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Abstract

Foot-and-mouth-disease virus (FMDV), the aetiological agent responsible for foot-and-mouth disease (FMD), is a member of the 
genus Aphthovirus within the family Picornavirus. In common with all picornaviruses, replication of the single-stranded positive-
sense RNA genome involves synthesis of a negative-sense complementary strand that serves as a template for the synthesis 
of multiple positive-sense progeny strands. We have previously employed FMDV replicons to examine viral RNA and protein 
elements essential to replication, but the factors affecting differential strand production remain unknown. Replicon-based 
systems require transfection of high levels of RNA, which can overload sensitive techniques such as quantitative PCR, prevent-
ing discrimination of specific strands. Here, we describe a method in which replicating RNA is labelled in vivo with 5-ethynyl 
uridine. The modified base is then linked to a biotin tag using click chemistry, facilitating purification of newly synthesised viral 
genomes or anti-genomes from input RNA. This selected RNA can then be amplified by strand-specific quantitative PCR, thus 
enabling investigation of the consequences of defined mutations on the relative synthesis of negative-sense intermediate and 
positive-strand progeny RNAs. We apply this new approach to investigate the consequence of mutation of viral cis-acting repli-
cation elements and provide direct evidence for their roles in negative-strand synthesis.

INTRODUCTION
The Aphthovirus foot-and-mouth disease virus (FMDV) is a member of the Picornaviridae family of single-stranded positive 
sense RNA viruses. FMDV is the aetiological agent of foot-and-mouth disease (FMD) and comprises seven serotypes; A, O, Asia 
1, Southern African Territories (SAT) 1, SAT 2, SAT 3 and C (although believed to be extinct in the wild), which are together 
responsible for endemic infection in large parts of Africa, Asia and the Middle East [1]. Whilst FMD is rarely fatal, its consequences 
of reduced animal productivity, restriction of trade, and slaughter of infected and at-risk animals result in severe economic losses 
[2, 3]. The threat to maintenance of virus-free status in non-endemic regions is exacerbated by the high transmissibility of FMDV. 
Control measures following introduction of FMD into non-endemic regions, including strict movement restriction and mass 
culling, can result in costs of £billions [3–5]. The antigenic diversity of FMDV adds to the challenges of disease control, with little 
cross-protection provided by strain-specific vaccines and no effective therapeutics currently available [2, 6–10]. There is therefore 
a need to better understand the viral lifecycle in order to develop novel methods of control.

The genome of FMDV is approximately 8.4 kb and encodes a single polyprotein that is processed by viral proteases to generate 
the proteins required for genome replication and encapsidation. Primary cleavage of the polyprotein occurs at three positions 
to generate four products, the leader protease (Lpro), the viral structural protein precursor P1-2A and the non-structural protein 
precursors P2 (2BC) and P3 (3AB1,2,3CD). Cleavage of Lpro occurs auto-catalytically, while release of the P1-2A precursor from the 
polyprotein occurs through a co-translational 2A-dependent ribosome skipping mechanism. The P1-2A region encodes the viral 
structural proteins VP1, VP3 and VP0 (the last is cleaved into VP2 and VP4 during virion maturation). Subsequent processing 
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of the P2 and P3 precursors generates the viral non-structural proteins 2B, 2C and 3A, 3B1,2+3 (VPg), 3C protease (3Cpro) and 
RNA-dependent RNA polymerase (3Dpol) [11–21]. This processing is thought to be mediated by 3Cpro through alternative cis- and 
trans-pathways that appear to coordinate replication [17, 22, 23].

