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ABSTRACT

As of yet, visual working memory (WM) training has failed to yield consistent 

cognitive benefits to performance in untrained tasks, despite large improvements 

in trained tasks. Investigating the mechanisms underlying training effects can help 

explain these inconsistencies. In this pre-registered, pre-test/post-test online training 

study, we examined how training affects the quantity and quality of representations 

in visual WM using continuous-reproduction tasks. N = 64 young healthy adults were 

randomly assigned to an experimental group or an active control group to complete 

four training sessions of practce in an orientation-reproduction or a visual search 

task, respectively. We observed that, in the trained task, only the quality, but not the 

quantity, of visual WM representations significantly increased in the experimental 

group relative to the control group. These improvements did not generalise to 

untrained stimuli or paradigms. Therefore, our findings suggest that training gains 

are not driven by enhanced capacity. Instead, gains in the quality of visual WM 

representations that are tied to specific stimuli and paradigms may reflect enhanced 

efficiency in using the existing visual WM capacity.

*Author affiliations can be found in the back matter of this article
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Working memory (WM) is a cognitive system providing temporary access to representations 

that are needed for complex cognition in the present moment. WM has a limited capacity of 

around four chunks of information that can be simultaneously maintained at a time (Cowan, 

2001). The individual limit of WM capacity is strongly correlated with reasoning (Conway et 

al., 2003; Engle et al., 1999; Oberauer et al., 2008), executive functions (Miyake et al., 2000), 

and a range of other cognitive abilities (for a review, see Barrett et al., 2004). Furthermore, 

neurocognitive disorders such as ADHD (Martinussen et al., 2005) and age-related cognitive 

declines (Park et al., 2002) often go along with WM impairments.

The central role ascribed to WM in human cognition has motivated research into training 

interventions aiming to enhance WM capacity and, thereby, potentially also reasoning and 

other related cognitive abilities (Jaeggi et al., 2008; Klingberg, 2010; Klingberg et al., 2002). WM 

training typically involves repeated practice on one or more WM tasks over a short period of time, 

aiming to improve performance in trained and untrained cognitive tasks. The improvements in 

related yet untrained cognitive abilities are referred to as transfer effects. However, so far, WM 

training has failed to yield consistent and robust cognitive benefits (Jaeggi et al., 2012; Karbach 

& Verhaeghen, 2015; Melby-Lervåg et al., 2016; Morrison & Chein, 2011; Shipstead et al., 2012; 

von Bastian et al., 2022). Although previous research reported large and replicable gains in the 

trained WM tasks, transfer effects on untrained tasks remain inconsistent and elusive. A focus 

on the theoretical mechanisms underlying training gains can yield important insights for when 

and why transfer effects may occur (Redick, 2019; Smid et al., 2020; von Bastian & Oberauer, 

2014).

The capacity-efficiency model of cognitive training and transfer effects (von Bastian et al., 

2022; von Bastian & Oberauer, 2014) provides a framework for explaining these inconsistencies 

in past findings by proposing two, not mutually exclusive, pathways of how training may induce 

change. One pathway is through expanding cognitive capacity itself. Expanded capacity should 

generalise to any untrained tasks that draw on the same capacity limit. WM training-induced 

enhancements of capacity would be reflected by an increased quantity of representations 

that are simultaneously maintained in WM. These improvements would be expected to yield 

broad benefits across a range of related cognitive abilities. However, given the lack of broad 

and robust transfer effects, it is unlikely that training expands working memory capacity (von 

Bastian et al., 2022).

The other pathway is through enhancing efficiency in using the available capacity. Mechanisms 

of enhanced efficiency can be broadly grouped into compression and optimisation. Compression 

is to learn the regularities of information and making use of observed redundancies to reduce 

the overall cognitive load (Bavelier et al., 2012; Brady et al., 2009). Compression-based efficiency 

can be paradigm-specific through learning the necessary routines and effective strategies for 

completing an ongoing task. For example, performance can be boosted by strategies such as 

chunking (e.g., remembering the three digits 8, 1, and 9 as one number 819). In addition, better 

metacognitive skills, such as improved introspection about self-performance in an ongoing task 

(Carpenter et al., 2019) could facilitate applying effective task strategies to a different context 

(Belleville et al., 2014). Compression can also be stimuli-specific, for example through gaining 

a level of perceptual expertise that allows for more efficient coding of the stimuli (Curby & 

Gauthier, 2007) by increasing the precision of their representations in WM (Scolari et al., 2008). 

Finally, efficiency can also be enhanced by optimizing attention allocation to different stimuli 

or task sets (De Simoni & von Bastian, 2018; Zerr et al., 2021). In contrast to the broad benefits 

that are expected to result from expanding capacity, enhanced efficiency is expected to be 

useful only in contexts where these efficiency mechanisms can be applied as well.

There is tentative evidence for training-induced enhancements in efficiency. For example, De 

Simoni and von Bastian (2018) found that the majority of participants reported the acquisition 

of paradigm-specific strategies during training, including cognitive load-reducing strategies 

such as remembering only one of two items of a pair in an associative memory task. De Simoni 

and von Bastian also found that participants improved selectively in remembering which 

items they have encountered (i.e., item recognition) but not their current context (i.e., item 

recollection; e.g., the item’s location on the screen). De Simoni and von Bastian speculated 

that these improvements in recognition were possibly due to training-induced acquisition of 

stimuli-specific expertise by which the precision of the item representations in memory was 
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enhanced (see also Olson et al., 2005), thereby increasing success of retrieval. In the present 

study, we focus on investigating to what extent the acquisition of paradigm-specific and 

stimuli-specific expertise transfers to other contexts. Paradigm-specific expertise may lead to 

better performance in tasks with the same surface structure but different stimuli (e.g., recall 

the orientation of triangles or the shape of rings). Stimuli-specific expertise may lead to better 

performance in tasks using the same stimuli but different paradigms (e.g., the orientation of 

triangles in a recall or recognition task).

