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PhysVENeT: 
a physiologically‑informed 
deep learning‑based framework 
for the synthesis of 3D 
hyperpolarized gas MRI ventilation
Joshua R. Astley 1,2, Alberto M. Biancardi 2, Helen Marshall 2, Laurie J. Smith 2, 
Paul J. C. Hughes 2, Guilhem J. Collier 2, Laura C. Saunders 2, Graham Norquay 2, 
Malina‑Maria Tofan 1, Matthew Q. Hatton 1, Rod Hughes 3, Jim M. Wild 2,4 & Bilal A. Tahir 1,2,4*

Functional lung imaging modalities such as hyperpolarized gas MRI ventilation enable visualization 
and quantification of regional lung ventilation; however, these techniques require specialized 
equipment and exogenous contrast, limiting clinical adoption. Physiologically‑informed techniques 
to map proton (1H)‑MRI ventilation have been proposed. These approaches have demonstrated 
moderate correlation with hyperpolarized gas MRI. Recently, deep learning (DL) has been used for 
image synthesis applications, including functional lung image synthesis. Here, we propose a 3D multi‑
channel convolutional neural network that employs physiologically‑informed ventilation mapping and 
multi‑inflation structural 1H‑MRI to synthesize 3D ventilation surrogates (PhysVENeT). The dataset 
comprised paired inspiratory and expiratory 1H‑MRI scans and corresponding hyperpolarized gas 
MRI scans from 170 participants with various pulmonary pathologies. We performed fivefold cross‑
validation on 150 of these participants and used 20 participants with a previously unseen pathology 
(post COVID‑19) for external validation. Synthetic ventilation surrogates were evaluated using voxel‑
wise correlation and structural similarity metrics; the proposed PhysVENeT framework significantly 
outperformed conventional 1H‑MRI ventilation mapping and other DL approaches which did not utilize 
structural imaging and ventilation mapping. PhysVENeT can accurately reflect ventilation defects 
and exhibits minimal overfitting on external validation data compared to DL approaches that do not 
integrate physiologically‑informed mapping.

Pulmonary imaging constitutes a primary component of the clinical workflow of patients with respiratory dis-
eases; various modalities can provide anatomical or functional information that aids in their diagnosis, moni-
toring, and treatment. Thoracic computed tomography (CT) and proton MRI (1H-MRI) are used to ascertain 
anatomical lung information. However, the relationship between parenchymal destruction and regional func-
tion is only somewhat understood. Therefore, functional lung imaging modalities such as single-photon emis-
sion CT (SPECT)1,2, positron emission tomography (PET)3,4 and hyperpolarized gas  MRI5,6 can be used to 
glean functional insights. These techniques have shown efficacy in several lung disease applications, including 
diagnosis, treatment planning and treatment response  mapping7–9. Hyperpolarized gas MRI is a specialized 
functional lung imaging modality which has excellent sensitivity to abnormal lung function and allows for the 
visualization of regional  ventilation10,11. Hyperpolarized gas MRI can be acquired using either Helium-3 (3He) 
or Xenon-129 (129Xe); recently, 129Xe has been preferred due to the increased cost and paucity of 3He. Tahir et al. 
demonstrated voxel-wise Spearman’s correlations of ~ 0.8 between 3He and 129Xe  MRI12, indicating that there 
are minimal differences between the two noble gases. Doganay et al. compared 129Xe-MRI with technetium-99m 
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diethylene-triamine-pentaacetate (99mTc-DTPA) SPECT ventilation  imaging13, demonstrating a lobar-wise Pear-
son correlation of 0.64.

To acquire hyperpolarized gas MRI ventilation images, specialized equipment such as a gas polarizer is 
required, limiting widespread clinical  uptake5. Surrogates of regional ventilation computed from structural 
images acquired at different lung inflation levels have been proposed. CT ventilation imaging (CTVI) models 
regional ventilation from multi-inflation CT, either acquired during tidal breathing (i.e. 4DCT) or at inspiratory 
and expiratory breath-holds, by assessing changes in regional lung  density14 or  volume15. CTVI methods are the 
subject of intense validation  efforts16. Tahir et al. demonstrated comparisons between CTVI methods and 3He 
or 129Xe MRI, achieving voxel-wise Spearman’s correlations of 0.38 and 0.28,  respectively12. Kida et al. compared 
CTVI approaches with 99mTc-DTPA SPECT ventilation  maps17, resulting in voxel-wise Spearman’s correlations 
between 0.37 and 0.40. Furthermore, the VAMPIRE grand challenge compared various CTVI methods with both 
Gallium-68 aerosol (Galligas) PET and 99mTc-DTPA SPECT  scans16, reporting Spearman’s correlations of ~ 0.5. 
In further investigations, Galligas PET demonstrated a Spearman’s correlation of 0.67 with CTVI  maps18. In a 
recent pilot study, structural CT was combined with pulmonary function testing to produce a full-scale airway 
network (FAN) flow model, generating models of  ventilation19; these ventilation models were compared to 
129Xe-MRI and 99mTc-DTPA SPECT ventilation, achieving Spearman’s correlations of 0.67 and 0.68, respectively.