The single viral ORF is flanked by untranslated regions (UTRs) at the 5′ and 3′ ends of the genome. The FMDV 5′ UTR is the 
longest amongst known picornaviruses and contains several highly structured domains that are essential to the virus lifecycle 
[24–30]. The S-fragment is an ~360 nt hairpin-loop that occupies the same location (at the extreme 5′ end of the 5′ UTR) as the 
cloverleaf found in enteroviruses [31–34]. It appears to be involved in immune modulation and viral replication via interactions 
with host and viral proteins [27, 35, 36]. Adjacent to the S-fragment is a poly-C sequence of unknown function, followed by 
two to four RNA pseudoknots, which appear to be involved in assembly of infectious virions in addition to genome replication 
[24, 37–39]. Adjacent to the pseudoknots is a small hairpin-loop known as the cis-acting replication element (cre) that in other 
picornaviruses is located within the ORF [25, 40]. Whilst the location of the cre appears not to be important, it has an indispensable 
role in replication [25], acting as a template for the uridylylation of VPg by 3Dpol [41–43]. VPgpUpU primes genome replication 
by 3Dpol [22, 44, 45]. Finally, the internal ribosome entry site (IRES) is located immediately upstream of the ORF and is essential 
for initiation of translation [26, 29, 30, 46].

Picornavirus genome replication is initiated by the synthesis of a negative-sense copy of the infecting genome followed by 
assembly of a ‘replicative intermediate’ [47–49]. This complex comprises the negative-strand template RNA and several nascent 
progeny positive-strand RNAs together with 3Dpol and other viral and cellular proteins [50, 51]. There is evidence that in the 
native state of the replicative intermediate the nascent daughter strands are not collapsed onto the negative template strand but 
are only transiently associated at the site of transcription [50]. The synthesis of both negative and positive RNA strands appears 
to be primed with VPgpUpU [41].

While it is well documented that the cre element is essential for viral replication, it is not firmly established whether this is required 
to produce VPgpUpU for the priming of both negative- and positive-sense RNA molecules during intracellular virus replication. 
Indeed, it has been reported that priming of negative-strand RNA synthesis can occur in a cre-independent manner during cell-
free replication of poliovirus, possibly via the poly(A) tail [52–54]. As mutation of the cre is lethal to progeny virus production, 
methods that facilitate the initiation of replicative events but are not reliant on infection (such as transfection of in vitro transcribed 
viral RNA) are useful for study of the initial steps in replication. Whilst assays to distinguish positive- and negative-strand RNAs 
have been developed for several viruses including FMDV, o’nyong-nyong virus, dengue virus, murine norovirus and chikungunya 
virus, their applications have so far been limited to studies involving infectious virus production [55–59].

Replicons are mini-genomes in which the genomic region encoding structural proteins is replaced with a reporter gene to 
facilitate the study of RNA replication independent of other aspects of the virus lifecycle [60]. In addition to their application in 
the dissection of the molecular details of replication, replicons permit the study of viruses that require high-containment facilities, 
such as FMDV, at lower laboratory containment. However, because the delivery of RNA by transfection is an inefficient process, 
large quantities of in vitro transcribed RNA are used to ensure that sufficient cells are transfected. This can overload subsequent 
strand-specific assays. Here, we describe a strand-specific quantitative (q)PCR assay using FMDV replicons to determine the 
effects of mutations on the synthesis of both negative and positive strands in parallel assays. We have applied this method to 
determine the role of the cre element in the initiation of synthesis of both positive- and negative-strand RNAs.

METHODS
Cell lines and maintenance
Baby hamster kidney (BHK-21) cells were purchased from ATCC (LGC Standard) and were maintained in Dulbecco’s modified 
Eagle’s medium (DMEM) with glutamine, supplemented with 10 % (v/v) FBS, 50 U ml−1 penicillin and 50 µg ml−1 streptomycin. 
Growth medium and supplements were purchased from Sigma-Aldrich, Merck.

In vitro transcription
The construction, linearisation and purification of FMDV replicon plasmids has been described previously [24, 60]. Linear 
plasmids were transcribed in vitro using the T7 RiboMAX Express Large Scale RNA Production System (Promega) using ‘half 
sized’ reactions whereby 250 ng linear plasmid was added to a reaction mixture using half the volume suggested for all reagents in 
the manufacturer’s protocol. Reactions were incubated at 37 °C for 1.5 h prior to addition of 1 µl DNase I and further incubation at 
37 °C for 20 min. The resulting RNA was purified using the RNA Clean and Concentrator-25 kit (Zymo Research) prior to quan-
tification by NanoDrop (Thermo Fisher) and confirmation of integrity by denaturing MOPS-formaldehyde gel electrophoresis.