To distinguish training effects through capacity from those through efficiency, WM models that 

differentiate between the quantity and the quality of representations maintained in WM are 

useful (Alvarez & Cavanagh, 2004; Awh et al., 2007; Fougnie et al., 2010; Olson & Jiang, 2002; 

Zhang & Luck, 2008). This distinction between the quantity (the number of remembered items) 

and quality (the precision of these items) has been supported by neural evidence demonstrating 

a dissociative role of different parietal-occipital subregions. Specifically, the inferior intraparietal 

sulcus (IPS) has been found to track the number of items at different locations, whereas the 

superior IPS and lateral occipital complex encoded the precision of the attended items (Todd 

& Marois, 2004; Xu & Chun, 2006). Furthermore, WM quantity, but not quality, shows a strong 

connection with fluid intelligence (Fukuda et al., 2010).

To date, only few existing studies have investigated training-induced changes specifically in the 

quantity and quality of visual WM representations (Buschkuehl et al., 2017; Moriya, 2019; Ovalle 

Fresa & Rothen, 2019; Wang & Qian, 2021), and most of the existing studies offer only crude 

estimates of changes in quantity and quality of visual WM representations. For example, Moriya 

(2019) distinguished between the quantity and quality of visual WM representations using two 

versions of change-detection tasks, in which participants were asked to compare two memory 

arrays and detect whether they are identical or not. Moriya’s tasks varied in the extent to which 

the deviating stimulus differed from the memoranda: 45° in the quantity version vs. 5° in the 

quality versions of the task. Moriya found significant effects of training for both the quantity and 

the quality versions of the change-detection tasks, but with asymmetric patterns of transfer: 

whereas training of the quantity task led to strong transfer to the quality version, training of the 

quality task yielded only weak transfer to the quantity version. However, performance changes 

in quantity and quality of visual WM were estimated by the same parameter (i.e., Pashler’s k, 

1988) and, thus, conclusion about the two types of visual WM representations could only be 

drawn indirectly. Similarly, Wang and Qian (2021) reported training effects of the same change-

detection paradigm on the quantity of visual WM representations as well as transfer effects on 

the quality of visual WM representations, measured by a trained orientation-change detection 

task and an untrained orientation continuous-reproduction task, respectively. However, Wang 

and Qian measured the quality of visual WM representations using the overall recall error which 

mixes quantity and quality of visual WM representations.

Buschkuehl et al. (2017) trained participants in one of two variants of a colour-change 

detection task. Different to the Moriya (2019) and Wang and Qian (2021), Buschkuehl et al. 

(2017) used transfer tasks that allowed for estimating the precision of WM representations. 

Despite substantial training improvements in change-detection performance, the authors 

found no transfer of these improvements to the precision of representations of colour and 

spatial features. However, like the other existing studies, Buschkuehl et al. did not use training 

tasks that allowed for distinguishing changes in the quantity from changes in the quality.

Continuous-reproduction tasks, in which participants were asked to memorise and later 

reproduce features of stimuli on continuous dimensions (e.g., orientation or shape), probe high-

resolution contents of visual WM directly (Gorgoraptis et al., 2011; Ma et al., 2014; Wilken & Ma, 

2004; Zhang & Luck, 2008). The dependent variable, that is, the difference between the original 

and the reproduced feature can then be used to estimate the quantity (or capacity) and quality 

(or precision) of visual WM representations using computational models such as the standard 

mixture model (SMM; Zhang & Luck, 2008). The SMM assumes a mixture of two components: a 

uniform distribution representing random guesses, and the standard deviation of a von Mises 

distribution (a circular normal distribution) around the target, representing that remembered 

information is remembered with a certain degree of precision. For example, Ovalle Fresa 

and Rothen (2019) used a continuous colour-reproduction task to train participants in visual 

long-term memory and applied the SMM. After six training sessions over the course of three 
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days, participants’ precision in both visual long-term memory and visual short-term memory 

improved significantly. However, Ovalle Fresa and Rothen focused on long-term memory 

training, and did not assess transfer to substantially different stimuli and paradigms. Therefore, 

taken together, it remains unclear whether WM training effects are due to changes in quantity 

or quality of visual WM representations, and to what extent these changes are specific to the 

trained paradigm or stimuli. The present study fills this gap.

PRESENT STUDY

This pre-registered study investigated the mechanisms of training gains by distinguishing 

between quantity and quality of representations in visual WM. We administered a continuous 

orientation-reproduction training task for four training sessions. To examine the capacity-

efficiency model and its proposed mechanisms of training and transfer effects, we used the 

SMM (Zhang & Luck, 2008) to estimate changes in the quantity (i.e., capacity) and the quality 

(i.e., precision) of visual WM representations from pre-test to post-test and during training. 

Furthermore, we assessed transfer to two untrained tasks (shape reproduction and orientation-

change detection). All effects in the experimental training group were evaluated relative to an 

active control group practising visual search, which has been shown to demand only minimal 

visual WM (Wolfe & Horowitz, 1998; Woodman et al., 2001). Including an active control group 

controls for placebo effects and expectancy effects (Foroughi et al., 2016; Simons et al., 2016; 

von Bastian & Oberauer, 2014).

Our pre-registered hypotheses1 (https://osf.io/mk8fa) are summarised in Table 1 and stated 

as follows:

(1) If visual WM training-induced performance gains reflect increased visual WM 

capacity, the experimental group will show larger gains in the quantity of visual WM 

representations in the trained task (orientation reproduction) and in the untrained, 

structurally similar task (shape reproduction) as well as improved performance in the 

untrained structurally different task (orientation-change detection) above and beyond 

any improvements observed in the active control group.

(2) If visual WM training-induced performance gains reflect acquisition of paradigm-

specific expertise, the experimental group will show larger gains than the active control 

group in the quality of visual WM representations in the trained task (orientation 

reproduction) and in the untrained, structurally similar task (shape reproduction), but 

no performance gains in the untrained, structurally different task (orientation-change 

detection).

If, in addition to these improvements in quality, we would observe training-specific 

gains in the quantity of visual WM representations in both reproduction tasks, it would 

suggest that paradigm-specific expertise (e.g., strategies) hindered transfer to the 

structurally different task. If those training-induced quantity gains were observed in 

just one of the reproduction tasks, it would suggest that training-induced performance 

gains were primarily driven by gains in paradigm-specific expertise.

(3) If visual WM training-induced performance gains reflect acquisition of stimuli-

specific expertise, the experimental group will show larger gains than the active 

control group in the quality of visual WM representations in the trained task 

1 Hypotheses 2 and 3 were slightly reworded (while keeping the identical meaning) to facilitate understanding. 

Furthermore, paradigm-specific expertise was labelled task-specific expertise in the pre-registration.

