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Abstract

Mobile edge computing has emerged as a promising paradigm to complement the computing and energy resources of
mobile devices. In this computing paradigm, mobile devices offload their computing tasks to nearby edge servers, which
can potentially reduce their energy consumption and task completion delay. In exchange for processing the computing
tasks, edge servers expect to receive a payment that covers their operating costs and allows them to make a profit.
Unfortunately, existing works either ignore the payments to the edge servers, or ignore the task processing delay and
energy consumption of the mobile devices. To bridge this gap, we propose an auction to allocate edge servers to mobile
devices that is executed by a pair of deep neural networks. Our proposed auction maximizes the profit of the edge
servers, and satisfies the task processing delay and energy consumption constraints of the mobile devices. The proposed
deep neural networks also guarantee that the mobile devices are unable to unfairly affect the results of the auctions. Our
extensive simulations show that our proposed auction mechanism increases the profit of the edge servers by at least 50%
compared to randomized auctions, and satisfies the task processing delay and energy consumption constraints of mobile
devices.

Keywords: Mobile edge computing, Deep learning, Auction, Delay and energy sensitive tasks

1. Introduction

Mobile applications are taking advantage of the ever-
increasing number of mobile devices in our society to rev-
olutionize many fields [1]. For example, in healthcare, mo-
bile devices can analyze medical data to provide timely5

diagnoses for various diseases at the point of care [2, 3].
In Industry 4.0, factory managers can visualize in real-
time their factory operations with mobile devices, includ-
ing augmented reality headsets [4, 5, 6]. However, the lim-
ited computation capacity and battery life-time of mobile10

devices prevent the full implementation of computation-
intensive mobile applications.

To enable computation-intensive mobile applications to
run within an acceptable amount of time without deplet-
ing the batteries of the mobile devices, companies and re-15

searchers have proposed mobile edge computing (MEC).
In MEC, mobile devices offload their computing tasks to
edge servers, which have large computing resources and
are strategically placed near to the mobile devices, e.g.,
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cellular base stations. Compared to running applications20

entirely on the mobile devices, running applications on
a MEC network drastically reduces the computing task
completion delay and energy consumption of the mobile
devices [7]. Hence, MEC can enable sophisticated applica-
tions with large computing demands to run smoothly on25

mobile devices.
However, it is challenging to economically incentivize

edge servers to complete the tasks of the mobile devices
while ensuring that mobile devices receive the results of
the computing tasks within an acceptable amount of time.30

On the one hand, edge servers aim to maximize their profit
by servicing the tasks from mobile devices that are willing
to pay the highest prices for the computing services. On
the other hand, mobile devices seek to offload their task to
an edge server that can reduce their task completion delay35

and energy consumption at the lowest price. Therefore, we
need to match the mobile devices’ tasks to edge computing
servers in such a way that servers maximize their profit,
the mobile devices have a low payment, and the task pro-
cessing and mobile device energy consumption constraints40

of the applications are satisfied by the MEC network.
There are some works on cloud computing that could

potentially be used by mobile devices to run computing-
intensive applications on remote servers [8]. However,
since the cloud is usually located far away from the mo-45

bile devices, offloading tasks to the cloud results in very
large transmission delays that are unacceptable for run-
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ning mobile applications, which have stringent time delay
constraints [9, 10, 11].

More recently, researchers have proposed various MEC50

task offloading approaches that consider the task process-
ing delay and energy consumption of the mobile devices.
Specifically, Liu et al. [12] propose a task offloading scheme
for mobile devices that minimizes their task completion de-
lay when offloading their tasks to the edge servers. Zhang55

et al. [13] propose an approach to offload the tasks of the
mobile devices in such a way that their energy consump-
tion is minimized. Dai et al. [14] propose a task offloading
framework that minimizes the energy consumption of both
the edge servers and the mobile devices, while satisfying60

tasks processing delay constraints. Yang et al. [15] de-
signs an offloading algorithm that minimizes the energy
consumption of the mobile devices in the presence of UAV
edge servers. Zhang et. al [16] propose a task offloading
scheme that jointly minimizes the task processing delay65

and energy consumption of the mobile devices. In a re-
cent work, Bozorgi et. al [17] proposed an algorithm that
jointly minimizes the processing delay and energy con-
sumption of mobile devices, in an MEC network where
tasks are divided into smaller parts and can be processed70

in parallel by both mobile devices and edge servers. How-
ever, these works assume that the edge servers will process
the tasks from any mobile device without receiving a pay-
ment in return, which makes them unrealistic.

Some works propose to compensate the edge servers in75

return for processing the computing tasks of the mobile
devices. Jiao et al. [18] consider a MEC network where a
set of blockchain miners outsource their computations to a
single edge server. To compensate the edge server, the sys-
tem runs an auction that allocates the server’s computing80

resources to the miners that are willing to pay the highest
access fee. The auction mechanism collects the payments
from the winning miners and pays the edge server for its
services. Bahreini et al. [19] propose an envy-free auction
mechanism that allocates a set of virtual machines at the85

edge servers to the mobile devices. Li et al. [20] propose
a similar auction mechanism for a MEC network where
mobile devices outsource generic computing tasks.

