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1 Introduction

The standard model of Cosmology, referred to as the ΛCDM model, successfully explains
various observations about our Universe. It makes numerous non-trivial predictions that
have been confirmed by cosmological data, such as the spectrum of anisotropies in the cosmic
microwave background (CMB) radiation and the overall shape of the matter power spectrum
(see, e.g. [1] for a review, historical overview and references). According to the picture
developed in the last decades, structure formation is achieved via gravitational instability
resulting in the smallest collapsed systems forming first. One essential ingredient required
to explain the distribution of structures in the Universe is cold dark matter (CDM), which
must interact with standard model particles only very weakly (if at all). Another component
needed in the ΛCDM model is the cosmological constant Λ, which accounts for the observed
late-time accelerated expansion of the Universe. It is broadly categorised as dark energy
(DE), subject to the condition that its value must be minimal compared to typical energy
scales in Particle Physics. Therefore, alternative explanations for the accelerated expansion
have been proposed, such as scalar fields. These allow for the negative pressure needed
to explain the accelerated expansion in Einstein’s theory. Other attempts to extend the
ΛCDM model include modifications to general relativity; see, e.g. [2] and [3] for references
and overviews.

Dark matter (DM) and DE make up the so-called dark sector. It is a major goal of
cosmology to illuminate their properties and origins. There is a plethora of phenomenological
proposals for DM, motivated by theories beyond the standard model of particle physics.
Candidates for DM range from weakly interacting massive particles to light scalar fields; see,
e.g. [4–13] and references therein. DE is often seen as a separate issue, not related to DM.
In this work, we propose a shared origin for the dark sector as two scalar fields driven by a
shared potential energy V .1 Our choice for the potential energy is the one used in hybrid
inflation [22], allowing for a hierarchy of masses for DM and DE, which we discuss in more

1Models in which DM and DE are both scalar fields have been considered e.g. in [14–21].
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detail in the next section. The DM field is identified with the heavier field, and its mass
is set by the expectation value of the DE field, corresponding to the flat direction of the
potential. We will show that the DE field is limited to changing very slowly under these
conditions. One consequence of the theory proposed is that the current period of accelerated
expansion is transient. In the future, both fields will settle at the actual minimum, for which
the potential energy vanishes. The subsequent evolution of the Universe is then determined
by other factors, such as the curvature of space.

The paper is organised as follows: in section 2, we present the model. The conditions
on the model parameter are discussed in section 3. To study the cosmological background
dynamics and calculate the evolution of perturbations, we develop a fluid description for
the DM field in section 4. In section 5, we describe the evolution of the Universe and the
predictions for the CMB anisotropies and large-scale structures spectra. The results and
phenomenology of the model are discussed in section 6. We conclude in section 7.

2 Model

In this section, we discuss the field contents of the model studied in this paper. The set-up
under consideration is based on that of hybrid inflation [22] with the addition of the standard
model fields and is defined through the following action:

S =

∫
d4x

√−g

[
1

2
M2

PlR − 1

2
(∂φ)2 − 1

2
(∂χ)2 − V (φ, χ)

]
+ SSM . (2.1)

We aim to have φ playing the role of DE and χ being DM. The standard model fields
are accounted for in the action SSM. The term V (φ, χ) stands for the effective interaction
potential, given in analogy to the one in hybrid inflation as

V (φ, χ) =
λ

4
(M2 − χ2)2 +

1

2
g2φ2χ2 +

1

2
µ2φ2 (2.2)

≡ V0 − 1

2
λM2χ2 +

1

4
λχ4 +

1

2
g2φ2χ2 +

1

2
µ2φ2 , (2.3)

where M and µ are mass scales, g and λ are dimensionless coupling constants and V0 ≡ 1
4
λM4

is the scale of the potential. For φ and χ to play the role of DE and DM, respectively,
appropriate choices of the parameter values have to be made. We will discuss this in-depth
in the next section. The global minimum of the potential is at χ = ±M and φ = 0, for which
the potential energy vanishes. Note that our set-up differs from [23], where φ and χ play
the role of DM and DE, respectively. Consequently, the physical interpretation of the fields,
their dynamics and the choices of parameters change significantly.

The effective masses of the DM scalar field χ and of the DE scalar field φ are determined
by the second order derivatives of the potential, given by

m2
χ ≡ ∂2V

∂χ2
= g2φ2 − λM2 + 3λχ2 , (2.4)

and

m2
φ ≡ ∂2V

∂φ2
= g2χ2 + µ2 , (2.5)

respectively.

– 2 –
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We consider a spatially flat Universe described by the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric with the line-element

ds2 = −dt2 + a2(t)δijdxidxj ,

where a(t) is the scale-factor. In the following, H = ȧ/a stands for the expansion rate, and
over-dots represent derivatives with respect to cosmic time t. The equations of motion for
each scalar field read

φ̈ + 3Hφ̇ = −(g2χ2 + µ2)φ , (2.6)

χ̈ + 3Hχ̇ = −λχ3 + (λM2 − g2φ2)χ , (2.7)

and the Friedmann equations are

Ḣ = − 1

2M2
Pl

(ρ + P ) , (2.8)

H2 =
1

3M2
Pl

ρ , (2.9)

where ρ and P are the collective energy density and pressure of both scalar fields, baryons,
and radiation expressed as

ρ =
1

2
φ̇2 +

1

2
χ̇2 + V (φ, χ) + ρb + ργ , (2.10)

P =
1

2
φ̇2 +

1

2
χ̇2 − V (φ, χ) + pγ , (2.11)

respectively. For convenience, we split the energy density contributions of each scalar field
into two different quantities:

ρχ =
1

2
χ̇2 − 1

2
λM2χ2 +

1

4
λχ4 +

1

2
g2φ2χ2, (2.12)

ρφ =
1

2
φ̇2 + V0 +

1

2
µ2φ2 . (2.13)

It is important to emphasise that this splitting is a choice and has no impact on the underlying
physics so long as the sum of both parts is equal to the whole energy density of the scalar
fields system. The particular choice in eq. (2.12) is such that all oscillating terms (i.e. those
containing χ) are grouped to obtain the effective pressureless behaviour needed for structure
formation in the matter domination era. The φ-field is expected to behave like a cosmological
constant at late times. Nevertheless, we will see that the evolution may still differ at early
times, driven by the interaction with the χ-field.