Table 1 Hypotheses.

Note: All performance 

changes are relative to 

changes observed in 

the active control group. 

Hyphens (–) refer to possible 

concurrent improvements. 

ORT: orientation-reproduction 

task; SRT: shape-reproduction 

task; ODT: orientation-change 

detection task.

MECHANISM TRAINED TASK (ORT) UNTRAINED STIMULI

(SRT)

UNTRAINED 

PARADIGM (ODT)

QUANTITY QUALITY QUANTITY QUALITY PERFORMANCE

Capacity Increase – Increase – Increase

Efficiency: Paradigm-

specific expertise

– Increase – Increase No change

Efficiency: Stimulus-

specific expertise

– Increase – No change Increase



5Jiang et al.  

Journal of Cognition  

DOI: 10.5334/joc.306

(orientation reproduction) only, without any improvements in the quality of visual WM 

representations in the untrained, structurally similar task (shape reproduction). If this 

increased quality of visual WM representations is observed in the trained task but not 

in the shape-reproduction task, alongside increased visual WM performance in the 

orientation-change detection task, it would suggest that stimuli-specific expertise 

transferred across paradigms.

Importantly, these hypotheses were not mutually exclusive as increases in visual WM 

capacity and acquisition of stimuli-specific and task-specific expertise may co-occur 

(von Bastian et al., 2023).

METHOD

This online training study used a pre-test-post-test, randomised-controlled design. Participants 

who had completed the pre-test were randomly assigned to the experimental group or the 

active control group where they practised an orientation-reproduction task or a visual search 

task, respectively, for four training sessions. Most participants (87% of the final sample included 

in the analysis) completed the four training sessions over four consecutive days. Participants 

who missed a day were retained until they completed their sessions or withdrew. To ensure 

that participants could maximally complete one training session per day, they received a 

website link for the next day’s session only after they had completed the previous session. After 

the training sessions, participants completed the post-test. The pre-test and post-test were 

designed to assess training effects on performance in the orientation-reproduction task and 

visual search task, as well as transfer effects to a shape-reproduction task and an orientation-

change detection task.

This experiment and its hypotheses were pre-registered on the Open Science Framework 

(https://osf.io/mk8fa). Pilot data from six participants were collected before the pre-registration. 

The pilot study served to test the feasibility of the study and the compatibility between the 

recruitment platform Prolific (https://www.prolific.co) and the experiment software Tatool Web 

(www.tatool-web.com, von Bastian et al., 2013). As the pilot study was successful with no 

further changes to the study materials, the pilot data were included in the current study. The 

study was approved by the University of Sheffield Research Ethics Committee.

PARTICIPANTS

The target sample size was 100 participants at post-test. An a priori power analysis assuming 

a small to medium within-between interaction effect size (Cohen’s f = 0.15) and power of 

1-ß = 0.80 suggested a sample size of N = 90, which we increased by 10 participants to account 

for possible dropouts. We recruited 108 healthy participants, aged from 18 to 35, to take part in 

a study on “Cognitive training” that was advertised on Prolific. We pre-screened participants by 

customising the allow list according to our pre-registered inclusion and exclusion criteria. After 

signing up for the study, participants gave online consent to taking part in the study by clicking 

a button. All participants who met the inclusion criteria and completed the study received 

£17.40. Before the start of recruitment, a list of group assignments was randomly generated on 

GraphPad (https://www.graphpad.com/quickcalcs/randomize2/). Following this pre-generated 

list, participants who completed the pre-test were randomly assigned to either an experimental 

group or an active control group. Participants were blind to the group condition.

The flow chart in Figure 1 illustrates participant recruitment, attrition, and retention. Eight 

participants (four from each group) dropped out, without giving a specific reason, after 

completing the pre-test. We replaced these eight participants who dropped out, so that we 

reached the target sample size of N = 100 participants who completed the post-test. After 

concluding data collection, data from 36 participants were excluded from analysis. Data 

from two participants in the experimental group were partially missing due to technical 

issues and, therefore, these data were excluded. In addition, although we instructed them 

otherwise, we noticed that some participants completed some sessions (pre-test, post-test 

or training) multiple times. We excluded all participants (11 per training group) for whom the 

number of additional trials exceeded 10% for any task (12 trials per task). Furthermore, seven 

participants from the experimental group and five from the active control group were excluded 

according to pre-registered criteria using reaction times (RT) and omission errors designed to 



6Jiang et al.  

Journal of Cognition  

DOI: 10.5334/joc.306

identify participants who did not follow instructions in an online experiment setting.2 Of the 

remaining 64 participants included in the analysis, 30 were in the experimental group and 34 

were in the control group. Sensitivity analyses which included all these 12 participants who 

were excluded due to pre-registered criteria showed similar patterns of results and, thus, led 

to the same conclusions. Table 2 lists the participants’ demographics. Overall, the groups 

were comparable regarding their gender and age, but the evidence for the absence of group 

differences was ambiguous.

MATERIALS

Figure 2 illustrates the training and transfer tasks. In pre-test and post-test, each experimental 

task comprised 20 practice trials and 120 testing trials with a set size of the stimulus array of 4 

items in the visual WM tasks, and 16 items in the visual search task. The order of representing 

different experimental tasks was random. Pre-test and post-test took approximately 40 min 

each. Participants underwent four training sessions. Each training session consisted of 360 

2 Participants were excluded with any of the following three data patterns: RT of less than 1500 ms in 1/3 of 

the trials in the orientation-reproduction task and in the shape-reproduction task; RT of less than 300 ms in 1/3 

of the trials in the orientation-change detection task and in the visual search task; omission errors in 1/3 of the 

trials in the visual search task. 

Figure 1 Participant Flow 

Chart.

Table 2 Participant 

Demographics as a Function 

of Groups.

Note: Gender differences were 

tested with a chi-squared 

test and age differences with 

Yuen’s t-test.