To improve the utility that the edge servers receive, Lu-
ong et al. [21] propose a deep learning auction mechanism.90

Their mechanism allocates the computing resources from
the edge server to the mobile devices that are willing to
pay the highest price, but it does so in a way that the util-
ity of the edge server increases significantly without sac-
rificing the auction integrity properties, i.e., truthfulness,95

individual rationality, etc. Although these works compen-
sate edge servers for their services, they only consider one
edge server, which is unrealistic in MEC. In addition, they
ignore the delay and energy constraints of the mobile de-
vices, which can result in very long waits and quick battery100

drainage.
Kiani et. al [22] propose an optimization model that

compensates the edge servers and satisfies the constraints
of the mobile devices. Their model aims to maximize the

compensation of the edge server by allocating the resources105

to mobile devices who are willing to pay the highest price,
while minimizing the task processing delay experienced
by the mobile devices. Unfortunately this work ignores
the possibility that mobile devices maliciously manipulate
their bids to obtain an unfair advantage. For example,110

by exaggerating their valuation of the edge server services,
mobile devices can constantly out bid other devices and
prevent them from accessing the edge servers. Ensuring
that the best strategy for mobile devices is to report their
true valuation in their bids is a key to incentivize both edge115

servers and mobile devices to participate in the auction.
To bridge this gap, we propose an auction mechanism

that is executed by a pair of deep neural networks. To
the best of our knowledge, this is the first truthful auction
mechanism for MEC that can both maximize the profit120

of multiple edge servers and satisfy the task processing
delay and energy consumption constraints of the mobile
devices. Specifically, the proposed neural networks take
the bids from the mobile devices as input, and then out-
put task offloading decisions and payments for the mobile125

devices. The auction also guarantees that mobile devices
are unable to unfairly affect the results of the auctions by
submitting untruthful bids, and that both the edge servers
and the nodes are economically incentivized to participate
in the auction. We extensively evaluate our proposed auc-130

tion and see that it can obtain up to a three-fold increase
in profit for the edge servers compared to existing auction
mechanisms. Our simulation results also show that our
proposed auction mechanism can successfully satisfy the
task processing delay and mobile device energy consump-135

tion constraints of the mobile devices, which existing MEC
auctions are unable to do.

We summarize our contributions as follows:

• We design a deep-learning truthful auction mecha-
nism that allocates the computing resources of mul-140

tiple MEC edge servers to the mobile devices while
ensuring that the mobile devices energy consumption
and task completion delay constraints are satisfied.
To the best of our knowledge, this is the first truthful
mechanism for multiple edge servers that can satisfy145

the mobile device constraints.

• We design new penalty functions for the task com-
puting delay and energy consumption constraints to
guide the neural networks towards feasible solutions.

• The utility that edge servers obtain through our pro-150

posed computing resource allocation is up to three
times larger to the that of existing randomized auc-
tions. When compared to other deep learning mech-
anisms, our approach obtains a similar utility for the
edge servers, and, remarkably, it is able to satisfy the155

task completion delays and energy consumption con-
straints of the mobile devices, which can provide a
much higher quality of experience to the mobile de-
vices.
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The rest of the paper is organized as follows. Section 2160

describes our considered system model. Section 3 describes
our auction model. In Section 4, we introduce our deep
learning auction mechanism that finds allocation decisions
and payments. We show our numerical results in Section 5,
and give concluding remarks in Section 6.165

2. System Model

We consider a set of resource-limited mobile devices
M = {1, 2, ...,M} who offload delay-sensitive computing
tasks to one of the resource-rich edge servers in the set
N = {1, 2, ..., N}. The mobile devices are powered by170

batteries and have limited computing resources while the
edge computing servers are directly connected to the power
grid and have abundant computing resources. The edge
servers offer their task processing services to the mobile
devices in exchange for a fee. A central system operator175

sells and coordinates access to the edge servers, e.g., a
single company may own all the edge servers, or multiple
edge servers can form a coalition to offer task offloading
services. Fig. 1 shows our considered network.

Suppose the mobile device m ∈ M offloads a comput-
ing task to the edge server n ∈ N . Then, the total task
completion time depends on the computing time at the
edge server n, the task upload time and the result down-
load time, i.e.,

D
m,n
off = D

m,n
tx +Dm,n

rx +Dm,n
comp ∀m ∈ M, ∀n ∈ N (1)

where D
m,n
tx , Dm,n

rx , Dm,n
comp denote the time to upload the

task, download the result, and compute the task at an edge
server, respectively. The task upload time is given by

D
m,n
tx =

tm

dm,n
,

where dm,n is the data rate of the the mobile device m’s
transmission to the edge server n in bits per second, and
tm is the size of the computing task in bits. The result
download time is given by

Dm,n
rx =

rm

dn,m
,

where rm is the size of the result in bits and dn,m is the
mobile device’s download rate from edge server n. The
task computing delay at edge server n is

Dm,n
comp =

tmom

fn
,

where om is the number of floating point operations (flops)180

required to process one bit of the task, and fn is the pro-
cessing rate of edge server n in flops per second.

Since the computing tasks are delay sensitive, we re-
quire that the time it takes the mobile device to receive
the results from an edge computing server should be less
than the time it takes to locally complete the task, i.e.,

D
m,n
off ≤ Dm

local ∀m ∈ M. (2)

where Dm
local is the local task completion delay of mobile

device m and is given by

Dm
local =

tmom

fm
,

where fm is the processing rate of the mobile device m in
flops per second.