Under this scenario, if φ is displaced sufficiently far from the origin, then χ will oscillate
around zero. There is an abrupt transition in the shape of the potential when the effective
DM mass, given by eq. (2.4), changes from positive to negative. Using eq. (2.4) and assuming
that χ is as it oscillates around 0, this happens approximately when φ reaches a critical value
given by

|φc| ≈
√

λM

g
. (2.14)

For φ > φc, χ behaves as dark matter, and φ is a dynamical dark energy component, slowly
rolling down its potential. Moreover, the dynamics of φ is mainly determined by the dominant

– 3 –



J
C
A
P
0
7
(
2
0
2
3
)
0
1
9

constant scale in the potential, V0, and the interaction with χ. However, when φ approaches
the critical value φc, χ quickly drops and starts oscillating around χ = ±M . Simultaneously,
V (φ, χ) drops to zero leading to a sudden decay of dark energy and implying that the epoch
of DE domination is just a transient phenomenon in this theory.

3 Conditions on model parameters

In this section, we examine the necessary conditions to fulfil the scenario described above.
In other words, we look for constraints on the free parameters g, M and λ. For φ to play the
role of DE, the field needs to roll slowly, and the potential energy needs to be of order ρDE,0,
the DE density today. Thus, we demand that V0 = 1

4
λM4 ≈ 10−47 GeV4. The contribution

from the µ2-term cannot be larger than this because it also affects the dark energy density.
Thus, the mass scale M is of order 10−3 eV, as expected in models with DE.

On the other hand, for χ to behave like dark matter, it must oscillate in a quadratic
potential from the early Universe onwards [24]. Firstly to prevent the damping term in
eq. (2.7) from withholding the oscillations, mχ ≈ gφ ≫ H must hold. Secondly, we need to
ensure that the quadratic term dominates over the quartic one in eq. (2.3), which translates
into the condition g2φ2 − λM2 ≫ 1

2
λχ2. As discussed below, φ does not change significantly

during the cosmological evolution, and the value of φ today must be large, (φ0 & 10 M2
Pl).

Therefore, the mass of the χ-field, mχ = gφ, is large unless g is exceedingly small.
At some time ti in the early universe, H ≈ mχ, at which point the field starts to

oscillate rapidly around 0 as the expansion rate becomes smaller than the mass. To estimate
the temperature of this transition, we assume that the Universe is in the radiation-dominated
epoch after an inflationary phase. During this period,

H2 =
1

3M2
Pl

π2

30
g∗(T )T 4,

with g∗(T ) being the effective number of relativistic degrees of freedom at a temperature T
(which is of the order of several hundred in theories beyond the standard model). Therefore
we infer that the oscillations happen at a temperature

T ≈ 1015

(
g

10−7

)1/2
(

φi

10M2
Pl

)1/2 (
g∗

100

)
−1/4

GeV.

This corroborates the assumption that the field starts to oscillate very early on in the ra-
diation dominated epoch, almost immediately after a period of inflation in this framework.
Below we will derive the evolution for the χ-field (eq. (4.1)), which allows us to find the
initial field amplitude χi in the very early universe. Using the fact that ρDM,0 ≈ g2φ2

0χ2
0 ≈

4 · 10−47 GeV4 (where the 0 indicates the present time) and that the amplitude evolves as
χ(t) = χi(ai/a)3/2 = χi(T/Ti)

3/2, we find, using the expression for the temperature above

χi

GeV
≈ 1.4 · 106

(
g

10−7

)
−1/4

(
φ0

10M2
Pl

)
−1/4 (

g∗

100

)
−3/8

.

This is the initial field amplitude the χ-field must have after inflation in order to predict the
right amount of DM today (emphasising again that we assume that the field χ is responsible
for all DM).

– 4 –
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As the model is currently formulated, during inflation the φ-field is light. The only
requirement is that its field excursion is large (φ & 10 MPl), so that in the radiation dominated
epoch the mass of the χ-field also remains large and, as we will see in section 4, the coupling
between χ and φ is small enough. Since φ is light during inflation it is subject to quantum
fluctuations, which are of order Hinf/2π, where Hinf is the expansion rate during inflation.
But the φ-field is a (almost) flat direction and subdominant during the radiation and matter
dominated epoch. Therefore the quantum fluctuations will not result in large isocurvature
modes in the DE sector. However, the situation with the χ-field is more delicate. If φ is
light during inflation, i.e. gφ < Hinf , then the quantum fluctuations of χ are also of the order
Hinf/2π, resulting in potentially large isocurvature modes with an amplitude [25]

AI =
(H2

inf/M2
Pl)

π2(χ2
inf/M2

Pl)
,

where χinf is the value of χ during inflation, which has to be of order 106 GeV for g ≈ 10−7.
As it is the case for axion-like fields, there are ways to evade isocurvature bounds. We
consider two of these briefly: firstly, the field χ is heavy during inflation, so that gφ > Hinf .
In this case, the isocurvature modes are suppressed. The challenge with this option is that
at the end of inflation the field amplitude needs to be large enough so that the χ-field can
play the role of DM (or at least be a non-negligible part of the DM sector). Alternatively,
the dynamics of χ during inflation is non-standard, either by coupling χ to gravity (as in
e.g. [26]) or by coupling χ directly to the inflaton field. In this case, the dark sector is bigger
that just the fields φ and χ we consider here and it would be interesting to study this option
further, also from the model-building perspective. For the rest of the paper, however, we are
dealing with the post-inflation period and assume that the isocurvature perturbations can
be kept small.

