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Abstract. Causal multiteam semantics is a framework where probabilistic notions
and causal inference can be studied in a unified setting. We study a logic (PCO) that
features marginal probabilities, observations and interventionist counterfactuals,
and allows expressing conditional probability statements, do expressions and other
mixtures of causal and probabilistic reasoning. Our main contribution is a strongly
complete infinitary axiomatisation for PCO.

1 Introduction

In the past few decades, the study of causation has transformed from being a topic of
mere philosophical speculation to a discipline making use of rigorous mathematical tools.
The main two strands of this new discipline, paralleling the division of roles between
probability and statistics, are causal inference ([16,28,29]) and causal discovery ([33]).
The former studies which causal effects can be inferred from data coupled with causal
assumptions about the processes which generated the data. The latter studies which causal
connections are compatible with given data (coming from observations or experiments).
In both strands new languages, capable of expressing concepts that lie beyond the merely
associational or probabilistic properties of data, are needed. A key novel concept that
is required is the notion of an infervention (modifying a given system). One way of
describing interventions is given by expressions called interventionist counterfactuals.
In their simplest form, these are expressions such as:

If variables X1, ..., X, were fixed to values x, ..., x,, then variable Y would take value y
or their (causal-)probabilistic counterparts:

If variables X1, ..., X, were fixed to values xi, ..., x,, then the probability that variable
Y takes value y would be €.

Typically, such expressions are given precise semantics by causal models (also known
as structural equation models). Causal models and interventionist counterfactuals have
been reabsorbed as mainstream ideas in the philosophical debate on causation [22,35] but
also became widespread tools for the study of causation in disparate applied fields such
as epidemiology [21], econometrics [19], social sciences [25] and machine learning [31].
As arecent development, J. Pearl argued that the capability of Al systems to represent
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and reason about causal knowledge will be the next important leap in the field of artificial
intelligence (see, e.g., [30]).

The simple interventionist counterfactuals exhibited above do not exhaust the wide
variety of causal-probabilistic expressions that appear in the literature on causal inference
(an extended discussion of this issue can be found in [10]). In [28], Pearl emphasizes two
kinds of formal notations, the (conditional) do expressions, and what we may call, for lack
of a better terminology, Pearl counterfactuals. These expressions concern probabilities
in a post-intervention scenario, but differ in whether one conditions upon events of the
pre-intervention or the post-intervention scenario. A conditional do expression discusses
conditioning over a post-intervention event, as in the statement ‘“The probability that a
patient abandons treatment, if he does not quickly improve, is €”; in symbols:

Pr(Abandon =1 | do(Treated = 1), Improve = 0) = €

where Abandon, Treated and Improve are Boolean variables taking values 1 or O
depending on whether a certain fact holds or not. On the other hand, a Pearl counterfactual
conditions in the pre-intervention system, so that there might even be contradictions
between the measured and the conditioning event. E.g., “The probability that a patient
who died would have recovered if treated is €”:

Pr(Dies = 0| do(Treated = 1), Dies = 1) = €.

In [4], Barbero and Sandu propose to tame this wild proliferation of notational devices by
decomposing these kinds of expressions in terms of three simpler ingredients: marginal
probabilities, interventionist counterfactuals (O0—), and selective implications (D). The
selective implication describes the effect of acquiring new information, whereas the
interventionist counterfactual describes the effect of an action. The complex expressions
described above become, respectively,

Treated = 1 O— (Improve = 0 D Pr(Abandon = 1) = €)

Dies =1 D (Treated = 1 O0— Pr(Dies = 0) = €)

showing that qualitative difference between the two kinds of expressions amounts to an
inversion in the order of application of two logical operators.

Interventionist counterfactuals, selective implications, and marginal probability state-
ments can be studied in a shared semantic framework called causal multiteam semantics.
The framework is meaningful already in a non-probabilistic context, where it generalizes
causal models by providing a (qualitative) account of imperfect information,® and where
it has been studied both from a semantic and a proof-theoretic perspective [3,5,9]. The
proof-theoretic results rely on a body of earlier work ([12, 14, 17]) on proof systems
for (non-probabilistic) counterfactuals evaluated on causal models. In the probabilistic
setting, some work in the semantic direction is forthcoming [6, 7].

