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Abstract. We study the expressivity and the complexity of various log-
ics in probabilistic team semantics with the Boolean negation. In par-
ticular, we study the extension of probabilistic independence logic with
the Boolean negation, and a recently introduced logic FOPT. We give a
comprehensive picture of the relative expressivity of these logics together
with the most studied logics in probabilistic team semantics setting, as
well as relating their expressivity to a numerical variant of second-order
logic. In addition, we introduce novel entropy atoms and show that the
extension of first-order logic by entropy atoms subsumes probabilistic
independence logic. Finally, we obtain some results on the complexity of
model checking, validity, and satisfiability of our logics.

Keywords: Probabilistic Team Semantics - Model Checking - Satisfia-
bility - Validity - Computational Complexity - Expressivity of Logics

1 Introduction

Probabilistic team semantics is a novel framework for the logical analysis of prob-
abilistic and quantitative dependencies. Team semantics, as a semantic frame-
work for logics involving qualitative dependencies and independencies, was in-
troduced by Hodges [17] and popularised by Véaénénen [25] via his dependence
logic. Team semantics defines truth in reference to collections of assignments,
called teams, and is particularly suitable for the formal analysis of properties,
such as the functional dependence between variables, that arise only in the pres-
ence of multiple assignments. The idea of generalising team semantics to the
probabilistic setting can be traced back to the works of Galliani [6] and Hytti-
nen et al. [18], however the beginning of a more systematic study of the topic
dates back to works of Durand et al. [4].

In probabilistic team semantics the basic semantic units are probability distri-
butions (i.e., probabilistic teams). This shift from set-based to distribution-based
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Logic MC for sentences SAT VAL

FOPT(<?) PSPACE (Cor. 20) RE [11, Thm. 5.2] coRE [11, Thm. 5.2]
FO(1L:) € EXPSPACE and NEXPTIME-hard (Thm. 24) RE (Thm. 26) coRE (Thm. 26)
FO(~) AEXPTIME[poly] [22, Prop. 5.16, Lem. 5.21]  RE [22, Thm. 5.6] coRE [22, Thm. 5.6]|
FO(=) € EXPTIME, PSPACE-hard (Thm. 22) RE (Thm. 26) coRE (Thm. 26)

FO(~, 1) € 3-EXPSPACE, AEXPTIME[poly]-hard (Thm. 25) RE (Thm. 26) coRE (Thm. 26)

Table 1. Overview of our results. Unless otherwise noted, the results are completeness
results. Satisfiability and Validity are considered for finite structures.

semantics allows probabilistic notions of dependency, such as conditional proba-
bilistic independence, to be embedded in the framework®. The expressivity and
complexity of non-probabilistic team-based logics can be related to fragments
of (existential) second-order logic and have been studied extensively (see, e.g.,
[7,5,9]). Team-based logics, by definition, are usually not closed under Boolean
negation, so adding it can greatly increase the complexity and expressivity of
these logics [19,15]. Some expressivity and complexity results have also been
obtained for logics in probabilistic team semantics (see below). However, richer
semantic and computational frameworks are sometimes needed to characterise
these logics.

Metafinite Model Theory, introduced by Gridel and Gurevich [8], generalises
the approach of Finite Model Theory by shifting to two-sorted structures, which
extend finite structures by another (often infinite) numerical domain and weight
functions bridging the two sorts. A particularly important subclass of metafinite
structures are the so-called R-structures, which extend finite structures with the
real arithmetic on the second sort. Blum-Shub-Smale machines (BSS machines
for short) [1] are essentially register machines with registers that can store ar-
bitrary real numbers and compute rational functions over reals in a single time
step. Interestingly, Boolean languages which are decidable by a non-deterministic
polynomial-time BSS machine coincide with those languages which are PTIME-
reducible to the true existential sentences of real arithmetic (i.e., the complexity
class IR) [2,24].

Recent works have established fascinating connections between second-order
logics over R-structures, complexity classes using the BSS-model of computation,
and logics using probabilistic team semantics. In [13], Hannula et al. establish
that the expressivity and complexity of probabilistic independence logic coincide
with a particular fragment of existential second-order logic over R-structures and
NP on BSS-machines. In [16], Hannula and Virtema focus on probabilistic inclu-
sion logic, which is shown to be tractable (when restricted to Boolean inputs),
and relate it to linear programming.