For the numerical study in the following sections, we select initial conditions, taken at
zi = 1014, such that φi ≫ φc, i.e., gφi ≫

√
λM from eq. (2.14) and since mχ ≫ H we have

gφi ≫ H , (3.1)

where a subscript i denotes quantities evaluated at the initial time zi in the numerical simu-
lations. On the other hand, as previously argued, φ must be rolling slowly so that m2

φ ≪ H2.
Assuming that µ is small compared to gχ, the following constraint is obtained from eq. (2.5):

g2χ2 ≪ H2 . (3.2)

During the matter-dominated epoch, the χ-field dominates the dynamics. As we will describe
in more detail in the next section, the DM fractional energy density will eventually start to
decrease. At the same time, the Universe keeps expanding, and the φ-field keeps slowly
varying until, finally, DE dominates the evolution, driven by the potential energy. Therefore,
at early times we require

1

2
µ2φ2 + V0 ≪ 1

2
g2φ2χ2 , (3.3)

warranting a period of matter domination. From this, we infer

ρχ =
1

2
χ̇2 +

1

2
m2

χχ2

≈ m2
χχ2 , (3.4)

– 5 –
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where we have used that mχ ≈ gφ and relied on the fact that the rapidly oscillating χ-field is
approximately pressureless when averaged over several oscillation periods. Note that because
of how slowly φ is evolving, the effective DM mass is nearly constant. Solving for χ2 and
replacing in eq. (3.2) leads to

g2 ρχ

m2
χ

≪ H2 . (3.5)

During the matter-dominated era, when χ stands as the predominant contribution, the Fried-
mann equation can be approximated as

H2 ≈ ρχ

3M2
Pl

. (3.6)

Therefore, from eq. (3.5), we arrive at the following condition

1 ≪ 1

3

(
φ

MPl

)2

, (3.7)

where we have employed mχ ≈ gφ. The inequality above can only be satisfied if the φ-field is
trans-Planckian, that is, if φ ≫ MPl. Therefore, φ must be at least of the order of the Planck
scale to satisfy the constraint in eq. (3.7) and fulfil the scenario intended in this theory.
Consequently, unless g is exceedingly small, this results in a considerably large DM mass, in
direct contrast with models with ultralight and light scalar fields as DM candidates [9, 27, 28].
We remark that this can potentially be accommodated in the WIMPzilla scenario, proposed
and analysed in [8] and [29].

Another necessary condition for χ to stand as a viable DM candidate is that the scalar
field must remain stable. From a phenomenological perspective, even if kinematically allowed,
the decay channel of χ into φ is effectively negligible due to the mass scale difference between
the fields. Hence we must ensure that the decay rate, given by [30]

Γ(χχ → φφ) =
g4
〈
χ2
〉

8πmχ
, (3.8)

is smaller than the Hubble expansion rate, i.e. Γ < H. We resort to the bracket notation
〈·〉 to denote averages over one oscillation cycle. As will be discussed in the next section,
the direct dependence of the amplitude on the χ-field and the very slowly evolving φ-field
implies that Γ ∝ a−3 (regardless of the epoch), whereas H scales as a−3/2 and a−2 during
matter- and radiation-dominated eras, respectively. These relations imply that the decay
width drops much more rapidly than the expansion rate over the Universe’s history, ensuring
the stability of the DM field for any sensible values of g < 1.

A final remark before we discuss the cosmological evolution of the system is whether
quantum corrections to the potential can spoil the considerations above. In general, quantum
corrections to the tree-level potential are expected to be of order M2

Pl (choosing MPl to
be the natural cut-off). In supersymmetric theories, however, the corrections are of order
ln(φ/MPl) [31]. These ln-corrections can be kept small if the coupling constants are small,
which is a natural case for the model considered here. We therefore conclude that the model
presented here suffers from the same problems as other models of this kind.

4 Fluid approximation and dynamics

Since the oscillations in the χ-field are computationally expensive, we wish to find reasonable
approximations allowing for the study of the cosmological evolution. More precisely, we recast

– 6 –
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our framework as an interacting quintessence model through a fluid description of the DM
field χ. Despite its similarities with other scalar-field models of DM, one crucial difference
in this scenario is that the mass of the DM field evolves as the DE field is slowly rolling.
According to previous studies on the cosmological evolution of a scalar field oscillating in a
quadratic potential [24], it is a well-known result that one can describe its dynamics according

to an oscillating envelope with amplitude A(t) ∝ a−
3
2 . Employing the WKB approximation,

we can solve for the dynamics of the oscillating scalar field χ using the conditions derived in
the previous section (gφ ≫ H and φ̇/φ ≪ 1). We arrive at a solution of the form

χ(t) = χi

(
φi

φ

)1/2 (ai

a

)3/2

sin
(
gφ (t − ti)

)
. (4.1)

where χi is the initial amplitude of χ. Since φ is evolving slowly, the ratio φi/φ is practically
constant, meaning that the χ-field behaves like pressureless dust according to ρχ ∝ χ2 ∝ a−3.
Taking the expression for ρχ in eq. (3.4), we gather that the energy density of DM averaged
over an oscillation period is roughly given by

〈ρχ〉 ≈ ρχ,i

(
φ

φi

)(
ai

a

)3

, (4.2)

where ρχ,i = 1
2
g2φ2

i χ2
i is the energy density of χ at t = ti.