Replication assays
BHK-21 cells were seeded into six-well plates at a density of 1×106 cells per well and incubated for 16 h. After incubation, cells 
were transfected with in vitro transcribed replicon RNA using Lipofectamine 2000 (Thermo Fisher). RNA (0.5 µg cm–2) and 
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Lipofectamine 2000 (1 µg RNA:3 µl reagent) were added separately to 50 µl opti-MEM (Thermo Fisher) and incubated for 10 
min at room temperature. RNA and reagent were mixed and incubated for 20 min at room temperature before diluting with 
phenol-red-free DMEM (Thermo Fisher) supplemented with 10 % (v/v) FBS and GlutaMAX (Thermo Fisher) diluted to 1×. Cells 
were washed once using PBS, before addition of transfection mixture. Cells were imaged over time using the 10× objective of 
an Incucyte S3 live cell imaging system to detect phase and green fluorescence as a measure of replication [61, 62]. Analysis was 
performed with the inbuilt Incucyte 2021A analysis suite using surface fit segmentation, threshold minimum (green calibrated 
units, GCU) 8.0, edge split sensitivity −30 and minimum area filter 50 µm2 to determine green fluorescent cells. Following incuba-
tion for 6 h, cells were washed once with PBS and extracted by addition of 1 ml TRI reagent (Merck) directly to the monolayer. 
Harvested cell extracts were stored at −20 °C until further processing.

RNA extraction and cDNA synthesis
Total RNA was TRI reagent-extracted from BHK-21 cells using Phasemaker tubes (Invitrogen, Thermo Fisher) and associated 
manufacturer’s protocol. An additional 75 % EtOH RNA pellet wash step was performed to ensure removal of trace contaminants 
prior to RNA solubilisation using nuclease-free H2O. Contaminating DNA was removed using the TURBO DNA-free kit (Thermo 
Fisher) following the manufacturer’s guidelines. Total RNA purity and concentration was determined by NanoDrop.

cDNA synthesis was performed using SuperScript IV Reverse Transcriptase (Thermo Fisher) following the manufacturer’s 
guidelines unless stated otherwise. Separate reactions were performed using 2 µM strand-specific reverse transcription (ssRT) 
primer (Table 1, PS-tag-RT or NS-tag-RT) or 50 µM oligo(dT)20. A total mass of 500 ng RNA was added to each reaction, together 
with dNTP mix containing 10 mM of each nucleotide (Promega). Combined reaction mixtures were incubated at 50 °C for 10 
min prior to inactivation at 85 °C for 10 min.

qPCR assays
cDNA synthesised from total RNA was diluted 100-fold in nuclease-free H2O unless otherwise stated. qPCR was performed 
using GoTaq qPCR Master Mix (Promega). Reaction mixes were made up in a 10 µl total volume containing 500 nM forward and 
reverse primers (Table 1, PS-qPCR-tag and PS-qPCR-R or NS-qPCR-tag and NS-qPCR-R or β-actin-F and β-actin-R) and 2 µl 
diluted cDNA. qPCR conditions followed the manufacturer’s recommended fast cycling programme with polymerase activation 
(95 °C, 2 min) followed by 40 cycles (denaturation at 95 °C, 3 s and annealing/extension at 60 °C, 30 s) with melt curve analysis 
on a CFX Connect Real-Time PCR Detection System (Bio-Rad).

Nascent RNA labelling assays
Nascent RNA labelling assays were performed using the Click-iT Nascent RNA Capture Kit (Thermo Fisher). Replication assays 
were performed as described previously in six-well plates, with addition of 0.2 mM 5-ethynyl uridine (5-EU) diluted from a 200 
mM stock, to transfection complex mixtures immediately prior to addition to cells. Cells were harvested 6 h post-transfection 
through the addition of 1 ml TRI reagent (Sigma-Aldrich, Merck) directly to the monolayer, with collected samples stored at 
−20 °C until further processing. RNA was extracted as indicated above. Biotinylation of RNA by click reaction was performed 
following the manufacturer’s guidelines using 10 µg total RNA and 0.5 mM biotin azide in a 50 µl reaction. RNA was precipitated 

Table 1. Primers used in RT and qPCRs

Underlined are the non-viral tag sequences for both the RT and qPCR primers.