In this paper, we initiate the proof-theoretic study of logics involving probabilistic
counterfactuals in the causal multiteam setting. To the best of our knowledge, there

3 The idea of modeling imperfect information via team semantics was developed by Hodges [23]
and Viidninen [34].
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has been only one proposal in the literature of a deduction system for probabilistic
interventionist counterfactuals ([24]). The language considered in [24] differs in many
respects from those we are interested in. It is more expressive in allowing the use of
arithmetical operations (sums and products of probabilities and scalars). In contrast, it
is also less expressive, since it does not allow for nesting of counterfactuals (iterated
interventions), and it has no obvious means for describing complex interactions of
interventions and conditioning. For example, it has no obvious way to condition at the
same time on both a pre-intervention and a post-intervention scenario, or condition on a
state of affairs that holds at an intermediate stage between two interventions. Both of
these scenarios can be dealt with in relative ease using the framework of Barbero and
Sandu [6]: the former by expressions of the form @ > (X = x O— (8 D Pr(y) = €)) and
the latter by X = x 0— (@ D (Z = z O— Pr(y) = €)).

Axiomatizing probabilistic logics is a notoriously difficult problem. As soon as
a language allows expressing inequalities of the form Pr(a) < € (e being a rational
number), it is not compact, as for example the set of formulas of the form Pr(a) < % (n
natural number) entails that Pr(a) = 0, but no finite subset yields the same conclusion.
Consequently, no usual, finitary deduction system can be strongly complete for such a
language. A possible answer to this problem is to settle for a deductive system that is
weakly complete, i.e. it captures all the correct inferences from finite sets of formulas.
This has been achieved for a variety of probabilistic languages with arithmetic operations
(e.g. [13]). The result for probabilistic interventionist counterfactuals mentioned above
([24]) is a weak completeness result in this tradition. Proving weak completeness for
probabilistic languages without arithmetical operations seems to be a more difficult
task, and we could find only one such result in the literature ([20])*. Unfortunately, the
completeness proof of [20] relies on a model-building method that seems not to work
for languages where conditional probabilities are expressible; thus, it is not adaptable in
any straightforward way to our case.

Another path, on which we embark, is to respond to the failure of compactness by
aiming for strong completeness using a deduction system with some kind of infinitary
resources. The use of infinitary deduction rules (with countably many premises) has
proved to be very fruitful and has led to strong completeness theorems for a plethora
of probabilistic languages (cf. [26]). Of particular interest to us are [32], where strong
completeness is obtained for a language with conditional probabilities, and [27], which
obtains strong completeness for “qualitative probabilities” (i.e., for expressions such
as Pr(a) < Pr(B), that do not involve numerical constants). We build on these works in
order to obtain a strongly complete deduction system (with two infinitary rules) for the
probabilistic-causal language CO used in [6,7]. The proof proceeds via a canonical
model construction, relying on a Lindenbaum lemma whose proof takes into account the
role of infinitary rules. While the proof follows essentially the scheme of [32], it presents
peculiar difficulties of its own due to the presence of additional operators (counterfactuals
and comparison atoms).

4 An axiomatization of this kind has also been found for a probabilistic fuzzy logic ([15]), which
has been proved to be intertranslatable with (classical) probabilistic logic with arithmetical
operators ([2]).
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2 Preliminaries

Capital letters such as X, Y, . . . denote variables (thought to stand for specific magnitudes
such as “temperature”, “volume”, etc.) which take values denoted by small letters (e.g.
the values of the variable X will be denoted by x, x’,...). Sets (and tuples, depending
on the context) of variables and values are denoted by boldface letters such as X and x.
We consider probabilities that arise from the counting measures of finite (multi)sets. For
finite sets S C T, we define Pr(S) := %

A signature is a pair (Dom, Ran), where Dom is a nonempty, finite set of variables
and Ran is a function that associates to each variable X € Dom a nonempty, finite set
Ran(X) of values (the range of X). We consider throughout the paper a fixed ordering of
Dom, and write W for the tuple of all variables of Dom listed in such order. Furthermore,
we write Wy for the variables of Dom \ {X} listed according to the fixed order. Given
a tuple X = (Xi,...,X,) of variables, we denote as Ran(X) the Cartesian product
Ran(X;) x --- x Ran(X,). An assignment of signature o is a mapping s : Dom —
(Uxepom Ran(X) such that s(X) € Ran(X) for each X € Dom. The set of all assignments
of signature o is denoted by B, . Given an assignment s that has the variables of X in
its domain, s(X) will denote the tuple (s(X}), ..., s(X,)). For X € Dom, s;x denotes the
restriction of s to the variables in X.