Analogous to CTVI, structural 1H-MRI has also been used to derive 1H-MRI-based regional ventilation 
 surrogates20–22. 1H-MRI ventilation maps are derived from differences in signal intensities of co-registered voxels 
in multi-inflation 1H-MRI. The method assumes that these changes reflect naturally occurring density variations 
in the lungs during  breathing23. These computational approaches have shown moderate correlation with hyper-
polarized gas MRI; Capaldi et al. demonstrated a Spearman’s correlation of 0.67 between 1H-MRI- and 3He-MRI-
derived ventilated lung  percentages24. Nuclear medicine imaging modalities such as SPECT and PET are ionizing 
and thus impractical for repeat scanning or scanning of pediatric patients as they require the administration of 
radioactive tracers such as 99mTc-DTPA and Galligas, respectively, which have several disadvantages, including 
the presence of clumping  artifacts1,25. Although hyperpolarized gas MRI is non-ionizing, a contrast agent is still 
required to produce ventilation images. Unlike CTVI, 1H-MRI-based regional ventilation maps can be acquired 
without contrast and are non-ionizing, enabling its use in pediatric patients and longitudinal applications.

In recent years, deep learning (DL) has been applied to several pulmonary image analysis applications, includ-
ing image  synthesis26. Ren et al. used a pre-trained convolutional neural network (CNN) to synthesize SPECT 
perfusion maps from  CT27; they employed a dataset comprising 33 lung cancer patients and 137 non-lung cancer 
patients where the proposed approach generated a voxel-wise Spearman’s correlation of 0.64 averaged across all 
lobes. Similarly, Liu et al. proposed a CNN-based method to synthesize Technegas SPECT ventilation maps from 
non-contrast 4DCT using a dataset of 50  participants28. They indicate that, after median filtering, the proposed 
approach achieved a Spearman’s correlation of 0.73 for 10-phase, and 0.71 for 2-phase, 4DCT. Furthermore, 
Zhong et al.29 leveraged a CNN to synthesize CTVI surrogates from 4DCT; they reported a mean ± SD struc-
tural similarity index measure (SSIM) of 0.88 ± 0.0429. Capaldi et al. used structural free-breathing 1H-MRI to 
synthesize ventilation MRI surrogates for a single 2D coronal  section30; a 2D UNet CNN with a mean absolute 
error (MAE) loss function was used. These ventilation surrogates were correlated with 3He hyperpolarized gas 
MRI, achieving a Pearson correlation of 0.87 after six-fold cross-validation on a dataset of 114  participants30.

Whilst these approaches have demonstrated the efficacy of CNN-based methods for pulmonary image syn-
thesis, the lack of robustness of these approaches and the inability to produce physiologically consistent results 
limit clinical applicability. In addition, medical imaging datasets are often limited in size and unrepresentative 
of a diverse population, limiting the effectiveness of DL techniques. Researchers have proposed the use of hybrid 
networks which combine computational modeling and  DL31. Specifically, physics-informed DL frameworks have 
been used in weather  forecasting32 and earth surface  modeling33. Networks integrating computational modeling 
and DL have also been used for data generation in situations where there is limited data  available34. Within the 
medical imaging domain, Poirot et al.35 have utilized a physics-based DL approach for dual-energy CT image 
enhancement.

Here, we propose a physiologically-informed DL framework for the synthesis of fully-volumetric 3D lung 
ventilation surrogates, leveraging physiologically-based 1H-MRI specific ventilation (SV) mapping and struc-
tural multi-inflation 1H-MRI in a multi-channel CNN configuration. We compare the proposed framework to 
DL approaches that do not integrate SV mapping or structural 1H-MRI and evaluate the quality of synthetic 
ventilation scans using voxel-wise metrics.

Materials and methods
Dataset. The dataset comprised 3D isotropic 1H-MRI scans acquired at approximately total lung capac-
ity (TLC) and residual volume (RV), and hyperpolarized 129Xe-MRI ventilation scans acquired at functional 
residual capacity (FRC) + bag (for any given participant, the bag volume was titrated based on standing height 
with a range of 400 mL–1 L) from 170 healthy participants or patients with various pulmonary pathologies. A 
summary of participant demographics, stratified by pathology, is provided in Table 1. Imaging data was collected 
retrospectively from several prospective clinical studies and patients referred for clinical imaging. Data use was 
approved by the Institutional Review Boards at the University of Sheffield and the National Research Ethics 
Committee. All data was anonymized and all investigations were conducted in accordance with the relevant 
guidelines and regulations with participants (or their guardians) providing informed written consent. Appropri-
ate consent and permissions were granted by the Sponsors to utilize this data for retrospective purposes.