% In [21] Li recently introduced first-order theory of random variables with probabilistic
independence (FOTPI) whose variables are interpreted by discrete distributions over
the unit interval. The paper shows that true arithmetic is interpretable in FOTPI
whereas probabilistic independence logic is by our results far less complex.
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formulas: sentences:
SOr(+, X log) SOr(+, X, log)
‘(\ xb / \
FOH™  FO x) FO(lLe,~) = SOg(+, x) [Thm. 8]
C
: @Q =
E IR
'_
[10, Thm. 10] T T
O(~) FOP FO(~) P
FO FO = FOPT(<?) [Thm. 19] ACO

Fig. 1. Landscape of relevant logics as well as relation to some complexity classes. Note
that for the complexity classes, finite ordered structures are required. Single arrows
indicate inclusions and double arrows indicate strict inclusions.

In this paper, we focus on the expressivity and model checking complexity
of probabilistic team-based logics that have access to Boolean negation. We
also study the connections between probabilistic independence logic and a logic
called FOPT(<?), which is defined via a computationally simpler probabilistic
semantics [11]. The logic FOPT(<?) is the probabilistic variant of a certain
team-based logic that can define exactly those dependencies that are first-order
definable [20]. We also introduce novel entropy atoms and relate the extension
of first-order logic with these atoms to probabilistic independence logic.

See Figure 1 for our expressivity results and Table 1 for our complexity
results.

2 Preliminaries

We assume the reader is familiar with the basics in complexity theory [23]. In
this work, we will encounter complexity classes PSPACE, EXPTIME, NEXPTIME,
EXPSPACE and the class AEXPTIME[poly] together with the notion of complete-
ness under the usual polynomial time many to one reductions. A bit more for-
mally for the latter complexity class which is more uncommon than the others,
AEXPTIME[poly] consists of all languages that can be decided by alternating
Turing machines within an exponential runtime of 0(2"O<1)) and polynomially
many alternations between universal and existential states. There exist prob-
lems in propositional team logic with generalized dependence atoms that are
complete for this class [14]. It is also known that truth evaluation of alternating
dependency quantified boolean formulae (ADQBF) is complete for this class [14].

2.1 Probabilistic team semantics

We denote first-order variables by z,y, z and tuples of first-order variables by
x,y,z. For the length of the tuple x, we write |x|. The set of variables that
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appear in the tuple x is denoted by Var(x). A vocabulary 7 is a finite set of
relation, function, and constant symbols, denoted by R, f, and ¢, respectively.
Each relation symbol R and function symbol f has a prescribed arity, denoted
by Ar(R) and Ar(f).

Let 7 be a finite relational vocabulary such that {=} C 7. For a finite 7-
structure A and a finite set of variables D, an assignment of A for D is a function
s: D — A. A team X of A over D is a finite set of assignments s: D — A.

A probabilistic team X is a function X: X — R>q, where R> is the set of non-
negative real numbers. The value X(s) is called the weight of assignment s. Since
zero-weights are allowed, we may, when useful, assume that X is maximal, i.e.,
it contains all assignments s: D — A. The support of X is defined as supp(X) =
{s € X | X(s) # 0}. A team X is nonempty if supp(X) # @.

These teams are called probabilistic because we usually consider teams that
are probability distributions, i.e., functions X: X — R for which ) X(s) =
1.5 In this setting, the weight of an assignment can be thought of as the probabil-
ity that the values of the variables are as in the assignment. If X is a probability
distribution, we also write X: X — [0, 1].

For a set of variables V', the restriction of the assignment s to V' is denoted
by s | V. The restriction of a team X to Vis X [V ={s |V | s € X}, and the
restriction of a probabilistic team X to Vis X [ V: X [V — R where

s'[V=s,
s'ex

If ¢ is a first-order formula, then X, is the restriction of the team X to
those assignments in X that satisfy the formula ¢. The weight |Xy| is defined
analogously as the sum of the weights of the assignments in X that satisfy ¢,
e.g.,

Xaemal = Y X(s).
seX,
s(x)=a
For a variable z and a € A, we denote by s(a/z), the modified assignment
s(a/x): DU{xz} — A such that s(a/z)(y) = a if y = z, and s(a/z)(y) = s(y)
otherwise. For a set B C A, the modified team X (B/z) is defined as the set
X(B/x) = {s(a/z)|a€ B,s € X}.
Let X: X — R>g be any probabilistic team. Then the probabilistic team
X(B/z) is a function X(B/xz): X (B/x) — R>( defined as

X(B/)sla/) = Y X0 g
t(a/wt)ez)g’(a/m)

5 In some sources, the term probabilistic team only refers to teams that are distribu-
tions, and the functions X: X — Rx>( that are not distributions are called weighted
teams.
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If z is a fresh variable, the summation can be dropped and the right-hand side
of the equation becomes X(s) - \%’I' For singletons B = {a}, we write X (a/x)
and X(a/z) instead of X ({a}/x) and X({a}/x).