For simplicity, since we will be considering time-scales much larger than the oscillation
span, we drop the bracket notation henceforth, and oscillation-averaged quantities will always
be implied. It is worth pointing out that the (averaged) density in eq. (4.2) depends linearly
on φ. Therefore, we obtain the following continuity equation for the oscillation-averaged
interacting fluid:

ρ̇χ + 3Hρχ =
φ̇

φ
ρχ . (4.3)

In this context, the equation of motion for the DE field is recast as

φ̈ + 3Hφ̇ = − 1

φ
ρχ . (4.4)

The previous equation is entirely equivalent to a continuity equation for DE, assuming a
perfect fluid description for the field as well, with ρφ ≈ φ̇2/2 + V0:

ρ̇φ + 3H(ρφ + Pφ) = − φ̇

φ
ρχ , (4.5)

following conservation of the total energy density of both φ and χ, as required by the general
covariance of Einstein’s equations. According to the approximation in eq. (4.2), eq. (4.4)
becomes

1

a3

d

dt

(
a3φ̇

)
= −ρχ,i

φi

(
ai

a

)3

, (4.6)

which, when integrated with respect to time, yields the following expression for the rate of
change of the field, φ̇:

φ̇ =

(
ai

a

)3 (
Ki − ρχ,i

φi
t

)
, (4.7)

where Ki ≡ φ̇i+
ρχ,i

φi
ti is an integration constant and φ̇i is the initial field velocity, that is when

a = ai. Hence, provided that the relation between a and t is known, the behaviour of φ is

– 7 –
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fully determined. As verified in the previous section, the fluid approximation yields a suitable
description right after inflation since the χ-field starts oscillating around 0 immediately after
this period has ended, and radiation becomes the dominant contributor in the Universe at
t = ti. Consequently, solving eq. (4.7) in the radiation-dominated epoch, during which
a(t) ∝ t1/2, we obtain

φ(t) = φi + Ci − Ai

(
t

ti

) 1
2

− Bi

(
t

ti

)
−

1
2

, (4.8)

where Ci ≡ 2
(

ρχ,i

φi
t2
i + Kiti

)
, Ai ≡ 2

ρχ,i

φi
t2
i and Bi ≡ 2Kiti are integration constants. There-

fore during this period, the energy density of φ scales according to

ρφ ∝ φ̇2 ∝ a−1 . (4.9)

Eq. (4.8) sets the field’s evolution until the matter-radiation equality at teq. When the
matter-dominated era begins, a(t) ∝ t2/3 which leads to the following solution of eq. (4.7):

φ(t) = φeq + Ceq − Aeq ln

(
t

teq

)
− Beq

(
t

teq

)
−1

, (4.10)

where equivalently Ceq ≡ teqKeq, Aeq ≡ t2
eq

ρχ,eq

φeq
, and Beq ≡ teqKeq are constants depending

on initial conditions taken at radiation-matter equality, denoted by the subscript “eq”. The
constant Keq is defined in analogy to Ki in eq. (4.7), with each quantity taken at time teq

instead of ti. Since the field is slow-rolling, it is reasonable to assume ˙φeq ≪ teqρχ,eq/φeq,

resulting in Beq ≈ teqAeq. It is worth noting that eq. (4.10) implies that φ̇ ∝ a−
3
2 since

t ∝ a
3
2 during matter domination. Moreover, considering that the coupling to DM is the

main driver of the field’s dynamics and accordingly φ̇2 ≫ V0, we arrive at

ρφ ∝ φ̇2 ∝ a−3 . (4.11)

It is noteworthy that, during this regime, the DE component scales with ordinary matter
and CDM. This scaling is not a general feature of interacting dark energy models with a
constant potential, and we have checked that this is the only formulation leading to this
singular behaviour. Solutions of this kind are relevant to address the cosmic coincidence
problem of ΛCDM concerning the comparable magnitude for the energy density of DE (Λ
in the standard model) and CDM at present [32–35]. In the next section, we illustrate and
analyse the dynamics in this regime through numerical simulations.

The form of the coupling term on the right-hand side of eq. (4.3) implies that φ must
be large up until the current cosmological era, in line with the discussion in section 3, as
required to avoid drastic deviations from the ΛCDM case. Albeit counter-intuitive at first
glance, this framework hinges on the fact that φ is rolling slowly as φ̇/(φH) ≪ 1, which we
have also confirmed numerically, implying that φ > MPl, according to eq. (3.7).

From a mathematical point of view, the result of the fluid approximation of the system
considered here is analogous to encapsulating the effect of a 5th-force, mediated by a dark
energy scalar field, in a conformally rescaled metric that determines the geodesics for the
dark matter particles g̃µν , given by

g̃µν = C (φ) gµν , (4.12)

– 8 –
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in terms of the gravitational metric gµν , with the conformal factor identified as

C(φ) =
φ2

M2
Pl

for |φ| > |φc| . (4.13)

The transformation is always invertible as |φ| > |φc|. Note that the fluid approximation
will break down well before φ can approach 0. Moreover, it follows that C (φ) > 0 and the
Lorentzian signature of the metric is preserved, avoiding any instabilities related to metric
singularities. In this framework, the form of the coupling function for the fluid approximation
is recovered and reads:

Q = − Cφ

2C
ρχ = −ρχ

φ
. (4.14)