Target Application Name Sequence (5′−3′)

PS RT PS-tag-RT GCAGGAGCTAAGCGCTGGGGTCGCGATGATGACTTTGC

qPCR PS-qPCR-TAG GCAGGAGCTAAGCGCTGG

qPCR PS-qPCR-R GATTTGGGCCAGAACCCTGA

NS RT NS-tag-RT TGACGTTGCGACGAGTTCGCCAAAGACGGAGCTGACACT

qPCR NS-qPCR-TAG TGACGTTGCGACGAGTTCG

qPCR NS-qPCR-R GTCCACAATCAACCCCTCGT

β-Actin qPCR β-actin-F GTGCTATGTTGCCCTGGACT

qPCR β-actin-R GCTCGTTGCCAATGGTGATG

RT, reverse transcription; PS, positive-strand; NS, negative-strand; F and R refer to forward and reverse qPCR primer, respectively.
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in ammonium acetate overnight at −80 °C, pelleted, washed and solubilised in nuclease-free H2O, as recommended. RNA was 
quantified by NanoDrop and 1 µg biotinylated RNA was mixed with 12 µl Dynabeads MyOne Streptavidin T1 magnetic beads. 
Following 30 min of incubation at room temperature with agitation at 600 r.p.m., beads were washed for 3 min at room temperature 
with agitation at 600 r.p.m. five times using washer buffer 1 and five times using wash buffer 2, with magnetic capture performed 
between washes. Bead mixtures were transferred to a new tube after every three washes to minimise tube contaminant carry over. 
Following the final wash, beads were resuspended in 36 µl wash buffer 2 and 12 µl slurry divided between three separate tubes for 
separate reverse transcription of positive-strand genomes, negative-strand genomes and total poly(A) RNA. Bead suspensions 
were heated at 70 °C for 5 min prior to immediate addition of 17 µl master mix containing 15 µl nuclease-free H2O, 1 µl 10 mM 
dNTPs and 1 µl 2 µM ssRT primer (Table 1) or 50 µM oligo(dT)20. Mixes were cooled to room temperature with agitation at 600 
r.p.m. for 10 min before addition of 8 µl 5× SuperScript IV reaction buffer, 2 µl 100 mM DTT and 1 µl SuperScript IV enzyme 
to each reaction. Samples were incubated at 50 °C for 1 h with agitation at 600 r.p.m. Reaction mixtures were heated at 85 °C for 
10 min to inactivate reverse transcription and release cDNA from beads. Tubes were pulse centrifuged to pellet liquid prior to 
bead immobilisation using a magnetic rack and aspiration of cDNA. cDNA was diluted 100-fold for positive-strand reactions 
and 10-fold for negative-strand reactions. Oligo(dT)20 reactions were diluted accordingly. qPCRs were performed as described 
above with quantification using the ΔΔCq method using β-actin as a reference gene. Data from each experiment were analysed 
individually and normalised to data from WT samples. Statistical analysis was performed by one-way ANOVA with comparison 
to WT using three experimental repeats. Samples in which no signal was detected were arbitrarily assigned a Cq value of 40 to 
permit quantification. Bars on graphs represent mean with sem.

RESULTS
Transfection with replicon RNA is not compatible with strand-specific discrimination by qPCR
Reverse genetics is a powerful tool for investigating the molecular biology of many viruses. However, a common drawback with 
many reverse genetics systems is the inefficient delivery of in vitro transcribed viral genomes necessitating the use of large amounts 
of input viral RNA, which can overwhelm assays deigned to dissect individual steps of viral lifecycles such as strand-specific 
genome synthesis. To overcome this restriction we have developed assays involving nascent RNA labelling, reverse transcription 
and strand-specific qPCR to examine the individual steps of negative- and/or positive-strand synthesis.