Let then X: X — [0, 1] be a distribution. Denote by pg the set of all proba-
bility distributions d: B — [0, 1], and let F' be a function F': X — pg. Then the
probabilistic team X(F/x) is a function X(F/z): X (B/xz) — [0,1] defined as

X(F/z)(s(a/x)) = Y, X(t)-F(t)(a)
t(a/;)ez)g'(a/m)

for all @ € B and s € X. If x is a fresh variable, the summation can again be
dropped and the right-hand side of the equation becomes X(s) - F(s)(a).

Let X: X — [0,1] and Y: Y — [0, 1] be probabilistic teams with common
variable and value domains, and let k € [0,1]. The k-scaled union of X and Y,
denoted by X U Y, is the probabilistic team X U Y: Y — [0, 1] defined as

E-X(s)+(1-k)-Y(s) ifse XNY,
XU, Y(s) == ¢ k- X(s) if se X\Y,
(1—k)-Y(s) ifseY\X.

3 Probabilistic independence logic with Boolean negation

In this section, we define probabilistic independence logic with Boolean nega-
tion, denoted by FO(LL, ~). The logic extends first-order logic with probabilistic
independence atom y |l z which states that the tuples y and z are independent
given the tuple x. The syntax for the logic FO(1L., ~) over a vocabulary 7 is as
follows:

¢ = R(x) [ -R(x) |y Lxz|~¢| (@A) | (¢V )| Tzd | Ve,

where z is a first-order variable, x, y, and z are tuples of first-order variables,
and Re .

Let 1 be a first-order formula. We denote by ¥~ the formula which is obtained
from —¢ by pushing the negation in front of atomic formulas. We also use the
shorthand notations ¥ — ¢ :== (" V (Y A@)) and ¥ <> =1 — d A P — .

Let X: X — [0,1] be a probability distribution. The semantics for the logic
is defined as follows:

A Ex R(x) iff A= R(x) for all s € supp(X).

A Ex —R(x) iff A |5 —R(x) for all s € supp(X).

A ):X Yy J-I—x z iff |Xxy:s(xy)| : |sz:s(xz)| = |Xxyz:s(xyz)‘ ' |Xx:s(x)| for all
s: Var(xyz) — A.

A x ~ ¢ iff AlEx ¢

AEx o ANy iff Alex ¢ and A Ex 9.

AbEx ¢V iff Ay ¢ and A [z 9 for some Y, Z, k such that YU, Z = X.
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A )Zx 333(;5 iff A )ZX(F/JU) (Z) for some F': X — PA.
A Ex Vag iff A Exayz) ¢

The satisfaction relation =, above refers to the Tarski semantics of first-order
logic. For a sentence ¢, we write A |= ¢ if A |=x, ¢, where X is the distribution
that maps the empty assignment to 1.

The logic also has the following useful property called locality. Denote by
Fr(¢) the set of the free variables of a formula ¢.

Proposition 1 (Locality, [4, Prop. 12]). Let ¢ be any FO( L., ~)[7]-formula.
Then for any set of variables V', any T-structure A, and any probabilistic team
X: X —[0,1] such that Fr(¢) CV C D,

AlEx ¢ <= AExv ¢

In addition to probabilistic conditional independence atoms, we may also
consider other atoms. If x and y are tuples of variables, then =(x,y) is a depen-
dence atom. If x and y are also of the same length, x ~ y is a marginal identity
atom. The semantics for these atoms are defined as follows:

A E=x=(x,y) iff for all s,s" € supp(X), s(x) = s'(x) implies s(y) = s'(y),
AEx x 2y iff [Xy—a| = [Xy—al for all a € A,

We write FO(=(-)) and FO(=) for first-order logic with dependence atoms or
marginal identity atoms, respectively. Analogously, for C' C {=(-), ~, 1L.,~}, we
write FO(C) for the logic with access to the atoms (or the Boolean negation)
from C.