Image acquisition. All participants underwent 3D volumetric 129Xe-MRI and 1H-MRI in the coronal plane 
with full lung coverage on a 1.5 T GE HDx scanner (GE Healthcare, Milwaukee, WI, USA). 1H-MRI scans were 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11273  | https://doi.org/10.1038/s41598-023-38105-w

www.nature.com/scientificreports/

acquired with an 8-element cardiac  coil36 using a 3D spoiled gradient-recalled sequence with a repetition time/
echo time of 1.8/0.7 ms, in-plane resolution of ~ 3 × 3  mm2 and a slice thickness of 3 mm. A ~ 35-48 cm field of 
view with a flip angle of 3° at a bandwidth of 166.6 kHz was used. 1H-MRI scans were acquired in approximately 
9–12 s at either TLC or RV. Hyperpolarized gas MRI scans were acquired using 129Xe that was polarized on site 
to ~ 25% with an in-house developed rubidium spin-exchange  polarizer37. A flexible quadrature radiofrequency 
coil was employed for transmission/reception of MR signals at the Larmor frequency of 129Xe-MRI (Clinical 
MR Solutions, Brookfield, WI, USA). A 3D balanced steady-state free precession sequence was  used36 with a 
repetition time/echo time of 6.7/2.2 ms, an in-plane resolution of ~ 4 × 4  mm2 and a slice thickness of 10 mm. 
A ~ 38–40 cm field of view with a flip angle of 9° or 10° and a bandwidth of 16 kHz was used. 129Xe-MRI scans 
were acquired in approximately 10 s at FRC + bag. This results in a total of four scans acquired for each partici-
pant, namely, 1H-MRI scans acquired at RV and TLC and 129Xe-MRI and 1H-MRI scans acquired at FRC + bag.

Image segmentation. To facilitate 1H-MRI registration, lung segmentation is required; 1H-MRI TLC and 
RV scans were segmented using a CNN-based generalizable 1H-MRI lung segmentation network previously 
developed by our  group38. Segmentations were then subsequently manually corrected by several expert observ-
ers with the following experience: B.A.T had 10 years, H.M had 7 years, P.J.C.H had 5 years, A.M.B had 5 years 
and J.R.A had 3 years.

Image registration. RV and TLC 1H-MRI scans were aligned using deformable image registration and sub-
sequently registered to the spatial domain and resolution of 129Xe-MRI via a corresponding anatomical 1H-MRI 
scan acquired at a similar inflation as 129Xe-MRI12,39. The registration pipeline consisted of rigid, affine and dif-
feomorphic steps using the advanced normalization tools (ANTs) registration  framework40 based on parameters 
optimized in previous  work41. The registration pipeline is further described in Fig. 1.

Table 1.  Summary of participant demographic data.

Disease Number of subjects

Age (years) Sex Ventilation defect percentage (%)

Median (range) Frequency (%) Median (range)

Asthma 64 53 (13, 74) 30M (47%), 34F (53%) 2.4 (0.07, 30.9)

Asthma + COPD 23 59 (33, 71) 15M (65%), 8F (35%) 7.0 (1.3, 29.3)

COPD 17 65 (48, 73) 6M (35%), 11F (65%) 18.6 (6.2, 64.8)

Cystic fibrosis 31 18 (9, 48) 16M (52%), 15F (48%) 7.4 (0.42, 56.4)

Healthy 6 38 (26, 71) 3M (50%), 3F (50%) 0.23 (0.03, 0.62)

Investigation for possible airways disease 4 46 (41, 64) 0M (0%), 4F (100%) 6.6 (1.3, 35.0)

Lung cancer 5 73 (68, 79) 4M (80%), 1F (20%) 52.6 (44.9, 69.0)

Post COVID-19 20 58 (25, 73) 18M (90%), 2F (10%) 1.36 (0.55, 5.17)

Total 170 53 (9, 79) 92M (54%), 78F (46%) 3.80 (0.03, 69.0)

Figure 1.  Registration workflow for generating 1H-MRI specific ventilation (SV) maps.
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1H‑MRI SV mapping. 1H-MRI SV maps were computed from the aligned TLC and RV 1H-MRI scans. 
1H-MRI SV maps assume that differences in signal intensities of co-registered voxels in multi-inflation 1H-MRI 
reflect naturally occurring density variations in the lungs during  breathing20,23. SV is a unitless quantity that 
aims to model the proportion of inhaled air entering the lungs during normal  breathing24 and is approximated 
as follows:

where SIRV and SITLC are the voxel-wise signal intensities at RV and TLC, respectively. Further details related 
to the computation of 1H-MRI SV maps are included in the Supplementary Material. 1H-MRI SV maps were 
then subsequently median filtered with a radius of 3 × 3 × 1 voxels to account for noise and registration errors.

Deep learning experiments and evaluation
CNN architecture configurations. We developed and compared three DL approaches to generate syn-
thetic 129Xe-MRI ventilation scans by varying the input images provided to the CNN. These approaches are 
referred to below:

1. DL (TLC + RV + SV map): PhysVENeT.
2. DL (TLC + RV).
3. DL (SV map).

We assessed the effect of providing a physiologically-based 1H-MRI SV map, alongside structural TLC and 
RV 1H-MRI scans, as inputs to a CNN (approach 1). This approach, that we call “PhysVENeT”, is compared to a 
network which is not physiologically-informed (approach 2) and a network which does not integrate structural 
multi-inflation 1H-MRI (approach 3).