Moreover, task offloading requires mobile devices to
consume energy transmitting the task, receiving the re-
sults, and maintaining an idle state while waiting to down-
load the results. Consequently, the total energy consump-
tion for the mobile device m to offload its task to edge
server n is given by

E
m,n
off = E

m,n
tx + E

m,n
id + Em,n

rx ∀m ∈ M, ∀n ∈ N (3)

where E
m,n
tx , Em,n

id , and Em,n
rx represent the transmission,

idling, and receiving energy of mobile device m. The task
transmission energy consumption is given by

E
m,n
tx = tme

m,n
tx ,

where e
m,n
tx is the energy consumed by mobile device m

while transmitting one bit of the task to edge server n.
The energy consumed by mobile device m while receiving
a task is given by

Em,n
rx = rmem,n

rx

where em,n
rx is the per bit receiving energy consumption.

The amount of energy that mobile device m spends during
the idle time is given by

E
m,n
id = Dm,n

comp · e
m
id,

where emid is the per second idling energy consumption.185

To ensure mobile devicem reduces its energy consump-
tion when offloading tasks, the amount of energy needed
to offload the task to edge computing server n should be
less than the amount of energy needed to locally compute
the task, i.e.,

E
m,n
off ≤ Em

local ∀m ∈ M, (4)

The energy consumption of mobile device m to locally
compute its task Em

local is given by

Em
local = Dm

locale
m
pr.

where empr is mobile device m’s per second processing en-
ergy consumption.

Moreover, we assume the computing tasks from the
mobile devices have a significant sequential component,
and cannot be easily computed in parallel by multiple edge190

servers. Thus, in addition to satisfying the task completion
delay constraints and mobile device energy consumption
constraints in (2) and (4), the system operator needs to
ensure mobile devices offload their task to at most one
edge server. We also assume that edge server n employs195

all of its computing resources to complete the task from
mobile device m, and thus accepts at most one task at a
time. The edge servers start to process the offloaded tasks
immediately after they receive them.
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Figure 1: A mobile edge computing network architecture.

3. An Auction Model for Task Offloading200

The system operator conducts an auction to assign the
tasks of the mobile devices to the edge servers in such a
way that the edge servers’ profits are maximized and the
task processing delays and energy constraints of the mobile
devices are satisfied. Specifically, each mobile device m ∈205

M has a private bid set Vm = {vm,1, vm,2, ..., vm,N} that
specifies its valuation for offloading its computing task to
edge server n (for all n ∈ N ).

Mobile device m chooses its private valuations vm,n’s
to be proportional to the number of operations om needed210

to complete its task, and inversely proportional to both
the task processing delay D

m,n
off and the energy needed to

offload the task to the edge server n, i.e., Em,n
off . We as-

sume the number of operations needed to complete the
mobile devices’ tasks is a random variable with probabil-215

ity distribution Fm that is known to the system operator,
but not to the other mobile devices or edge servers. Con-
sequently, the private bid valuations vm,n’s are also ran-
dom variables. We denote the space of private bids Vm’s
by Vm. We denote the set of bids from the mobile de-220

vices by V = {V1, V2, . . . , VM}, and the space of mobile
device bid sets by V. We use F to denote the probabil-
ity distribution of the set of bids V ∈ V . Note that the
distributions Fm are independent of each other. We also
define the set of bids without the bid from mobile m by225

V−m = {V1, ..., Vm−1, Vm+1, ...VM}.
The auction starts with mobile devices reporting (per-

haps untruthfully) their bid sets to the operator. The re-
ported bid sets from mobile device m is denoted by V ′

m,
and the set of reported bids from all mobile devices is de-
noted by V′ = {V ′

1 , V
′
2 , ..., V

′
M}. The operator then finds a

randomized allocation rule a : V → [0, 1]M×N . The alloca-
tion rule a maps the vector of reported mobile device bids
V′ ∈ V to a matrix of edge server allocation probabilities
A(V′) ∈ [0, 1]M×N . In matrix A(V′), there is a row for
each mobile device, and a column for each edge server in
the network. Thus, the element in the mth row and nth
column of A(V′), denoted by am,n(V

′), is the probability
that mobile device m’s task is assigned to edge computing
server n. Since a mobile device can offload its task to at

most one edge computing server, and an edge server can
only process the task from at most one mobile device at a
time, we require that

N
∑

n=1

am,n(V
′) ≤ 1, ∀m ∈ M,

and
M
∑

m=1

am,n(V
′) ≤ 1, ∀n ∈ N .

Note that some edge servers may remain unallocated and
some mobile devices may be left without having an edge
server allocated to them 3.

The auction mechanism also finds a payment rule p :230

V → R
M×1
≥0 that maps the reported bids from mobile

devices V′ ∈ V to the edge servers’ expected payments
pm(V′) (for all mobile devices m ∈ M).

We define the utility of both the mobile devices and
the overall utility of the edge servers as follows:

um(Vm,V′) =
{

∑N
i=n vm,nam,n(V

′)− pm(V′) if (2) and (4) hold

−∞ otherwise

Note that mobile devices prefer to locally complete their
tasks than to experience a longer task processing delay or235

a higher energy consumption during offloading.
The utility of the edge servers is given by

U(V′) =
∑

m∈M

pm(V′)−
∑

m∈M

∑

n∈N

cnomtmam,n(V
′) (5)

where cn is the cost of performing one flop at mobile edge
server n, including energy, maintenance, operating costs,
etc.