For two logics L and L’ over probabilistic team semantics, we write L < L’ if
for any formula ¢ € L, there is a formula ¢y € L’ such that A x ¢ <— A |=x v
for all A and X. The equality = and strict inequality < are defined from the
above relation in the usual way. The next two propositions follow from the
fact that dependence atoms and marginal identity atoms can be expressed with
probabilistic independence atoms.

Proposition 2 ([3, Prop. 24]). FO(=(-)) < FO(1L.).
Proposition 3 ([10, Thm. 10]). FO(x) < FO(1L.).

On the other hand, omitting the Boolean negation strictly decreases the
expressivity as witnessed by the next proposition.

Proposition 4. FO(1L.) < FO(1L.,~).

Proof. By Theorems 4.1 and 6.5 of [13], over a fixed universe size, any open
formula of FO(1L.) defines a closed subset of R™ for a suitable n depending
on the size of the universe and the number of free variables. Now, clearly, this
cannot be true for all of the formulas of FO(1L., ~) as it contains the Boolean
negation, e.g., the formula ~ z 1, 2. O
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4 Metafinite logics

In this section, we consider logics over R-structures. These structures extend
finite relational structures with real numbers R as a second domain and add
functions that map tuples from the finite domain to R.

Definition 5 (R-structures). Let 7 and o be finite vocabularies such that T
1s relational and o is functional. An R-structure of vocabulary 7 U o is a tuple
A = (AR, F) where the reduct of A to T is a finite relational structure, and
F is a set that contains functions fA: AN — R for each function symbol
f € 0. Additionally, (i) for any S C R, if each f* is a function from A
to S, A is called an S-structure, (i) if each fA is a distribution, A is called a
d[0, 1]-structure.

Next, we will define certain metafinite logics which are variants of functional
second-order logic with numerical terms. The numerical o-terms ¢ are defined as
follows:

iu=f(x)]|ixi]i+1i|SUMyi | logi,
where f € o and x and y are first-order variables such that |x| = Ar(f). The

interpretation of a numerical term ¢ in the structure A under an assignment s is
denoted by [i]A. We define

[SUM il = > [0
acAlyl

The interpretations of the rest of the numerical terms are defined in the obvious
way.

Suppose that {=} C 7, and let O C {+, x,SUM, log}. The syntax for the
logic SOr(O) is defined as follows:

¢pi=i=jlni=j|RX)[-Rx)[(6N¢)][(oV)]|Txd|Vag|Ifh|VfY,

where ¢ and j are numerical o-terms constructed using operations from O, R € 7,
x, y, and x are first-order variables, f is a function variable, and v is a TUoU{ f }-
formula of SOg(O).

The semantics of SOg(O) is defined via R-structures and assignments anal-
ogous to first-order logic, except for the interpretations of function variables f,
which range over functions AA™f) — R. For any S C R, we define SOg(O) as
the variant of SOr(O), where the quantification of function variables ranges over
AA() 5 S If the quantification of function variables is restricted to distribu-
tions, the resulting logic is denoted by SOg4j9,1)(O). The existential fragment, in
which universal quantification over function variables is not allowed, is denoted
by ESOg(O).

For metafinite logics L and L', we define expressivity comparison relations
L<L',L=L and L <L in the usual way, see e.g. [13]. For the proofs of the
following two propositions, see the full version [12] of this paper in ArXiv.

Proposition 6. SOr(SUM, x) = SOg(+, x).
Proposition 7. SOgj1(SUM, x) = SOg(+, x).
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5 Equi-expressivity of FO(lL., ~) and SOg(+, X)

In this section, we show that the expressivity of probabilistic independence
logic with the Boolean negation coincides with full second-order logic over R-
structures.

Theorem 8. FO(LL.,~) = SOg(+, x).

We first show that FO(LL.,~) < SOg(+, x). Note that by Proposition 7, we
have SOgjo,1)(SUM, x) = SOg(+, x), so it suffices to show that FO(LlL,~) <
SO4jo,11(SUM, x). We may assume that every independence atom is in the form
y llx zory 1l 4y where x,y, and z are pairwise disjoint tuples. [4, Lemma 25|

Theorem 9. Let formula ¢(v) € FO(LL¢,~) be such that its free-variables are
from v = (vi,...,v). Then there is a formula Vg (f) € SOgpo,11(SUM, x) with
exactly one free function variable such that for all structures A and all proba-
bilistic teams X: X — [0,1], A =x ¢(v) if and only if (A, fx) = ¥e(f), where
fx: AR — [0,1] is a probability distribution such that fx(s(v)) = X(s) for all
se X.