For each configuration, input scans with varying dimensions were read by the network using patch-based sam-
pling with patches of 192 × 192 × 48  voxels42. The VNet CNN allows for non-isotropic patch sizes in-line with the 
anisotropic nature of 129Xe-MRI. We modified the VNet CNN  architecture43 to learn functional representations 
from 3D input scans by outputting a 3D continuous representation of regional ventilation. The CNN contained 
16, 32, 64, 128 and 256 feature channels where convolution operations are employed at each layer to both learn 
residual features and to reduce the resolution of the feature stack, analogous to commonly employed pooling 
operations. The input layer employs a convolution operation with a 5 × 5 × 5 kernel and stride of 1; two identical 
convolutions are employed at the second layer and three at the subsequent layers. After each 5 × 5 × 5 convolu-
tion, a subsequent 2 × 2 × 2 kernel with stride of 2 was utilized, generating non-overlapping patches; hence, the 
resolution of the image is divided by two. This is repeated at each layer, resulting in a minimum resolution of 
12 × 12 × 3 in the final convolution step. The structure of the network is replicated in deconvolution steps bar 
the output layer. Each convolution operation employed a PReLU non-linear activation function with valid pad-
ding. As indicated by Milletari et al.43, the CNN learns residual fine-grained features at each step which informs 
corresponding deconvolution operations in the upsampling side of the  network43. The VNet CNN architecture 
is modified to contain a regression output layer, allowing the network to generate continuous intensity maps 
in three dimensions. Furthermore, we employ a Huber loss function where the Huber loss  (HLoss) is defined as:

where a represents the difference between given co-registered voxels in the ground truth and predicted outputs 
and δ is defined as 0.1. The Huber loss function is expressed as a representation of either the mean square error 
(MSE) or the absolute value function at δ. The Huber loss has the benefit of combining the minimum-variance 
estimator of the MSE loss and the median-unbiased estimator of the absolute value loss to produce a loss func-
tion that alternatively provides the sensitivity and robustness of the MSE and absolute loss, respectively. This 
loss was utilized for synthetic ventilation generation to minimize the impact of outliers in the first stages of 
training and improve sensitivity once the loss has significantly reduced. For DL approaches 1 and 2, which utilize 
multiple input images, weight sharing was not employed, resulting in input dimensions of 192 × 192 × 48 × 3 or 
192 × 192 × 48 × 2 for the PhysVENeT and other DL configurations, respectively, similar to Kläser et al.44 and 
Jahangir et al.41. This method combines the feature maps from spatially aligned TLC and RV 1H-MRI alongside 
the 1H-MRI SV map. Therefore, the network can leverage concurrent information distributed across multiple 
input feature  maps45. The PhysVENeT architecture (approach 1) is detailed in Fig. 2.

CNN training parameters. All warped and masked TLC and RV 1H-MRI scans and 129Xe-MRI ventila-
tion scans underwent pre-processing before they were fed into the network; scans were normalized with image 
intensities between [0, 1]. Training data was augmented to reduce overfitting whilst still maintaining physi-
ological plausibility. We used an augmentation method where the number of scans in the training set remained 
consistent; however, each set of input images is deformed using a random rotation and scaling factor between 
[− 10°, 10°] and [− 10%, 10%], respectively. Different rotation and scaling factors are randomly selected within 
these limits when the feature map is provided to the network. Thus, the network can be trained for an increased 
number of epochs as it is highly unlikely to be exposed to the exact same deformations in each epoch. Conse-
quently, we train our network for 900 epochs. Batch normalization was applied at each layer using a mini-batch 

(1)SV ≈

(

SIRV − SITLC

SITLC

)

,

(2)HLoss(a) =

{

1
2
a2for|a| ≤ δ

δ ·
(

|a| − 1
2
δ
)

for|a| > δ
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size of 2 to reduce covariate shift between network layers during  training46. Network weights were trained from 
scratch and initialized using Xavier initialization, representing a Gaussian distribution with a mean of 0 and a 
variance of 1/N, where N represents the number of weights and biases. The network employs  ADAM47 optimiza-
tion with a learning rate of 1 ×  10–5. L2 regularization and a decay of 1 ×  10–4 were used to minimize overfitting. 
The network is trained and tested using the open source medical imaging framework  NiftyNet42 built on top of 
TensorFlow 1.1.448. An NVIDIA Tesla V100 GPU with 24 GB of RAM was required for network training. Post-
processing was conducted to account for noise and registration errors in synthetic ventilation scans; 1H-MRI SV 
maps and DL-generated synthetic ventilation scans were normalized with signal intensities between [0, 1] and 
median filtered with a radius of 3 × 3 × 1 voxels.

Data split. The dataset contained scans from 170 participants. 150 participants were used for fivefold cross-
validation, resulting in randomly selected training and testing sets of 120 and 30 participants, respectively, for 
each fold. The remaining 20 participants were used for external validation; these scans were from participants 
who had previously been hospitalized for COVID-19 approximately three to six months before imaging, a 
pathology not contained within the cross-validation dataset. A visual display of the data split, including the 
cross-validation and external validation procedure is contained in Supplementary Fig. S1.

Quantitative evaluation. Surrogates of ventilation were quantitatively evaluated using two common 
voxel-wise image synthesis metrics, namely, the voxel-wise Spearman’s correlation (rs) and SSIM. The Spearman’s 
rs was the primary evaluation metric in the CT ventilation imaging grand challenge,  VAMPIRE16. In a recent 
review of DL in pulmonary imaging, SSIM was used for evaluation in several image synthesis  investigations26. 
Further details of Spearman’s rs and SSIM calculations are given in the following sections.