3 If a mobile device’s computing task is not allocated to any edge
server, the mobile device has two options depending on it local energy
level. First, locally complete the task if it has enough energy. Note
that locally completing the task meets the energy consumption and
task processing delay constraints. Second, if the mobile device has
insufficient energy to complete the computation, it can submit a new
bid during the next available auction.
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3.1. Auction Requirements240

For the mobile devices and the edge servers to partic-
ipate in the auction, we need to guarantee that the auc-
tion results cannot be unfairly affected by dishonest bid-
ding strategies, that the mobile devices will receive non-
negative utilities, and that the task processing delay and245

mobile device energy consumption delays are satisfied. We
formalize these requirements in the following definitions.

Definition 1. Misreported Bids. Let vm,n be mobile

device m’s true valuation for offloading its computing task

to edge server n, and v′m,n be m’s reported bid for edge250

server n. Then, reported bid v′m,n is said to be misreported

if it is not equal to vm,n, i.e., v
′
m,n 6= vm,n.

Definition 2. Misreported Bid Sets.
Let Vm = {vm,1, ..., vm,N} be mobile device m’s set of bids

and V ′
m = {v′m,1, ..., v

′
m,N} be the reported set of bids from255

m. Then, a reported bid set is said to be misreported if

any v′m,n ∈ V ′
m is misreported, i.e., V ′

m 6= Vm.

Definition 3. Dominant Strategy Incentive Compat-
ible (DSIC). Denote the set of reported bids with mobile

device m’s bid misreported by V′
m = {V ′

1 , ..., V
′
m, ..., V ′

M},
where V ′

m 6= Vm. Then, an auction with allocation rule a

and payment rule p is said to be DSIC if no mobile device

can improve its own utility by bidding untruthfully, i.e.,

um(Vm,V′) ≥ um(Vm,V′
m),

∀V′ ∈ V, ∀V ′
m ∈ Vm, ∀m ∈ M.

Definition 4. Individual Rationality (IR). An auc-

tion with allocation rule a and payment p ensures indi-

vidual rationality if mobile devices receive a non-negative

utility by participating in the auction, that is,

um(Vm,V′) ≥ 0, ∀V′ ∈ V, ∀m ∈ M.

Definition 5. Feasible Offloading Assignments. An

auction with allocation rule a and payment rule p is feasible

if the task offloading decisions satisfy the task processing260

delay, and energy consumption constraints in (2), and (4),
respectively, and assigns at most one computing task to

each edge server, and each computing task is assigned to

at most one edge server.

4. A Deep Neural Network for Auctions in Mobile265

Edge Computing

Finding a task offloading allocation rule a and a pay-
ment rule p that maximize the utility of the edge servers
while satisfying the auction requirements in Section 3.1,
is a challenging combinatorial auction problem without a270

known analytical solution [23]. To efficiently solve this
problem, we propose two deep neural networks that can
be trained to efficiently find task offloading allocations and
payments. Figure 2 shows the architecture of the proposed
neural networks.275

4.1. Allocation Network

To allocate tasks to edge servers, we use a deep neu-
ral network that takes the set of reported bids from the
mobile devices V′ as input and outputs the probabilities
am,n(V

′)’s in the allocation matrix A(V′). The network280

contains Ka fully-connected hidden layers with hyperbolic
tangent activation functions, and two fully connected out-
put layers with softmax activation functions. The left part
of Fig. 2 shows the allocation network.

Specifically, let hk
a ∈ R

Ik
a be the output of the kth

hidden layer, Wk
a ∈ R

Ik
a×Ik−1

a and bk
a ∈ R

Ik
a be matrices

denoting the weights and biases of the kth layer respec-
tively, and Ika be the length of the kth hidden layer. Then,
the computations performed by the kth hidden layer are
as follows:

hk
a = σ

(

Wk
a · hk−1

a + bk
a

)

, ∀k = 1 . . . ,Ka. (6)

where σ is the tanh activation function. The initial hidden285

layer is given by the mobile device bids, i.e., h0 = V′ and
has length I0a = M(N + 1).

The output layer takes the output of the Kath hidden
layer as input, and uses a softmax function, i.e.,

am,n =
eh

K
a[m,n]

∑M+1
k=1 e

hK
a[k,n]

,

where hK
a[m,n] is the element of hN

a that is connected to
allocation probability am,n’s output neuron. To account
for the possibility that some edge servers do not receive any290

tasks, we have an additional element in the Kth hidden
layer for each edge server.

Using the softmax layer, the allocation network makes
sure that the task tm of mobile device is only assigned to
only one edge server,

∑N
n=1 am,n(V

′) ≤ 1, ∀m ∈ M. To295

make sure that each edge server n is also assigned with only
one task,

∑M
m=1 am,n(V

′) ≤ 1, ∀n ∈ N , the allocation
network uses a second softmax layer that takes the output
from the first softmax layer as input, and outputs the final
allocation probabilities as shown on the left side of Fig 2.300

Then, the system operator allocates the computing task
to the edge server that received the largest probability for
each computing task.

We note that the allocation network directly enforces
that only one task is assigned to each server, and that a305

task is assigned to only one server due to the size of its
output layer.

4.2. Payment Network

The payment deep neural network takes the reported
bids V′ as input and outputs the payments pm(V′) for all310

the mobile devices as shown on the right side of Fig. 2.
The neural network is formed by Kp fully connected hid-
den layers where the first Kp−1 layers apply hyperbolic
tangent activation functions, and the Kpth layer applies
the sigmoid activation function.315
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Figure 2: Diagram of the proposed deep neural networks.

