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Abstract: Metal–organic frameworks (MOFs) are heralded as potential nanoplatforms for biomedical

applications. Zeolitic imidazolate framework-8 (ZIF-8), as one of the most well known MOFs, has

been widely applied as a drug delivery carrier for cancer therapy. However, the application of ZIF-8

nanoparticles as a therapeutic agent has been hindered by the challenge of how to control the release

behaviour of anti-cancer zinc ions to cancer cells. In this paper, we designed microfluidic-assisted

core-shell ZIF-8 nanoparticles modified with silk fibroin (SF) and polydopamine (PDA) for sustained

release of zinc ions and curcumin (CUR) and tested these in vitro in various human breast cancer cells.

We report that microfluidic rapid mixing is an efficient method to precisely control the proportion

of ZIF-8, SF, PDA, and CUR in the nanoparticles by simply adjusting total flow rates (from 1 to

50 mL/min) and flow rate ratios. Owing to sufficient and rapid mixing during microfluidic-assisted

nanoprecipitation, our designer CUR@ZIF-SF-PDA nanoparticles had a desired particle size of 170 nm

with a narrow size distribution (PDI: 0.08), which is much smaller than nanoparticles produced using

traditional magnetic stirrer mixing method (over 1000 nm). Moreover, a properly coated SF layer

successfully enhanced the capability of ZIF-8 as a reservoir of zinc ions. Meanwhile, the self-etching

reaction between ZIF-8 and PDA naturally induced a pH-responsive release of zinc ions and CUR

to a therapeutic level in the MDA-MB-231, SK-BR-3, and MCF-7 breast cancer cell lines, resulting

in a high cellular uptake efficiency, cytotoxicity, and cell cycle arrest. More importantly, the high

biocompatibility of designed CUR@ZIF-SF-PDA nanoparticles remained low in cytotoxicity on AD-

293 non-cancer cells. We demonstrate the potential of prepared CUR@ZIF-SF-PDA nanoparticles as

promising carriers for the controlled release of CUR and zinc ions in breast cancer therapy.

Keywords: microfluidic-assisted; ZIF-8; silk fibroin; polydopamine; curcumin; nanoparticles; con-

trolled release; MDA-MB-231; SK-BR-3; MCF-7; AD-293

1. Introduction

Nanotechnology, as one of the most potent techniques for cancer therapy, has attracted
significant attention in recent decades. Various nanomaterials, such as liposomes, poly-
mers, micelles, dendrimers, proteins, and inorganic nanoparticles, have been developed in
significant cancer treatment fields, such as chemotherapy, gene therapy, radiotherapy, and
immunotherapy [1–3]. Among various types of cancer, breast cancer remains one of the
most common causes of cancer-related death among female patients [4,5]. Nanomedicine
encapsulated with diverse anticancer drugs, including doxorubicin, cisplatin, and fluo-
rouracil, and modified with therapeutic peptide/protein, have been used as multifunctional
theranostic systems in breast cancer treatment [6–8]. Currently, some nanoplatforms, such
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as PEGylated liposomal doxorubicin hydrochloride and albumin-bound paclitaxel nanopar-
ticles as breast cancer drugs, have been approved by the FDA, indicating a large potential
of nanomedicine in breast cancer therapy [9].

To date, various methods have been used to synthesize nanoparticles with a desired
size, shape, structure, and surface modification to meet numerous therapeutic require-
ments [10–13]. However, traditional nanoparticle preparation methods, such as breaking
down large particles and self-assembly of monomers, suffer from wide size distribution,
tedious synthesis processes, and large batch-to-batch variability [14,15]. Compared with
other methods, although traditional nanoprecipitation dramatically simplifies the process
of nanoparticles preparation and reduces the size distribution, due to a lack of accurate
control on mixing time and flow regime during the nanoprecipitation process, there is still
abundant room for optimizing mixing parameters to obtain well controlled particle proper-
ties [16,17] Recently, the microfluidic approach has emerged as a technology, manipulating
tiny fluids in microchannels with the dimension of tens of micrometres to synthesize stable
and controllable nanomaterials in a simple procedure [18]. Several types of microfluidic
devices, including T or Y-junction mixers, co-flowing junction mixers, hydrodynamic flow
focusing mixers, vortex mixers, and staggered herringbone mixers, have been applied
in nanoparticle production by accurate handling of flow patterns [17]. Compared with
traditional nanoprecipitation methods, a microfluidic-assisted nanoprecipitation method
can provide rapid and adequate mixing during nanoprecipitation in which one solution
containing particle materials meets another anti-solvent in a certain short time (around
several milliseconds) so that the triggering of nucleation and growth of nanoparticles will
be under precise control. In addition, easily maintaining uniform reaction conditions and
fewer regents’ consumption ensure its accuracy, reproducibility, and low running cost on
the fabrication of nanoparticles [19–22].