Proof. Define the formula ¢4 (f) as follows:

1. If ¢(v) = R(viy, ..., v;), where 1 < dy,...,4 <k, then ¢4(f) = Vv(f(v) =
ov R(’Uil, e 71}“)).

2. If ¢(v) = = R(viy,- .., 0;,), where 1 < iy,...,4 <k, then ¢4(f) = Vv (f(v) =
0V =RV, ..., 05)).

3. If ¢(v) = vy 1Ly, va, where v, vy, vy are disjoint, then

1/}¢(f) = VV0V1V2(SUMV\(V0v1)f(V) X SUMV\(VQVz)f(V) =
SUMV\(val)f(V) X SUMV\VOf(V)).

4. If ¢(v) = vi 1Ly, v1, where vq, vy are disjoint, then
1/}¢(f) = VVovl(SUMV\(VOvl)f(V) =0V SUMV\(vovl)f(V) = SUMV\VOf(V)).

5. If ¢(v) = ~¢o(v), then 4(f) = ¢4 (f), where 5 is obtained from —ty,
by pushing the negation in front of atomic formulas.

If ¢(V) = ¢O<V) A o1 (V>7 then ¢¢>(f) = g, (f) A thg, (f)
7. If ¢(v) = ¢o(Vv) V ¢1(v), then

Vo (f) = oo (f) V ¥g, (f)
V (390919295 (VWVx(z =1V a =7V (go(z) =0A g3(v,z) =0))
AV (g3(v,1) = g1(v) x go(1) A g3(v,7) = g2(v) X go(r))
AVV(SUMog3(v, ) = f(v)) A thgy(91) A g, (92)))-

8. If ¢(v) = xgo(v,x), then ¢y (f) == Fg(Vw(SUMag(v,2) = f(v)) A 1bg, (9))-
9. If ¢(v) = Jxgo(v, x), then

Yo (f) = Ag(Vv(VaVy(g(v,z) = g(v,y)) ASUM.g(v,z) = f(v)) A g, (9))-

&
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Since the the above is essentially same as the translation in [4, Theorem 14], but
extended with the Boolean negation (for which the claim follows directly from
the semantical clauses), it is easy to show that 1, (f) satisfies the claim. O

We now show that SOg(+, x) < FO(LL.,~,). By Propositions 3 and 7,
FO(lLc,~,~) = FO(1L¢,~) and SOg(+, x) = SOgjo,1)(SUM, x), so it suffices
to show that SOgp,1](SUM, x) < FO(Lc,~,=).

Note that even though we consider SOgjp,1j(SUM, x), where only distribu-
tions can be quantified, it may still happen that the interpretation of a numerical
term does not belong to the unit interval. This may happen if we have a term of
the form SUMyi(y) where x contains a variable that does not appear in y. For-
tunately, for any formula containing such terms, there is an equivalent formula
without them [16, Lemma 19]. Thus, it suffices to consider formulas without such
terms.

To prove that SOgjo,1](SUM, x) < FO(UL, ~,~), we construct a useful nor-
mal form for SO 41,1 (SUM, x )-sentences. The following lemma is based on sim-
ilar lemmas from [4, Lemma, 16] and [16, Lemma, 20]. The proofs of the next
two lemmas are in the full version [12] of this paper.

Lemma 10. Every formula ¢ € SOgp0,1)(SUM, x) can be written in the form
¢* = Q1f1...QnfuVx0, where Q € {3,V}, 0 is quantifier-free and such that
all the numerical identity atoms are in the form fi;(uv) = f;j(u) x fp(v) or
fi(u) = SUM, f;(uv) for distinct f;,f;,fx such that at most one of them is not
quantified.