The hidden layers in the payment network have the
same structure as those in the allocation network. In par-

ticular, let hk
p ∈ R

Ik
p be the output of the kth hidden layer,

Wk
p ∈ R

Ik
p×Ik−1

p and bk
p ∈ R

Ik
p be matrices denoting the

weights and biases of the kth layer respectively, and Ikp be320

the length of the kth hidden layer. The kth layer of the
payment neural network performs computations similar to
those in the hidden layers of the allocation network in (6).

The last layer of the payment network uses a softmax

activation function to output a non-negative fractional value
p̃m ∈ [0, 1], that we then transform into the expected pay-
ment for mobile device m as follows:

pm = p̃m

N
∑

i=1

am,ivm,i, ∀m ∈ M. (7)

Note that by defining the payments as in (7) we enforce the
individual rationality constraint in Definition 4 because325

mobile device m’s payment is greater than zero only if it
receives allocation probabilities that are larger than zero.

4.3. Training the Deep Neural Networks

We formulate an optimization problem to find the deep
neural network parameters that can find an allocation rule330

a and a payment rule p that maximize the operator’s utility
while satisfying the DSIC, IR, and feasibility constraints
in Section 3.1.

We start our formulation by defining a set of penalty
functions that measure how much the allocation rule a and335

payment rule p deviate from the auction requirements. We
later use the penalty functions to define the constraints of
the optimization problem.

First, we measure how much an auction deviates from
the DSIC requirement in Definition 3 by calculating the
maximum gain in utility that a mobile device m can ob-
tain by misreporting its bid under allocation rule a and
payment rule p, i.e.,

PR
m(a, p) = EV′∼F

[

max
V ′

m∈Vm

(

um(Vm,V′
m)− um(Vm,V′)

)

]

,

(8)

where V′
m is the set of bids with mobile device m’s bid

misreported. Equation (8) is called the regret of mobile340

device m for untruthfully reporting its bid. Note that a
zero regret for the mobile devices indicates that the auction
satisfies the DSIC requirement.

We measure the tardiness of the task results at mobile
device m as the amount of time that it takes to receive
the result beyond the local computing time as defined in
constraint (2), i.e.,

PD
m (a, p) = EV′∼F [max(0,

∑

n∈N

am,n(V
′)Dm,n

off −Dm
local)].

(9)

The amount of energy that it takes mobile device m to
offload its task beyond the amount of energy that it needs
to take to locally compute its task as described in (4) is
given by

PE
m(a, p) = EV′∼F [max(0,

∑

n∈N

am,n(V
′)Em,n

off − Em
local)],

(10)

Next, our objective is to minimize the negated utility
of the edge servers obtained under auction:

L(a, p) = −EV′∼F [U(V′)] (11)

We are now ready to formulate the optimization prob-
lem to train our allocation and payment neural networks.
Let α denote the weights Wk

a and biases bk
a of the allo-

cation neural network (for all k ∈ [1,Ka]) , and β denote
the weights Wk

p and biases bk
p of the payment neural net-

work (for all k ∈ [1,Kp]). Let a
α and pβ be the allocation

and payment rules given by the allocation and payment
neural networks under parameters α, and β, respectively.
Then, the optimization problem to train the deep neural
networks is given by

min
α, β

L(aα, pβ)

s.t. P i
m(aα, pβ) = 0, ∀i ∈ {R,D,E}, ∀m ∈ M.

(12)
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Note that we can accommodate mobile devices leaving
and joining the network without retraining or redesigning345

the neural networks by setting the bids of missing mobile
devices to zero.

4.4. A Computing Task Offloading Rule

Although the above deep neural networks can find allo-
cation decision probabilities that satisfy the auction prop-
erties in expectation, the system operator needs a concise
rule to decide which mobile device should offload its com-
puting task to each edge server. To this end, we propose
to allocate edge server n to the mobile device m with the
highest probability am,n for edge server n. The system
operator can apply this rule by computing the allocation
decisions as follows:

âm,n(V
′; aα) =

{

1 if m = arg max
i

{ai,n(V
′; aα)|i ∈ M},

0 otherwise

(13)

for all m ∈ M and n ∈ N . If two or more mobile devices
have the same allocation probability am,n for some n, the350

system operator chooses one of them uniformly at random.
After finding the allocation decisions âm.n, the system

operator calculates the mobile devices’ payment as follows:

p̂m(V′; pβ) = p̃m(V′; pβ)

N
∑

i=1

âm,n(V
′; aα)v′m,i. (14)

Consequently, the utility of the mobile devices is

ûm(Vm,V′) =

N
∑

i=1

âm,n(V
′; aα)v′m,i − p̂m(V′; pβ)

for all m ∈ M, and the utility of the edge server becomes

Û(V′) =
∑

m∈M

p̂m(V′; pβ)− cnomtm

4.5. Sample Mean Optimization Problem

Directly solving (12) is challenging because of the
expected values in the objective and constraints. In-
stead, we reformulate (12) in terms of sample bid pro-355

files. Specifically, we sample L bid profiles i.i.d. from
the distribution of profiles F and group them in set S =
{V(1),V(2), . . . ,V(L)}. To calculate the mobile devices’
regret in (8), we sample an additional set of misreported
bid profiles S ′

l = {V̄(1), . . . , V̄(Q)} for each V(l) in S,360

where V̄k ∈ S ′
l (for all k ∈ [1, Q]) are sampled from the

space V according to a distribution that is not necessarily
equal to F .