In our previous studies, we designed a novel microfluidic swirl mixer, which was
used to successfully optimize the synthesis of silk and lipid nanoparticles [23–25], indi-
cating its potential for developing new nanoformulations as an effective multifunctional
drug delivery system. Metal–organic frameworks (MOFs), consisting of metal ions and
organic ligands, have been considered as potential drug carriers because of their diverse
structures, large surface-to-volume ratios, controllable pore size, and great biocompatibil-
ity [26–29]. Zeolitic imidazolate framework-8 (ZIF-8), made up of a zinc ion centre and
2-methylimidazolate linkers, is one of the most widely used groups of MOFs in drug deliv-
ery systems, owing to its high loading efficiency and easy modification [30]. Appropriate
pH responsiveness gives ZIF-8 nanoparticles a pH-controlled drug release property [31].
In addition, recent evidence suggests that zinc ions released from ZIF-8 nanoparticles
could promote the generation of reactive oxygen species (ROS), which could be used to
induce apoptosis, autophagy, necroptosis, DNA damage, and reduce multidrug resistance
of cancer cells [32–34]. To further control the release behaviour of zinc ions, polydopamine
(PDA), a widely used bioinspired material, has been coated on the ZIF-8 nanoparticles
as a self-etching induced shell [35]. The inherent zinc ions’ chelating ability allows PDA
coating to efficiently etch the ZIF-8 core and speed up the release rate of zinc ions to meet
anticancer requirements [36].

However, previously prepared PDA-coated ZIF-8 nanoparticles were not very efficient
zinc ions reservoirs. Solution oxidation, as the most simply used PDA coating method,
requires an alkaline environment (pH > 7.5), adequate oxidants, and a long polymerization
time, where the ZIF-8 template suffers from hydrolysis-induced degradation and prolonged
etching with PDA precursors and its derivatives, leading to the loss of large portions of
zinc ions during the PDA coating process [35,37]. To minimise the unnecessary loss of zinc
ions and to adjust the etching process, materials, such as silica, have been tried to build
intermediate protection layers between the ZIF-8 core and PDA coating [38]. Nevertheless,
there is still abundant room for developing an appropriate intermediate layer to improve
the release pattern of zinc ions.
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Silk as a natural material has been generally used in the fabric industry. Recently, due
to its biocompatibility and low immunogenicity, silk fibroin (SF)-related nanoparticles show
great potential in developing alternative carriers for anticancer drugs [39]. SF arranges itself
in three different forms, including silk I, silk II, and silk III. Among them, silk II contains an
antiparallel β-sheet/crystal molecular structure, allowing high-temperature stability and
both water and solvent insolubility [40–42]. Excellent biocompatibility and high stability
greatly increase the value of SF as a potential intermediate protection layer to control the
etching reaction between zinc ions and catechol groups from PDA.

Curcumin (CUR) is a natural representative polyphenol extracted from the curcuma
longa plant, with multiple anticancer activities [43]. In breast cancer treatment, CUR has
proven ability to inhibit the proliferation of cancer cells by inhibiting key targets, such as
NF-κB inducing genes, alterations in the protein kinase B (Akt), and human epidermal
growth factor receptor 2 (HER2) [44]. Despite CUR’s significant anticancer activities, its use
as a pharmaceutical agent has been limited by low aqueous solubility, rapid metabolism,
and poor absorption. To address these limitations, numerous nano-drug delivery systems,
including liposomes, polymeric nanoparticles, protein nanoparticles, solid–lipid nanoparti-
cles, metal nanoparticles, and nano-emulsion, have been developed and demonstrated the
ability to significantly improve the therapeutic efficiency of CUR by enhancing its bioavail-
ability and targetability [45–50]. Table 1 provides some examples of nano-formulation of
CUR in breast cancer treatment. In this work, for the first time, we designed and produced
a core-shell microfluidic-assisted ZIF-8 nanoparticle protected by SF as an intermediate
layer and coated by PDA for zinc ion release. A special four-element swirl microfluidic chip
was used to provide rapid and sufficient mixing during ZIF-8 nanoprecipitation and free
adjustment of the SF intermediate layer, resulting in a controllable zinc ion release frame-
work. Compared with the traditional mixing method, the microfluidic-assisted method
successfully reduced nanoparticles size from 1000 nm to 170 nm, which is more desirable for
penetrating tumour blood vessels—enhanced permeability and retention (EPR) effect [51].
In addition, we encapsulated CUR as a hydrophobic anti-cancer drug into our ZIF-based
nanoparticles (CUR@ZIF-SF-PDA) to achieve a pH-responsive drug and zinc ion delivery
system. CUR@ZIF-SF-PDA nanoparticles demonstrated enhanced cellular uptake efficiency
and anticancer properties in various breast cancer cells and retained low cytotoxicity in
relation to non-cancer cells at the same time.

Table 1. Various nano-formulations of curcumin in breast cancer treatment.

Nanoparticles Size (nm)
Zeta

Potential
(mV)

Cell Line
Loading Efficiency (LE)

Encapsulation
Efficiency (EE)

Results Refs.

CUR-loaded
chitosan/protamine

nanocarrier
85–340 26.66 MCF-7 LE: 40.2%

EE: 67%

Significantly enhanced the
antitumor efficacy by inhibiting

NF-kB, IL-6, TNF-α, and the
downregulation of Bcl-2.