Our previously reported assays of replication utilised an FMDV replicon encoding the GFP reporter protein in place of the viral 
structural proteins [60, 63]. Transfection of in vitro transcribed replicon RNA into cells allows measurement of a completed 
replication cycle via GFP expression prior to RNA extraction, cDNA synthesis and measurement of strand-specific specific 
RNA replication by qPCR (Fig. 1a). Following transfection with in vitro transcribed pRep-ptGFP replicon RNA (WT or the 
replication-deficient 3DGNN as a control for input translation) or yeast tRNA, cells were examined using an Incucyte S3 instrument 
to visualise phase contrast and green images and the number of ptilosarcus (pt) GFP-positive cells determined using pre-defined 
analysis parameters (Fig. 1b). The differences between GFP expression in the WT and GNN constructs was used as a measure 
of replication in concordance with our previous studies [24, 63, 64].

Strand-specific primers with a non-viral tag sequence were designed for use during reverse transcription reactions to generate 
unique 5′ sequences providing specificity for each strand (Table 1) similar to published protocols [55–58]. To minimise the 
potential for cross-contamination, primers were designed towards the 5′ and 3′ ends of the FMDV replicon genome for the 
positive and negative strand, respectively (Fig. 1c). Reverse transcription using oligo(dT)20 was also performed for each sample 
to permit normalisation between samples by amplifying β-actin as a stably expressed reference gene. A primer complementary to 
the strand-specific non-viral tag and an internal primer complementary to the viral genome were designed for the strand-specific 
qPCR. Specificity of primers for the intended strand was confirmed by a challenge assay, whereby a known copy number of in vitro 
transcribed replicon RNA was ‘spiked’ into total RNA extracted from BHK-21 cells in the presence and absence of the opposite 
strand (Table S1, available in the online version of this article). To mimic conditions during viral replication where the positive 
strand significantly outweighs the presence of the negative strand [65, 66], a low copy number of negative strand (103 copies 
µl–1) was challenged with 105 copies µl–1 positive-strand RNA. As it is plausible that some mutations may prevent the synthesis 
of nascent positive strands but allow synthesis of the negative strand, a higher copy number of negative-strand (105 copies µl–1) 
was used to challenge an equal number of positive strands. Results indicated that addition of 105 copies µl–1 opposite strands 
did not alter the observed Cq and therefore that assay specificity was retained. Initial assays were performed comparing strand 
production between WT and 3DGNN replicons. As anticipated, only a ≈ 2-fold difference was observed between WT and 3DGNN 
for both strands (Fig. 1d, e, Table S2), suggesting that the ability to demonstrate nascent viral RNA production was masked by 
the large quantity of input RNA necessary to efficiently initiate replication.

Removal of input replicon genomes by nascent RNA labelling
We speculated that the inability of the strand-specific qPCR to clearly distinguish between RNA isolated from cells transfected 
with either replication-competent or replication-incompetent replicon constructs was due to the large amount of input RNA 
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necessary to initiate replication in the majority of the cells. To address this, we developed a method to specifically label and isolate 
newly synthesised RNA. To facilitate selection, transfected cells were incubated with an alkyne-modified uridine, 5-EU, from 
the time of transfection so that only cellular RNAs and viral genomes synthesised during replication incorporated the modified 
nucleotide (Fig. 2a). Control assays indicated that addition of 0.2 mM 5-EU to the culture medium did not inhibit replication 
(Fig. 2b). BHK-21 cells were incubated with or without 0.2 mM 5-EU prior to RNA extraction and biotinylation by click reaction. 
Pre- and post-click RNA was reverse transcribed and qPCR performed to determine the effect of RNA biotinylation on detection 
of β-actin. The results indicated that click reactions and biotin labelling had minimal effects upon qPCR detection (Table S3).