Spearman’s correlation. Spearman’s correlation between synthetic ventilation surrogates and corresponding 
129Xe-MRI scans was assessed at full resolution using Spearman’s rs. The correlation was calculated on all voxels 
within the lung cavity region as defined by the lung volume in a 1H-MRI scan acquired at the same inflation 
as 129Xe-MRI. The voxel-wise Spearman’s rs quantifies the degree of monotonicity between any two ventilation 
images within a range of [− 1, 1].

SSIM. SSIM is an image quality measure that encompasses similarity information in three domains, namely, 
the luminance, contrast and structure of the image. SSIM is calculated between non-zero voxels in the reference 
129Xe-MRI scan (Xe) and the synthetic ventilation surrogate (SVS) within the lung cavity region, as defined by 
the lung volume in a 1H-MRI scan acquired at the same inflation as 129Xe-MRI, as follows:

where μSVS and μSVS are the average intensities of Xe and SVS, respectively, and σXe and σSVS are the variances of 
Xe and SVS, respectively. σXe,SVS is the covariance of Xe and SVS. c1 and c2 are defined as follows:

(3)SSIM(Xe, SVS) =
(2µXeµSVS + c1)

(

2σXe,SVS − c2

)

(

µ2
Xe

− µ2
SVS

+ c1

)(

σ 2
Xe

− σ 2
SVS

+ c2

) ,

Figure 2.  PhysVENeT architecture and training strategy.
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where L is the dynamic range of pixel intensities in Xe and SVS and k1 and k2 are the constants 0.01 and 0.03, 
 respectively49.

Statistical analysis. We initially determined whether the data was normally distributed via Shapiro–Wilk 
tests; if normality was not satisfied, non-parametric tests were conducted. Friedman tests with Bonferroni correc-
tion for post-hoc multiple comparisons were used to assess significances of differences between DL approaches. 
For each metric, paired t-tests were used to assess significances of differences between the DL approaches and 
the 1H-MRI SV map. Wilcoxon tests were used to assess differences between folds on external validation data 
and differences in performance between the 1H-MRI SV map and each fold on the external validation cohort. 
Statistical analyses were performed using GraphPad Prism 9 (GraphPad, San Diego, CA, USA). In this work, a 
p-value of < 0.05 was considered statistically significant.

Results
Qualitative evaluation. Figure 3 shows example coronal slices comparing 1H-MRI ventilation surrogates 
with 129Xe-MRI ventilation imaging for five cases within the dataset. Voxel-wise Spearman’s rs and SSIM are 
given for each case and method. Several cases show large ventilation defects which are replicated in synthetic 
ventilation scans generated by the PhysVENeT framework. Case 3 displays subtle ventilation defects which are 
somewhat replicated by several synthetic ventilation approaches.

Quantitative evaluation. The PhysVENeT framework generated the highest Spearman’s rs, achieving a 
median (range) of 0.68 (0.13, 0.85) and the DL (TLC + RV) approach generated the highest SSIM, achieving 
a median (range) of 0.58 (0.14, 0.76) when compared to ground-truth 129Xe-MRI ventilation. A full summary 
of results is provided in Table 2. The distribution of Spearman’s rs and SSIM for each method across all images 
within the cross-validation dataset is displayed in Fig.  4; significant p-values are provided. The PhysVENeT 
significantly outperformed all other DL approaches and 1H-MRI SV mapping in terms of Spearman’s rs. In addi-
tion, both the PhysVENeT and DL (TLC + RV) approaches significantly outperformed the DL (SV map) and 1H-
MRI SV map using the SSIM metric. No significant difference was observed between the PhysVENeT and DL 
(TLC + RV) networks using the SSIM metric (p = 0.14). For four participants, the PhysVENeT produced Spear-
man’s rs below 0.2. Figure 5 displays Spearman’s rs and SSIM values stratified by disease to assess differences in 
performance across pathologies for the PhysVENeT. It indicates that the framework generated more accurate 
synthetic ventilation scans for healthy participants and participants with asthma whilst synthetic ventilation 
scans were least correlated with 129Xe-MRI in lung cancer participants for both metrics used.

(4)c1 = (k1L)2, c2 = (k2L)2,

Figure 3.  Example coronal slices of TLC and RV 1H-MRI, 129Xe-MRI, DL-based synthetic ventilation scans 
and the 1H-MRI SV map for five participants in the dataset. Voxel-wise Spearman’s rs and SSIM values are given 
for each DL approach and the 1H-MRI SV map. Green arrows indicate ventilation defects in hyperpolarized gas 
MRI scans which are replicated in synthetic ventilation scans.
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External validation. An external validation dataset comprising 20 participants who had a pathology not 
present in the cross-validation dataset were used to assess the generalizability of DL approaches. The Phys-
VENeT framework achieved the highest Spearman’s rs and SSIM with a median (range) of 0.62 (0.18, 0.79) 
and 0.58 (0.05, 0.68), respectively, when averaged across all networks trained during each cross-validation fold. 
The proposed PhysVENeT showed minimal reduction in performance on external validation data, whereas DL 
approaches that were not physiologically-informed, or did not integrate structural imaging directly, showed 
larger reductions in both Spearman’s rs and SSIM; results for DL approaches are given in Table 3.