[52]

Peptide-HAS/CUR
nanoparticle

246.5 −24.5
MDA-MB-231

SK-BR-3
MCF-7

LE: 5.52%
EE: 77.8%

Had great potential for the
treatment of PDL1-expressing breast

cancer cells
[53]

CUR-loaded hyaluronic
acid modified mesoporous

silica nanoparticle
161.3 −35 MCF-7

MDA-MB-231
LE: 14.76%
EE: 18.5%

The nanohybrid exhibited a
significant reduction in tumour
volume in tumour-bearing mice

compared to free curcumin

[54]

CUR diethyl
γ-aminobutyrate-loaded
chitosan-coated magnetic

nanocarriers

135–175 14 MDA-MB-231 LE: 1.6%
EE: 96.1%

Enhanced activity when compared
to free CUR diethyl
γ-aminobutyrate

[55]

CUR- and
paclitaxel-loaded PCEC

nanoparticles
27.97 −9.4 MCF-7 LE: 6–11.5%

EE: 86.3–90.3%

Enhanced inhibition of tumour
growth with reduced side effects

compared with free CUR and
paclitaxel

[56]
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2. Materials and Methods

2.1. Materials

Bombyx mori silk was purchased from Jiangsu, China. Na2CO3 (11552), DMSO
(dimethyl sulfoxide, A13280), curcumin (B21573.09), and dopamine hydrochloride (A11136)
were purchased from Alfa Aesar, Haverhill, MA, USA. Methanol (34860), CaCl2 (C1016),
C2H5OH (ethanol, 51975), 2-Methylimidazole (M50850), a zinc assay kit (MAK032-1KT),
a dialysis tubing cellulose membrane (D9777-100FT), paraformaldehyde (158127), and
hydrochloric acid (7647-01-0) were purchased from Sigma-Aldrich, St. Louis, MO, USA.
PI/RNAse Staining Solution, Zinc nitrate hexahydrate (228737), Tris Base (BP152-1), MTT
(M6494), DAPI (D1306), DiD (V22887), and foetal bovine serum (FBS) were purchased from
Fisher Scientific, Waltham, MA, USA. PBS (BE17-512F), RPMI-1640, DMEM (−)Pyruvate
and DMEM (+)Pyruvate were purchased from Lonza, Basel, Switzerland. Human Cau-
casian breast adenocarcinoma cells (MDA-MB-231) and AD-293 human embryonic kidney
cells were purchased from ECACC, Salisbury, UK. Human breast cancer cells (SK-BR-3 and
MCF-7) were purchased from ATCC, Manassas, VA, USA.

2.2. Preparation of 4-Elements Swirl Microfluidic Device

Figure 1 shows the set-up of the microfluidic device with a 4-element swirl mixer.
The volume of a single mixing element is 0.000612 mL. Solution A and solution B were
filled in two separate 20 mL syringes powered by a dual syringe pump (Fusion 4000,
Chemyx Inc., Stafford, TX, USA). Two syringe inlet channels were connected to a series of
the swirl mixing elements, in which the flow centre of inlet channels deviated from the
centre of the mixing element, therefore rapid swirl mixing was generated. Two blocks with
O-rings were used to seal the surface of the mixers, thus a completed mixing system was
achieved. Reynolds number (Re) was calculated to identify different flow regimes (laminar,
transitional, or turbulent flow) by Equation (1), where the fluid density (ρ) and viscosity (µ)
are averages of the values in the two unmixed feed solutions, u is average velocity through
the holes connecting the swirl chambers, and Dh is the connecting hole diameter [57]. The
flow mixing time (τm) is the mean residence time of fluid passing through the mixer from
the inlets to the downstream section and was calculated by Equation (2), where vm is the
volume of a single mixing element, and Qtotal is the total flow rate of mixing fluid.

Re =
ρuDh

µ
(1)

τm =
vm

Qtotal
(2)
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2.3. Preparation of SF Solution

SF solution was extracted from Bombyx mori silk following the previous method [58].
Briefly, 5 g silk was cut into small pieces and boiled in water (2 L) containing 0.02 M
sodium carbonate for 30 min. The resulting silk was removed from the solution and rinsed
with UHQ water at least 3 times until the solution was clear. After drying overnight, 2 g
degummed silk was dissolved in 20 g filtered Ajisawa’s reagent (1:2:8 molar ratio of CaCl2:
Ethanol: Deionised (DI) water) at 75 ◦C for 3 h. The collected SF solution was dialysed
in a cellulose dialysis tube (12 KDa cut off) against UHQ water for 3 days to remove the
remaining CaCl2 and ethanol. The final solution was centrifuged twice (13,000 rpm, 10 min)
to remove the impurities, and it was stored at 4 ◦C.

2.4. Synthesis of MOF (ZIF-8) Nanoparticles

Microfluidic-assisted ZIF-8 nanoparticles were prepared by separately mixing 5, 10,
and 15 mL 2-Methylimidazole (2-MI) solution (33 mg/mL, methanol as solvent) with
5 mL zinc nitrate hexahydrate (ZIN) solution (30 mg/mL, DI water as solvent) through
the microfluidic device with various total flow rate (1, 5, 10, 25, and 50 mL/min). The
as-prepared ZIF-8 nanoparticles were collected by centrifuging at 13,000 rpm for 15 min.
Finally, the product was washed with DI water and stored at −20 ◦C. A sonicator with a
probe (Vibra cell CV18, Sonics & Materials, Newtown, CT, USA) was used to resuspend
nanoparticles before further analysis. To identify the effect of different solvents on the size
change in ZIF-8 nanoparticles, various solvents, including DI water, ethanol, and methanol,
were used during the synthesis.