MEASURE GROUP COMPARISON

EXPERIMENTAL ACTIVE 

CONTROL

STATISTICAL 

VALUE

p BF
10

 ± ERROR %

Group size: n 30 34

Gender:  

female/male/non-binary

8/22/0 17/17/0 2.73 .098 3.40 ± 0.00

Age: M (SD) 22.73 (3.92) 21.94 (2.52) 0.33 .745 1/2.62 ± 0.00
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trials, with 120 trials per set size (2, 4, and 6 in the orientation-reproduction task, and 8, 16, 

and 24 in the visual search task). Set sizes were intermixed within each session. Each training 

session lasted approximately 30 min.

Orientation-Reproduction Task

Each trial began with a fixation cross displayed centrally for 1000 ms. Next, an array of randomly 

orientated (0–360°) isosceles triangles was arranged in a circular manner and appeared on the 

screen for 200 ms, followed by a 1000 ms blank screen. Then, one of the displayed triangles was 

randomly selected as the target stimulus and presented in a random orientation. Participants 

were instructed to reproduce the original orientation by rotating the triangle with the computer 

mouse and clicking the left mouse-button to record their response.

Figure 2 Training and Transfer 

Tasks.

Note: Panel A: Orientation-

reproduction task at set size 4. 

Panel B: Shape-reproduction 

task at set size 4. Panel C: 

Orientation-change detection 

task at set size 4 in the change 

condition. Panel D: Visual 

search task at set size 8 in the 

change condition.
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We measured recall errors, that is, the difference in degrees between the reproduced 

orientation and the target orientation, ranging from -π to π, to estimate capacity and efficiency 

parameters by fitting the SMM (Zhang & Luck, 2008) using the MemToolbox (Suchow et al., 

2013).3 The SMM consists of two components, a von Mise distribution approximating a circular 

normal distribution, and a uniform distribution:

      
( ) ( )

0

,
( )

1 1
( ) 1

2 2

cos xP x g e g
I

κ

π κ π
⋅= − +  (1)

where x is the response, g is the proportion of random guess responses, κ is the concentration 

parameter of the von Mises distribution, and I
0
(κ) is the modified Bessel function of order 0. The 

SMM assumes that the target can either be recalled with a certain precision or not at all, leading 

to random guesses. Therefore, the probability of remembering the target (Pm) is calculated as

         1 .Pm g= −  (2)

The quantity of representations in visual WM, that is, capacity K is computed as the product of 

the probability of remembering the target and the set size N:

        .K Pm N= ×  (3)

Finally, the quality of representations in WM, that is, precision, is computed as the inverse 

of the standard deviation (SD–1) of the von Mises distribution, which was converted from the 

concentration parameter κ.

Shape-Reproduction Task

Following a central fixation cross for 1000 ms, an array of black ring-shaped objects with 

varying proportions filled in white were distributed on the screen in a circular manner for 

200 ms. After a 1000 ms blank screen, one of the displayed objects was randomly selected 

as the target stimulus. The target stimulus was presented in black colour with a white bar. 

Participants were instructed to reproduce the original proportion of the white segment by 

rotating and left clicking the mouse. As for the orientation-reproduction task, capacity and 

precision were estimated based on the recall errors using the SMM.

Orientation-Change Detection Task

After a fixation cross presented centrally for 1000 ms, an array of randomly orientated (0–360°) 

isosceles triangles appeared on the screen for 200 ms, followed by a 1000 ms blank screen. 

Immediately afterwards, a second array was presented until response. In half of the trials, the 

two arrays were identical. In the other half of the trials, one of the triangles in the second array 

was randomly selected and presented in a randomly selected, different orientation. Participants 

were instructed to press the ‘C’ or ‘M’ key of the keyboard to respond to a detection of change 

or match respectively. To measure visual WM capacity, we computed Pashler’s k (Pashler, 1988) 

for whole-display tasks using Equation 1 (Pashler, 1988; Rouder et al., 2011):

      
,

1

H FA
k N

FA

−
= ×

−
 (4)

where H and FA are the hit and false alarm rates and N is the display set size.

Visual Search Task

On each trial, participants first saw a fixation cross for 1000 ms. Then, an array of isosceles 

triangles with two or three semi-circular gaps, pointing to random directions, was presented. In 

half of the trials, all triangles had three gaps. In the other half of the trials, one of the triangles 

had only two gaps. Participants were instructed to press the ‘M’ key of the keyboard within 5 s if 

all triangles had three gaps, or to press the ‘C’ key if one of the triangles only had two gaps. The 

3 As noted in the pre-registration, we also explored fitting other existing visual WM models, such as, swap 

model (Bays, 2016), signal discrimination model (Oberauer, 2021), and target confusability competition model 

(Schurgin et al., 2020), to the data and conducted a series of systematic model comparisons. Overall, the SMM 

turned out to be the best fitting model for pre-test to post-test changes and, therefore, is reported here. The 

model comparisons will be reported elsewhere as this would exceed the scope of the present study.
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overall accuracy which is calculated by the proportion of correct responses excluding omission 

errors (no response given after 5000 ms), as well as the mean reaction time (RT) for correct 

responses were measured and used for analysis.

RESULTS

In addition to frequentist significance tests (including t-tests and analyses of variance, 

ANOVAs), Bayes factors (BFs) using the default priors from the BayesFactor package (Cauchy 

distribution with r = 0.5 for ANOVAs, r = 0.707 for t-tests; Poisson distribution for chi-square 

tests with a = 1) were calculated to evaluate the strength of evidence for the absence or 

presence of effects (Ly et al., 2016; Rouder et al., 2012). Table 3 lists the categorical labels for 

describing the strength of evidence adapted from Wetzels and Wagenmakers (2012). As most 

of the data violated the assumption of normality, we ran robust Yuen t-tests (Yuen, 1974) 

and report Algina-Keselman-Penfield robust effect sizes, δ
t 
(Algina et al., 2005). We calculated 

and report both general effect sizes, 2

G
η  and partial effect sizes, 2

pη , for ANOVAs to facilitate 

further use in power analyses and meta-analyses (Lakens, 2013). All statistical analyses were 

performed with R Statistical software (v4.1.3; R Core Team, 2022). The R packages rstatix 

(Kassambara, 2021) and ez (Lawrence, 2016) were used for frequentist significance tests. 

BayesFactor (Morey & Rouder, 2021) and WRS2 (Mair & Wilcox, 2020) were used for Bayesian 

and robust statistical tests.