Significant differences in performance of the PhysVENeT between networks trained on each cross-validation 
fold and tested on external validation data were observed; however, the ranges of average Spearman’s rs and SSIM 
values across all folds were narrower than those of other approaches, with a Spearman’s rs range of 0.60–0.63 and 
SSIM range of 0.57–0.60 indicated in Table 3. Significant p-values between the five trained models generated by 
each fold in the cross-validation process are shown in Fig. 6.

Table 2.  1H-MRI synthetic ventilation results from the SV map and the three DL approaches compared to 
129Xe-MRI ventilation using the Spearman’s rs and SSIM metrics. Median (range) is given. Metrics are given for 
each fold individually and the combined values across all folds. The best performing approach for each fold is 
shown in bold.

Cross-validation

DL (TLC + RV + SV map) DL (TLC + RV) DL (SV map) SV map

Spearman’s rs
Median (range)

SSIM
Median (range)

Spearman’s rs
Median (range)

SSIM
Median (range)

Spearman’s rs
Median (range)

SSIM
Median (range)

Spearman’s rs
Median (range)

SSIM
Median 
(range)

Fold 1 0.68 (0.13, 0.85) 0.56 (0.19, 0.77) 0.65 (0.11, 0.86) 0.57 (0.14, 0.76) 0.58 (0.06, 0.77) 0.50 (0.05, 0.65) 0.37 (0.09, 0.57) 0.39 (0.11, 
0.56)

Fold 2 0.66 (0.18, 0.84) 0.54 (0.27, 0.72) 0.60 (0.11, 0.81) 0.55 (0.27, 0.67) 0.58 (− 0.04, 0.82) 0.38 (0.01, 0.74) 0.34 (0.05, 0.61) 0.43 (0.17, 
0.56)

Fold 3 0.67 (0.28, 0.79) 0.60 (0.29, 0.72) 0.65 (0.37, 0.80) 0.59 (0.26, 0.75) 0.54 (0.22, 0.69) 0.30 (0.02, 0.64) 0.39 (0.05, 0.61) 0.43 (0.11, 
0.59)

Fold 4 0.69 (0.14, 0.83) 0.54 (0.19, 0.70) 0.64 (0.10, 0.84) 0.59 (0.29, 0.71) 0.54 (0.05, 0.73) 0.55 (0.04, 0.64) 0.41 (− 0.01, 0.60) 0.42 (0.16, 
0.52)

Fold 5 0.66 (0.15, 0.84) 0.61 (0.18, 0.76) 0.63 (0.10, 0.77) 0.59 (0.29, 0.70) 0.64 (0.23, 0.80) 0.54 (0.00, 0.70) 0.38 (0.06, 0.61) 0.45 (0.21, 
0.58)

All folds 0.68 (0.13, 0.85) 0.56 (0.18, 0.77) 0.63 (0.10, 0.86) 0.58 (0.14, 0.76) 0.57 (− 0.04, 0.82) 0.47 (0.00, 0.74) 0.38 (− 0.01, 0.61) 0.43 (0.11, 
0.59)

Figure 4.  Comparison of performance for DL methods and 1H-MRI SV map using the voxel-wise Spearman’s 
rs (left) and SSIM (right) metrics. Significant p-values are provided.
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Figure 5.  Comparison of performance stratified by participant pathology using Spearman’s rs (left) and SSIM 
(right) metrics for the proposed PhysVENeT framework.

Table 3.  Synthetic ventilation results on the external validation dataset (n = 20) from the three DL approaches 
compared to 129Xe-MRI ventilation using the Spearman’s rs and SSIM metrics. Median (range) is given. Metrics 
are given for ventilation surrogates generated by each of the five folds during cross-validation and the average 
values across all folds. The best performing approach for each fold is shown in bold.

External validation (n = 20)

DL (TLC + RV + SV map) DL (TLC + RV) DL (SV map)

Spearman’s rs
Median (range)

SSIM
Median (range)

Spearman’s rs
Median (range)

SSIM
Median (range)

Spearman’s rs
Median (range)

SSIM
Median (range)

Fold 1 0.62 (0.28, 0.76) 0.58 (0.49, 0.66) 0.65 (0.29, 0.82) 0.56 (0.04, 0.68) 0.53 (0.24, 0.74) 0.53 (0.02, 0.64)

Fold 2 0.63 (0.23, 0.79) 0.57 (0.22, 0.65) 0.55 (0.24, 0.71) 0.25 (0.01, 0.55) 0.56 (0.41, 0.75) 0.55 (0.03, 0.67)

Fold 3 0.60 (0.31, 0.77) 0.60 (0.05, 0.66) 0.56 (0.26, 0.73) 0.52 (0.03, 0.63) 0.41 (0.13, 0.64) 0.50 (0.01, 0.56)

Fold 4 0.61 (0.18, 0.74) 0.58 (0.33, 0.65) 0.58 (0.21, 0.76) 0.55 (0.04, 0.64) 0.50 (0.27, 0.75) 0.59 (0.07, 0.66)

Fold 5 0.63 (0.22, 0.77) 0.58 (0.23, 0.68) 0.54 (0.18, 0.76) 0.51 (0.05, 0.63) 0.60 (0.26, 0.80) 0.54 (0.03, 0.65)

Average across folds 0.62 (0.18, 0.79) 0.58 (0.05, 0.68) 0.56 (0.18, 0.82) 0.51 (0.01, 0.68) 0.49 (0.13, 0.80) 0.53 (0.01, 0.66)