A team T of signature o is a subset of B,,. Intuitively, a multiteam is just a multiset
analogue of a team. We represent multiteams as (finite) sets of assignments with an
extra variable Key (not belonging to the signature) ranging over N, which takes different
values over different assignments of the team, and which is never mentioned in the formal
languages. A multiteam can be represented as a table, in which each row represents an
assignment. For example, if Dom = {X, Y, Z}, a multiteam may look like this:

Key X Y Z
0 |x|y|z
l xl yl Z/
2 x/ y/ ZI

The purpose of a multiteam is to encode a probability distribution (over the team obtained
by removing the variable Key); in this case, that the assigment s(X) = x, s(Y) =y, s(Z) =
z has probability % while the assignment #(X) = x’, #((Y) = ', #(Z) = 7z’ has probability
%. Multiteams by themselves do not encode any solid notion of causation; they do not
tell us how a system would be affected by an intervention. We therefore need to enrich
multiteams with additional structure.

Definition 1. A causal multiteam T of signature (Dom(T), Ran(T")) with endogenous
variables V C Dom(T) is a pair T = (T~,F) such that

1. T~ is a multiteam of domain Dom(T),

2. F is a function {(V,Fy) | V € V} that assigns to each endogenous variable V a
non-constant |Wy|-ary function Fy : Ran(Wy) — Ran(V), and

3. The compatibility constraint holds: Fv(s(Wy)) = s(V) forall s€ T~ and V € V.
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We will also write End(T') for the set of endogenous variables of 7. Due to the compati-
bility constraint, not all instances for V and 7~ give rise to causal multiteams.
The function ¥ induces a system of structural equations; an equation

Vi=Fy(Wy)

for each variable V € End(T). A structural equation tells how the value of V should be
recomputed if the value of some variables in Wy is modified. Note that that some of the
variables in Wy may not be necessary for evaluating V. For example, if V is given by
the structural equation V := X + 1, all the variables in Wy \ {X} are irrelevant (we call
them dummy arguments of 7). The set of non-dummy arguments of ¥y is denoted as
PAy (the set of parents of V).

We associate to each causal multiteam 7" a causal graph G7, whose vertices are the
variables in Dom and where an arrow is drawn from each variable in PAy to V, whenever
V € End(T). The variables in Dom(7T') \ End(T") are called exogenous. In this paper, we
will always assume that causal graphs are acyclic; a causal multiteam with an acyclic
causal graph is said to be recursive.

Definition 2. A causal multiteam S = (S~,Fs) is a causal sub-multiteam of T =
(T~,F7), if they have same signature, S~ C T, and Fs = Fr. We then write S < T.

We consider causal multiteams as dynamic models, that can be affected by various
kinds of operations — specifically, by observations and interventions. Given a causal
multiteam 7 = (T-,%) and a formula @ of some formal language (evaluated over
assignments according to some semantic relation =), “observing a” produces the causal
sub-multiteam 7% = ((T*)~, F) of T, where

(T :={seT"|({shF) Fa}’

An intervention on T will not, in general, produce a sub-multiteam of 7. It will
instead modify the values that appear in some of the columns of 7. We consider in-
terventions that are described by formulas of the form X; = x; A --- A X, = x, (or,
shortly, X = x). Such a formula is inconsistent if there are two indexes i, j such that X;
and X; denote the same variable, while x; and x; denote distinct values; it is consistent
otherwise.

Applying an intervention do(X = x), where X = X is consistent, to a causal multiteam
T = (T~,¥) will produce a causal multiteam Tx—y = (T'x_,, Fx=x), Where the function
component is Fx-x := Fv\x) (the restriction of ¥ to the set of variables V \ X) and
the multiteam component is Ty__ := { s;X | s € T7}, where each s§=x is the unique
assignment compatible with Fx-x defined (recursively) as

Xi if V= X; € X
5% (V) = {5(V) if Ve Exo(T)\ X
Fu(si_ (PAy)) if V € End(T)\X.