TRAINING PERFORMANCE

Table 4 lists the descriptive statistics for the experimental group and the active control group 

in the orientation reproduction and visual search tasks during training. To analyse performance 

changes during training, we ran a repeated-measures ANOVA with the within-subjects factors 

Time (training session 1 to 4) and Set Size (2, 4, 6).

Table 3 Categorical Labels 

for Describing the Strength of 

Bayesian Evidence.

Note: Adapted from Wetzels 

and Wagenmakers (2012). 

H
10 

= evidence in favour of the 

alternative hypothesis;  

H
01

 = evidence in favour of the 

null hypothesis.

BAYES FACTORS CATEGORICAL LABELS

H
10

H
01

>100 <1/100 Decisive

30 to 100 1/100 to 1/30 Very strong

10 to 30 1/30 to 1/10 Strong

3 to 10 1/10 to 1/3 Substantial

1 to 3 1/3 to 1 Ambiguous

1 1 No evidence

Table 4 Descriptive Statistics of 

Performance During Training.

Note: Capacity ranges from 

0 to the set size; precision 

ranges from 0 to ∞. RT = 

mean reaction time.

MEASURE TRAINING SESSION

1 2 3 4

M SD M SD M SD M SD

Experimental Group (n = 30)

Capacity (K)

Set Size 2 1.88 0.15 1.88 0.19 1.89 0.12 1.89 0.16

Set Size 4 2.76 0.71 2.92 0.74 2.93 0.73 2.87 0.79

Set Size 6 2.97 1.29 3.15 1.30 3.28 1.29 3.25 1.33

Precision (SD–1)

Set Size 2 0.08 0.02 0.09 0.02 0.09 0.02 0.09 0.02

Set Size 4 0.06 0.02 0.07 0.02 0.07 0.02 0.07 0.02

Set Size 6 0.06 0.01 0.06 0.02 0.07 0.02 0.07 0.02

(Contd.)
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Orientation Reproduction

Figure 3 illustrates estimates of capacity and precision in the experimental group for each 

training session at set size levels 2, 4, and 6. There was a significant effect of Set Size on both 

capacity, F(2,58) = 39.28, p < .001, 2

G
.49η = , 2

p .58η = , BF
10

 > 100 ± 0.66%, and precision, F(2, 

58) = 46.12, p = < .001,  2

G
.37η = , 2

p .61η = , BF
10

 >100 ± 0.67%. We observed a significant effect 

of Time on precision, F(3,87) = 6.56, p < .001, 2

G
.06η = , 2

p .18η = , BF
10

 = 3.03 ± 0.59%, but not 

on capacity, F(3,87) = 2.17, p = .097, 2

G
.01η = , 2

p .07η = , BF
10

 = 1/34.51 ± 0.83%. Furthermore, 

there was no interaction between Time and Set Size for capacity, F(6, 174) = 1.94, p = .078, 
2

G
.01η = , 2

p .06η = , BF
10

 = 1/60.01 ± 2.56%, or precision, F(6, 174) = 0.97, p = .444, 2

G
.01η = , 

2

p .03η = , BF
10

 = 1/41.37 ± 1.73%. Taken together, we observed an effect of Set Size on capacity 

and precision that replicates the set size effect typically observed in visual WM, that is, the 

bigger the set size, the lower the probability of retrieving an item and its precision. In addition, 

there was only substantial evidence for significant performance improvement in precision 

during training.

Visual Search

During visual search training, there was a significant effect of Set Size on both accuracy, F(2,66) 

= 154.73, p < .001, 2

G
.68η = , 2

p .82η = , BF
10

 > 100 ± 0.81% and mean RTs, F(2,66) = 330.18, 

p < .001, 2

G
.82η = , 2

p .91η = , BF
10

 > 100 ± 6.87%. We also observed an effect of Time on accuracy, 

F(3,99) = 8.50, p < .001, 2

G
.08η = , 2

p .20η = , with, however, ambiguous Bayesian evidence, BF
10

 

= 1/1.36 ± 0.85%, and mean RTs, F(3,99) = 7.54, p < .001, 2

G
.08η = , 2

p .19η = , BF
10

 = 1/6.99 ± 

0.49%. Furthermore, there was no interaction between Time and Set Size for accuracy, F(6,198) 

= 1.32, p = .249, 2

G
.01η = , 2

p .04η = , BF
10

 = 1/61.71 ± 1.73%, or mean RTs, F(6,198) = 0.48, p = .823, 
2

G
.01η < , 2

p .01η = , BF
10

 = 1/143.26 ± 2.27%. Taken together, we observed the set size effect in 

visual search with ambiguous evidence for performance improvements during training.

MEASURE TRAINING SESSION

1 2 3 4

M SD M SD M SD M SD

Active Control Group (n = 34)

Accuracy

Set Size 8 0.91 0.07 0.92 0.09 0.94 0.05 0.93 0.05

Set Size 16 0.84 0.07 0.84 0.10 0.87 0.08 0.86 0.08

Set Size 24 0.73 0.09 0.73 0.09 0.77 0.09 0.77 0.09

RT (ms)

Set Size 8 2056 326 1998 305 1890 282 1918 321

Set Size 16 2871 422 2806 401 2712 453 2707 428

Set Size 24 3257 468 3192 452 3101 499 3066 447

Figure 3 Estimates of 

Capacity and Precision in the 

Experimental Group Over Four 

Training Sessions.

Note: Panel A: Estimates of 

capacity. Panel B: Estimates 

of precision. Data points 

with reduced opacity show 

individual estimates, solid 

data points represent group 

means. S1 to S4 = training 

session 1 to 4.
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COGNITIVE PERFORMANCE CHANGES FROM PRE-TEST TO POST-TEST

Table 5 lists the descriptive statistics for the training and transfer tasks administered at pre-

test and post-test. First, we tested whether the experimental group and the active control 

group were comparable at baseline based on their pre-test performance using two-tailed 

t-tests (Table 6). Next, we assessed training and transfer effects by running two-way mixed 

ANOVAs separately for each dependent variable, with the within-subjects factor Time (pre-test, 

post-test), the between-subjects factor Group (experimental group, active control group), and 

their interaction. Table 7 provides an overview of the results of these analyses. For testing our 

hypotheses, we were primarily interested in the Time x Group interaction.

