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a b s t r a c t 

Functional gradients, in which response properties change gradually across a brain region, have been proposed 
as a key organising principle of the brain. Recent studies using both resting-state and natural viewing paradigms 
have indicated that these gradients may be reconstructed from functional connectivity patterns via “connectopic 
mapping ” analyses. However, local connectivity patterns may be confounded by spatial autocorrelations arti- 
ficially introduced during data analysis, for instance by spatial smoothing or interpolation between coordinate 
spaces. Here, we investigate whether such confounds can produce illusory connectopic gradients. We generated 
datasets comprising random white noise in subjects’ functional volume spaces, then optionally applied spatial 
smoothing and/or interpolated the data to a different volume or surface space. Both smoothing and interpolation 
induced spatial autocorrelations sufficient for connectopic mapping to produce both volume- and surface-based 
local gradients in numerous brain regions. Furthermore, these gradients appeared highly similar to those obtained 
from real natural viewing data, although gradients generated from real and random data were statistically differ- 
ent in certain scenarios. We also reconstructed global gradients across the whole-brain – while these appeared less 
susceptible to artificial spatial autocorrelations, the ability to reproduce previously reported gradients was closely 
linked to specific features of the analysis pipeline. These results indicate that previously reported gradients iden- 
tified by connectopic mapping techniques may be confounded by artificial spatial autocorrelations introduced 
during the analysis, and in some cases may reproduce poorly across different analysis pipelines. These findings 
imply that connectopic gradients need to be interpreted with caution. 

1. Introduction 

Functional gradients, marked by a topographic map of preferred 
stimulus or response features across brain regions, are proposed as a 
key organising principle of the brain ( Bednar and Wilson, 2016 ). For in- 
stance, gradients have been described in the form of retinotopic maps in 
visual cortex ( Wandell and Winawer, 2011 ), tonotopic maps in auditory 
cortex ( Formisano et al., 2003 ), and somatotopic maps in somatosen- 
sory cortex ( Sanchez-Panchuelo et al., 2010 ). Recently, “connectopic 
mapping ” techniques have been proposed for recovering functional gra- 
dients from patterns of neural connectivity ( Haak and Beckmann, 2020 ; 
Huntenburg et al., 2018 ). These approaches regard voxels or vertices 
within a brain region as being distributed along a high-dimensional 
manifold within the connectivity space, such that functionally similar 
locations are represented close to one another on the manifold surface. 
The functional gradients underlying a brain region can thus be revealed 
by applying non-linear manifold learning techniques to extract the prin- 
cipal dimensions of this manifold. 

∗ Corresponding author. 
E-mail address: david.watson@york.ac.uk (D.M. Watson) . 

Connectopic mapping offers the advantage that gradients can be 
described even in brain regions where the underlying functional or- 
ganisation is poorly understood or unknown. Such techniques have 
been applied to reconstruct local gradients within brain regions in- 
cluding the primary visual cortex ( Haak et al., 2018 ; Watson and An- 
drews, 2022 ), somatosensory cortex ( Ngo et al., 2021 ), entorhinal cortex 
( Navarro Schröder et al., 2015 ), insula ( Wang et al., 2022 ), hippocam- 
pus ( Borne et al., 2023 ; Prze ź dzik et al., 2019 ; Vos de Wael et al., 2018 ), 
and striatum ( Marquand et al., 2017 ). Connectopic mapping has also 
been applied to describe coarser-scale gradients over the whole brain 
( Huntenburg et al., 2018 ; Margulies et al., 2016 ). 

Recently, we demonstrated that connectopic mapping could be used 
to accurately reconstruct the eccentricity and polar angle maps in pri- 
mary visual cortex (V1) using connectivity measured either at rest or 
during movie watching ( Watson and Andrews, 2022 ). Interestingly, we 
observed that the neural source of the connectivity estimates had min- 
imal impact on the resulting connectopic maps, implying that the main 
driver in connectopic mapping is the functional topography within the 
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brain region, rather than necessarily reflecting a topography embed- 
ded within the connectivity itself. We were able to confirm the accu- 
racy of the connectopic maps in V1 by comparing them to retinotopic 
maps measured through traditional visual field mapping techniques. 
Nevertheless, the ground-truth functional organisation of many other 
brain regions is unknown or poorly understood, so there needs a to be 
a degree of confidence that gradients reconstructed from connectopic 
mapping accurately reflect the genuine underlying topography of such 
regions. 

It has been suggested that gradients could represent an inevitabil- 
ity of the connectopic mapping analysis, rather than accurately reflect- 
ing the genuine functional topographies. Ciantar and colleagues noted 
a confound introduced during data pre-processing which can give rise 
to illusory local functional connectivity patterns, which could in turn 
potentially bias connectopic mapping analyses ( Ciantar et al., 2022 ). 
Specifically, interpolation of the timeseries data from the volume to the 
cortical surface is liable to induce local spatial autocorrelations amongst 
neighbouring vertices. Because connectopic gradients reflect the local 
similarity in connectivity patterns between voxels or vertices, it may be 
that such gradients are biased by these artificially induced spatial au- 
tocorrelations. Importantly, such autocorrelations could be introduced 
by other processing steps too, such as spatial smoothing or interpolation 
to other volume spaces. Nevertheless, it remains unclear to what extent 
this issue practically influences connectopic gradients. 

Here, we provide a test of how local spatial autocorrelations af- 
fect connectopic mapping. We obtained naturalistic imaging data from 

a publicly available dataset. We then generated random white noise 
timeseries matched to the real data in each subject’s functional vol- 
ume. These random datasets are entirely biologically implausible, with 
data being both spatially and temporally uncorrelated, and so provide 
a strong test for whether gradients can be produced by artifacts in- 
troduced during the analysis pipeline alone. For both real and ran- 
dom datasets, we then optionally applied spatial smoothing and/or 
interpolated the data to a different volume space or to the cortical 
surface. We then identified both local and coarse-scale gradients via 
connectopic mapping. If smoothing and/or interpolation induces spa- 
tial autocorrelations sufficient to confound connectopic mapping, we 
would expect to reconstruct gradients even from random data and 
these should appear similar to equivalent gradients derived from real 
data. 

2. Methods 

2.1. Dataset 

Movie-watching and visual field mapping MRI data were ob- 
tained for 15 subjects from the publicly available StudyForrest project 
( Hanke et al., 2016 , 2014 ; https://www.studyforrest.org ). Briefly, func- 
tional data were acquired on a 3T Philips Achieva MRI scanner via an 
EPI sequence (TR = 2 s, TE = 30 ms, voxel resolution = 3 mm isotropic). 
The dataset comprises approximately 2 h of MRI data of each subject 
watching the “Forrest Gump ” movie. 

2.2. Pre-processing 

The same pre-processing steps were applied to movie-watching and 
visual field mapping datasets. Some light pre-processing was already 
applied by the StudyForrest project: motion correction using FSL’s 
MCFLIRT tool ( Jenkinson et al., 2002 ) and aligning each volume to a 
subject-specific EPI template. We then applied further pre-processing 
using FSL’s FEAT v6.0 ( Smith et al., 2004 ; Jenkinson et al., 2012 ; 
https://fsl.fmrib.ox.ac.uk/fsl ): slice-timing correction using Fourier- 
space time-series phase-shifting, non-brain removal ( Smith, 2002 ), 
grand-mean intensity normalisation of the entire 4D dataset by a sin- 
gle multiplicative factor, and high-pass temporal filtering (Gaussian- 
weighted least-squares straight line fitting with 𝜎 = 50 s). Spatial 

smoothing was not yet applied at this stage. The timeseries were then 
standardised by converting to units of percentage signal change, and 
then finally both the mean ventricular and white-matter timeseries and 
motion parameters were regressed out. 

