat Ins 25.91 (25.90) 1.15 (1.16) .113 .910 

Unins 26.03 (26.03) 1.17 (1.18) .049 .961  

On average, the difference of the effect of the insulation types (cavity and solid) on indoor heat stress was not significant (as p > 0.05 in all cases). 
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