Baseline Comparisons

There were no significant group differences, though the evidence was ambiguous for capacity in 

the orientation-reproduction task and precision in the shape-reproduction task, with participants 

in the active control group showing numerically slightly lower capacity in the former task and 

lower precision in the latter task at pre-test than participants in the experimental group.

Table 5 Descriptive Statistics 

of Cognitive Performance at 

Pre-Test and Post-Test.

Note: Pashler’s k can range 

from 0 to set size. RT = mean 

reaction time.

VARIABLE GROUP

EXPERIMENTAL ACTIVE CONTROL

PRE-TEST POST-TEST PRE-TEST POST-TEST

M SD M SD M SD M SD

Training tasks

Orientation reproduction

Capacity (K) 2.57 0.77 2.89 0.73 2.35 0.91 2.67 0.69

Precision (SD–1) 0.06 0.01 0.07 0.02 0.06 0.02 0.05 0.01

Visual search

Accuracy 0.76 0.14 0.81 0.13 0.78 0.09 0.86 0.10

RT (ms) 2973 849 2985 633 3101 475 2636 509

Transfer tasks

Shape reproduction

Capacity (K) 2.26 0.76 2.10 0.84 2.22 0.68 2.30 0.71

Precision (SD–1) 0.05 0.02 0.06 0.03 0.04 0.02 0.04 0.03

Orientation-Change detection

Capacity (Pashler’s k) 2.09 1.12 2.37 0.70 2.05 0.82 2.01 0.72

Table 6 Statistical Group 

Comparisons at Baseline.
VARIABLE df t P 𝝳

t
BF

10
 ± ERROR %

Training tasks

Orientation reproduction

Capacity (K) 36.72 0.51 .610 –0.13 1/2.42 ± 0.01

Precision (SD–1) 37.72 0.71 .484 –0.18 1/3.91 ± 0.01

Visual search

Accuracy 29.33 0.30 .766 0.08 1/2.93 ± 0.01

RT (ms) 25.34 0.01 .993 0.00 1/3.06 ± 0.01

Transfer tasks

Shape reproduction

Capacity (K) 33.55 0.38 .707 –0.10 1/3.84 ± 0.01

Precision (SD–1) 38.00 1.11 .274 –0.28 1/2.21 ± 0.01

Orientation-Change detection

Capacity (K) 37.49 0.54 .595 –0.14 1/3.87 ± 0.01
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Training Effects

Orientation Reproduction

Figure 4 illustrates the pre-test to post-test changes in capacity and precision in orientation 

reproduction. The Time × Group interaction was not significant for capacity, F(1, 62) < 0.01, 

p = .974, 2

G
.01η < , 2

p .01η < , with the absence of the interaction being supported by substantial 

evidence, BF
10

 = 1/4.25 ± 3.26%. These results suggest that training-induced gains cannot be 

explained by an increase in quantity of representations activated in visual WM.

For precision, there was a significant Time x Group interaction effect, F(1, 62) = 25.63, p < 

.001, 2

G
.07η = , 2

p .29η = , which was supported by decisive evidence, BF
10

 > 100 ± 4.11%. In the 

experimental group, precision significantly increased from pre-test (M = .06, SD = .01) to post-

test (M = .07, SD = .02), t(17) = –4.43, p < .001, δ
t
 = –1.16, which was supported by decisive 

evidence, BF
10

 > 100 ± 0.00%. In contrast, in the active control group, precision decreased 

from pre-test (M = .06, SD = .02) to post-test (M = .05, SD = .01), t(21) = 1.99, p = .059,  

Table 7 Analysis of Variance 

Effects of Training on Cognitive 

Performance.

Note: BF
10

 = Bayes factor 

in favour of the alternative 

hypothesis. Degrees of 

freedom df
1
 and df

2
 were 1, 62 

respectively.

VARIABLE/EFFECT F P 2
Gη

2

pη BF
10

 ± ERROR %

Orientation reproduction

Capacity

Time 18.12 <.001 .04 .23 > 100 ± 2.04

Group 1.53 .221 .02 .02 1/1.58 ± 1.89

Time × Group 0.00 .974 <.01 <.01 1/4.25 ± 3.26

Precision

Time 3.05 .086 .01 .05 1/2.78 ± 2.21

Group 5.68 .020 .07 .08 2.87 ± 1.60

Time × Group 25.63 <.001 .07 .29 > 100 ± 4.11

Visual search

Accuracy

Time 24.79 <.001 .08 .29 > 100 ± 0.84

Group 2.55 .116 .03 .04 1/1.23 ± 2.06

Time × Group 1.55 .218 .01 .02 1/2.03 ± 4.33

Reaction time

Time 8.22 .006 .03 .12 6.61 ± 0.99

Group 0.67 .417 .01 .01 1/2.80 ± 2.08

Time × Group 9.09 .004 .04 .13 10.96 ± 2.40

Shape reproduction

Capacity

Time 0.15 .704 <.01 <.01 1/5.18 ± 1.28

Group 0.28 .596 <.01 <.01 1/3.31 ± 0.98

Time × Group 1.36 .249 .01 .02 1/2.23 ± 3.69

Precision

Time 1.12 .293 .01 .02 1/3.47 ± 1.05

Group 4.72 .034 .05 .07 1.63 ± 0.80

Time × Group 1.72 .195 .01 .03 1/1.90 ± 2.33

Orientation-Change detection

Capacity

Time 1.83 0.181 0.01 0.03 1/2.79 ± 1.00

Group 1.06 0.306 0.01 0.02 1/1.98 ± 0.55

Time × Group 3.12 0.082 0.01 0.05 1/1.05 ± 2.56



δ
t
 = .28, though the evidence for this decrease was highly ambiguous, BF

10
 = 1.38 ± 0.02%. 