We computed registrations from each subject’s EPI space to both 
standard volume and surface spaces. First, we computed a volume- 
based registration between each subject’s EPI and T1 anatomical im- 
ages via boundary based registration ( Greve and Fischl, 2009 ), and 
then further to the MNI152 standard brain via FSL’s FNIRT tool 
( Andersson et al., 2010 ). Next, cortical surfaces were reconstructed 
from T1- and T2-weighted anatomical images using Freesurfer v6.0 
( Dale et al., 1999 ; https://surfer.nmr.mgh.harvard.edu ). Functional 
data were co-registered to each subject’s native cortical surface via 
boundary based registration, and then further to the fsaverage surface 
via a surface-based registration ( Fischl et al., 1999a , 1999b ). 

To synthesise random data, we generated random timeseries com- 
prising Gaussian white-noise matched in mean and variance to the 
real movie-watching data in the functional EPI volume of each sub- 
ject. These timeseries will approximate the signal amplitudes of the real 
data, but will lack any coherent spatial or temporal correlation struc- 
ture. Both real and random datasets were then optionally transformed 
to the MNI volume or cortical surface using trilinear interpolation. Data 
were transformed to the fsaverage5 surface for whole-brain analyses, 
and the fsaverage6 surface for all other analyses. We then applied spa- 
tial smoothing in all three spaces (functional volume, MNI volume, fsav- 
erage surface) at FWHM = 6 mm (twice the voxel resolution), using 
volume-based smoothing for volume spaces and surface-based smooth- 
ing for surface spaces. We also retained the unsmoothed datasets for 
comparison. Volume datasets were restricted to cortical and subcorti- 
cal grey-matter masks, derived from individualised Freesurfer segmen- 
tations ( Fischl et al., 2002 ) for the functional volumes (back-transformed 
from the T1 images), or from the Harvard-Oxford atlas for the MNI vol- 
ume. Thus, each subject had a total of 12 movie-watching datasets: a real 
and complementary random dataset, with a smoothed and unsmoothed 
version of each, and with a version of each in the functional volume, 
MNI volume, and on the fsaverage surface. 

2.3. Regions of interest 

We measured connectopic gradients in a number of different regions 
of interest: (1) primary visual cortex (V1), (2) hippocampus, (3) stria- 
tum, and (4) Schaefer parcels. We first generated regions of interest 
(ROIs) for primary visual cortex in each subject. Visual field mapping 
data were either retained in the native functional volume or transformed 
to the fsaverage surface. Both spatially smoothed (FWHM = 6 mm) 
and unsmoothed versions were generated in each space. In each case, 
a travelling wave analysis ( Engel et al., 1997 ) was conducted using 
the 3dRetinoPhase command in AFNI ( Cox, 1996 ; Saad et al., 2001 ). 
This produced phase maps of the eccentricity and polar angle tunings. 
The phase maps from the spatially smoothed surface analysis were used 
to define individualised V1 ROIs by tracing along the phase reversals. 
These surface ROIs were additionally back-projected to each subject’s 
functional volume. These ROIs were then applied to the analysis of both 
smoothed and unsmoothed data in each subject’s functional volume 
and surface spaces. The eccentricity and polar angle phase maps also 
provided a ground-truth estimate of the retinotopic maps within V1 to 
compare the connectopic maps against. Next, for analysis of the MNI 
volume data, we defined ROIs for the hippocampus and striatum from 

the Harvard-Oxford subcortical atlas. Finally, for further analysis of the 
surface data, we generated surface ROIs from the 100-area Schaefer par- 
cellation ( Schaefer et al., 2018 ). This parcellation scheme partitions the 
cortical surface along boundaries in local functional connectivity while 
simultaneously maximising the functional similarity within each parcel, 
and has been shown to predict functional boundaries as well as or better 
than comparable functional, anatomical, and multimodal parcellations 
( Zhi et al., 2022 ). 

2 
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2.4. Connectopic mapping 

We tested two separate pipelines for performing the connectopic 
mapping analysis, based on subtly different methods described in the 
literature ( Haak et al., 2018 ; Margulies et al., 2016 ). Both pipelines aim 

to reconstruct functional gradients from patterns of connectivity, but 
use differing approaches to achieve this. 

2.4.1. Pipeline 1 
Our first connectopic mapping pipeline was based on the methods 

of Haak et al. (2018) . A schematic illustration of this pipeline for ROI 
analyses is shown in Fig. 1 . For analyses of V1 data, timeseries were 
concatenated over odd and even scan runs separately to allow cross- 
validated parameter selection for the manifold learning. For all other 
analyses, timeseries were concatenated over all scan runs. Timeseries 
were split between grayordinates within the ROI and those outside the 
ROI. For surface-based analyses, this entailed splitting the timeseries 
between cortical vertices inside and outside of the ROI. For volume- 
based analyses, the split was between voxels inside and outside of the 
ROI, with non-ROI voxels selected from a grey-matter masque. Because 
the number of non-ROI grayordinates exceeds the number of time- 
points, we reduced the dimensionality via a lossless PCA – retaining 
all available components (one fewer than the number of timepoints) 
so that 100% of the variance remained explained. This amounts to 
rotating the samples within the feature space and dropping the un- 

used dimensions, and aids computational tractability for later processing 
stages. 

Next, connectivity fingerprints were derived by correlating time- 
series between the ROI grayordinates and non-ROI principal compo- 
nents, and correlations were converted to units of Fisher’s z . We then 
measured the pairwise Euclidean distances between samples (ROI gray- 
ordinates) in the connectivity space, yielding a symmetrical distance 
matrix. These distances were then used to construct an unweighted and 
undirected nearest neighbour graph. This is represented as a symmet- 
rical sparse affinity matrix, where two samples are assigned a value of 
one if either sample falls within the k nearest neighbours of the other, 
and a value of zero otherwise. This requires a parameter ( k ) to be se- 
lected for the neighbourhood size. For analysis of the V1 ROI, the pa- 
rameter was selected via cross-validation. Specifically, a Bayesian opti- 
misation algorithm (implemented using the scikit-optimize Python mod- 
ule; https://scikit-optimize.github.io ) selected the parameter that max- 
imised the correlation between retinotopic and connectopic maps in one 
of the data splits (odd or even runs), and the selected parameter was then 
applied to the analysis of the other data split. As such, the parameter se- 
lection remains statistically independent from the measure of the predic- 
tion accuracy. For the analysis of other regions, the ground-truth func- 
tional topography is unknown, so it wasn’t possible to optimise a predic- 
tion accuracy. Instead, the parameter was set to the log of the number of 
samples (rounded to the nearest integer) as this has previously been sug- 
gested as a reasonable default choice ( von Luxburg, 2007 ). The affinity 

Fig. 1. Schematic illustration of the first connectopic mapping pipeline for ROI analyses, based on the methods of Haak et al. (2018) . Timeseries are divided between 
grayordinates within versus outside of the ROI. Non-ROI timeseries are reduced in dimensionality via lossless principal component analysis. The ROI and compressed 
non-ROI timeseries are cross-correlated to derive the connectivity space. Pairwise distances are measured between samples in the connectivity space, which are then 
used to derive a nearest neighbour network graph (represented by a sparse affinity matrix). Spectral embedding is then used to derive the connectopic maps. To 
perform connectopic mapping at the group level, the distance matrices are averaged over subjects, and then the remaining pipeline proceeds as normal. 
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matrix was then decomposed via spectral embedding to yield the con- 
nectopic maps. In all cases, we retained the first two components. Spec- 
tral embedding was implemented using the scikit-learn Python module 
( Pedregosa et al., 2011 ; https://scikit-learn.org ). The analysis can ei- 
ther be performed at the individual subject level, or at the group-level 
by averaging the distance matrices over subjects then deriving an affin- 
ity matrix and applying spectral embedding as normal. We conducted 
the V1 ROI analyses at the individual-level, the Schaefer parcel analy- 
ses at the group-level, and the MNI volume ROI analyses (hippocampus, 
striatum) at both individual- and group-levels. 