Figure 6.  Comparison of performance on external validation data using the five trained models generated by 
the PhysVENeT during cross-validation in terms of Spearman’s rs (left) and SSIM (right). Significant p-values 
are provided.
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Discussion
In this work, we propose a framework for the generation of synthetic ventilation surrogates from multi-inflation 
structural 1H-MRI and a physiologically-based SV map. The PhysVENeT approach integrates SV mapping and 
DL to produce physiologically-informed 3D surrogates of lung ventilation. These synthetic ventilation images 
correlate with 129Xe-MRI ventilation in a voxel-wise manner and can mimic gross ventilation defects across a 
range of pathologies. Generating 3D synthetic ventilation surrogates from structural imaging modalities, without 
the requirement of specialized equipment or exogenous contrast, can reduce barriers in the widespread adoption 
of cutting-edge functional lung imaging modalities, such as hyperpolarized gas MRI.

Synthetic ventilation surrogates generated by the PhysVENeT framework significantly outperformed 1H-MRI 
SV maps. This was demonstrated using the voxel-wise Spearman’s rs and SSIM metrics calculated across the 
whole-lung region where the PhysVENeT achieved a Spearman’s rs of 0.68 and an SSIM of 0.56 on the cross-
validation dataset. Furthermore, the PhysVENeT significantly outperformed other DL approaches which did not 
leverage structural 1H-MRI or physiologically-based 1H-MRI SV mapping, using Spearman’s rs. When inference 
was conducted on external validation data, the PhysVENeT exhibited increased performance compared to other 
DL approaches, achieving a Spearman’s rs of 0.62 and an SSIM of 0.58. The inclusion of both structural 1H-MRI 
and 1H-MRI-based SV maps provides PhysVENeT with the ability to generalize effectively to participants of 
a previously unseen disease. The increase in generalizability on external validation data, in conjunction with 
significant increases in correlations on cross-validation data, indicates the benefit of using a physiologically-
informed framework.

We used a large dataset that contained 170 participants with numerous pulmonary pathologies and varying 
degrees of lung function, as measured by the ventilation defect percentage (VDP) (Table 1). 150 of these par-
ticipants were used for five-fold cross-validation, leading to five separately trained networks. The remaining 20 
participants were used for external validation whereby each of the five separately trained networks were used to 
generate ventilation surrogates for these 20 participants. The physiologically-informed PhysVENeT framework 
performed similarly on both the cross-validation and external validation datasets. In addition, the range of 
SSIM and Spearman’s rs metrics on the external validation data is much narrower than the other DL approaches. 
Therefore, by leveraging structural 1H-MRI and physiologically-informed mapping, the PhysVENeT framework 
exhibits minimal overfitting and is largely generalizable to scans outside the cross-validation dataset.

The framework uses a VNet CNN backbone previously developed for 3D segmentation  tasks43. We adapted 
the VNet with a Huber loss function to output 3D continuous ventilation distributions with the integration of 
a multi-channel input configuration. The CNN architecture makes use of additional convolution operations to 
reduce the dimensionality of the image instead of traditional pooling methods. This limits the footprint of the 
network, reducing the memory  consumption50. In turn, this facilitates the use of large anisotropic 3D patch sizes. 
An additional feature of the network architecture is the ability to use anisotropic input dimensions; 129Xe-MRI 
scans have an anisotropic resolution with an in-plane resolution of ~ 4 × 4  mm2 and a slice thickness of 10 mm. 
Thus, we make use of the anisotropic input capabilities of the VNet architecture in contrast to other architectures 
which require isotropic spatial windowing, such as the nn-UNet51.

Previous approaches have utilized DL to generate synthetic ventilation images in 2D. Capaldi et al.30 used 
a 2D UNet CNN with a MAE loss function to generate ventilation images of a single 2D coronal section from 
free-breathing 1H-MRI, limiting volumetric  coverage30. Moreover, the 2D intensity images cannot contextualize 
the volumetric nature and spatial clustering of ventilation  defects52. This can lead to discontinuities between 
slices which reduces the plausibility of ventilation defect patterns in DL-based ventilation surrogates. Here, we 
generate fully-volumetric synthetic ventilation surrogates in three dimensions which allows the proposed CNN 
to learn features which occur over multiple slices.

Levin et al.53 has indicated that the resolution of functional lung images need not be higher than the small-
est pulmonary gas exchange unit, namely, the acinus. The acinus is approximately 10 × 10 × 10  mm3 in adult 
humans. They also report that the sufficient resolution of ventilation scans can be as low as 20 × 20 × 20  mm3 
due to the spatial clustering of many ventilation  defects53. Consequently, we apply 3 × 3 × 1 median filtering as a 
post-processing step to 129Xe-MRI, 1H-MRI SV maps, and DL-based synthetic ventilation scans before evaluation. 
This increases the resolution to 12 × 12 × 10  mm3, in-line with appropriate resolutions proposed by Levin et al.53.