Finally, precision was significantly higher in the experimental group than in the active control 

group at post-test, t(28) = 4.36, p < .001, δ
t
 = .71, supported by decisive evidence, BF

10
 > 100 

± 0.00%. Taken together, we found considerable training-induced gains in visual WM precision 

in the trained orientation-reproduction task, with large effect sizes for changes from pre-test 

to post test and for the comparison to the active control group at the post-test. To further 

explore the differences in changes between the experimental group and the active control 

group in the orientation-reproduction task (not pre-registered), we examined the distributions 

of participants’ responses at pre-test and post-test. As Figure 5 illustrates, we observed a 

pattern of responses suggesting that, at pre-test, individuals in both groups tended to respond 

with familiar or canonical orientations, with peaks at 45°, 135°, 225°, and 315°, χ2(7, N = 7680) 

= 6.30, p = .505, BF
10

 < 1/100 ± 0.00%. At post-test, however, the distribution of responses 

differed between the groups, χ2(7, N = 7680) = 44.58, p < .001, with decisive Bayesian evidence, 

BF
10

 > 100 ± 0.00%. Specifically, the experimental group showed a larger number of peaks 

in their response distribution, leading to a flattened density function and suggesting that, 

after orientation-reproduction training, participants’ responses included a larger range of finer 

differences between orientations. In contrast, the active control showed a similar pattern at 

pre-test and post-test. These observations may indicate that the experimental group was able 

to distinguish finer differences in orientations after training.

Visual Search

For accuracy, the Time × Group interaction was not significant, F(1, 62) = 1.55, p = .218, 2

G
.01η < , 

2

p .02η = , with the active control group showing a numerically higher accuracy from pre-test to 

post-test than the experimental group. However, the evidence was ambiguous, BF
10

 = 1/2.03 

± 4.33%. For mean RTs, there was a significant Time x Group interaction effect, F(1, 62) = 9.09, 

Figure 4 Pre-Post Changes in 

the Visual WM Training Task on 

Capacity and Precision.

Note: Panel A: Changes in 

capacity. Panel B: Changes 

in precision. Left: Small 

transparent data points show 

the mean values for each 

individual. Big solid data points 

show the mean values at 

group level, with the error bars 

representing standard errors. 

Right: Density distributions of 

the data for both groups.

Figure 5 Density of Pre-Post 

Responses Changes Differs 

Between Groups.

Note: Purple histograms with 

dashed lines show the density 

of each response at pre-test, 

and the pink histograms 

with solid lines show the 

density of each response at 

post-test. Number of bins: 60. 

Experimental group: n = 30; 

active control group: n = 34; 

total responses per participant 

was 120 each at pre-test and 

post-test.
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p = .004, 2

G
.04η = , 2

p .13η = , which was supported by strong evidence, BF
10

 = 10.95 ± 2.40%. 

Taken together, participants in the active control group showed larger increases in visual search 

speed after visual search training than the experimental group, without sacrificing accuracy.

Transfer Effects

Shape Reproduction

We detected no significant transfer to a task using the same paradigm as the training task 

but different stimuli. The Time × Group interaction was not significant, F(1,62) = 1.36, p = .249,  
2

G
.01η = , 2

p .02η = , with, however, capacity decreasing in the experimental group and increasing 

in the active control group from pre-test to post-test. The evidence for the absence of this 

interaction was ambiguous, BF
10

 = 1/2.23 ± 3.69%. For precision, the Time × Group interaction 

was also non-significant, F(1,62) = 1.72, p = .195, 2

G
.01η = , 2

p .03η = , with precision, numerically, 

slightly improving in the experimental group and remaining stable in the active control group. 

The evidence supporting the absence of the interaction was again ambiguous, BF
10

 = 1/1.90 

± 2.33%.

Orientation-Change Detection

Similarly, capacity in a different paradigm but with the same stimuli did not significantly improve 

after visual WM training. The Time × Group interaction approached significance, F(1,62) = 3.12, 

p = .082, 2

G
.01η = , 2

p .05η = . Numerically, the experimental group performed better at post-test 

than pre-test, whereas the active control group’s performance remained stable. Again, the 

evidence for the absence of a transfer effect was near-perfectly ambiguous, BF
10

 = 1/1.05 ± 

2.56%. Taken together, there was no transfer to a different type of stimuli or paradigm, with 

the caveat that the evidence was overall ambiguous.

SUMMARY

We found evidence for improvements in the trained tasks, with the experimental group 

improving only in precision, but not in capacity, in the trained orientation-reproduction task, 

and the active control group improving in RTs in the trained visual search task. Therefore, 

we rejected Hypothesis 1 that training gains reflect increases in capacity, and we concluded 

that training gains are driven by increased efficiency. As the improvement in precision did 

not generalise to performance gains in the untrained shape-reproduction task, we rejected 

Hypothesis 2 that training gains reflect the acquisition of paradigm-specific expertise, but with 

the caution that the evidence for the absence of an effect on precision in shape reproduction 

was ambiguous only. Similarly, there was also no significant effect of orientation-reproduction 

training on performance in the orientation-change detection task. Therefore, we also rejected 

Hypothesis 3 that stimulus-specific expertise would transfer to a different paradigm but, again, 

with the caveat that the Time × Group interaction approached significance, with only ambiguous 

evidence for the absence of an effect. Therefore, taken together, we found that training gains 

were stimuli-specific and task-specific, with some ambiguity regarding the potential of these 

gains in efficiency to generalise to other contexts.

DISCUSSION

The objective of the study was to identify the mechanisms underlying visual WM training and 

transfer effects. Specifically, we tested (1) whether training-induced gains after orientation-

reproduction training reflect expanded visual WM capacity or enhanced efficiency in using 

the available capacity by facilitating the acquisition of paradigm-specific or stimulus-specific 

expertise, and (2) whether such training benefits generalise to other types of stimuli and 

paradigms. For this purpose, we distinguished training gains in quantity from training gains in 

quality of visual WM representations and tested transfer effects to an untrained stimulus type 

(shape reproduction) and paradigm (orientation-change detection).

The results showed that four visual WM training sessions improved the quality of visual 

WM representations in the trained task but not the quantity. Furthermore, we observed no 

transfer to different stimuli or a different paradigm. The evidence was ambiguous though, and 

there was a tendency that the experimental group numerically improved in the orientation-

change detection task that used the same stimuli in a different paradigm. Notably, however, 
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if anything, capacity decreased in the experimental group in the shape-reproduction task that 

uses different stimuli in the same paradigm. Taken together, these findings speak against broad 

transfer through expanded capacity, which is consistent with the results from other recent WM 

training studies which reported limited evidence for transfer (Buschkuehl et al., 2017; De Simoni 

& von Bastian, 2018; Guye & von Bastian, 2017; Redick et al., 2013).