We also applied a modified version of this pipeline to connectopic 
mapping of whole-brain gradients. Connectivity fingerprints were es- 
timated for all vertices within each hemisphere (excluding the medial 
wall) by correlating the timeseries in those vertices against principal 
components derived from those same vertices (via a lossless PCA). From 

here, the remaining analysis pipeline proceeded as described above. This 
yielded whole-brain connectopic maps for each hemisphere. We per- 
formed the whole-brain analyses at the group-level. 

2.4.2. Pipeline 2 
We also employed an alternative connectopic mapping pipeline 

based on the methods of Margulies et al. (2016) , primarily for the analy- 
sis of whole-brain gradients ( Fig. 2 ). Timeseries were correlated between 
all vertices in each hemisphere (excluding the medial wall), yielding 
a symmetrical connectivity fingerprints matrix. Correlations were left 
in units of Pearson’s r because the matrix diagonal comprises perfect 
correlations which would invalidate a Fisher’s z transformation. Next, 
the connectivity fingerprints were made sparse by thresholding the val- 
ues at the 90th percentile for each sample (row) in the matrix. Where 
necessary, values where further thresholded at zero to ensure that all 
values were non-negative. Next, the thresholded connectivity matrix 
was converted into an affinity matrix using a similarity kernel: we em- 
ployed kernels based on cosine, normalised angle, and Pearson’s cor- 
relation similarity. Although the connectivity matrix is square in the 
whole-brain case, it is still necessary to derive a separate symmetric 
affinity matrix because the connectivity matrix is rendered asymmetric 
by the thresholding. This affinity matrix is dense, such that the simi- 
larity is measured from every vertex to every other vertex, and hence 
represents a weighted and fully-connected network graph. Spectral em- 
bedding requires the affinity matrix to be non-negative: for cosine and 
angular similarity this is already guaranteed by the non-negativity of 

the thresholded connectivity fingerprints, but for correlation similarity 
the affinity matrix was further thresholded at zero. Finally, the affinity 
matrix was decomposed via spectral embedding, and the first two com- 
ponents were retained. This can be performed at the individual-subject 
level, or at the group-level by averaging the connectivity fingerprints 
over subjects before thresholding and then proceeding with the remain- 
ing pipeline as normal. To obtain an unbiased average, the connectivity 
fingerprints were converted to units of Fisher’s z before averaging, and 
then converted back to Pearson’s r after averaging. The principal differ- 
ence between the analysis pipelines is that the first pipeline uses dense 
connectivity fingerprints and a sparse affinity matrix, while the second 
pipeline uses sparse connectivity fingerprints and a dense affinity ma- 
trix. 

A modified version of the second pipeline was also applied to surface- 
and volume-based ROI analyses of V1. Here, connectivity fingerprints 
were derived by correlating timeseries between grayordinates within 
the V1 ROI and all other cortical grayordinates outside of the ROI. Be- 
yond this point, the remaining pipeline stages proceeded as described 
above. We conducted the V1 ROI analyses at the individual-level, and 
the whole-brain analyses at the group-level. 

2.5. Statistical analyses 

For the V1 ROI analyses, we estimated retinotopic and connectopic 
maps in each subject. Prediction accuracies were measured by the ab- 
solute correlation between the eccentricity and polar angle retinotopic 
and connectopic maps; the absolute value was taken to account for 
the sign ambiguity in the connectopic maps. Correlations were con- 
verted to units of Fisher’s z and averaged within each subject over 
hemispheres and the two cross-validation splits. These correlations were 
then entered into a four-way repeated-measures ANOVA with factors 
for the co-ordinate space (volume/surface), randomness (real/random), 
smoothness (smoothed/unsmoothed) and map (eccentricity / polar an- 
gle). Next, we measured the absolute correlations between the real and 
random connectopic maps. Values were again converted to Fisher’s z and 
averaged within subjects. These correlations were then submitted to a 
three-way repeated-measures ANOVA with factors for the co-ordinate 
space, smoothness, and map. 

Connectopic maps in the MNI volume ROIs (hippocampus and stria- 
tum) were estimated at both the group- and individual-level. In each 
case, we measured the absolute correlations between the real and ran- 

Fig. 2. Schematic illustration of the second connectopic mapping pipeline for whole-brain analyses, based on the methods of Margulies et al. (2016) . Whole-brain 
timeseries are cross-correlated to derive the connectivity space. The connectivity space is made sparse by thresholding at the 90th percentile for each sample (row) 
in the matrix. This is then converted to a dense (fully-connected) affinity matrix via a similarity kernel. Spectral embedding is then used to derive the connectopic 
maps. To perform connectopic mapping at the group level, the initial dense connectivity fingerprints are averaged over subjects, and then the remaining pipeline 
proceeds as normal. 
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dom connectopic maps, converted the values to Fisher’s z , and averaged 
over hemispheres. Individual correlations were entered into a two-way 
repeated-measures ANOVA with factors for the smoothness and com- 
ponent (primary and secondary gradients). To assess the consistency 
of the maps between individuals, we also calculated the pairwise cor- 
relations of individual-level gradients between subjects, as well as the 
correlation of each subject’s gradient to the group-level gradient. We 
additionally estimated noise ceilings from these values by averaging the 
between-subject correlations over pairwise combinations for each real 
connectopic map – this estimates the average similarity of each real gra- 
dient to itself between subjects. Correlations were converted to Fisher’s 
z before averaging to obtain an unbiased mean, which was then con- 
verted back to Pearson’s r for visualisation. We compared the Fisher 
transformed within-subject correlations (between real and random con- 
nectopic maps) against these noise ceilings via a series of one-sample 
t-tests, including Bayes factors calculated with the BayesFactor R pack- 
age ( https://cran.r-project.org/package = BayesFactor ). 

We also estimated group-level connectopic maps within each of the 
100 Schaefer parcel surface ROIs. Absolute correlations were measured 
between real and random connectopic maps for each parcel, converted 
to Fisher’s z , and entered into a two-way repeated-measures ANOVA 
with factors for the smoothness and component. 

Finally, we estimated group-level connectopic maps over the whole- 
brain within each hemisphere. At the whole-brain level, we observed 
more variable degrees of similarity in real and random connectopic 
maps within and between components. We therefore measured the full 
2 × 2 pairwise absolute correlations between real and random maps 
across both components within each hemisphere. We assessed the sig- 
nificance of these correlations using spin permutation tests (1000 per- 
mutations per hemisphere) implemented using the BrainSpace toolbox 
( Vos de Wael et al., 2020 ; https://brainspace.readthedocs.io ). On each 
permutation, the real gradients were randomly rotated over the cortical 
sphere, and the absolute correlation was measured between the rotated 
real gradient and original random gradient (excluding invalid vertices 
within the medial wall). Repeating this process over all permutations 
produces an empirical null distribution of correlation values. Statistical 
significance was determined by identifying the proportion of correla- 
tions in the null distribution that were greater than the genuine corre- 
lation value. 

In all ANOVAs, we report effect sizes in units of both partial and 
generalised eta-squared ( Bakeman, 2005 ; Olejnik and Algina, 2003 ). All 
statistical tests employed an alpha criterion of 0.05 for determining sig- 
nificance. 