Following RNA extraction, strand-specific qPCR was performed to determine whether incorporation of 5-EU had any adverse 
effects upon the assay. These assays showed that detection of positive- and negative-strand genomes (Fig. 2c, d, respectively) 
was comparable to that observed without labelling (Fig. 1d, e). Copper-catalysed click reactions were performed to covalently 
link azide-modified biotin to the newly synthesised RNA. This acted as a bait for capture with streptavidin magnetic beads and 
removal by washing of input replicon RNA. Following capture and on-bead reverse transcription, analysis of the eluted cDNA 
confirmed that the method had efficiently removed replicon input RNA, with the 3DGNN replicon signal reduced to 0.03 and 
0.02 relative to that of WT for the positive and negative strand, respectively (Fig. 2e, f, Table S4). This confirmed that labelling of 
newly synthesised RNA with 5-EU prior to biotin modification by click reaction and bead capture provided a method suitable 
for replicon-based investigation of differential viral strand synthesis.

Fig. 1. Transfection of replicon is not suitable for a strand-specific assay following RNA extraction. (a) Schematic overview of a replicon transfection 
assay with imaging prior to RNA extraction, cDNA synthesis and strand-specific qPCR. (b) Detection over time of ptGFP following transfection of cells 
with WT or 3DGNN FMDV pRep-ptGFP RNA or yeast tRNA control. (c) Schematic representation of primer binding regions with P2 and P3 genomic regions 
of FMDV for the cDNA synthesis and qPCR detection of positive and negative strands. RNA extracted from transfected cells was reverse transcribed 
using strand-specific primers prior to qPCR to detect positive-strand (d) and negative-strand (e) expression. Analysis was performed using the ΔΔCq 
method relative to WT. Statistical analysis was performed by one-way ANOVA with ****P<0.0001. N=3.
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The cre is essential for negative-strand production
The cre is essential to replication of picornaviruses by acting as a template for uridylylation of VPg by 3Dpol. There is also evidence 
that the poly(A) tail of poliovirus may act as a template for uridylylation in cell-free replication, albeit less efficiently [52–54]. 
However, whether cre is essential for VPg uridylylation to prime the synthesis of the negative-strand intermediate during FMDV 
replication in cells is unknown. The role of the cre in strand synthesis was therefore investigated using replicons harbouring a 
complete cre deletion (Δcre) or with a single nucleotide substitution of the functional AAACA motif (termed A1G, containing 
mutation of the first A nucleotide to G). Both of these mutations are known to prevent the complete virus lifecycle [25]. Loss 
of replication competency was confirmed here for both mutants by a replicon assay (Fig. 3a). Strand-specific assays confirmed 

Fig. 2. Removal of input replicon RNA by 5-EU labelling and RNA pulldown to identify nascent replication. (a) Schematic representation of a 5-EU 
nascent RNA labelling assay. BHK-21 cells were transfected with FMDV pRep-ptGFP RNA, with addition of 0.2 mM 5-EU to label nascent RNA. Cells 
were imaged using an Incucyte S3 instrument prior to harvest of RNA 6 h post-transfection. Nascent RNA was biotinylated by click reaction and 
captured with streptavidin magnetic beads. Input RNA was removed by washing prior to on-bead cDNA synthesis and strand-specific qPCR. (b) ptGFP-
positive cells detected by Incuyte S3 imaging 6 h post-transfection to determine the effect of 5-EU labelling on replication. Following RNA extraction, 
strand-specific qPCR was performed prior to click reaction to detect (c) positive strands and (d) negative strands. Click reaction-mediated biotinylation 
of nascent RNA, magnetic bead capture and on-bead cDNA synthesis was performed prior to strand-specific assays to determine positive-strand 
(e) and negative-strand (f) expression. Analysis was performed using the ΔΔCq method relative to WT. Statistical analysis was performed by one-way 
ANOVA with **P<0.005 and **** P<0.0001. N=3.
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that the positive strand could not be synthesised by either mutant replicon (Fig. 3b, Table S5). Negative-strand production was 
also ablated, showing that the cre is also essential during intracellular replication for production of the negative strand (Fig. 3c, 
Table S5).