5> Throughout the paper, the semantic relation in terms of which 7¢ is defined will be the semantic
relation for language CO, which will soon be defined.
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Example 3. Consider the following table:

TN
Key X—Y—Z

[o0TJ0[1]o0
T T1T2 2
> 122
3121306

where each row represents an assignment (e.g., the fourth row represents an assignment
s with s(Key) = 3, s(X) = 2, s(Y) = 3, s(Z) = 6). Assume further that the variable
Z is generated by the function ¥2(X,Y) = X X Y, Y is generated by Fy(X) = X + 1,
and X is exogenous. The rows of the table are compatible with these laws, so this is a
causal multiteam (call it 7). It encodes many probabilities; for example, Pr(Z = 2) = %
Suppose we have a way to enforce the variable Y to take the value 1. We represent the
effect of such an intervention (do(Y = 1)) by recomputing the Y and then the Z column:

N\ N\
Key X Y—Z Key X Y—Z
001 ~[oTJof1To0
T 111 ~ L1
2 (11 2 (111
3 21 3 (212

where the new value of Z is computed, in each row, as the product of the value for X
and the (new) value for Y. The probability distribution has changed: now Pr,_ (Z = 2) is
le' Furthermore, the function ¥y is now omitted from Ty-; (otherwise the assignments
would not be compatible anymore with the laws). Correspondingly, the arrow from X to
Y has been omitted from the causal graph.

3 Languages for events and probabilities

The language CO (“causation and observations”) is for the description of events; later
we incorporate it in a language for the discussion of probabilities of CO formulas. For
any fixed signature, the formulas of CO are defined by the following BNF grammar:

a:=Y=y|Y#ylara|laDda|X=x>a,

where X U {Y} C Dom, y € Ran(Y), and x € Ran(X). Formulae of the forms Y = y and
Y # y are called literals. The semantics for CO is given by the following clauses:

TEY=y iff s(Y)y=yforallse T .
TEY +y iff s(Y)#yforallseT".
TEaAp iff TEaandT EB.
TEadp iff T EB.

TEX=x0O-y iff Tx-x E ¥ or X = x is inconsistent.



Logics with Probabilistic Interventionist Counterfactuals 7

where T is defined simultaneously with the semantic clauses. We will reserve the letters
a, B to denote CO formulas.

We can introduce more logical operators as useful abbreviations. T stands for X =
x O0— X = x, and L stands for X = x O~ X # x. -« (dual negation) stands for @ D L.
This is not a classical (contradictory) negation; it is easy to see that its semantics is:

- (T7,9) E —aliff, forevery s e T, ({s}, F) £ a.

Thus, it is not the case, in general, that T = @ or T | —~. Note that X # x is semantically
equivalent to =(X = x), and X = x is semantically equivalent to ~(X # x). In previous
works V (tensor disjunction) was taken as a primitive operator, but here we define @ V 8
as ~(—a A —B). Its semantic clause can be described as follows:

- TEavpiffthereare T1, T, < Ts.t. T/ UT, =T, Ti Faand T; F 6.

In contrast with the statement above, the formula « V -« is valid. Furthermore, a = 8
abbreviates (¢ D ) A (8 D ). Notice that this formula does not state that @ and 8
are logically equivalent, but only that they are satisfied by the same assignments in the
specific causal multiteam at hand.

All the operators discussed here (primitive and defined) behave classically over
causal multiteams containing exactly one assignment.

A causal multiteam (77, ) is empty (resp. nonempty) if the multiteam 7~ is. All
the logics £ considered in the paper have the empty team property: if 7 is empty, then
T E a for any @ € £ (and any ¥ of the same signature).

Our main object of study is the probabilistic language PCO. Besides literals, it allows
for probabilistic atoms:

Pr(a) > €| Pr(e) > €| Pr(@) > Pr(8) | Pr(a) > Pr(B)

where @, € CO and € € [0,1] N Q. The first two are called evaluation atoms, and
the latter two comparison atoms. Probabilistic atoms together with literals of CO are
called atomic formulas. The probabilistic language PCO is then given by the following
grammar:

pu=nlenpleUglade|X=x0> ¢,

where X C Dom, x € Ran(X), n is an atomic formula, and « is a CO formula. Note
that the antecedents of > and the arguments of probability operators are CO formulas.
Semantics for the additional operators are given below:

TEYyUy iff TEyorTEy
T EPr(a) > € iff T =0or Pr(a)>¢€
T E Pr(a) > Pr(B) iff T~ =0or Pr(a) > Pr(B)

where >€ {>, >} and Py(«) is a shorthand for Py-((T%)7).