By modelling both components of the dark sector as perfect fluids, it is possible to rewrite the
relevant dynamical equations, such as the conservation relations. We resort to conformal time
in our numerical work, defined by dτ = dt/a. A prime indicates derivatives with respect to
τ , and the Hubble rate is rescaled as H = aH. The equations for the DM and DE fluids read

ρ′

χ + 3Hρχ = −Qφ′ =
φ′

φ
ρχ , (4.15)

ρ′

φ + 3H (ρφ + pφ) = Qφ′ = −φ′

φ
ρχ . (4.16)

These equations lay out the energy exchange between the fluids, with the direction directly
related to the sign of φ′/φ. If the ratio is positive, it is DE sourcing the DM component, while
if it is negative, there will be an energy flow from φ to the dark matter fluid. Regardless of the
initial conditions chosen, we find that φ and φ′ always have opposite signs. Consequently, this
model exhibits a unidirectional energy transfer from the χ fluid to the φ-field. The modified
Klein-Gordon equation encodes the same information:

φ′′ + 2Hφ′ = −a2

φ
ρχ = a2Q , (4.17)

and can be numerically integrated for different realisations of the system yielding particular
solutions for the dynamical evolution of the model.

For numerical purposes, the only free model-specific parameters are the initial conditions
for the DE scalar field φi = φ (τi) and φ′

i = φ′ (τi) and the scale of the hybrid potential V0.
It is important to note that the parameters in the potential energy in eq. (2.2) drop out
completely from the calculation, meaning we do not need to choose their values to solve
the system numerically so long as we assume that they satisfy the constraints derived in
section 3. However, we set µ equal to zero for simplicity since it does not contribute up to
current times. Without loss of generality, we compute V0 through a shooting method for the
fiducial value of the present DE relative energy density: Ω0

φ = ρ0
φ/(3M2

PlH
2
0 ), where H0 is

the Hubble expansion rate at the present epoch. Moreover, and as previously mentioned, the
value of φ′

i has no impact on the dynamics as the scalar field is quickly driven towards the
minimum deep in the radiation-dominated epoch where its contribution is negligible. For this
reason, and without loss of generality, in the numerical study, we always take φ′

i = 0. In this
way, the analysis presented can be focused on the effects of varying the only free parameter:
the initial condition for the scalar field φi. We will focus only on scenarios for which φi > 0,
as the solutions for φi < 0 would lead to the same dynamics starting from the opposite side
of the symmetric potential.

– 9 –



J
C
A
P
0
7
(
2
0
2
3
)
0
1
9

5 Cosmological perturbations and observables

Following the discussion on the background evolution, we now map the cosmological per-
turbations onto an interacting DE model. We are interested in studying the modifications
to the gravitational interaction in contrast to ΛCDM and assessing the measurable imprints
left by the approximations made at the background level. For this purpose, we consider
perturbations in the Newtonian gauge [36], corresponding to the following line element

ds2 = a2(τ)
[
− (1 + 2Ψ) dτ2 + (1 − 2Φ) δijdxidxj

]
, (5.1)

where Ψ(τ, x) and Φ(τ, x) are the conventional Newtonian scalar potentials. For the remain-
der of this section, a δ denotes perturbed quantities, and since we are dealing with a system
of scalar fields, the anisotropic stress vanishes. Moreover, we work in Fourier space, such
that the mapping ∇2 → −k2 holds for the spatial derivatives of the respective quantities.

The equations of motion for δφ and δρχ in the coupled DE framework are

δφ′′ + 2Hδφ′ + k2δφ =
(
Ψ′ + 3Φ′

)
φ′ + 2a2QΨ + a2δQ , (5.2)

δ′

χ = −(θχ − 3Φ′) +
Q

ρχ
φ′δχ − Q

ρχ
δφ′ − θ′

ρχ
δQ , (5.3)

where we have defined the density contrast δχ = δρχ/ρχ and the perturbed coupling δQ is
given by

δQ =
ρχδφ − φδρχ

φ2
. (5.4)

It is worth remarking that in eq. (5.3), both the equation of state wχ =
pχ

ρχ
and the

sound speed c2
s =

δpχ

δρχ
of the DM fluid were set to zero. The former assumption is motivated

by the study of the background dynamics in the previous section, while the latter is justified
when looking at the explicit form of the sound speed for an oscillating scalar field, which
under this approximation becomes [9],

c2
s =

k2/(4m2
χa2)

1 + k2/(4m2
χa2)

. (5.5)

This equation strictly holds for an uncoupled scalar field, but since the coupling considered
here is small, it captures the essential physics. Since mχ is required to be considerably large
in our model and we are considering scales k ≪ 2mχa, it is a reasonable assumption to take
c2

s = 0, which we have also confirmed numerically.
To better appreciate the influence of the coupling on the evolution of the density matter

perturbations, we look at scales in the sub-horizon limit (k ≫ H) together with the quasi-
static approximation. The latter relies on the matter and field perturbations being the main
contributors to the time variation of the gravitational potentials. In practice, this implies
neglecting the time derivatives of the perturbations and metric potentials, leading to the
following simplification for the equation of motion for δχ (neglecting the contribution of
baryons) [37, 38]:

δ′′

χ + Heffδ′

χ ≃ 4πGeffρχδχ , (5.6)

where we have defined the effective Hubble term

Heff = H
(

1 +
Q

ρχ

φ′

H

)
, (5.7)
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which involves an additional friction contribution related to the changes to the background
expansion evolution, and the effective gravitational constant, which in the small-scale limit
(large k) becomes dominant and is given simply as

Geff ≃ GN

(
1 + 2M2

Pl

Q2

ρ2
χ

)
, (5.8)

as expected according to the general results for scalar-tensor gravity models under a conformal
transformation [39–41].