2.5. Synthesis of ZIF-8 Based Core-Shell Drug Delivery Nanoparticles (CUR@ZIF-SF-PDA)

CUR-loaded ZIF-8 nanoparticles (CUR@ZIF) were simply prepared by dissolving
5 mg CUR in 10 mL 2-MI solution (33 mg/mL, methanol as solvent) and then mixed with
5 mL ZIN solution (30 mg/mL, DI water as solvent) through the microfluidic device. The
collection process was the same as previously described in Section 2.4. After that, 3.7 mg
prepared CUR@ZIF nanoparticles were dispersed in 1 mL DI water, and then 1 mL SF
solution with different concentrations (0.75, 1.1, and 1.25 mg/mL, DI water as solvent)
were mixed with above solution through the microfluidic device to prepare SF protected
nanoparticles (CUR@ZIF-SF). Finally, to produce PDA-coated self-etching nanoparticles
(CUR@ZIF-SF-PDA), 1.25 mg dopamine hydrochloride was added to 1 mL of the previously
prepared SF solution before mixing with the CUR@ZIF suspension. After microfluidic
mixing, the obtained mixture was kept at room temperature with gentle stirring for 1 h.
After the reaction finished, CUR@ZIF-SF-PDA nanoparticles were isolated and purified,
as previously described in Section 2.4. ZIF-PDA nanoparticles were prepared by the same
method without CUR loading and SF coating. A sonicator with a probe was used to
resuspend nanoparticles before further analysis. As a comparison, instead of using the
microfluidic device, the normal preparation method relied on traditional mixing through a
magnetic stirrer.

2.6. Particles Characterization

2.6.1. Size and Zeta Potential Analysis

The size and Zeta potential of CUR@ZIF-SF-PDA were measured by Dynamic Light
Scattering (DLS) (NanoBrook 90 plus Pals Particle size Analyser, Brookhaven Instrument,
Upton, NY, USA). Nanoparticles were dispersed in filtered DI water in a cuvette. The
wavelength of the diode laser was set at 660 nm, and the temperature was kept at 25 ◦C.
Refractive indexes were set as 1.3 and 1.6 for water and nanoparticles, respectively. Three
batches of samples were prepared and analysed. Polydispersity Index (PDI) was calculated
as PDI = (σ/d)2, in which σ is the standard deviation, and d is the mean particle diame-
ter [59]. The PDI was automatically calculated after each test through DLS. The stability of
desired CUR@ZIF-SF-PDA nanoparticles was analysed during 5 days of storage at −20 ◦C.
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2.6.2. Morphological Analysis

The morphological properties of designed nanoparticles were characterised by trans-
mission electron microscopy (TEM) and scanning electron microscopy (SEM). During TEM
analysis, 10 µL of suspension of nanoparticles was placed on a carbon-coated grid for 1 min
and dried with a filter paper before imaging. TEM images were obtained from the FEI
Tecnai G2 Spirit BioTWIN with accelerating voltage at 80 kV. SEM samples were prepared
by placing 2 mg of dried nanoparticles on SEM specimen stubs and coated with 10 nm Au.
SEM images were obtained from FEI Inspect F50 Microscope operated at 10 kV.

2.6.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

The chemical composition and functional groups of designed nanoparticles were
investigated by FTIR (IR Prestige-21, Shimadzu, Kyoto, Japan) with a scan range from 400
to 4000 cm−1. The spectrum data were analysed by Happ-Genzel apodization over 64 scans
with a resolution of 4 cm−1.

2.7. Encapsulation and Loading Efficiency of CUR and Zinc Ions

The concentrations of zinc ions and CUR were identified by zinc assay kit and UV-Vis
spectrometry (JENWAY 6715, Bibby Scientific, Staffordshire, UK). The standard calibration
curves of CUR and zinc ions were obtained by measuring the maximum peak absorbance
at 435 nm and 560 nm, respectively. Encapsulation efficiency and loading efficiency were
calculated as below:

Encapsulation e f f iciency(w/w%) =
amount o f CUR or zinc ions in particles

amount o f CUR or zinc ions initially added
× 100%

Loading e f f iciency(w/w%) =
amount o f CUR or zinc ions in particles

amount o f total particles
× 100%

2.8. In Vitro pH-Responsive CUR Release Analysis

To study the CUR release profile, 1 mg designed nanoparticles were suspended in
1 mL PBS/Ethanol (50% v/v, pH= 7.4, 6.5, and 5.5) at 37 ◦C with shaking at 200 rpm. After
that, the suspension was centrifuged (13,000 rpm, 20 min) at certain intervals, and the super-
natant was removed and replenished with fresh release medium. The CUR concentration
of each supernatant was calculated from the UV-Vis standard calibration curve.