Contrast-based functional lung imaging modalities such as hyperpolarized gas MRI require specialized 
equipment and exogenous contrast, which limit their clinical adoption. In addition, functional lung imaging 
techniques such as CTVI and SPECT expose patients to ionizing radiation and have demonstrated large vari-
ability in  performance16. Furthermore, SPECT has a lower spatial and temporal resolution and a susceptibility 
to inducing aerosol deposition artifacts when compared to hyperpolarized gas MRI. Therefore, the ability to 
synthesize hyperpolarized gas MRI ventilation scans in three dimensions from structural non-contrast 1H-MRI 
scans has wide-reaching implications for functional lung imaging, including the potential to be used for func-
tional lung avoidance  radiotherapy7,8 and treatment response  mapping9. Kida et al.17 has previously demonstrated 
that a Spearman’s rs of ~ 0.4 between CTVI and SPECT images produces clinically indistinguishable radiotherapy 
plans. Therefore, the reported Spearman’s rs in this work of 0.68 between 129Xe-MRI and the proposed Phys-
VENeT indicates its potential clinical utility for functional lung avoidance radiotherapy applications. In addition, 
ventilation surrogates generated in this work can potentially be used in a triaging capacity for instances where 
contrast-based functional lung imaging is unavailable.

Limitations. Despite significant improvements in Spearman’s rs and SSIM when compared to 1H-MRI SV 
mapping, the PhysVENeT framework generated only moderate correlations with 129Xe-MRI. Synthetic ventila-
tion surrogates were unable to accurately replicate all subtle ventilation defects, and, in some cases, they exhibit 
minimal correlation. As 129Xe-MRI is a direct measure of gas distribution, it can accurately quantify regional 
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ventilation; this characteristic is diminished in synthetic ventilation surrogates where the ability to accurately 
discern between ventilated and non-ventilated lung regions is reduced. There is a wide range of Spearman’s rs 
values produced by the PhysVENeT framework, ranging between 0.13 and 0.85. Four cases produced Spear-
man’s rs values below 0.2; two of these cases are from lung cancer participants of which there are only five partici-
pants in the dataset as a whole, potentially limiting the ability of a DL-based approach to generalize to ventilation 
distributions exhibited in lung cancer participants. Increasing the number of lung cancer participants in the 
dataset could improve performance for these cases. This may also be due to the large VDP values present in this 
cohort, which often lead to increased domain-shift between structural and functional  imaging39. Additionally, 
the other two underperforming cases had 1H-MRI SV maps that yielded Spearman’s rs values below 0.1. The 
PhysVENeT framework utilizes the 1H-MRI SV map as an input and, therefore, if the 1H-MRI SV map exhibits 
poor correlation, it has the potential to impact the performance of the PhysVENeT framework. In future work, it 
may be appropriate to remove the 1H-MRI SV map as an input in cases where its performance is below a certain 
threshold value.

The repeatability of the proposed approach was not assessed in this work. Nevertheless, the repeatability of 
ventilation imaging has been previously assessed by our  group54,55. We employ a robust and standardized protocol 
for acquiring scans at specific inflation levels. Hughes et al. investigated the repeatability of 3He hyperpolar-
ized gas MRI ventilation in healthy participants by repeat scanning participants at the lung inflation volumes 
employed in this study, namely, TLC, RV and FRC +  bag54. Voxel-wise mean ± SD Spearman’s correlations of 
0.93 ± 0.02 for TLC, 0.92 ± 0.03 for RV, and 0.95 ± 0.03 for FRC + bag were achieved; these very high correlation 
values indicate that there is a high level of repeatability between lung volumes and regional ventilation when using 
a robust acquisition protocol. In addition, Smith et al. previously demonstrated that, after repeat 129Xe-MRI, there 
was no significant difference in VDP between scans and demonstrated good repeatability with a Bland–Altman 
bias of 0.2% (LoA =  − 1.4 to 1.8%)55. Furthermore, the within-session correlation for VDP was calculated as 0.99, 
demonstrating the high repeatability of key clinically significant ventilation biomarkers.

In addition, accurate registration is also required for the generation of ventilation surrogates and, therefore, 
the quality of these registrations significantly impacts the performance of the proposed approach. In future work, 
an approach independent of registration could be considered. Other DL approaches that utilize generative adver-
sarial networks (GANs) or vision transformers (ViTs) have been used for image synthesis  applications56,57. The 
proposed framework used a fully convolutional network that lacks the unsupervised learning benefits of GANs 
and the long-range feature extraction of ViTs. Future investigations could indicate that utilizing these methods 
over traditional CNNs leads to improved performance.

The dataset used in this work, whilst varied in pathologies and demographics, is limited in MRI acquisition 
parameters; all scans were acquired on the same scanner at the same field strength from a single center. Thus, 
the conclusions of this work cannot be appropriately extended to a dataset of differing sequence or field strength 
without further investigation. Nevertheless, further expansions of the dataset should focus on the inclusion of a 
diverse range of MRI acquisition parameters to increase generalizability.

Conclusion
In this study, we propose a multi-channel CNN to synthesize 3D surrogates of pulmonary ventilation from multi-
inflation 1H-MRI. These structural scans are combined with an SV map to enhance the physiological plausibility 
of the synthetic ventilation scans. The PhysVENeT framework produces ventilation surrogates which correlate 
with 129Xe-MRI, reflecting ventilation defects observed in the real scans.

Data availability
The imaging datasets generated and/or analyzed during the current study are not publicly available as they 
were generated as part of an industrial collaborative study that is still underway. Requests for data should be 
addressed to J.M.W.
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