2.6. Connectivity searchlight 

To assess how the pre-processing pipeline affects spatial auto- 
correlations, we used a searchlight analysis ( Ciantar et al., 2022 ; 
Kriegeskorte et al., 2006 ) to measure local functional connectivity. We 
employed spherical searchlights for volume spaces (5 mm / 2 voxel 
radius for functional volumes, 6 mm / 2 voxel radius for the MNI 
volume) and a disc searchlight (6 mm radius) for the surface space. 
Volume searchlights were restricted to a grey-matter mask. For each 
searchlight, we calculated the pairwise correlations in timeseries be- 
tween all grayordinates within the searchlight. These correlations were 
converted to units of Fisher’s z and averaged over grayordinates, and 
then this average was converted back to Pearson’s r and assigned to 
the central grayordinate of the searchlight. This resulted in a map of 
the local functional connectivity over the whole brain. We performed 
searchlight analyses in each individual subject for all 12 versions of the 
dataset: real and random data, smoothed and unsmoothed, and in the 
functional volume, MNI volume, and surface spaces. Volume search- 
lights were implemented with the PyMVPA toolbox ( Hanke et al., 2009 ; 
http://www.pymvpa.org/ ), and surface searchlights were implemented 
using custom code leveraging the surfdist toolbox ( Margulies et al., 2016 ; 
https://github.com/NeuroanatomyAndConnectivity/surfdist ). 

3. Results 

3.1. ROI connectopic mapping 

We employed our first connectopic mapping pipeline to analyses 
of local regions of interest. We first examined gradients estimated by 
retinotopic and connectopic mapping in primary visual cortex ( Fig. 3 ). 
We employed both surface- and volume-based analyses. For surface 
analyses, the timeseries were interpolated to the cortical surface and 
retinotopic and connectopic mapping were performed on the surface. 
For volume analyses, retinotopic and connectopic mapping were per- 
formed within the native functional volume, and the resulting maps 
were interpolated to the surface for visualisation. We observed highly 
similar connectopic maps between the real and random data, indicating 
that spatial autocorrelations induced via spatial smoothing and/or in- 
terpolation to the surface were sufficient to produce illusory gradients. 
Retinotopic and connectopic maps are shown for a representative sub- 
ject in Fig. 3 a. As previously reported ( Haak et al., 2018 ; Watson and 
Andrews, 2022 ), connectopic mapping of the real movie-watching data 
identified a posterior-anterior gradient corresponding to the eccentricity 
map, and a superior-inferior gradient corresponding to the polar angle 
map. This was true for both surface and volume analyses and using both 
smoothed and unsmoothed data. However, similar gradients were also 
obtained from connectopic mapping of the random data. The only ex- 
ception to this was the case of the unsmoothed random data in the func- 
tional volume, where the connectopic mapping is operating directly on 
the raw random data with no further manipulation. 

We measured prediction accuracies in all subjects by correlating 
the retinotopic and connectopic maps ( Fig. 3 b, 3 d). Although there 
was a slight reduction in prediction accuracies for connectopic map- 
ping of random compared to real data, correlations were generally high 
in all cases – with the exception of the unsmoothed random data in 
the functional volume. Prediction accuracies were also generally higher 
for eccentricity than polar angle maps. A four-way repeated-measures 
ANOVA revealed significant main effects of the co-ordinate space 
(F(1,14) = 105.42, p < .001, 𝜂2 

𝑃 
= 0.88, 𝜂2 

𝐺 
= 0.39) due to higher correla- 

tions for the surface pipeline, of randomness (F(1,14) = 47.06, p < .001, 
𝜂2 
𝑃 
= 0.77, 𝜂2 

𝐺 
= 0.18) due to higher correlations for real data, of smooth- 

ness (F(1,14) = 204.66, p < .001, 𝜂2 
𝑃 
= 0.94, 𝜂2 

𝐺 
= 0.39) due to higher 

correlations for smoothed data, and of map-type (F(1,14) = 28.31, p < 

.001, 𝜂2 
𝑃 
= 0.67, 𝜂2 

𝐺 
= 0.30) due to higher correlations for eccentricity 

maps. Additionally, all interactions were significant (all p < .05) except 
for the two-way smoothness by map-type interaction (F(1,14) = 1.36, 
p = .263, 𝜂2 

𝑃 
= 0.09, 𝜂2 

𝐺 
< 0.01) and three-way randomness by smooth- 

ness by map-type interaction (F(1,14) = 0.03, p = .873, 𝜂2 
𝑃 
< 0.01, 𝜂2 

𝐺 
< 

0.01). 
We also tested the consistency between the connectopic maps them- 

selves by correlating the real and random connectopic maps ( Fig. 3 c, 
3 e). Correlations were generally high, except for those of the un- 
smoothed volume analyses, and appeared comparable to or higher than 
the retinotopic prediction accuracies. A three-way repeated-measures 
ANOVA indicated significant main effects of the co-ordinate space 
(F(1,14) = 33.36, p < .001, 𝜂2 

𝑃 
= 0.70, 𝜂2 

𝐺 
= 0.33) due to higher cor- 

relations for the surface analyses, of smoothness (F(1,14) = 168.90, p 
< .001, 𝜂2 

𝑃 
= 0.92, 𝜂2 

𝐺 
= 0.47) due to higher correlations for smoothed 

data, and of map-type (F(1,14) = 33.63, p < .001, 𝜂2 
𝑃 
= 0.71, 𝜂2 

𝐺 
= 0.16) 

due to higher correlations for the eccentricity maps. All interactions 
were significant (all p < .05) except for the two-way smoothness by 
map-type interaction (F(1,14) = 0.07, p = .794, 𝜂2 

𝑃 
< 0.01, 𝜂2 

𝐺 
< 0.01). 

These results indicate that spatial autocorrelations alone, induced via 
spatial smoothing and/or interpolation to the surface, are sufficient 
to produce illusory connectopic maps resembling retinotopic gradients 
in V1. 

We next tested volume-based connectopic gradients in the hippocam- 
pus and striatum. We again observed very similar connectopic maps 
between real and random data, indicating that spatial smoothing and 
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Fig. 3. First connectopic mapping pipeline results for primary visual cortex. (a) Eccentricity and polar angle retinotopic and connectopic maps in the left hemisphere 
of a representative subject derived from both surface and volume pipelines. Volume maps were projected to the surface for visualisation. (b,d) Prediction accuracies 
for (b) surface and (d) volume pipelines, measured by absolute correlations between retinotopic and connectopic maps. (c,e) Absolute correlations between real and 
random connectopic maps for (c) surface and (e) volume pipelines. Dot markers indicate per-subject correlations and bars indicate group means. 
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Fig. 4. First connectopic mapping pipeline results for MNI volume regions. (a,c) Primary and secondary group-level gradients in the (a) hippocampus and (c) 
striatum. (b,d) Absolute correlations between real and random gradients for the (b) hippocampus and (d) striatum. Dot markers indicate per-subject correlations for 
individual-level gradients, bars indicate group means of per-subject correlations, and diamond markers indicate correlations for group-level gradients. Dotted lines 
indicate noise ceilings estimated as the average pairwise correlation of each real individual-level gradient between all subjects. 

interpolation to the MNI volume were sufficient to produce illusory 
gradients. Furthermore, these gradients were highly consistent between 
subjects. Group-level connectopic maps of the hippocampus are shown 
in Fig. 4 a, and individual-level gradients are shown for a representa- 
tive subject in Supplementary Fig. 2a. Connectopic mapping of the real 
data identified a primary gradient running posterior-anterior along the 
long axis of the hippocampus, replicating previously reported gradi- 
ents ( Borne et al., 2023 ; Prze ź dzik et al., 2019 ; Vos de Wael et al., 
2018 ) in this region, and a secondary gradient that sub-divided the 
primary gradient. However, we also observed similar gradients using 
the random data. Unlike the V1 analyses in subjects’ functional vol- 
umes, these gradients were now also apparent for unsmoothed ran- 
dom data – this indicates that interpolation to the MNI space was 
sufficient to induce the necessary spatial autocorrelations even with- 
out further spatial smoothing. Correlations between the real and ran- 
dom connectopic maps appeared high at both the group and individ- 
ual levels ( Fig. 4 b). Entering the individual correlations into a two- 
way repeated-measures ANOVA revealed no significant main effect of 
smoothness (F(1,14) = 0.02, p = .883, 𝜂2 