6 Phenomenology

In this section, we explore the dynamics of DM and DE, discuss the main signatures left
by the hybrid dark sector on the cosmological observables, and compare the predictions
against ΛCDM. As expected, the qualitative features of the model are in line with standard
coupled quintessence scenarios with constant effective interactions [42, 43] (see [44–55] for
recent studies). Nevertheless, there are distinct quantitative signatures due to the slow-rolling
of the scalar field, on which we wish to focus. For illustration purposes, we consider four
different realisations of the evolution of the model, characterised by φi/MPl = {8, 10, 15, 20},
with φi being the free parameter responsible for setting not only the initial dynamics of the
scalar field but also the strength of the coupling in the dark sector. The initial velocity is
kept constant at φ′

i = 0 since it has no significant impact on the overall dynamics, as we will
verify in more detail below. The cosmological parameters are fixed to standard Planck 2018
fiducial values for a ΛCDM cosmology [54]: H0 = 67.56 km/s/Mpc for the Hubble parameter,
and Ωbh

2 = 0.022 and Ωch
2 = 0.12 for the relative energy density of the baryon and dark

matter fluids, with h = H0/100. The Friedmann constraint sets the scale of the potential.
For the perturbative analysis, we assume Gaussian adiabatic initial conditions, a scalar power
spectrum with an amplitude of curvature fluctuations As = 2.215 × 10−9 at the pivot scale
kpiv = 0.05 Mpc−1, and with spectral index ns = 0.962. Moreover, and without loss of
generality, we assume vanishing initial conditions for the scalar field perturbation and its
corresponding velocity, that is, δφi = δφ′

i = 0. To calculate the evolution of the background
and cosmological perturbations, we adapted the publicly available CLASS code2 [56–58] for
our purposes.

6.1 Background evolution

Since the potential V (φ, χ) is simply constant in the fluid approximation, in the absence of
the coupling, the field’s evolution would be indistinguishable from a cosmological constant.
It is the interaction between the scalar field with DM that drives the energy density of DE,
as seen in the left panel of figure 2. When the coupling becomes relevant, at the end of the
radiation-dominated epoch, φ is no longer static and starts evolving slowly until the dark
energy density mimics the evolution of the component to which it couples, DM. During this
period, the scalar field contributes to the dynamics as an effective pressureless fluid and the
scaling period ends when the kinetic energy of the scalar field becomes comparable to the
potential energy, set by V0, i.e. when φ′2 . a2V0. Because the value of φ′ is also set by the
initial conditions for φ and ρχ (see eq. (4.7)), the end of the scaling regime is also determined
by φi: higher values of φi lead to late time dynamics closer to ΛCDM, and therefore φ leaves

2https://github.com/lesgourg/class_public.
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Figure 1. Left panel: redshift evolution of the relative energy densities Ωi of the dark matter fluid χ
(green), baryons (lavender), radiation (blue) and the scalar field φ (red) for the ΛCDM model (thin
solid lines), φi = 8 MPl (dashed/dotted lines) and φi = 10 MPl (thick solid lines). Right panel: ratio
of the dark energy density (top panel) and fractional deviations in the Hubble rate (bottom panel)
in the hybrid coupled model with respect to the standard model as a function of redshift 1 + z, for
φi = {8, 10, 15, 20} MPl (solid red, dashed green, dotted lavender and dot-dashed blue lines).
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Figure 2. Left panel: evolution of the energy densities ρ of the dark matter fluid χ (green), baryons
(lavender), radiation (blue) and the scalar field φ (filled red) for φi = 8 MPl. To appreciate the
differences, we also include ρφ for the φi = 15 MPl case (dotted red line) and ρΛ for the standard
model (thin black solid line) for completeness. Right panel: percentage deviations of the effective
gravitational constant, as defined in eq. (5.8), with respect to the standard GN (thin black solid line)
for φi = {8, 10, 15, 20} MPl (solid red, dashed green, dotted lavender and dot-dashed blue lines).

the scaling regime earlier (see right panel of figure 1 and left panel of figure 2); on the other
hand, independently of its initial value, φ′ is rapidly adjusted as the field is driven down the
minimum of the effective potential, meaning that φ′

i regulates the onset of the scaling period
only, which happens earlier for the highest initial velocities. The latter effect is insignificant
for the background dynamics since it takes place early in the radiation-dominated epoch
when the contribution of the scalar field is subdominant, and ρφ will be tracking DM as
soon as ρχ dominates the evolution of the background. A similar effect has been identified
in [59], driven by a significant acceleration of the scalar field instead. When the φ-field exits
the matter-scaling regime, it heads towards a cosmological constant-like attractor solution,
where it will remain diluting with the expansion until the fluid approximation breaks down.
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Finally, we see that the effect of the coupling on φ is also manifested through an ampli-
fication of ρφ during this regime for the higher coupling cases (smaller φi), which naturally
leads to earlier matter-dark energy equality. This shift is an artefact of having fixed the
present cosmology: DM is losing energy to DE, so it must be more abundant at early times
to compensate for this effect. On the other hand, this is also entangled with a more signif-
icant contribution of the coupling to the scalar field dynamics through eq. (4.17). There is
also a shift in the matter-radiation equality towards earlier times for decreasing values of φi,
as shown in the left panel of figure 1.