2.9. In Vitro SF/PDA-Controlled Zinc Ion Release Analysis

To identify the influence of the SF intermediate layer and PDA coating on the release
behaviour of zinc ions, 1 mg ZIF-8-based nanoparticles with different concentrations of
SF were suspended in 1 mL PBS (pH = 7.4, 6.5, and 5.5) at 37 ◦C with shaking at 200 rpm.
After that, the supernatant was separated as previously described, and then the release
profile of zinc ions was quantified by a zinc assay kit (Sigma-Aldrich, St. Louis, MO, USA).

2.10. Cellular Uptake Analysis

MDA-MB-231 breast cancer cells and AD-293 human embryonic kidney cells were
cultured in DMEM (−)Pyruvate and DMEM (+)Pyruvate medium supplemented with
10% Foetal Bovine Serum (FBS), 1% Penicillin/Streptomycin, 1% L-glutamine, and 5% CO2

at 37 ◦C. After that, MDA-MB-231, and AD-293 cells were seeded in 12-well plates at a
density of 1 × 105 cells per well and incubated overnight. Then, the cells were treated with
100 µg/mL of CUR@ZIF, CUR@ZIF-SF, CUR@ZIF-SF-PDA nanoparticles, and free CUR
(Ex 488 nm, Em 550 nm) for 24 h. The concentrations of CUR were maintained at the same
level during each treatment. To obtain confocal fluorescence microscopy images, treated
cells were washed with PBS three times and fixed with 4% paraformaldehyde for 20 min.
Next, the fixed cells were washed with PBS again and stained with DAPI (Ex 350 nm,
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Em 470 nm) and DiD (Ex 644 nm, Em 663 nm) for 20 min. Fluorescent images of treated
cells were captured by a Zeiss LSM 980 microscope (Zeiss, Oberkochen, Germany).

2.11. Biocompatibility and In Vitro Cytotoxicity Analysis

MDA-MB-231, SK-BR-3, MCF-7, and AD-293 cells were cultured, as previously de-
scribed, in DMEM (−)Pyruvate, RPMI-1640, DMEM (−)Pyruvate, and DMEM (+)Pyruvate
media, respectively. The MTT assay was used to detect the cytotoxicity of ZIF-8, CUR@ZIF,
CUR@ZIF-SF, and CUR@ZIF-SF-PDA nanoparticles. During the test, cells were seeded
into 96-well plates at a density of 2500 cells per well (100 µL) and incubated overnight.
After that, the medium was removed and replaced with a fresh medium, and different
nanoparticles were put in each well to reach final concentrations of 0, 25, 50, 100, and
200 µg/mL. After 24, 48, and 72 h of incubation, 10 µL of 12 mM MTT was added to each
well and incubated at 37 ◦C for 4 h, followed by removing the 85 µL supernatants and
adding 50 µL DMSO. The absorbance of each well was measured at 540 nm. The cell
viability was measured by comparing the absorbance with control wells.

2.12. Cell Cycle Analysis

SK-BR-3, MCF-7, and AD-293 cells were cultured at 2.5 × 105 cells/mL in a 6-well
plate, as previously described, and incubated overnight. Then, the cells were treated with
100 µg/mL of ZIF-8, CUR@ZIF, CUR@ZIF-SF, and CUR@ZIF-SF-PDA nanoparticles, as
well as free CUR, for 24 h. After that, the treated cells were fixed in cold methanol at −20 ◦C
for at least 2 h. Next, 1 × 106 fixed cells were washed and mixed with 0.5 mL of PI/RNAse
solution. Stained cells were incubated for 30 min at room temperature in the dark, and a
flow cytometer (BD FACSCantoTM II, Franklin Lakes, NJ, USA) was used to determine the
cell cycle stage.

2.13. Statistical Analysis

Statistical analysis was performed using One-way analysis of variance through Graph-
Pad Prism 9 software (GraphPad Software Inc., La Jolla, CA, USA). In all comparisons,
statistical significance was determined at p ≤ 0.05.

3. Results and Discussion

3.1. Microfluidic-Improved Synthesis of ZIF-8-Based Nanoparticles

3.1.1. Microfluidic-Improved Rapid Mixing

ZIF-8-based nanoparticles were prepared, as shown in Figure 2, in which the novel
microfluidic design showed a significant control on the properties of synthesized nanopar-
ticles. The formation of ZIF-8 nanoparticles included several steps. Firstly, a ZIF diffusing
species is formed through the coordinate reaction between diffused 2-MI and zinc ions,
then the nucleation step starts once the local concentration of diffusing species exceeds a
certain threshold and this is followed by a growth step to obtain finished ZIF-8 crystals [60].
Therefore, a rapid and homogeneous diffusion of 2-MI, zinc ions, and obtained ZIF species
at the beginning is crucial to the kinetics of the nucleation and growth step. For the first
time, this novel microfluidic design was used in the preparation of ZIF-8 nanoparticles,
with the advantage to provide rapid mixing during ZIF-8 nanoprecipitation. The effec-
tiveness and, for a given mixer size, the speed of the mixing, are dependent on the flow
regime. For the swirl mixer, below about Re = 50, inertia is minor, the swirl effect is weak,
and mixing in each element is poor. Mixing effectiveness increases with increasing flow
rate (and Re)—first, with unsteady flow beginning just above a Re of 100, and, eventually,
with fully developed turbulent flow beyond Re around 5000, where the flow undergoes
continuous irregular fluctuation of a complex pattern with no distinct streamlines [61–63].
The transitional flow regime may perhaps be viewed as progressing from first occurrence
of unsteadiness up to fully turbulence, so, it is in the range of Re 150 to 5000. The novel
microfluidic device used in this study generated laminar flow and transitional flow by
simply increasing the total flow rate from 1 mL/min to 50 mL/min (Re increased from 42
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to 2080) (Table 2). Another parameter describing the mixing system—flow mixing time
(τm)—was dramatically reduced from 36.7 ms to 0.7 ms with increasing total flow rate.
Therefore, a high total flow rate improved the diffusion pattern of 2-MI, zinc ions, and
ZIF species by enhancing irregular chaotic fluctuations during fluid mixing. In addition, a
short τm enabled ZIF diffusing species to reach a high supersaturation condition rapidly,
allowing uniform ZIF-8 nanoparticles to grow simultaneously.
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Figure 2. Schematic of ZIF-8-based nanoparticles through the microfluidic method.