Based on the sample set S, and the utility of the edge
servers given by the computing task allocation rule de-
scribed in Section 4.4, we reformulate the objective in (12)
as follows:

L̂(aα, pβ) = −
1

L

L
∑

l=1

Û . (15)

The regret of the buyers can be rewritten in terms of
the set of sample bid profiles S and the set of sample mis-
reported bids S ′

l as follows:

P̂R
m(aα, pβ) =

1

L

L
∑

l=1

max
V̄∈S′

l

(

ûm(V (l)
m ,V̄(l)

m )− ûm(V (l)
m ,V(l))

)

,

where V̄
(l)
m = {V

(l)
1 , V

(l)
2 , ..., V̄m, ..., V

(l)
M }, and V̄m ∈ V̄.

The sample delay constraint P̂D
m (aα, pβ), and sample en-

ergy constraint P̂E
m(aα, pβ) of the mobile devices as can be

similarly defined as follows:

P̂D
m (aα, pβ) =

1

L

L
∑

l=1

max{0,
∑

n∈N

âm,n(V
(l); aα)Dm,n

total − δm},

∀m ∈ M (16)

P̂E
m(aα, pβ) =

1

L

L
∑

l=1

max{0,
∑

n∈N

âm,n(V
(l); aα)Em,n

total − βm},

∀m ∈ M (17)

Based on the sample mean objective and constraints,
we reformulate the optimization problem in (12) as follows:

min
α, β

L̂(aα, pβ)

s.t. P̂ i
m(aα, pβ) = 0, ∀i ∈ {R,D,E}, ∀m ∈ M.

(18)

To solve (18), we use a combination of the Lagrangian
method of multipliers and the ADAM solver [24]. The365

main idea is to form an augmented Lagrangian function
and iteratively update the parameters α and β using the
ADAM solver. At every iteration, the ADAM solver com-
putes the allocation a and payment p using the current
state of the neural networks, calculates the value of the370

augmented Lagrangian function, and updates the neural
network parameters α and β. The Lagrangian multipliers
are held constant for a fixed number of iterations and then
updated based on the current state of α and β.

Specifically, the augmented Lagrangian function of (18)
is given by

Fρ(a
α, pβ ;λR,λD,λE) = L̂(aα, pβ) (19)

+
∑

m∈M

λR
mP̂R

m(aα, pβ) +
ρ

2

∑

m∈M

(P̂R
m)2(aα, pβ)2

+
∑

m∈M

λD
mP̂D

m (aα, pβ) +
ρ

2

∑

m∈M

(P̂D
m )2(aα, pβ)

+
∑

m∈M

λE
mP̂E

m(aα, pβ) +
ρ

2

∑

m∈M

(P̂E
m)2(aα, pβ)
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where λR
m, λD

m, and λE
m are the Lagrangian multipliers cor-375

responding to the DSIC, task processing delay, and en-
ergy consumption penalty constraints of mobile device m

in (18) (for all m ∈ M), respectively, and ρ > 0 is a
constant. We group the Lagrangian multipliers into the
vectors λR

t ,λ
D
t ,λE

t .380

Based on the augmented Lagrangian function, we iter-
atively update the neural network parameters as follows:

(aα, pβ) = arg min
(aα,pβ)

Fρ(a
α
t , p

β
t ;λ

R
t ,λ

D
t ,λE

t )

where t denotes the iteration number of the Lagrangian
multiplier update. The (t+1)th update of the Lagrangian
multipliers is given by the partial derivative of the La-
grangian function with respect to the penalty constraints,
i.e.,

λR
m(t+1) = λR

m(t) + ρ P̂R
m(aαt+1, p

β
t+1), ∀m ∈ M,

λD
m(t+1) = λD

m(t) + ρ P̂D
m (aαt+1, p

β
t+1), ∀m ∈ M,

λE
m(t+1) = λE

m(t) + ρ P̂E
m(aαt+1, p

β
t+1), ∀m ∈ M.

Algorithm 1 describes the training process of the proposed
auction mechanism.

Algorithm 1 Training of Auction Mechanism

Input: Mini-batches of S1, ..., ST of size B.

Initialize: Wk
a ∈ R

Ika×Ik−1
a , Wk

p ∈ R
Ikp×Ik−1

p ,λR
t ,λD

t ,λE
t

for t = 1 to T do

Receive mini-batch St.

Initialize misreported bid V
(l)
m ∈ Vm, ∀l ∈ [L], ∀m ∈M .

for r = 1 to Q do

Perform gradient update to optimize V
(l)
m , ∀l ∈ [L], ∀m ∈M .

end for

Compute constraints gradients:
P̂

j
m, ∀j ∈ {R,D,E}, ∀l ∈ [L], ∀m ∈M .

Compute Lagrangian gradient in (19) and update α and β.
Update Lagrangian multipliers every Z iterations:
if t % Z = 0 then

λ
j

m(t+1)
←− λ

j

m(t)
+ ρ P̂

j
m(aαt+1, p

β
t+1), ∀j ∈ {R,D,E}, ∀m ∈

M .
else

λ
j

m(t+1)
←− λ

j

m(t)
, ∀j ∈ {R,D,E}, ∀m ∈M

end if

Output: aα, pβ

end for

4.6. Overview of the Auction Procedure

In this subsection, we summarize the overall proposed
auction procedure. First, the system operator trains the385

allocation and neural networks as described in Section 4.5.
Once the neural networks are trained, the system operator
collects the bid vectors from the mobile devices V ′

m (for all
m ∈ M), and uses them as inputs to both the allocation
and payment networks. Second, based on the task allo-390

cation rule in Section 4.4, the system operator decides to
which edge node each mobile device will offload its com-
puting task, and calculates the payment for each mobile
device. Third, the mobile devices submit their payments

to the system operator, and upload their computing tasks395

to their assign edge node. The edge nodes compute their
assigned tasks and return the results to the mobile devices.