𝑃 
< 0.01, 𝜂2 

𝐺 
< 0.01), but did 

indicate a significant main effect of the component (F(1,14) = 535.13, 
p < .001, 𝜂2 

𝑃 
= 0.97, 𝜂2 

𝐺 
= 0.70) due to higher correlations for the pri- 

mary gradient, and a significant smoothness by component interaction 
(F(1,14) = 23.68, p < .001, 𝜂2 

𝑃 
= 0.63, 𝜂2 

𝐺 
= 0.21) due to a bigger 

difference between gradients for smoothed data. We additionally com- 
pared individual-level gradients between subjects (Supplementary Fig. 
3a) – these revealed very high spatial correlations both between sub- 
jects and to the group-level for both real and random gradients. We 
estimated noise ceilings by averaging over the between-subject corre- 
lations for the real gradients. The within-subject correlations between 
real and random gradients ( Fig. 4 b) approached the noise ceilings. The 
correlations fell significantly below the noise ceiling for the unsmoothed 

primary (t(14) = 4.76, p = .001, Hedges’ g = 1.16, BF 10 = 109.00) and 
smoothed secondary gradients (t(14) = 4.11, p = .003, Hedges’ g = 1.00, 
BF 10 = 36.54). However, the correlations for the unsmoothed secondary 
(t(14) = 0.95, p = 717, Hedges’ g = 0.23, BF 10 = 0.39) and smoothed pri- 
mary gradients (t(14) = 0.93, p = .717, Hedges’ g = 0.23, BF 10 = 0.38) 
did not differ significantly from the noise ceilings, and Bayes factors 
indicated slight support for the null hypothesis. Thus, very similar hip- 
pocampal gradients were obtained from real and random data, and these 
were highly consistent over subjects. 

Group-level connectopic maps of the striatum ( Fig. 4 c) indicated a 
primary gradient that curved around the striatum and a secondary gradi- 
ent running superior-inferior, replicating previously reported gradients 
( Marquand et al., 2017 ). However, these gradients were again observed 
for both the real and random data with and without spatial smooth- 
ing. Similar gradients were also found at the individual-level (Sup- 
plementary Fig. 2b). Correlations between real and random gradients 
( Fig. 4 d) again appeared high at both the group and individual-level. A 
two-way repeated-measures ANOVA on the individual correlations indi- 
cated significant main effects of smoothness (F(1,14) = 53.15, p < .001, 
𝜂2 
𝑃 
= 0.79, 𝜂2 

𝐺 
= 0.52) due to higher correlations for smoothed data, and 

of the component (F(1,14) = 400.06, p < .001, 𝜂2 
𝑃 
= 0.97, 𝜂2 

𝐺 
= 0.74) due 

to higher correlations for the primary gradient, while the smoothness 
by component interaction was not significant (F(1,14) = 3.58, p = .079, 
𝜂2 
𝑃 
= 0.20, 𝜂2 

𝐺 
= 0.03). We again observed very high spatial correlations 

between subjects for both real and random gradients (Supplementary 
Fig. 3b). We also found that the within-subject correlations between 
real and random gradients approached the noise ceilings estimated 
from the between-subject correlations ( Fig. 4 b). Within-subject corre- 
lations fell significantly below the noise ceilings for the unsmoothed 
primary (t(14) = 9.09, p < .001, Hedges’ g = 2.22, BF 10 = 5.20 × 10 4 ), 
unsmoothed secondary (t(14) = 6.31, p < .001, Hedges’ g = 1.54, 
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Fig. 5. First connectopic mapping pipeline results for group-level analyses of the 100-area Schaefer surface parcellation. (a) Primary and secondary gradients within 
each parcel in the left hemisphere. (b) Absolute correlations between real and random group-level gradients. Dot markers indicate correlations for each parcel and 
bars indicate means over parcels. 

BF 10 = 1231.97), and smoothed primary gradients (t(14) = 10.55, p 
< .001, Hedges’ g = 2.58, BF 10 = 2.76 × 10 5 ). However, correlations 
did not differ significantly from the noise ceiling for the smoothed sec- 
ondary gradient, and the Bayes factor indicated slight support for the 
null hypothesis (t(14) = 0.95, p = .356, Hedges’ g = 0.23, B 10 = 0.39). 
Therefore, again, striatal gradients appeared very similar between real 
and random data and highly consistent over subjects. Thus, both spa- 
tial smoothing and interpolation to a different volume space (the MNI 
brain) induced sufficient spatial autocorrelations to obtain local connec- 
topic gradients in the hippocampus and striatum, and these replicated 
gradients previously reported in the literature. 

We next examined local surface-based gradients across the whole 
brain. We estimated connectopic maps for each region of the 100-area 
Schaefer surface parcellation ( Schaefer et al., 2018 ). Highly similar lo- 
cal connectopic maps were observed between real and random data 
throughout the brain, again indicating that spatial smoothing and/or 
interpolation to the surface can induce illusory gradients. Group-level 
connectopic maps are illustrated for the left hemisphere in Fig. 5 a, and 
for both hemispheres in Supplementary Fig. 4. Gradients typically ran 
smoothly and continuously over the extent of each region, with pri- 
mary and secondary gradients usually appearing orthogonal to one an- 
other. These gradients were again obtained using both real and random 

smoothed and unsmoothed data. Correlations between real and random 

gradients appeared high in all parcels ( Fig. 5 b). Entering the correlations 
over parcels into a two-way repeated-measures ANOVA revealed a sig- 
nificant main effect of smoothing (F(1,99) = 34.77, p < .001, 𝜂2 

𝑃 
= 0.26, 

𝜂2 
𝐺 

= 0.09) due to higher correlations for smoothed data, and of the 
component (F(1,99) = 101.65, p < .001, 𝜂2 

𝑃 
= 0.51, 𝜂2 

𝐺 
= 0.13) due to 

higher correlations for the primary gradient, while the smoothness by 
component interaction was not significant (F(1,99) = 0.62, p = .434, 𝜂2 

𝑃 
< 0.01, 𝜂2 

𝐺 
< 0.01). Thus, spatial smoothing and/or interpolation to the 

surface induced sufficient spatial autocorrelations to generate local con- 
nectopic gradients throughout the brain. Similar results were obtained 
using an alternative multi-modal brain parcellation ( Glasser et al., 2016 ; 
Supplementary Fig. 5). 

3.2. Whole brain connectopic mapping 

All of the gradients we have considered so far have been on a local 
scale within regions of interest. However, connectopic mapping has also 
been used to describe coarse-scale gradients spanning the whole brain 
( Margulies et al., 2016 ). Such studies have typically reported a primary 
gradient that runs between unimodal and transmodal regions, and a sec- 
ondary gradient that runs between primary visual and somatosensory 
regions. To test how such coarse-scale gradients are affected by spa- 
tial autocorrelations, we ran both our connectopic mapping pipelines 
for the whole-brain within each hemisphere. Similar to the region of 
interest analyses, the first connectopic pipeline (using a sparse affin- 
ity matrix) identified gradients from both real and random data. How- 
ever, none of these gradients appeared biologically plausible and they 
did not replicate previously reported whole-brain gradients. The second 
pipeline (using a dense affinity matrix) successfully replicated previous 
gradients, and appeared less susceptible to spatial autocorrelations, but 
was sensitive to the choice of similarity kernel. 