In the lower right panel of figure 1, we also present the relative deviations in the Hubble
rate H(z) for the hybrid coupled model in contrast with the ΛCDM case. Despite having
fixed H0 to the same present value, H(z) is enhanced up to 9% for the model with the
lowest φi during the matter-dominated epoch while being negligible in radiation domina-
tion. This relates to the enhancement of ρφ and ρχ and will be essential to understand the
growth of matter perturbations at different scales. We turn our attention to the evolution of
cosmological perturbations in the following.

6.2 Cosmological perturbations

The linear growth rate f(a) of the total matter perturbation (i.e. both baryons and DM) δm

parametrises this effect and is defined by

f(z, k) =
1

H
δ′

m(z, k)

δm(z, k)
, (6.1)

where

δm(z, k) =
Ωbδb + ΩDMδDM

Ωb + ΩDM

. (6.2)

The departure in the evolution of f(z) in the hybrid model in contrast with ΛCDM coincides
with the onset of the matter-dominated era when the coupling in the dark sector becomes
important. The combined variable fσ8 is directly connected to data since it is a scale-
independent physical quantity that can be statistically constrained by observations of the
growth of structures at different redshifts [61] and is expressed as

fσ8(z, kσ8) =
σ8(0, kσ8)

H
δ′

m(z, kσ8)

δm(0, kσ8)
, (6.3)

where σ8 is the root mean square mass fluctuation amplitude for spheres of size 8 h−1 Mpc
(or equivalently for scales kσ8 = 0.125h Mpc−1), parametrised as

σ8(z, kσ8) = σ8(0, kσ8)
δm(z, kσ8)

δm(0, kσ8)
, (6.4)

and it is generally used to set the amplitude of the matter power spectrum at present
σ0

8 ≡ σ8(0, kσ8).
Observations of redshift-space distortions (RSD) are a probe for the evolution of the

matter perturbations. This effect arises from a Doppler shift ascribed to changes in the
peculiar velocities of galaxies moving in clusters. Hence it can be used as a probe for the
linear growth of structures and is observed as an additional contribution to the expansion
redshift, with the redshift distribution of galaxies appearing “distorted”. In the left panel of
figure 3, we present the redshift evolution of fσ8 for the models considered, as defined in

– 13 –



J
C
A
P
0
7
(
2
0
2
3
)
0
1
9

1.001.251.501.752.002.252.502.753.00

1+ z

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
fσ

8
φi =8

φi =10

φi =15

φi =20

ΛCDM

103

104

P
(k
)
[M

p
c/
h
]3

φi =8

φi =10

φi =15

ΛCDM

10-3 10-2 10-1
k [h/Mpc]

0
30
60
90

∆
P
(k
)

P
(k
)
[%
]

Figure 3. Left panel: evolution of the cosmological observable fσ8 (defined in eq. (6.3)) with redshift
1 + z for the hybrid coupled model with φi = {8, 10, 15, 20} MPl (solid red, dashed green, dotted
lavender and dot-dashed blue lines) and for the ΛCDM case (thin black solid line). The RSD data
points and corresponding error bars (solid grey) correspond to the compilation presented in [60]. Right
panel: the matter power spectrum as a function of Fourier scales k (top panel) and corresponding
percentage deviations (bottom panel), for the hybrid coupled model with φi = {8, 10, 15, 20} MPl (solid
red, dashed green and dotted lavender lines) with respect to the ΛCDM case (thin black solid line).

eq. (6.3). We observe an overall enhancement of the linear growth of matter perturbations,
with the largest deviations from ΛCDM identified in the model with the lowest value of φi,
related to modifications in the expansion history. From the numerical study, we conclude
that σ0

8 is enhanced for all the models to achieve the same amplitude As, with larger values
of φi consistently approaching the ΛCDM curve. In figure 3 we also include observational
data of RSD3 from the compilation presented in [60] (see references therein) comprising
measurements reported by various surveys. As one can see in the plots, in general the
hybrid model predicts an enhancement of the linear growth, corresponding to a larger fσ8,
associated with higher values of σ8 as well, assuming the same initial amplitude of primordial
perturbations, As. Therefore, in these particular conditions, these models do not seem to
provide a solution for the S8-tension [62, 63], although only a more thorough analysis could
confirm this since the data-analysis implicitly assumes the ΛCDM model.

In the right panel of figure 3, we plot the power spectrum of matter density fluctuations
P (k) (top) and the corresponding relative deviations (bottom) for Fourier scales in the range
10−3 h Mpc−1 < k < 10−1 h Mpc−1. We find a slight suppression for the largest scales
(lowest k) and a significant enhancement for intermediate and small scales (highest k), with
the deviations being as high as 81% for the smallest value of φi at 10−1 h Mpc−1 when the
linear approximation starts to break down, and non-linear effects take over. This behaviour
at large k values is as expected since the fifth force affects the growth of perturbations and
is more significant for smaller values of φi.

The slight suppression at large scales (small k values) can be explained by considering
the modifications in the background evolution, in particular the deviation of the expansion
rate H(z), through the friction term in eq. (5.7), inhibiting the growth of the matter density
perturbations. This effect is dominant over the fifth-force at the largest scales only, reaching
up to 4% for the models considered, and is practically null for the models with the largest
value of φi, for which Geff ∼ GN , as shown in the right panel of figure 2. Moreover, we note

3https://gitlab.com/federicomarulli/CosmoBolognaLib/tree/master/External/Data/.
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Figure 4. Redshift evolution of the sum of the gravitational potentials, Φ + Ψ, (top left panel) and
the corresponding derivative with respect to conformal time, Φ′ + Ψ′ (top right panel) for the hybrid
coupled model with φi = {8, 10, 15} MPl (solid red, dashed green and dotted lavender lines) and for
the ΛCDM case (thin black solid line), including the percentage deviations from the standard model
(bottom panels).

that the turnover in the power spectrum is shifted towards smaller scales when compared
with the ΛCDM case due to the change of the radiation-matter equality era towards larger
redshifts.