Algorithm 2 Auction Procedure

Input: Trained allocation and payment deep neural networks
1: Receive mobile devices m bid sets V ′

m( ∀m ∈ M), and form the
vector of all bids V′ .

2: Feed V′ to the allocation and payment networks.
3: Find the allocation decisions âm,n(V′; aα) using (13), and share

it with mobile devicem and edge node n (∀m ∈M, and ∀n ∈ N ).

4: for m ∈M do

5: Calculate mobile device m payment p̂m(V′; pβ) using (14),
and collect it.

6: If âm,n(V′; aα) = 1, then offload computing task from mobile
device m to the edge server n.

7: If âm,n(V′; aα) = 1, send task results from edge server n to
mobile device m.

8: end for

5. Simulation Results

We run extensive simulations of our proposed test our
deep neural network auction mechanism, and compare its400

performance to existing auction mechanisms in terms of
the utility obtained by the edge servers and the its abil-
ity to satisfy the task processing and energy consumption
constraints of the mobile devices.

5.1. Simulation Setup405

We consider a mobile edge computing network with the
following settings. The mobile devices’ transmission, re-
ceiving, and idling power are 1.3 W, 1.6 W, and 0.7 W,
respectively. The size of the task result is set to 20% of
the original task size. Nodes are placed at random loca-
tions on a 200m × 200m area. The data rates dm,n’s be-
tween mobile devices and servers are calculated using the
Log-normal shadowing propagation model with a 10 Mhz
bandwidth. The bids of the mobile devices are calculated
as follows:

vm,n =
tm

D
m,n
off + E

m,n
off

.

We summarize the parameters of our mobile edge comput-
ing network simulation in Table 1.

To investigate the utility obtained by our proposed ap-
proach and how well it can satisfy the constraints, we con-
sider three scenarios each one with 20 mobile devices and410

10 edge servers.

• Scenario I considers mobile devices with processing
rates randomly chosen from the set fm ∈ {10, 20, 30}
G flops, and processing power consumption 1.1 W.

• Scenario II consider a more strict task processing415

delay constraint by increasing the local processing
rate of the mobile devices to fm ∈ {60, 70, 80} G
flops and keeping their power consumption at 1.1W.
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Table 1: Simulation Parameters

Parameter Value

Area 200m x 200m

Channel model Log-normal shadowing

Size of computing task tm ∈ [1− 5] MB

Processing rate of mobile
devices for Scenarios I and
III

fm ∈ {10, 20, 30} G
flops/s

Processing rate of mobile
devices for Scenario II

fm ∈ {60, 70, 80} G
flops/s

Processing rate of edge
servers

fn ∈ {100, 125, 150} G
flops/s

Task operations
om = 10× 109 flops/MB
of data

Local processing energy
consumption for Scenarios
I and II

Em
pr = 1.1W

Local processing energy
consumption for Scenario
III

Em
pr = 0.5W

Transmission energy con-
sumption

Em
tx = 1.3W

Receiving energy consump-
tion

Em
rx = 1.6W

Idle energy consumption Em
id = 0.7 W

Task result size rm = 0.2tm MB

• Scenario III considers a more strict mobile device
energy consumption constraint by decreasing the lo-420

cal task processing power consumption of the mobile
devices to 0.5 W and keeping the processing rates as
in Scenario I.

To train the neural networks, we generate a sample set
S with L = 640, 000 of sample bid profiles, as well as one425

set of misreported bids S ′
l ’s for each bid profile in S. We

set aside 10, 000 bid profiles for testing. We train the deep
neural networks over 80 epochs with 5, 000 mini-batches
of size B = 128.

In addition, we tested our deep neural networks un-430

der different hyper-parameters to find the best performing
ones. Specifically, we trained the networks with varying
number of layers and layer sizes, and found that the high-
est utility for the edge servers is achieved with 3 hidden
layers of 100 neurons each. We initialized the value of ρ in435

the Lagrangian function to 0.01, and set that to increment
every 2 epochs. The update on λj

m, ∀j ∈ R,D,E param-
eter is also set to perform once in every 100 mini-batches,
(i.e., Z = 100).

We use TensorFlow to implement the deep neural net-440

works on a general purpose PC with an Nvidia GTX 1070
Ti GPU, 16GB RAM, and 1TB SSD external memory to
implement all the simulations.
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Figure 3: Utility of the edge servers.
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Figure 4: Mobile device regret.