As usual, for a set of formulas I", we write T | I' if T satisfies each of the formulas
in I". For I' U {¢} € PCO, we write I' =, ¢ if T = I' implies T k ¢, for all causal teams
T of signature o. |5, ¢ abbreviates 0 =, ¢. We will always assume that some signature
is fixed, and omit the subscripts.
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The abbreviations T, L can be used freely in PCO, while -, V and = can be applied
only to CO arguments. The definability of the dual negation in CO allows us to introduce
more useful abbreviations:

Pr(a) <e:=Pr(—ma) > 1-¢€ Pr(a) = € := Pr(a) > e APr(a) < €
Pr(a) < € :=Pr(ma) > 1 -¢€ Pr(a) # € := Pr(a) > e U Pr(a) < e.

Furthermore, the O operator enables us to express some statements involving conditional
probabilities. Writing, as usual, Pr(«a | y) for the probability of @ conditional on y, we
can define corresponding atoms as follows (where > € {>, >}):

TEPr(a|y)>e iff (T”")" =0 or Pry(a) > €.
T EPr(a|y)>Pr(B|y) iff (T")” =0 or Pry(a) > Pry(B).

It was observed in [6] that Pr(a | ) > € and Pr(a | ) > Pr(B | y) can be defined by
v D Pr(a) > € and y D Pr(a) > Pr(B), respectively.

The weak contradictory negation ¢€ of a formula ¢ is inductively definable in PCO;
this is an operator that behaves exactly as a contradictory negation, except on empty
causal multiteams. We list the definitory clauses together with the values produced by
the negation of defined formulas.

- (Pr(a) = )€ is Pr(a) < € (and vice versa) - WAY)CisyC Uyt
- (Pr(e) > €)€ is Pr(@) < € (and vice versa) - WU CisyC Ax©
— (Pr(e) = €)€ is Pr(a) # € (and vice versa) — (L)% is T (and vice versa)
- X=xo> CisX=x0-> x¢ - X=xCisPr(X=x) <1
- (@2 )CisPr(@) >0Aa D x° - (X £x)%isPr(X £ x) < 1.

— (Pr(@) > Pr(B8))€ is Pr(8) > Pr(a) (and vice versa)

In the clause for D, the conjunct Pr(e) > 0 (whose intuitive interpretation is “if T is
nonempty, then 7% is nonempty”) is added to insure that (o D x)C is not satisfied by T
in case (7 is nonempty and) T is empty.

We emphasise that, since CO formulas are PCO formulas, the weak contradictory
negation can also be applied to them; however, the contradictory negation of a CO
formula will typically not be itself a CO formula. The meaning of the weak contradictory
negation is as follows.

Theorem 4. For every ¢ € PCO, and nonempty causal multiteam T = (T, F) of
signature o, T = o€ © T I .

Proof. The proof proceeds by induction on the structure of formulas ¢. We show the
only non-trivial case of D.

Suppose T E Pr(@) > 0 A @ D €. Thus T | x€. Since T is nonempty and
T  Pr(a) > 0, we conclude that 7% is nonempty as well. Now by applying the induction
hypothesis on y, we obtain 7% £ y. Thus, T £ a D y.

6 Whereas Pr(a) > 0 could be replaced with (—a)C, the use of probability atoms in (X = x)¢ and
(X # x)€ seems essential.



Logics with Probabilistic Interventionist Counterfactuals 9

For the converse, assume T (£ @ D y. Then T [£ y, which (by the empty team
property) entails that 7% is nonempty, and thus 7 = Pr(a) > 0. Moreover, applying the
induction hypothesis to y yields T | x©, and thus 7 | a D x°. O

Using the weak contradictory negation, we can define an operator that behaves
exactly as the material conditional:

—  — y stands for € U y.

Indeed, T | ¢ — y iff T isempty or T }£ ¢ or T | y. However, since PCO has the
empty multiteam property, “T is empty” entails T [ y; thus, for PCO, — really is the
material conditional:

-y - yiff TEYoOrT E x.

Similarly, we let ¢ < y denote (Y — x) A (y — ¥).