Lemma 11. We use the abbreviations V*x¢ and ¢ —* ¢ for the FO(LL., ~,~)-
formulas ~3x ~ ¢ and ~(p A ~1)), respectively. Let ¢p3 = Ty(x 1L y Ap(x,y))
and ¢y = Vy(x 1L y =" ¥(x,y)) be FO(1L., ~)-formulas with free variables
form x = (x1,...,x,). Then for any structure A and probabilistic team X over
{z1,..., 2.},

(i) AEx ¢3 iff A Exayy) ¥ for some distribution d: A¥ — [0,1],

(ii) A Ex dv iff A sy ¥ for all distributions d: A¥! — [0, 1].
Theorem 12. Let ¢(p) € SOg,11(SUM, x) be a formula in the form ¢* =
Q1f1...QnfrVx0, where Q € {3,V}, 0 is quantifier-free and such that all the
numerical identity atoms are in the form fi(uv) = f;(u) x fiu(v) or fi(u) =
SUM, fj(uv) for distinct f;,f;,fx from {f1,..., fn,p}. Then there is a formula
& € FO(UL,~,~) such that for all structures A and probabilistic teams X := pA,

A x @ if and only if (A,p) E 6.
Proof. Define
& = VxQTy1(x 1L y1 01 Q3y2(xy1 Il y2 02 Q3ys(xy1y2 1L y303...
Q:LYn(X}q coYn—1 L ynon 9) s )))’

where Q)7 = Jd and o; = A, whenever @); = Jand @} = V* and o, =—*, whenever
@; = V. By Lemma 11, it suffices to show that for all distributions f1,..., fa,
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subsets M C AIXl, and probabilistic teams Y = X(M/x)(f1/y1) - .. (fn/¥n), We
have

AEy O <= (A,p, f1,...,fn) E6(a) for all a € M.

The claim is shown by induction on the structure of the formula ©. For the
details, see the full ArXiv version [12] of the paper.

1. If 0 is an atom or a negated atom (of the first sort), then we let © = 6.
2. Let 6 = fi(x;) = f;(x;) X fu(xx). Then define

O =3af((a=0cx=y;) AN (B =0 xxk =Y,;¥k) N X = X[3).

The negated case = f;(x;) = f;(x;) X fx(xx) is analogous; just add ~ in front
of the existential quantification.
3. Let 0 = f;(x;) = SUMy, f;(xxx;). Then define

O =3af((a=0cx=y) AN(B=0+x; =y,) Axa = x[).

The negated case —f;(x;) = SUMx, f;(xxX;) is again analogous.
4. If 0 = 6y A 1, then © = Oy A O1.
5. If 0 =6y VO, then © :=3z(z Ly 2A ((Bg A z=0)V (01 A=z =0))).

6 Probabilistic logics and entropy atoms

In this section we consider extending probabilistic team semantics with novel en-
tropy atoms. For a discrete random variable X, with possible outcomes 1, ..., z,
occuring with probabilities P(z1), ..., P(z,,), the Shannon entropy of X is given
as:

H(X) = — Z P(z;)log P(z;),
i=1

The base of the logarithm does not play a role in this definition (usually it is
assumed to be 2). For a set of discrete random variables, the entropy is defined
in terms of the vector-valued random variable it defines. Given three sets of
discrete random variables X, Y, Z, it is known that X is conditionally indepen-
dent of Y given Z (written X 1l Y | Z) if and only if the conditional mutual
information I(X;Y|Z) vanishes. Similarly, functional dependence of Y from X
holds if and only if the conditional entropy H(Y|X) of Y given X vanishes.
Writing UV for the union of two sets U and V, we note that I(X;Y]Z) and
H(Y|X) can respectively be expressed as H(ZX)+ H(ZY)— H(Z) - H(ZXY)
and H(XY) — H(X). Thus many familiar dependency concepts over random
variables translate into linear equations over Shannon entropies. In what fol-
lows, we shortly consider similar information-theoretic approach to dependence
and independence in probabilistic team semantics.

Let X: X — [0,1] be a probabilistic team over a finite structure A with
universe A. Let x be a k-ary sequence of variables from the domain of X. Let



Logics with probabilistic team semantics and the Boolean negation 11

Py be the vector-valued random variable, where Px(a) is the probability that
x takes value a in the probabilistic team X. The Shannon entropy of x in X is
defined as follows:

Hx(x) = — 3 Py(a) log Px(a). (1)
ac Ak
Using this definition we now define the concept of an entropy atom.

Definition 13 (Entropy atom). Let x and y be two sequences of variables
from the domain of X. These sequences may be of different lengths. The entropy
atom is an expression of the form H(x) = H(y), and it is given the following
semantics:

Ax H(x) = H(y) < Hx(x) =Hx(y).