5.2. Results

We first evaluate the utility of the edge servers obtained445

by our proposed deep neural network under Scenarios I, II,
and III in Fig. 3. We compare our results to the utility
obtained under a multi-unit auction [25], which does not
consider the tasks processing delay and mobile device en-
ergy consumption constraints. In Scenario I, our approach450

obtains a utility that is three times higher than that ob-
tained by the multi-unit auction. In Scenarios II and III,
which have more strict constraints, we observe a utility
reduction due to more tasks from the mobile devices being
unassigned to an edge server. The reason is that it be-455

comes harder for the system to assign tasks to edge servers
without violating the constraints and, thus, it leaves some
tasks unassigned. However, we see that our approach still
finds a higher utility than the multi-unit auction scenarios
while satisfying the constraints in all cases.460

Next, we investigate how well our proposed approach
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Figure 6: Additional energy consumption (M = 20, N = 10).

can meet the regret, task processing delay, and mobile de-
vice energy consumption constraints. In Fig. 4, we see
that our approach reaches an allocation and payment rule
with a negligible regret, which indicates that the our auc-465

tion meets the DSIC requirement for all three scenarios.
In Fig. 5, we show that the tardiness of the computing

tasks approaches zero within the first few training itera-
tions, which indicates that tasks are completed with delays
that are at most the delays when they are locally processed470

in all scenarios.
Fig. 6 shows the difference between the energy that

mobile devices consume when offloading their tasks, and
when locally computing their tasks. We observe that al-
though Scenarios II and III take longer to reach a low value475

due to their stricter constraints, all scenarios are able to
reach similar energy penalty values.

Next, we compare our proposed deep learning auction
to the auction mechanism proposed by [21], which is the

work closest to ours. The authors in [21] consider a sce-480

nario where there is only one edge server, and multiple
users submit their bids aiming to obtain access to the
server’s computing resources. They use a deep learning
based auction to find the winner mobile device that can
access to computing resources provided by the single edge485

server. Thus, to make a fair comparison, we measure the
utility obtained by the edge server, the task processing
delay and the energy consumption of the mobile devices
obtained under both approaches for varying numbers of
mobile devices in the network.490

In Fig. 7a, we compare the utility of our proposed neu-
ral networks with those proposed by [21]. We observe that
when the number of mobile devices is small, our approach
achieves a lower utility than [21]. However, as the num-
ber of mobile devices increases, the utility achieved by our495

auction mechanism converges with the utility obtained by
[21] approach. The reason is that when the number of
users is small there are only a few solutions that satisfy
the constraints, and thus it can only choose from a few.
When there are more users, our approach can choose from500

more solutions that satisfy the constraints and can achieve
higher utility.

In Figures. 7b and 7c, we show the task processing de-
lay and energy consumption penalty violations defined in
(9) and (10) of the two approaches. We see that for all the505

scenarios our neural networks easily satisfy the task pro-
cessing and energy consumption constraints of the mobile
devices while the approach by Luong et. al [21] results in
significant constraint violations.

Finally, we investigate the computational complexity510

of our proposed auction, and show the results in Table 2.
We find that our deep learning neural networks can find
the allocation and payments in a very short time, e.g.,
2.14s for the scenarios with 20 mobile devices and 10 edge
servers. We also observe that the training time for 20515

mobile devices and 10 edge servers on a relatively modest
hardware is 10.2 hours. For the scenarios with only one
edge server, we observe even lower training and computing
time, due to the smaller deep neural networks that we need
to train.520

Table 2 also shows the time it takes the truthful multi-
unit auction in [25] to find the allocations and payments for
the mobile devices. We observe that the computing time of
our proposed deep neural network auction mechanism and
the truthful multi-unit auction are comparable. Although525

the multi-unit auction can ran faster than our proposed
neural networks, we note that it is unable to meet the
task completion and energy consumption constraints of the
mobile devices. For example, in a network with 20 mobile
devices and 10 edge servers, the multi-unit auction finds a530

utility of $8.21 and violates the task completion delay and
energy consumption constraints by 2.8 seconds and 4.3 (J),
respectively. In the same network, our proposed neural
networks found a utility of $ 20.7, which is twice more than
the multi-unit auction, and can satisfy the constraints.535

We emphasize that it is challenging to create a fair
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Figure 7: Performance evaluation of the proposed neural networks.

Table 2: Training and computing time of the deep neural networks for MECs of different sizes.

(Edge Servers, Mobile Devices) (1,5 ) (1, 10) (1, 15) (1, 20) (1, 25) (20, 10)

Training Time (Proposed auction) 3.4(h) 4.37(h) 4.4(h) 4.9(h) 5.28(h) 10.2(h)

Computing Time (Proposed auction) 0.38(s) 0.41(s) 0.58(s) 0.67(s) 0.76(s) 2.14(s)

Computing Time (Multi-unit auction) 0.18(s) 0.21(s) 0.30(s) 0.36(s) 0.39(s) 1.04(s)

comparison between our approach and the other existing
task offloading works for edge computing, e.g., [12, 13,
16, 18, 19, 21, 22, 20] because most of them ignore the
constraints on task completion delays and mobile device540

energy consumption.

6. Conclusions

We have investigated the problem of finding a task of-
floading strategy in mobile edge computing that ensures
that edge servers make a profit while the mobile devices545

receive the results of their tasks within a deadline using
a minimum amount of energy. To this end, we propose
an auction that allocates edge servers to the tasks from
mobile devices and sets the payments for the computing
services. The auction is carried out by a pair of deep neural550

networks that prevent mobile devices from unfairly affect-
ing the results of the allocation using untruthful bidding
strategies. The allocations satisfy the task completion de-
lay and energy consumption of the mobile devices. We
extensively evaluate our proposed auction mechanism and555

observe that it can obtain a significant increase in utility
for the edge servers compared to existing auctions. We
also see that the edge computing server allocation meets
the task completion delays and energy consumption con-
straints of the mobile devices.560
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