Note that @ — B and @ D B are not in general equivalent even if @, 8 are CO formulas.
Consider for example a causal multiteam 7 with two assignments s = {(X, 0), (¥, 0)}
and r = {(X,1),(,D}. Clearly T F X =0 - Y = 1 (since T ¢ X = 0), while
THEX=0>Y =1 (since T¥° £ Y = 1). However, the entailment from o > ¥
to @ — ¢ always holds, provided both formulas are in PCO (i.e., provided @ € CO).
Indeed, suppose T = @ D ¢ and T | @. From the former we get 7% | . From the latter
we get T = T®. Thus, T . The opposite direction does not preserve truth, but it does
preserve validity: if F @ — , then = @ D . Indeed, the former tells us that any causal
multiteam that satisfies « also satisfies . Thus, in particular, for any 7, T® = ¢, and
thus T E a D y.

Similar considerations as above apply to the pair of operators = and <. Futher
differences in the proof-theoretical behaviour of these (and other) pairs of operators are
illustrated by the axioms T1 and T2 presented in Section 4.2.

4 The axiom system

We present a formal deduction system with infinitary rules for PCO and show it to
be strongly complete over recursive causal multiteams. We follow the approach of
[32], which proved a similar result for a language with probabilities and conditional
probabilities. Our result adds to the picture comparison atoms, counterfactuals, and
pre-intervention observations (“Pearl’s counterfactuals™).

4.1 Further notation

The formulation of some of the axioms — in particular, those involving reasoning with
counterfactuals — will involve some additional abbreviations. For example, we will write
X # x for a disjunction X| # x; U -+ U X, # X,.

There will be an axiom (C11) that characterizes recursivity as done in [17]. For it,
we need to define the atom X ~» Y (“X causally affects Y”’) by the formula:

\/ (Z=z2AX=x)m>Y=)A(Z=2AX=X)0>Y =)l

ZcDom
x#x’eRan(X)
y#y'eRan(Y)

zeRan(Z)
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This formula states that there is some intervention on X that makes a difference for Y it is
the weakest form of causation that is definable in terms of interventionist counterfactuals.

We will also need a formula (from [5]) characterizing the stricter notion of direct
cause (X is a direct cause of Y iff X € PAy), which is expressible by a £CO formula
@pcx.y) defined as:

\/ [(Wyy =WAX=x)D>Y=)A(Wyy=wAX=x)0> Y =y)].
x#x’€Ran(X)
y#y'€Ran(Y)
weRan(Wyy)

where Wyy stands for Dom \ {X, Y}. The formula asserts that modifying the value of X
may alter the value of Y even when all other variables are held fixed (thus excluding
causation via intermediate variables).

Now, some axioms describe specific properties of exogenous or endogenous variables,
which can be again characterized in £CO. We can express the fact that a variable Y is
endogenous by the following formula (where, as before, Wy stands for Dom \ {V}):

PEnd(Y) - I_I ©DC(X,Y)
XeWy

and its contradictory negation (¢g,qy))¢ will express that Y is exogenous.
Finally, for each function component 7, @7 is a formula that characterizes the fact
that a causal team has function component ¥ . In detail,

o N\ oeWn N\ &)

VeEnd(F) V¢End(F)
where
ne): [\ (Wy=wom V= Fyw)
weRan(Wy)
and
& (V) A V=v>Wy=woo V=)
weRan(Wy)
veRan(V)

A nonempty causal multiteam T = (T~, G) satisfies & iff G = 7.7

4.2 Axioms and rules

We present a few axiom schemes and rules for PCO, roughly divided in six groups. Each
axiom and rule is restricted to formulas of a fixed signature o, so that actually we have
a distinct axiom system for each signature. As usual, a and 8 are restricted to be CO
formulas.

Tautologies
T1. All instances of classical propositional tautologies in A, LI, -C T, 1L

7 Save for some inessential differences, this is is the content of Theorem 3.4 from [9],
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T2. All CO instances of classical propositional tautologies in A, V,D, =, T, L.