We then define entropy logic FO(H) as the logic obtained by extending first-
order logic with entropy atoms. The entropy atom is relatively powerful com-
pared to our earlier atoms, since, as we will see next, it encapsulates many
familiar dependency notions such as dependence and conditional independence.
The proof of the theorem is in the full version [12] of this paper.

Theorem 14. The following equivalences hold over probabilistic teams of finite
structures with two distinct constants 0 and 1:

1. =(x,y) = H(x) = H(xy).
2. x 1L y = ¢, where ¢ is defined as

Vzﬂuv([z =0— (=(u,x)A =(x,u)A =(v,xy)A =(xy, v))|A
[z=1—= (=(u,y)A =(y,u) Av=0)]A
[(z=0Vz=1) > H(uz) = H(V,Z)D7

where |u] = max{|x|,y|} and |v| = |xy]|.

Since conditional independence can be expressed with marginal indepen-
dence, i.e., FO(1L.) = FO(1L) [10, Theorem 11], we obtain the following corol-
lary:

Corollary 15. FO(1L.) < FO(H).

It is easy to see at this point that entropy logic and its extension with negation
are subsumed by second-order logic over the reals with exponentiation.

Theorem 16. FO(H) < ESOg(+, %, log) and FO(H, ~) < SOg(+, x,log).

Proof. The translation is similar to the one in Theorem 9, so it suffices to notice
that the entropy atom H(x) = H(y) can be expressed as

SUM, f(x,2)log f(x,2) = SUM, f(y, 2') log f(y,2').

Since SUM can be expressed in ESOgr(+, x,log) and SOg(+, X,log), we are
done. O
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7 Logic for first-order probabilistic dependecies

Here, we define the logic FOPT(<?), which was introduced in [11].7 Let & be a
quantifier- and disjunction-free first-order formula, i.e., d == A | =6 | (§ AJ) for a
first-order atomic formula A of the vocabulary 7. Let = be a first-order variable.

The syntax for the logic FOPT(<?) over a vocabulary 7 is defined as follows:

¢ =01 (8]6) < (3]6) |~ | (6 A Q)| (v )| T'ad |V as.

Let X: X — R>( be any probabilistic team, not necessarily a probability
distribution. The semantics for the logic is defined as follows:

AbEx 6 iff A, 6 for all s € supp(X).

A ):X (60|61) < (62‘63) iff |X50/\51| ’ |X53| < ‘X52A53| ’ ‘X(Sl"
Alx ~ ¢ iff ApEx ¢ or X is empty.

AEx oAy iff AlEx ¢ and A Ex 1.

A )ZX ¢\\/1/) iff A ):Xd)OI'A':Xw.

A bx Flag iff A FX(a/z) ¢ for some a € A.

A }:x le(ﬁ iff A ':X(a/a;) ¢ for all a € A.

Next, we present some useful properties of FOPT(<?).

Proposition 17 (Locality, [11, Prop. 3.2]). Let ¢ be any FOPT(<?)[r]-
formula. Then for any set of variables V', any T-structure A, and any probabilistic

team X: X — Rx¢ such that Fr(¢) CV C D,
A'Zx(b e A'Zxrv(b.

Over singleton traces the expressivity of FOPT(<?) coincides with that of
FO. For ¢ € FOPT(<?), let ¢* denote the FO-formula obtained by replacing
the symbols ~, v ,3*, and V! by —,V, 3, and V, respectively, and expressions of

the form (g | 1) < (d2 | d3) by the formula —dg V =01 V d2 V —d3.

Proposition 18 (Singleton equivalence). Let ¢ be a FOPT(<9)[r]-formula,
A a1 structure, and X a probabilistic team of A with support {s}. Then A |=x ¢

iff Alss ¢*.

Proof. The proof proceeds by induction on the structure of formulas. The cases
for literals and Boolean connectives are trivial. The cases for quantifiers are
immediate once one notices that interpreting the quantifiers 3! and V! maintain
singleton supportness. We show the case for <. Let ||d||4s = 1 if A |=; 4, and
16]|.4,s = 0 otherwise. Then

AEx (60 ]61) < (02| 03) = [Ksonss | - 1Ko, | < [Xsyns,] - 1Xs, |
= |00 Ad1llas - [|03]]a,s < 1102 Ad3llas - [101]].4,s
— A ):3 =g V =01 V g V 3.