Table 2. Reynolds numbers (Re) and mixing times (τm) at different total flow rates.

Total Flow Rate (mL/min) Re
1

τm (ms)

1 42 36.7
5 208 7.3
10 416 3.7
25 1040 1.5
50 2080 0.7

1 Re was calculated by using methanol as the 2-MI solvent, 2-MI solution: ZIN solution = 2:1.

3.1.2. Microfluidic-Controlled Properties of ZIF-8 Nanoparticles

To further evaluate the performance of microfluidic mixing, various total flow rates
from 1 mL/min to 50 mL/min were carried out during the preparation of ZIF-8 nanopar-
ticles (methanol was used as 2-MI solvent). The flow rate ratio remained constant: 2-MI
solution: ZIN solution = 2:1. Using a higher total flow rate demonstrated a smaller mean
particle size and narrower size distribution (lower PDI value) (Figure 3a). The results
are consistent with the Reynolds number value observed for each flow rate tested, which
showed that increasing the total flow rate and Reynolds number improved the diffusion
pattern of mixing, allowing a smaller particle size with narrower size distribution. As
indicated in Table 2, the lowest flow rate of 1 mL/min is clearly in the steady laminar
flow regime, and the 2-MI and ZIN solutions are unevenly mixed, resulting in a relatively
large nanoparticle size. With an increasing total flow rate, the flow entered the unsteady
flow regime, in which viscous effects, diffusion layer thickness, and mixing time were
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decreased, leading to significantly improved mixing efficiency. As seen from Figure 3a,
the size of the ZIF-8 nanoparticles decreased from 127 nm to 73 nm with the increased
total flow rate from 1 mL/min to 25 mL/min. However, the size was slightly increased
from 73 nm to 74.5 nm with the increased total flow rate from 25 mL/min to 50 mL/min.
This suggests that, beyond a certain flow rate, the mixing efficiency gradually decreases. It
also should be noted that the size distribution of desired nanoparticles could be influenced
by the shear stress in microfluidic channels [64,65]. The shear-induced fragmentation or
aggregation was found to be influenced by a complicated balance between hydrodynamic
and colloidal forces [66]. Shear stress is directly proportional to the total flow rate [67]. In
this study, when total flow rate ranged from 1 mL/min to 25 mL/min, the dominant factor
affecting the particle size distribution was hydrodynamic force-induced fragmentation.
Under these conditions, shear stress led to the breakup of ZIF-8 nanoparticles, resulting
in a reduction in particle size. However, when the total flow rate exceeded 25 mL/min,
colloidal force induced aggregation became the dominant factor affecting the particle size
distribution. In this case, ZIF-8 nanoparticles were more likely to collide and aggregate,
resulting in larger particle size. Figure 3b indicates the influence of different flow ratios
on the size of ZIF-8 nanoparticles at the fixed total flow rate of 25 mL/min, and methanol
was used as the 2-MI solvent. A high 2-MI solution flow rate facilitated the formation
of smaller particle size. Based on this result, the excess 2-MI might attach to the surface
of synthesised ZIF-8 nanoparticles and prevent further growth and aggregation between
particles. Yamamoto et al. [68] showed that a low 2-MI/ZIN mixing ratio resulted in un-
wanted linking between 2-MI and zinc ions after the nucleation step of ZIF-8 nanoparticles,
leading to a large size distribution. On the other hand, when the total flow rate was fixed,
the system viscosity was decreased with an increased 2-MI component from 1:1 to 3:1,
leading to a higher Re at a larger 2-MI/ZIN ratio (the Re at 2-MI/ZIN ratio = 3:1, 2:1,
and 1:1 were 1065, 1040, and 996, respectively), and this could further enhance the rapid
mixing effect. Inspired by this result, we analysed the influence of system viscosity on
particle size by changing different 2-MI solvents at the fixed total flow rate of 25 mL/min
and flow rate ratio of 2-MI solution: ZIN solution = 2:1. Figure 3c shows that the size of
ZIF-8 nanoparticles was much smaller when using methanol and DI water as the 2-MI
solvent compared with using ethanol, and that was in line with our expectations, as the
methanol and DI water used as 2-MI solvent have lower viscosity and larger Re, therefore
improving the rapid mixing, while ethanol used as 2-MI solvent, with its higher viscosity,
did the opposite [69]. Although DI water used as 2-MI solvent has a lower viscosity and
a larger Re compared with methanol, the size of ZIF-8 nanoparticles generated from the
DI water mixing system was a little larger than that from the methanol mixing system.
The reason for this could be that the DI water used as 2-MI solvent has a greater ability to
provide hydrogen bonds (α = 1.17) compared with methanol (α = 0.98), which promoted
the deprotonation process of 2-MI, inducing a faster growth of ZIF-8 nanoparticles [70].
Considering CUR loading needs organic solvent, methanol was chosen for further analysis.
By strictly controlling the total flow rate (25 mL/min), 2-MI/ZIN ratio (2:1), and the type
of solvent (methanol), the designed microfluidic mixing system provides homogenous
populations of ZIF-8 nanoparticles for producing stable and efficient drug delivery systems.
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3.1.3. Microfluidic Controlled Properties of CUR@ZIF-SF-PDA Nanoparticles