Group-level connectopic maps derived from the first connectopic 
mapping pipeline are shown for the left hemisphere in Fig. 6 a (data 
for both hemispheres are shown in Supplementary Fig. 6). Using this 
pipeline, we failed to replicate previously reported gradients even with 
the real data, and instead identified biologically implausible gradients 
that simply ran continuously across the brain along one axis (anterior- 
posterior and superior-inferior for the primary and secondary gradients 
respectively). Similar gradients were obtained between real and random 

spatially smoothed data. Gradients were still obtained for unsmoothed 
random data, but appeared less similar to their real data counterparts. 
We measured the pairwise absolute correlations between real and ran- 
dom gradients ( Fig. 6 b), and determined statistical significance via spin 
permutations ( Vos de Wael et al., 2020 ). With spatial smoothing, real 
and random gradients correlated strongly and significantly within each 
component. Without spatial smoothing, moderate correlations were ob- 
tained both within and between components, though spin permutations 
indicated none were significant. 
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Fig. 6. Group-level connectopic mapping results for whole-brain surface analyses. (a,c) Primary and secondary gradients in the left hemisphere for the first and 
second pipelines respectively. (b,d) Absolute correlations between real and random gradients for the first and second pipelines respectively. Pairwise correlations 
were measured between both gradients, and significance was determined via spin permutation tests. Results for the second pipeline are illustrated for the cosine 
similarity kernel. 

Our first connectopic mapping pipeline is based on the methods de- 
scribed by Haak et al. (2018) . It is possible that the failure to repli- 
cate previously reported whole-brain gradients reflects subtle method- 
ological differences between this pipeline and the one employed by 
Margulies et al. (2016) . One key difference lies in the treatment of the 
connectivity fingerprints and generation of the affinity matrix ( Figs. 1 & 

2 ). Haak et al. measure dense connectivity fingerprints (from all gray- 
ordinates to all principal components), then construct a sparse affinity 
matrix (measuring affinity only between neighbouring samples in the 
connectivity space). By contrast, Margulies et al. make the connectiv- 
ity fingerprints sparse by thresholding them, then construct a dense / 
fully-connected affinity matrix (measuring the affinity between every 
sample and every other sample). To test the influence of these method- 
ological differences on the gradients, we re-ran our whole-brain analy- 
ses using our second pipeline based on the methods of Margulies et al. 
We first constructed the affinity matrix using a cosine kernel, as per 
Margulies et al. (2016) . Group-level connectopic maps are shown for 
the left-hemisphere in Fig. 6 c and for both hemispheres in Supplemen- 
tary Figure 7. Using either smoothed or unsmoothed real data, we were 

now able to replicate the unimodal-transmodal primary gradient and 
the visual-somatosensory secondary gradient. Using smoothed random 

data produced gradient-like patterns, but these did not correspond well 
to the gradients obtained with the real data and did not appear biolog- 
ically plausible. Using unsmoothed random data did not produce con- 
vincing gradients – the maps instead converged on local brain regions 
and appeared largely uniform elsewhere. Correlations between real and 
random maps were generally low, and spin permutations did not in- 
dicate any of them to be significant. To ensure that the key factor in 
producing these gradients was the sparseness of the affinity matrix, we 
also ran a variant of the second pipeline in which the connectivity fin- 
gerprints were again made sparse by thresholding, but these were then 
used to generate a sparse affinity matrix as per the first pipeline. The 
resulting gradients again ran continuously along one axis and appeared 
similar to those obtained from the first pipeline (Supplementary Fig. 8). 
Thus, the ability to reproduce previously reported whole-brain gradients 
critically depends on using a dense rather than sparse affinity matrix. 

For the second pipeline, various similarity metrics can be used to 
construct the affinity matrix. In the above analyses, we used a cosine 
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Fig. 7. Effect of varying the similarity kernel on the second connectopic mapping pipeline for group-level whole-brain surface analyses of the spatially smoothed 
real data. Plots illustrate primary and secondary gradients. Affinity matrices were derived using cosine, normalised angle, or Pearson’s correlation similarity kernels. 

kernel as per Margulies et al. (2016) , however other metrics are avail- 
able. To test how the choice of kernel affects the resulting gradients, 
we re-ran our analyses of the real and spatially smoothed data using 
cosine, normalised angle, and Pearson’s correlation similarity metrics. 
Group-level gradients are illustrated in Fig. 7 . While gradients do appear 
similar in all cases, they also differ in some key features that alter the 
interpretation of the gradients. For instance, using a normalised angle 
metric, the primary gradient represented a divide between primary vi- 
sual cortex and the rest of the brain, rather than a unimodal-transmodal 
distinction. The secondary gradient under normalised angle similarity 
more strongly emphasised somatosensory versus superior and anterior 
temporal regions, rather than visual versus somatosensory. Gradients 
from the correlation kernel appeared to fall between the cosine and nor- 
malised angle solutions. Thus, although we can reproduce previously 
reported whole-brain gradients from this dataset, they are sensitive to 
the choice of analysis pipeline. Specifically, they critically depend on 
using a dense rather than sparse affinity matrix, and are sensitive to the 
choice of kernel used to construct the affinity matrix. 

Because the second pipeline appears less susceptible to spatial corre- 
lations at the whole-brain level, we also tested how this pipeline (using 
a cosine similarity kernel) performed at a local level by re-running our 
analyses of primary visual cortex (Supplementary Fig. 9). In general, 
the connectopic maps provided a poorer reconstruction of the retino- 
topic maps than those obtained with the first pipeline. At the same 
time, while the degree of similarity between real and random con- 
nectopic maps decreased relative to the first pipeline, the correlations 
were still moderate and appeared comparable to the retinotopic pre- 
diction accuracies. Thus, while the second pipeline appears to reduce 
the influence of spatial autocorrelations on local connectopic maps, it 
does not eliminate the problem, and meanwhile produces poorer recon- 
structions of the ground-truth retinotopic maps compared to the first 
pipeline. 

3.3. The effect of smoothing and interpolation on local functional 
connectivity 

Finally, to test how the analysis pipeline affects spatial autocorrela- 
tions and local functional connectivity, we performed a series of con- 
nectivity searchlight analyses ( Fig. 8 ). These indicated that spatial au- 
tocorrelations could be induced even in random data by applying spa- 

tial smoothing and/or interpolating between volume or surface spaces. 
Searchlight connectivity maps for a representative subject are shown 
in Fig. 8 a-c, and distributions of correlations over all subjects are il- 
lustrated in Fig. 8 d. As expected, local functional connectivity was near 
zero for the unsmoothed random data in the functional volume, confirm- 
ing that the random data as generated are spatially uncorrelated. How- 
ever, both spatial smoothing and interpolation to another co-ordinate 
space (either volume- or surface-based) increased spatial correlations 
in both real and random data. It is likely that these artificially induced 
spatial autocorrelations form the basis of the connectopic maps identi- 
fied in the real and random data. As previously reported ( Ciantar et al., 
2022 ), the distribution of local functional connectivity over the surface 
covaried with the surface curvature – correlations increased in regions 
with high curvature ( Fig. 8 e). We also correlated the average surface 
searchlight maps between the different datasets ( Fig. 8 f). Moderate-to- 
strong positive correlations were found between most real and random 

smoothed and unsmoothed datasets (with the exception of random- 
smoothed against real-unsmoothed) indicating some commonality in 
the pattern of local connectivity between datasets. Thus, both spatial 
smoothing and interpolation to either the surface or a different volume 
space induce artificial spatial autocorrelations sufficient to produce il- 
lusory gradients with connectopic mapping. 