" In [11], two sublogics of FOPT(<?), called FOPT(<?) and FOPT(<?, 1L9), were
also considered. Note that the results of this section also hold for these sublogics.
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The first equivalence follows from the semantics of < and the second follows
from the induction hypotheses after observing that the support of X is {s}. The
last equivalence follows via a simple arithmetic observation. O

The following theorem follows directly from Propositions 17 and 18.
Theorem 19. For sentences we have that FOPT(<?) = FO.

For a logic L, we write MC(L) for the following variant of the model checking
problem: given a sentence ¢ € L and a structure A, decide whether A = ¢. The
above result immediately yields the following corollary.

Corollary 20. MC(FOPT(<9)) is PSPACE-complete.

Proof. This follows directly from the linear translation of FOPT(<?)-sentences
into equivalent FO -sentences of Theorem 19 and the well-known fact that the
model-checking problem of FO is PSPACE-complete. O

The first claim of the next theorem follows from the equi-expressivity of
FO(lL¢,~) and SOg(+, x), and the fact that every FOPT(<?) formula can be
translated to ESOg(SUM, +, x), a sublogic of SOg(+, x). For the details and
the proof of the second claim, see the full version [12] of this paper.

Theorem 21. FOPT(<?%) < FO(lL.,~) and FOPT(<L?) is non-comparable to
FO(1L.) for open formulas.

8 Complexity of satisfiability, validity and model checking

We now define satisfiability and validity in the context of probabilistic team
semantics. Let ¢ € FO(1L.,~,~). The formula ¢ is satisfiable in a structure
A if A |=x ¢ for some probabilistic team X, and ¢ is valid in a structure A if
A Ex ¢ for all probabilistic teams X over Fr(¢). The formula ¢ is satisfiable if
there is a structure A such that ¢ is satisfiable in A, and ¢ is valid if ¢ is valid
in A for all structures A.

For a logic L, the satisfiability problem SAT(L) and the validity problem
VAL(L) are defined as follows: given a formula ¢ € L, decide whether ¢ is
satisfiable (or valid, respectively).

Theorem 22. MC(FO(=)) is in EXPTIME and PSPACE-hard.

Proof. First note that FO(~) is clearly a conservative extension of FO, as it is
easy to check that probabilistic semantics and Tarski semantics agree on first-
order formulas over singleton traces. The hardness now follows from this and the
fact that model checking problem for FO is PSPACE-complete.

For upper bound, notice first that any FO(=)-formula ¢ can be reduced to
an almost conjunctive formula ¢* of ESOg(+,<,SUM) [16, Lem, 17]. Then
the desired bounds follow due to the reduction from Proposition 3 in [16]. The
mentioned reduction yields families of systems of linear inequalities & from a
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structure A and assignment s such that a system S € S has a solution if and
only if A =, ¢. For a FO(=)-formula ¢, this transition requires exponential time
and this yields membership in EXPTIME.

O

This lemma is used to prove the upper-bounds in the next three theorems.
See the full version [12], for the proofs of the lemma and the theorems.

Lemma 23. Let A be a finite structure and ¢ € FO(LL¢,~). Then there is a
first-order sentence g 4 over vocabulary {+, x, <,0,1} such that ¢ is satisfiable
in A if and only if (R, +,x,<,0,1) |= 4.

Theorem 24. MC(FO(L.)) is in EXPSPACE and NEXPTIME-hard.
Theorem 25. MC(FO(~, L)) € 3-EXPSPACE and AEXPTIME[poly]-hard.
Theorem 26. SAT(FO(1L.,~)) is RE-, VAL(FO(lL., ~)) is coRE-complete.

Corollary 27. SAT(FO(=)) and SAT(FO(LL.)) are RE- and VAL(FO(=)) and
VAL(FO(LL.)) are coRE-complete.

Proof. The lower bound follows from the fact that FO(~) and FO(LL.) are both
conservative extensions of FO. We obtain the upper bound from the previous
theorem, since FO(L., ~) includes both FO(=) and FO(LL.). O

9 Conclusion

We have studied the expressivity and complexity of various logics in probabilistic
team semantics with the Boolean negation. Our results give a quite comprehen-
sive picture of the relative expressivity of these logics and their relations to
numerical variants of (existential) second-order logic. An interesting question
for further study is to determine the exact complexities of the decision problems
studied in Section 8. Furthermore, dependence atoms based on various notions
of entropy deserve further study, as do the connections of probabilistic team
semantics to the field of information theory.
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