The novel-designed microfluidic mixing system was not only used for ZIF-8 nanopar-
ticle preparation, but also applied in effective CUR encapsulation and the SF/PDA coating
process. Figure 3d illustrates the size change after CUR loading and SF/PDA coating. It can
be seen that particle size increased by 12 nm, 75 nm, and 37 nm after CUR encapsulation and
SF/PDA coating, respectively, through the microfluidic mixing method. To investigate the
differences between the microfluidic and traditional mixing systems, CUR@ZIF-SF-PDA
nanoparticles were prepared again in the same way, but using a magnetic stirrer as a
mixing method. Here, the size of traditionally prepared particles significantly increased by
around two times compared with the microfluidic-assisted method. Interestingly, it was
impossible to prepare nanoscale particles of CUR@ZIF-SF/PDA traditionally, as a severe
aggregation happened after SF/PDA coating (Figure 4), resulting in much larger size of
particles (>1000 nm). As a result, CUR@ZIF-SF/PDA particles prepared by traditional
mixing method were not displayed in Figure 3d as nanoparticles. A possible rationale for
this aggregation could be the long traditional mixing time (5 s). SF coating relies on the
electrostatic adsorption between positively charged ZIF-8 surface and negatively charged
SF material, thus the zeta potential of the system gradually changed from positive to nega-
tive, in which an unstable electroneutral state is obtained (Figure 3f and Supplementary
Figure S1). Rapid mixing provided by a microfluidic mixer significantly shortens this
process to milliseconds (ms), therefore preventing the aggregation between neutralized
particles. While insufficient mixing during the traditional method allowed an electroneutral
state to exist for a long time, the resultant low zeta potential was not strong enough to
prevent aggregation from Van der Waals attractive forces, therefore resulting in a large
amount of precipitate. To control the release behaviour of zinc ions, various concentrations
of SF were prepared as an intermediate protection layer. As shown in Figure 3e, owing to
microfluidic rapid mixing, increasing the concentration of SF resulted in a diameter increase
from 142 nm to 196 nm without obvious aggregation. Meanwhile, Figure 3f indicates the
change in zeta potential from 40 mV to −32 mV after relevant modifications, indicating
the successful CUR loading and SF/PDA coating. In addition, their relative large zeta
potential (over ±30 mV) could provide a strong electrostatic repulsion between individual
particles, leading to a stable nanoplatform [71]. Supplementary Figure S4 illustrates the
stability analysis of desired CUR@ZIF-SF-PDA nanoparticles. The results of the size and
PDI showed no significant difference after five days of freezing at −20 ◦C, indicating high
stability of desired nanoparticles. Hence, we conclude that microfluidic rapid mixing
played an important role in building CUR@ZIF-SF-PDA nanoparticles with suitable charge
densities and controllable particle sizes.
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3.1.4. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

FTIR spectroscopy was used to investigate the chemical compositions of synthesised
nanoparticles (Figure 3g). ZIF-8 nanoparticles showed high-frequency peaks at 3127 cm−1

and 2926 cm−1 representing the stretching of the aromatic C–H and aliphatic C–H bonds
from the imidazole ring, respectively [72]. The peak at 1571 cm−1 was assigned to C=N
stretch modes, and the bands at 1310–1451 cm−1 corresponded to entire ring stretching.
Three sharp absorption peaks at 1170 cm−1, 1135 cm−1, and 992 cm−1 were observed for
the plane bending of the imidazole ring [73]. Moreover, peaks at 755 cm−1 and 687 cm−1

belonged to aromatic sp2 C–H bending, and a strong peak observed at 420 cm−1 was
associated with Zn–N stretching mode [74,75]. The peaks mentioned above were pre-
sented in all synthesised nanoparticles, indicating that ZIF-8 was used as a core during
the modification of nanoparticles. A small new peak at 1216 cm−1, corresponding to the
in-plane bending of aromatic CCH, was observed after encapsulation of CUR (CUR@ZIF).
Compared with CUR@ZIF nanoparticles, SF coating (CUR@ZIF-SF) resulted in three new
peaks at 3309 cm−1, 1653 cm−1, and 1506 cm−1, which could be assigned to N–H stretching
vibration from amide groups, C=O stretching from SF amide I structure and N–H in-plane
bend from SF amide II structure, respectively, indicated the successful coating of the SF
intermediate layer [76,77]. In addition, PDA coating led to a significant increase in the ab-
sorbance intensity in the range from 1700 cm−1 to 1000 cm−1, caused by the C–O stretching
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of the phenol group and stretching vibrations of the aromatic rings. Together, these results
imply that the synthesised nanoparticles had been successfully modified.