Rule Mp, 42X

/

- o0
Rule Rep. "DHD[T/;_])(provided ©[@' /6] is well-formed)

Probabilities
Pl.a & Pr(a) = 1.
P2. Pr(a) = 0.
P3. (Pr(@) =0 APr(B) = e APr(a AB)=0) > PrlaVB) =d+¢€
(whend +e€<1).
P3b. Pr(a) > e APr(a AB)=0—-Pr(B) <1 —-e.
P4. Pr(a) < € — Pr(a) < § (if 6 > €).
P5. Pr(a) < € — Pr(a) < e
P6. (@ = 8) — (Pr(@) = € — Pr(B) = ¢).
P6b. (@ > B) — (Pr(@) = € — Pr(B) > ¢).
Yy—Pr(a)#e,Yee[0,1]1NQ
y—1

Rule 1“.

Comparison
CPl1. (Pr(a) =6 APr(B) = €) = Pr(a@) > Pr(B). (ifd>¢)
CP2. (Pr(a) = 6 APr(B) = €) —» Pr(a) > Pr(B). (if5>¢)

Observations

Ol.Pr(a) =0 — (@ D ).
O1b. (¢ D> L) — Pr(a) = 0.
02. (Pr(a) = 6 APr(@ AB) = €) — (a D Pr(B) = %). (when ¢ # 0)
03. (D> Pr(B) =€) - (Pr(@) =6 & Pr(a AB) =€-8) (when e #0).
O4. (@D y) — (@ — y).
OSr.aD WAy & (@dy) A(aDy).
O5,.ad>(WUy) e (@Ddy)U(aDy).
O5,.a>Boy)e(@AB)Dy.

Hp—x
Rule Mons,. (a0 —=(@ox)
Fa—Y
FaDyY
Y- (Pr(anB)=0e>Pr(a)=¢),¥ec(0,11NQ

Y—(aDdPr(B)=9)

Rule —toD.

Rule >“.

Literals
AlLY=y—->Y=#y. (wheny=#Yy)
A2. X#xo X=xDL1).
A3. \/yeRan(Y) Y=y.

11
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Counterfactuals

Cl. X=xm> WAy) o (X=x0> ) AX=xDO> y)).
C2.X=x—> WYuUuy) o ((X=x>yy)UX=x0O>x)).
C3.X=xm (@dy)) © (X=xO-»> o) DX =xI> Y)).
C4 X=xm>Y=y=y) > (X =xXAY=y)O>y)

(where X’ = X'\ Yand X’ = x\ y; and provided X = x

is consistent).
Cdb. (X =xAY=y)Ooy) > X=x->(Y = yO->y)).
C5.X=x0O- 1) > ¢. (whenX =X is consistent)
Co.X=xAY=y)Oo> Y=y
Cl.X=xAy) > (X=x0O>7v). (wherey e PCO without occurrences of 0—)
C8. X=xm— Prle)>e) o PriX=x0- @) >e. (where>=> or>)
C8b. X=x0 Pr(a) > Pr(f)) @ PrX =x- a) > PriX =x 00— fB)

(where >=2> or >).
C9. venacry > (Wy =W O [ yeran(r) ¥ = ).
C10. (@gnir)¢ > ¥ =y> Wy =w- ¥ =y)).
Cll.(X; ~> Xo A AXyp ~ X)) = (X, ~ X))¢.  (forn>1).

Fy—x
Rule Mong,. FX=x0—9)— (X=x0—1)
We will refer to this list of axioms and rules as the deduction system, and write I +- ¢ if
there is a countable sequence of PCO formulas ¢, ..., ¢, = ¢ (enumerated by ordinals
< k) where each formula in the list is either an axiom, a formula from I, or it follows
from earlier formulas in the list by one of the rules. The sequence itself is called a proof.
We write + ¢ for 0 + ¢; if it holds, we say that ¢ is a theorem. Notice that some

of the rules (Rep, Mon,, Mong.,, —toD) can only be applied to theorems, since they
preserve validity but not truth.

5 Discussion of the proof system

We have described a family of infinitary axiom systems, one for each finite signature o
Our main result is that each such axiom system is sound and strongly complete for PCO,
over the corresponding class of multiteams of signature o. By saying that a deduction
system is sound for PCO,. we mean that, for all formulas I"U {¢} C PCO,, I' + ¢ entails
I' E, ¢; and it is strongly complete for PCO,, if I |5, ¢ entails I' + ¢. As discussed in
the Introduction, a finitary axiom system could at most aspire to be (sound and) weakly
complete for PCO,, i.e. to satisfy the equivalence I'y [ ¢ iff I'y + ¢, for finite sets I'y.