Instead, these findings suggest that training gains are driven by a more efficient use of 

the available cognitive capacity (von Bastian & Oberauer, 2014; von Bastian et al., 2022). 

Furthermore, the lack of transfer effects supports the conclusion that the training-induced 

efficiency gains were both stimuli-specific and paradigm-specific: neither stimuli-specific 

expertise nor paradigm-specific expertise were generalisable to the same paradigm with 

different stimuli or a different paradigm with the same stimuli. More specifically, the untrained 

shape-reproduction task used the same paradigm as the trained visual WM task but tested 

the memory of shapes instead of orientations. The lack of transfer to this task suggests that 

training gains reflect gains in expertise in orientation discrimination which is specific to the 

stimuli employed in the trained task. Yet, the untrained orientation-change detection task 

used the same stimuli as the trained visual WM task and also tested memory of orientations, 

but we still did not observe any transfer. However, different to the trained paradigm, the 

untrained orientation-change detection task might capitalise on configural information, such 

as the internal representation of the relationship between all displayed orientations at the 

maintenance stage (Boduroglu et al., 2009; Buschkuehl et al., 2017). At the same time, at the 

recall stage, the task requirement to detect only one changed orientation out of all stimuli 

displayed could possibly reduce the need to focus on the feature precision of each stimulus. 

This could explain why efficiency gains in the trained task did not generalise to another visual 

WM paradigm using the same stimuli type.

An alternative, not necessarily mutually exclusive, possibility is that the training gains in the 

orientation-reproduction task reflect a more refined motor control in reproducing the triangles’ 

orientation. However, the trained orientation-reproduction WM task and the untrained shape-

reproduction task arguably require a similar degree of refined motor control to reproduce the 

orientation or shape information, respectively, by rotating and clicking the mouse. Hence, if the 

observed training gains merely reflected better motor control, we should also have observed 

improvements in the untrained shape-reproduction task which requires similar levels of fine 

motor control. The observed lack of such improvements renders this possibility unlikely.

The findings of the present study also provide some indications how stimuli-specific and 

paradigm-specific expertise may operate and interact. Our exploratory inspection of response 

distributions showed that the experimental group but not the active control group reported a 

larger number of different orientations after training, suggesting that training in the orientation-

reproduction task may have catalysed the development of perceptual expertise allowing for 

discriminating finer differences in orientations. This is in line with other research showing 

that visual WM training can boost perceptual processing (Truong et al., 2022). Improved 

perceptual processing due to stimuli-specific expertise may enhance the perceived perceptual 

distinctiveness (Olson et al., 2005). Given the premise that the active control group’s visual 

search training involved only little memory (Wolfe & Horowitz, 1998) while sharing similar 

encoding processing (Kong & Fougnie, 2019), the fact that we observed these precision gains 

only in the experimental group supports the conclusion that visual WM training-induced gains 

in efficiency operate at maintenance and recall stage. These stimulus-specific efficiency gains 

allow for maintaining more precise internal feature representations, and/or discriminating 

these representations with higher resolution when recalling this feature information.

Developing stimuli-specific, perceptual expertise may also help to use effective paradigm-

specific strategies that operate at maintenance and recall stage. Specifically, we found that 

the experimental group did not only respond a larger number of orientations but more peaks 

with canonical orientations after training. Participants may have used canonical orientations 

as a memory aid for the orientations (e.g., 90, 180, and 270 degrees like the numbers 3, 6 and 

9 on a clock face). Increasing the number of available canonical orientations may benefit the 

effectiveness of such a strategy and increase overall performance. Note that this does not 

exclude the possibility that both experimental and active control training could have improved 

sensory discrimination at encoding stage.
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LIMITATIONS

One major limitation of the current design is that the orientation-change detection task – the 

untrained paradigm using the same stimuli – did not allow for assessing precision (i.e., the 

quality of visual WM representations). Consequently, our results cannot fully rule out transfer of 

gains in the quality of visual WM representations to a different paradigm. Future research with a 

more fine-grained assessment of the stimulus features is required to identify the mechanisms 

underlying the transferable gains in quality of visual WM representations.

Another potential limitation of this study is that four training sessions might not be intensive 

enough to induce transferable training gains in the quality of visual WM representations. 

Indeed, this possibility is consistent with our results that training gains in the quality of visual 

WM representations were not detected during training but only at post-test. Furthermore, the 

spacing of the training sessions may not have optimally supported learning. For example, a 

design with only one session a week may have allowed for better consolidation of learning 

effects (e.g., see Lampit et al., 2020). Future research is needed to better understand the 

optimal intensity and spacing of visual WM training interventions.

Moreover, our training tasks were not adaptive, that is, all participants practised all set 

sizes irrespective of their individual performance. We chose this design to ensure sufficient 

measurement of all three set sizes for applying the SMM. However, it might have led to a 

decrease in motivation. A previous study showed no differences between adaptive and non-

adaptive training both for motivation and training and transfer gains (von Bastian & Eschen, 

2016); however, in that study participants still received performance-based feedback. Such 

feedback likely encourages better engagement with the daily training sessions and reduces 

attrition, which could be useful especially in an online setting like the current study.

Finally, we did not assess participants’ training experience, subjective training gains, or 

strategies they employed, because we aimed at minimizing the administration time for the 

benefit of participant retention. However, these data could have added important insights 

regarding the possible mechanisms underpinning the observed training gains (e.g., see De 

Simoni & von Bastian, 2018; Guye & von Bastian, 2017). Future research would benefit from 

including self-report measures for advancing understanding of training-induced change in 

cognitive performance.

CONCLUSION

To the best of our knowledge, the findings of the present study are the first to provide evidence 

from a continuous reproduction task that visual WM training induces stimuli-specific and 

paradigm-specific gains in the quality but not in the quantity of visual WM representations. 

These findings support the notion that training enhances cognitive efficiency through the 

acquisition of expertise but not capacity. A better understanding of how training facilitates a 

more efficient use of the available visual WM capacity, and how the underlying training benefits 

are influenced by the characteristics of stimuli and paradigms, will be critical for harnessing the 

potential benefits of these training benefits.
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