4. Discussion 

In this study we investigated how local spatial autocorrelations in- 
troduced during data analysis influence gradients produced by connec- 
topic mapping. We synthesised spatially uncorrelated random data in 
each subject’s native functional volume, then explored the effect of ap- 
plying spatial smoothing and interpolation to other co-ordinate spaces. 
We found that artificial spatial autocorrelations could be induced by 
applying spatial smoothing and/or interpolating to the cortical surface 
or MNI volume space. These spatial autocorrelations were sufficient to 
derive local gradients from connectopic mapping of both volume- and 
surface-based brain regions. Connectopic maps derived from the ran- 
dom data appeared highly similar to those produced from the real data 
and replicated gradients previously reported in the literature. Coarser- 
scale gradients over the whole-brain appeared less susceptible to arti- 
ficial spatial autocorrelations but were sensitive to specific features of 
the analysis pipeline. 
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Fig. 8. Spatial smoothing and interpolation induce local spatial autocorrelations within random data. (a-c) Local connectivity searchlight maps for a representative 
subject based on data (a) retained in the native functional volume, (b) transformed to the MNI volume space, or (c) transformed to the fsaverage surface (illustrated 
for left hemisphere only). (d) Kernel density estimates illustrating distributions of searchlight correlations for all subjects. (e) Hexbin plots illustrating relationship 
between surface curvature and group average surface searchlight maps. Spatial autocorrelations increase in regions of high surface curvature. (f) Correlations between 
different variants of group average surface searchlight maps. 
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We first investigated local gradients within both volume- and 
surface-based brain regions using our first connectopic mapping 
pipeline. Connectopic mapping of real movie-watching data reproduced 
previously reported volume- and surface-based gradients in primary vi- 
sual cortex ( Haak et al., 2018 ; Watson and Andrews, 2022 ), the hip- 
pocampus ( Borne et al., 2023 ; Prze ź dzik et al., 2019 ; Vos de Wael et al., 
2018 ), and the striatum ( Marquand et al., 2017 ). We also reported novel 
surface-based local gradients throughout the brain within regions of the 
Schaefer and Glasser parcellations ( Glasser et al., 2016 ; Schaefer et al., 
2018 ). However, we were also able to obtain highly similar gradients 
from random data following either spatial smoothing or interpolation 
to other volume or surface spaces. This suggests the manifold structure 
within the connectivity space is biased by spatial autocorrelations (nat- 
urally present in the data and/or introduced during data processing), 
such that neighbouring samples within the connectivity space tend to 
also be anatomically proximal. Consequently, the connectopic mapping 
tends to yield gradients that flow continuously over the extent of the 
region, even when derived from random data. The only combination 
that did not yield gradients was applying connectopic mapping directly 
to the raw unsmoothed random data in the native functional volume 
without any further manipulation. However, the complete lack of any 
spatial correlations in the raw random data is biologically implausible –
some degree of spatial correlations will always be present in real data, 
even if data are retained in the native volume and no artificial spatial 
smoothing is applied. While a functional gradient does necessitate some 
degree of spatial smoothness in the data, the reverse is not true and 
spatially smooth data could still reflect non-topographic organisations. 
Thus, with real data it will be challenging to disentangle the effects of 
genuine functional topographies versus non-topographic spatial corre- 
lations on local connectopic gradients. 

We note that many analyses in this work rely on similarity in the 
visual appearance of gradients, and it is possible that connectopic maps 
in real data may be distinguishable from smoothed/interpolated ran- 
dom data. Indeed, in primary visual cortex we observed significantly 
higher prediction accuracies of the retinotopic maps for real compared 
to random connectopic maps, providing support for real connectopic 
gradients being distinct from random gradients induced by smoothing 
and/or interpolation. This may indicate contributions of genuine func- 
tional signals from the real data, or could reflect the higher spatial au- 
tocorrelations in the real compared to random data – the connectiv- 
ity searchlight analysis revealed that spatial correlations were generally 
higher in the real than the random data even after smoothing or in- 
terpolation (see Fig. 8 ). Furthermore, the correlations between the real 
and random connectopic maps were typically comparable to or higher 
than their correlations with the retinotopic maps, so the greatest simi- 
larity was observed between the real and random gradients themselves. 
As such, further work is needed to establish to what degree smooth- 
ing/interpolation explain connectopic mapping gradient findings. For 
instance, future studies could titrate the degree of spatial autocorrela- 
tions to more fully determine the extent of their influence on connec- 
topic gradients. Nevertheless, our results indicate that standard data pre- 
processing steps, such as spatial smoothing and interpolation between 
co-ordinate spaces, are sufficient to induce illusory connectopic gradi- 
ents. 

The organisation of the gradients also appeared highly consistent 
between regions, with the primary gradient typically running continu- 
ously along a single axis from one side of the region to the other, and 
the secondary gradient usually either subdividing or running orthogo- 
nal to the primary gradient. This suggests that these local gradients may 
be an inevitability of the connectopic mapping technique, rather than 
necessarily reflecting genuine underlying functional topographies. The 
specific direction of the gradients could be influenced by interactions 
with the surface curvature ( Ciantar et al., 2022 ), or could be biased by 
the shape of the brain region – for instance being orientated relative 
to the long axis of the region. Such anatomical constraints might in- 
fluence both connectopic mapping and functional brain organisation so 

that connectopic and functional gradients may coincide, as was found 
in primary visual cortex. However, this is not always guaranteed to be 
the case, and indeed connectopic mapping failed to reproduce the phase 
reversals in the retinotopic polar angle map (which delineate the bound- 
aries between retinotopic regions) of an expanded early visual region in- 
cluding V1, V2, and V3 (Supplementary Fig. 1). Even where functional 
and connectopic gradients do coincide, there remains the issue that the 
connectopic maps are likely to be only partially driven by the underly- 
ing functional topography. In a region where the functional topography 
is unknown or poorly understood, it would therefore be difficult to as- 
certain how accurately the connectopic mapping is able to reproduce 
such topographies. Previously, we noted that the source of connectivity 
signals had minimal impact on the gradients reconstructed from con- 
nectopic mapping ( Watson and Andrews, 2022 ), and interpreted this as 
indicating that connectopic mapping largely reflects the functional to- 
pography within a brain region, rather than necessarily a topography 
embedded within the connectivity itself. Our current results partially 
accord with this principle, but further imply that the topography within 
a region need not even have a functional origin. Instead, illusory local 
gradients may be driven by an artificial topography induced by spatial 
autocorrelations introduced during the analysis pipeline. 

One key issue is how connectopic mapping might be expected to per- 
form under the null hypothesis. Spatial autocorrelations within the data 
make it unlikely that a random white noise pattern would be produced 
even when derived from spatially correlated random data. However, it 
is not guaranteed that the technique would yield similar gradients from 

both the real and random data. The spatial extent of the autocorrelations 
will be less than the size of the brain regions, so spatially correlated ran- 
dom data might have produced a smooth but still disorganised pattern 
rather than a continuous gradient. Alternatively, gradients might have 
been produced but following a different axis or pattern between the 
real and random data. In practice, we did obtain continuous gradients 
in each region, presumably as the connectopic mapping chained the lo- 
cal spatial correlations together over the extent of the region, and these 
appeared highly similar between the real and random data. For the hip- 
pocampus and striatum regions, we observed that individual-level gra- 
dients were highly consistent both between subjects and between each 
subject and the group-level gradients (Supplementary Fig. 3). We esti- 
mated noise ceilings by averaging the between-subject correlations for 
the real gradients, indicating how well each real gradient correlated 
with itself between subjects, and observed that the within-subject cor- 
relations between real and random gradients approached these noise 
ceilings. This not only indicates that the real and random hippocampal 
and striatal gradients were highly consistent over subjects, but also that 
the similarity between the real and random gradients was close to the 
ceiling level. No genuine gradients are present within the random data 
itself, so any gradients produced by the connectopic mapping must be 
illusory. The high similarity observed between real and random con- 
nectopic gradients therefore indicates that the spatial autocorrelations 
driving the random gradients likely also strongly influence the gradients 
obtained from real data. 