Theorem 5 (Soundness and strong completeness). Let o be a signature and I' U {¢} C
PCO,. Then I k= ¢ if and only if I + .

The proof of this result (which can be found in the full version of the paper, [8]) uses a
Henkin-style canonical model construction, i.e. it proceeds by showing that each maximal
consistent set I” of formulas of PCO,, provides sufficient information for constructing a
canonical causal multiteam T that satisfies I". The proof essentially follows the lines of
the completeness proof given in [32], but it presents some novel difficulties in dealing
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with the additional operators D and 00—, especially towards obtaining a Truth Lemma,
which takes the unusual form:

Foralla e COand ¢ e PCO, T*" E ¢ < aDgpel.

The choice of axioms and rules is largely built on earlier axiomatizations of simpler
languages for probabilistic or causal reasoning; let us briefly illustrate how our system
adapts or differs from earlier sources. Rules MP, 1L, ©>“ and axioms P1-2-3-4-5 and O1-
2-3 are essentially adapted from the paper [32] (the rule L“ comes from the earlier [1]).
Keeping in mind that a formula of the form o > Pr(8) = € is semantically equivalent
to a conditional probability statement Pr(8 | @) = €, axioms O2-3 encode the usual
definition of conditional probability in terms of marginal probability. Our Rule Mon,
allows omitting axioms 8, 11 and 12 from [32], which follow from it. Our restriction
0 + € < 1 in axiom P3 is imposed by the syntax (we do not allow numbers greater
than 1 as symbols). The additional axiom P3b guarantees that, despite this restriction,
axiom scheme P3 is always applicable, in the sense that, if an instance of it is not
admitted as an axiom, then the premises of said instance are contradictory.8 Axiom P6
derives from [32], but in our case the correct formulation requires the interaction of
the two conditionals D (used to define =) and —; notice that the analogous formulation
(@ & B) — (Pr(a) = € — Pr(B) = €) is not valid. The variant P6b is our addition. These
adaptations are due both to differences in the syntax ([32] has an explicit conditional
probability operator, while we talk of conditional probabilities only indirectly, by means
of the selective implication; and we have distinct logical operators at the level of events
vs. the level of probabilities) and in the semantics (in particular, we differ in the treatment
of truth over empty models).

Regarding comparison atoms, analogues of CP1-2 appear, for example, in [27], and
in earlier literature. An interesting difference from [27] is that in our sytem we do not
need an additional infinitary rule to deal with the comparison atoms.

Axioms C6, C7 and C11 take the same roles as the principles of Effectiveness,
Composition and Recursivity from [14]. The current, more intuitive form of axiom C7
was introduced in [9]; it captures the intuition that intervening by fixing some variables
to values they already possess will not alter the value of any variable (although it
may alter the set of causal laws, whence the restriction to y without occurrences of
). Halpern [17] noticed that 00— distributes over Boolean operators, and formulated
analogues of C1 and C2. The validity of C3-4-4b was pointed out in [5] (although an
earlier axiom for dealing with nested counterfactuals had already been devised in [12]),
and the importance of C5 emerged in [9].

6 Conclusions

We produced a strongly complete axiom system for a language PCO for probabilistic
counterfactual reasoning (without arithmetical operations). As for most analogous results
in the literature on interventionist counterfactuals, we have assumed that the signatures
are finite; it would be interesting to find out if the recently developed methods of [18] for

8 It seems to us that an axiom analogous to P3b should be added also to the system in [32].
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axiomatizatizing infinite signatures may be extended to our case. Our system features
infinitary rules, and it is therefore natural to wonder whether finitary axiomatizations
could be obtained. Due to the failure of compactness, such axiomatizations can aspire at
most at weak completeness.

There is another closely related axiomatization issue that would be important to settle.
In [6], an extension PCO® of PCO is considered that features a countably infinite version
of the global disjunction LI. This uncountable language is much more expressive than
PCO and it can be proved that, in a sense, it encompasses all the expressive resources
that a probabilistic language for interventionist counterfactuals should have. Given the
special semantic role of this language, it would be important to find out whether an
(infinitary) strongly complete axiomatization can be obtained for it. The main obstacle is
proving an appropriate Lindenbaum lemma; as shown e.g. in [11], for an uncountable
language with an infinitary axiom system the Lindenbaum lemma can even be false.
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