In the left panel of figure 4, we depict the joint evolution of the gravitational potentials Φ
and Ψ (top) for the particular intermediate scale k = 0.01 Mpc−1 along with the percentage
differences to ΛCDM. We observe that the most noticeable deviations occur for z . 103

during the matter-dominated era when the changes to the CDM evolution start to become
relevant, and the scalar field is scaling with matter. As expected, we observe the most
significant differences for the lowest values of φi. The modified evolution of the lensing
gravitational potential φlen = Φ+Ψ can be attributed mainly to the exchange of energy from
CDM to the DE field. The lensing potential is the relevant quantity in the source term for
the line of sight integration in the computation of the lensing power spectrum Cφφ

ℓ , which

we show in the left panel of figure 5. We find an overall amplification of Cφφ
ℓ at all angular

scales, with the highest deviations from ΛCDM for the lowest φi case. This enhancement
could help accommodate the observed lensing excess in the Planck temperature data of CMB
anisotropies [54, 64]. Likewise, we can interpret this result according to the enhancement
of the effective gravitational interaction of the DM particles. In fact, we observe that the
matter density contrast δm follows the same trend over most of the Fourier scales considered,
reflecting the increase of the effective gravitational constant, as shown in figure 2.

The CMB anisotropies’ temperature-temperature (TT) power spectrum, presented in
the right panel of figure 5, encodes the same effects. The most significant contribution to
the modifications in the TT power spectrum comes from the integrated-Sachs-Wolfe (ISW)
effect, directly proportional to the time derivative of the lensing potential φlen shown in the
right panel of figure 4. We can split this effect into two different contributions: first, the
early ISW effect results in an enhancement of the time derivative of the potentials as a direct
consequence of an earlier transition from the radiation to the matter-dominated epochs;
second, and most importantly, the late time ISW effect that arises due to changes in the
lensing of the CMB by large scale structures induced by the non-trivial modified dynamics
in the dark sector. The latter also results in a suppression of Φ′ + Ψ′ at late times, as
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Figure 5. Lensing (top left panel) and TT (top right panel) power spectra as a function of the angular
scale ℓ for the hybrid coupled model with φi = {8, 10, 15, 20} MPl (solid red, dashed green, dotted
lavender and dot-dashed blue lines) and for the ΛCDM case (thin black solid line), along with the
fractional deviations from the standard model (bottom panels).

depicted in the right panel of figure 4. The most apparent modification in the TT power
spectrum is the suppression of the amplitude of the peaks and troughs and the narrowing of
their shapes associated with the decrease of the baryon to DM energy density ratio ρb/ρDM

during recombination. These are well-known effects studied in the literature [49, 65] that lead
to a degeneracy between the effective coupling and the Hubble parameter since the latter
mainly impacts the first peak’s position and amplitude. In the same manner, the overall
shift in the position of the acoustic peaks to higher multipoles is related to the changes in the
expansion history, which modify the distance to the last scattering surface. Consequently,
this results in a lower value for the sound horizon at the baryon-drag epoch (or, equivalently,
a lower value for the angle subtended by the sound horizon at the decoupling time) when
compared to ΛCDM. The more pronounced this shift is, the more drastic the deviations
of the background evolution when compared to ΛCDM. Indeed we see from both panels of
figure 5 that the enhancement of the Hubble rate drives the CMB power spectra towards
smaller angular scales (larger multipoles). Finally, the lensing power spectrum enhancement
is associated with the enhancement of the ISW tail at large angular scales (low multipoles),
although this effect is generally subdominant.

7 Conclusions

In this work, we have proposed a hybrid model for the dark sector, in which DM and DE
originate from two interacting scalar fields. We employed a form of potential commonly used
in hybrid inflation to model the DM-DE system. The cosmology in this setup is studied in
considerable detail. The heavy scalar field quickly oscillates from deep inside the radiation-
dominated epoch and consequently behaves like pressureless DM. We have shown that, once
the heavy field starts to oscillate rapidly, the two scalar fields can be described by a DM fluid
coupled to a slowly evolving DE field.

In closing we highlight the following predictions of the model proposed:

• We find that the DE field must have a large field value today (φ > MPl) so that the
fluid description is valid. Consequently, the coupling between DM and DE is relatively
small today, and the DM is very heavy (similar to DM in the WIMPZilla scenario). At
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the same time, the energy scales in the potential are significantly reduced compared to
the Planck scale. The mass scale M is of order eV or so, depending on the coupling
constant λ. The fact that this model requires super-Planckian field excursions, like in
inflationary scenarios, provides a challenge to model building in theories beyond the
standard model. But it is interesting to note that the model proposed here combines
two mass scales: the small mass scale M and the large field excursions for the DE
field φ.

• Another prediction of the model is that the epoch of dark energy domination is tran-
sient. In future, the DM field becomes light and will no longer behave like a pressureless
fluid. Both scalar fields will settle at the true minimum of the potential (at φ = 0 and
χ = ±M). The Universe’s future will then depend on whether space is closed. If the
Universe is closed, the expansion will stop and collapse, opening up the possibility of a
bounce in the long-distant future.

As we have seen, if the coupling is large enough today, the DE field leaves distinct
signatures on the temperature-temperature power spectrum of CMB anisotropies and in the
growth of structures encoded in the matter power spectrum. These characteristic changes
can be tested against current and future observational data. A more thorough and detailed
study is needed, resorting to different independent data sets and sampling the remaining
relevant cosmological parameters. We leave this for future work.
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