DISCUSSION
The ability to reliably differentiate positive- and negative-strand RNAs is important for investigating details of the mechanism 
of picornavirus replication. This can be achieved using qPCR techniques, but the selection of strand-specific primers can be 
challenging. This problem is exacerbated when studying replicons, as reliable transfection requires a large quantity of input RNA. 
Despite these drawbacks, replicons facilitate investigations of replication that would otherwise be technically challenging, for 
example with non-recoverable or poorly replicating viruses, or to address issues regarding containment and safety. We therefore 
designed a strand-specific qPCR assay to distinguish synthesis of each strand separately within the context of such a complex 
environment (where the opposite strand could interfere) and explored how mutation to the viral genome may restrict synthesis.

Initial assays identified the large quantity of input RNA required to ensure transfection of the majority of cells as a major restric-
tion to demonstrating differences between replication-competent and replication-defective replicons (Fig. 1). In the case of the 
FMDV replicon, the ≈7 kb genome relates to approximately 1.8×1012 genome copies µg–1, and with up to 5 µg per well of replicon 
being transfected into cells, carry-over of input RNA was unsurprising. RNA self-priming, a consequence of high secondary 
structure at the 3′ terminus of RNA and reverse transcriptase lacking RNase H activity, has been reported previously as a source 
of contamination by complementary sequences in strand-specific assays [57, 58]. In addition, residual fragments of plasmid 
DNA used as template for in vitro transcription of the transfecting RNA could theoretically also be a source of contaminating 
complementary sequences. However, contamination by any interfering sequences is eliminated by the specific selection of newly 
synthesised RNA as described here, thus providing an assay that can reliably distinguish complementary strands. It should be 
noted that there are differences in sensitivities in the detection of the strands. However, as the detection of these is achieved in 
separate reactions, it would not be appropriate to make direct comparisons.

The essential role of the cre in picornavirus replication is well documented and was also confirmed here in replicon assays (Fig. 3a) 
[36, 52–54, 67]. It is possible that the poly(A) tail could template uridylylation of VPg (i.e. in addition to and independently of 
the cre, as reported in cell-free assays) [52–54]. However, it was not established whether the cre is required for negative-strand 
synthesis in an intracellular assay. We therefore investigated the role of two cre mutations (A1G and Δcre) during strand synthesis 
and found that neither positive- nor negative-strand RNAs were transcribed. Given that negative-strand intermediates were not 
produced, it is unsurprising that positive-strand production was also restricted. Due to a lack of negative-strand RNA it could not 
be established in this assay whether synthesis of new positive-strand genomes requires the cre. However, given evidence from the 
literature of the importance to positive-strand RNA synthesis, these findings would suggest that the cre is essential for efficient 
priming of replication by 3Dpol in the infected cell.

In conclusion, we present a technique which employs 5-EU labelling and purification of nascent RNA prior to strand-specific 
qPCR that can be applied to determine the role of viral elements in transcription of positive and negative strands using replicons 

Fig. 3. FMDV cre is essential to the production of negative-strand genomes. (a) BHK-21 cells were transfected with pRep-ptGFP constructs containing 
cre mutations A1G and Δcre alongside controls, with addition of 0.2 mM 5-EU to label nascent transcribed RNA. ptGFPpositive cells were visualised 
6 h post-transfection using an Incucyte S3 instrument. Total RNA extracted 6 h post-transfection was biotinylated by click reaction, captured with 
streptavidin beads and reverse transcribed using strand-specific or oligo dT

(20)
 as a primer. cDNA was used in strand-specific qPCR assays to 

determine positive-strand (b) and negative-strand (c) expression. Analysis was performed using the ΔΔCq method relative to WT. Statistical analysis 
was performed by one-way ANOVA with ****P<0.0001. N=3.
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containing specific mutations. Here, this was applied to the known cre mutations A1G and Δcre and results suggested that neither 
are capable of producing a negative-strand intermediate. We will continue to probe other mutants to discover the role of viral 
elements that control viral replication of positive and negative strands.
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