We also tested how spatial autocorrelations influence coarser-scale 
surface-based gradients over the whole-brain. Using our first connec- 
topic mapping pipeline, based on the methods of Haak et al. (2018) , 
we obtained whole-brain gradients that appeared highly consistent 
between spatially smoothed real and random data. Without spatial 
smoothing, gradients were again obtained for random data, though 
appeared less similar to their real data counterparts. However, in all 
cases, gradients simply ran smoothly and continuously along a single 
axis along the cortical surface. Such gradients appear biologically im- 
plausible, and failed to replicate the unimodal-transmodal and visual- 
somatosensory gradients previously reported by Margulies et al. (2016) . 
This result was surprising, as the Margulies et al. gradients have been 
replicated many times, including from resting-state functional connec- 
tivity ( Bethlehem et al., 2020 ; Cross et al., 2021 ; Gao et al., 2022 ; 
Hong et al., 2019 ; Larivière et al., 2020 ; Lee et al., 2023 ; Samara et al., 
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2023 ; Xia et al., 2022 ; Zhang et al., 2022 ), structural connectivity 
( Park et al., 2021a , 2021b ), and brain microstructure ( Paquola et al., 
2019 ). However, all previous replications used a connectopic mapping 
pipeline based on the methods of Margulies et al. (2016) , which dif- 
fers subtly from Haak et al.’s ( 2018 ) methods. Specifically, Haak et al. 
estimate a sparse affinity matrix in which the affinity is only measured 
between samples within local neighbourhoods of the connectivity space, 
while Margulies et al. estimate a dense affinity matrix in which the 
affinity is measured between all samples. We were able to reproduce 
the unimodal-transmodal and visual-somatosensory gradients when re- 
peating our analyses with a second connectopic mapping pipeline based 
on Margulies et al.’s methods using a dense affinity matrix. Further- 
more, these gradients were not produced by the random data, indicat- 
ing that this pipeline is less susceptible to the spatial autocorrelations. 
Employing a sparse affinity matrix is intended to aid in identifying non- 
linearities within the geometric structure of the manifold by restricting 
the network graph to connections between neighbouring samples lying 
along the manifold surface, and ignoring connections that may jump 
across gaps or pass through the manifold surface. However, if spatial 
autocorrelations in the data make it so that neighbouring samples in the 
connectivity space also tend to be neighbouring in the anatomical space, 
then a sparse affinity matrix may be more prone to yielding connectopic 
maps in which gradients simply run continuously over the extent of the 
brain region. By contrast, a dense affinity matrix, representing a fully- 
connected and weighted network graph, provides a coarser-scale view 

of the manifold that may be less biased by local spatial correlations. 
However, such a representation may also make it more challenging to 
identify non-linearities in the manifold and will hence promote more 
linear solutions. Indeed, the second pipeline did perform more poorly at 
reconstructing retinotopic maps in primary visual cortex compared to 
the first pipeline (Supplementary Fig. 9). 

We further tested how the choice of similarity kernel affects the 
whole-brain gradients produced by the second connectopic mapping 
pipeline. While Margulies et al. (2016) constructed their affinity ma- 
trix using cosine similarity, other metrics such as normalised angle or 
correlation similarity are also available ( Vos de Wael et al., 2020 ). While 
the gradients appeared similar in all cases, they differed in a number of 
important ways that could alter the interpretation of the gradients. For 
instance, using the normalised angle kernel, the primary gradient shifted 
to run between visual cortices and the rest of the brain, rather than 
providing a unimodal-transmodal distinction. Similarly, the secondary 
gradient under the normalised angle kernel ran between somatosensory 
versus frontal and superior and anterior temporal cortices, rather than 
between visual and somatosensory regions. A correlation similarity ker- 
nel produced gradients appearing between the cosine and normalised 
angle kernel solutions. Thus, although the unimodal-transmodal and 
visual-somatosensory gradients appear reproducible across studies and 
datasets, they may be less robust to changes in the connectopic mapping 
pipeline, and indeed this has been described previously ( Bajada et al., 
2020 ). Specifically, reproducing these specific gradients depends on 
using a dense affinity matrix representing a fully-connected network 
graph, and the gradients are sensitive to the choice of similarity kernel. 

Functional topographies are unknown or poorly understood in many 
brain regions, so it is important to be confident that the gradients pro- 
duced by connectopic mapping accurately reflect the genuine under- 
lying topographies. Given the issues discussed above, how confident 
can we be in connectopic gradients? There are multiple features of 
previously identified connectopic maps that would be difficult to ex- 
plain away purely with spatial autocorrelations or specific features of 
the analysis pipeline. Previously, we reported better reconstructions of 
retinotopic gradients from connectivity measured during movie watch- 
ing than at rest ( Watson and Andrews, 2022 ), demonstrating connec- 
topic maps are influenced by the stimulus. Furthermore, individual vari- 
ability in local gradients in both the hippocampus and striatum has 
been linked to human behaviour ( Borne et al., 2023 ; Marquand et al., 
2017 ; Prze ź dzik et al., 2019 ). Meanwhile, the topology of whole-brain 

gradients corresponds well with the organisation of large-scale resting- 
state networks ( Margulies et al., 2016 ). Whole-brain gradients have 
also been shown to modulate with task demands ( Gao et al., 2022 ; 
Samara et al., 2023 ; Zhang et al., 2022 ), correlate with brain microstruc- 
ture and structural connectivity ( Larivière et al., 2020 ), change with 
ageing ( Bethlehem et al., 2020 ; Park et al., 2021a ), and differ between 
neurotypical and neurodiverse populations ( Hong et al., 2019 ; Lee et al., 
2023 ; Park et al., 2021b ; Xia et al., 2022 ). In some cases, these differ- 
ences may interact with spatial autocorrelations – for instance different 
stimuli or tasks may evoke responses with differing signal to noise ratios 
which in turn alter the degree of spatial autocorrelation. Nevertheless, 
it seems likely that connectopic maps do at least partially reflect gen- 
uine underlying functional topographies and connectivity. However, it 
is also clear that connectopic maps can be strongly influenced by ar- 
tificially induced spatial autocorrelations and specific features of the 
analysis pipeline. It may therefore be challenging to disentangle the in- 
fluence of functional versus artificial signals on connectopic maps, thus 
the extent to which these gradients truly capture underlying functional 
topographies remains unclear. Connectopic mapping techniques may be 
able to reveal genuine functional gradients, but this may require further 
methods to account for spatial correlations within the data or at least 
a consideration of how such correlations may influence the resulting 
gradients. Comparing connectopic maps to behaviour or connectivity 
patterns with other brain regions may be informative ( Marquand et al., 
2017 ; Prze ź dzik et al., 2019 ), though such measures remain correla- 
tional. Finally, while we discuss these issues in relation to connectopic 
mapping, it is possible that other analysis techniques concerned with 
the topographic organisation of the brain could be similarly affected. 

In this study, we identified a potential flaw in connectopic mapping 
analyses. Local connectopic maps can be substantially biased by local 
spatial autocorrelations, for instance as introduced by spatial smoothing 
or interpolation between co-ordinate spaces, to the extent that illusory 
gradients can be produced even from random data. Gradients appear 
highly similar between real and random data, and replicate gradients 
previously reported in the literature. Coarser-scale whole-brain gradi- 
ents can be less susceptible to local spatial autocorrelations, but nev- 
ertheless appear sensitive to specific features of the analysis pipeline. 
These results indicate that previously reported gradients from connec- 
topic mapping studies may need to be interpreted with a degree of cau- 
tion. Future connectopic mapping studies may aim to develop methods 
to address these issues, or provide a consideration of how gradients may 
be influenced them. 
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