3.2. Morphological Analysis

Representative images of traditional/microfluidic-assisted nanoparticles were shown
in Figure 4a. The colour change from milk-white to red indicated the successful loading
of CUR. As mentioned before, traditionally prepared CUR@ZIF-SF nanoparticles had an
obvious aggregation, while microfluidic-assisted nanoparticles still maintained a good
dispersion, with a colour change from red to orange. Due to the provided alkaline en-
vironment (pH = 8.5), the catechol group of dopamine (DA) was easily oxidized and
transferred to PDA through a self-polymerization with the colour change from orange to
dark brown. The morphology of the designed nanoparticles was inspected by TEM and
SEM (Figure 4b–i). Figure 4b,f illustrate that prepared ZIF-8 nanoparticles have a rhombic
dodecahedral shape with a diameter of around 65 nm, which is in line with the DLS result
(74 nm), as the hydrodynamic diameter detected by DLS includes not only the particle size,
but also a liquid layer attached to the particles [78]. Compared with the smooth surface
of ZIF-8 nanoparticles, some small dots are observed (Figure 4c,g) after the encapsulation
of CUR, indicating that the CUR had been successfully loaded. Figure 4d clearly shows
that CUR@ZIF-SF nanoparticles prepared by 1.1 mg/mL of SF still maintain their crys-
tallographic facets because of the protection of SF coating. While, as shown in Figure 4e,
a further PDA coating resulted in a collapse of its original crystal shape, indicating a
self-etching reaction had been induced between the catechol group from DA and zinc ion
nodes. The self-etching procedure will eventually lead to the disintegration of the original
ZIF-8 structure because the catechol moiety has a higher binding affinity with zinc ions
compared with 2-MI [35]. To further reveal the influence of the SF protection layer on the
self-etching effect, different concentrations of SF (0.75 mg/mL and 1.25 mg/mL) were used
during CUR@ZIF-SF-PDA nanoparticle preparation. It can be seen from the Figure 4h,i that
a higher SF concentration (1.25 mg/mL) could attenuate the self-etching effect by building
a thicker SF intermediate layer, preventing the catechol group from grabbing zinc ions
from the ZIF-8 framework, while a lower SF concentration (0.75 mg/mL) did not have a
significant blocking effect leading to an obvious collapse of the original crystallographic
structure. These results suggest that the self-etching reaction could be adjusted by simply
changing the concentration of the intermediate SF layer.

3.3. Microfluidic-Controlled Encapsulation/Loading and pH-Responsive Release of CUR and Zinc Ions

3.3.1. Encapsulation/Loading of CUR and Zinc Ions

The encapsulation of CUR was confirmed by an increase in the hydrodynamic size
from ZIF-8 to CUR@ZIF-SF-PDA nanoparticles (Figure 3d), Zeta potential change (Figure 3f),
and FTIR analysis (Figure 3g). To further quantify the loading and release behaviour of CUR
on the CUR@ZIF-SF-PDA nanoparticles, UV-Vis spectroscopy was performed (Figure 5g
and Supplementary Figure S2). Compared with pure ZIF-8 nanoparticles, CUR-loaded
nanoparticles had an obvious absorbance peak at 435 nm, belonging to low energy π–π* ex-
citation of CUR, which could be used to detect the concentration of encapsulated CUR [79].
There are no big differences between the traditional method and microfluidic-assisted
method on the UV-Vis spectra of ZIF-8 and CUR@ZIF nanoparticles except that, compared
with the traditional method, a little bit higher and sharper absorbance peak at 435 nm
generated from microfluidic-assisted method was observed, indicating an improved CUR
encapsulation efficiency obtained from the microfluidic-assisted method. Figure 5a and
Supplementary Figure S3a revealed the relationship between rapid mixing and the encap-
sulation/loading efficiency of CUR. A higher total flow rate (50 mL/min), representing a
faster mixing, decreased the CUR encapsulation efficiency from 49% to 17% and loading
efficiency from 11% to 5% compared with a lower total flow rate (10 mL/min). The reason
is that the encapsulation/loading of CUR relies on a flash nanoprecipitation where the
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hydrophobic CUR was dissolved in the water-miscible 2-MI methanol solution and rapidly
mixed with antisolvent (ZIN water solution) so that the nanoprecipitation happened and
the precipitated CUR could be encapsulated by the synthesised ZIF-8 nanoparticles at the
same time [80]. Therefore, an over-high total flow rate (higher than 50 mL/min) resulted
in a very short mixing time (less than 0.7 ms), which was not enough for sufficient nano-
precipitation of CUR, leading to a relative low CUR encapsulation efficiency. On the other
hand, an over-low total flow rate (lower than 10 mL/min) may cause insufficient mixing
and large particle size. Thus, accurate control of a suitable total flow rate at 25 mL/min
was crucial to synthesising CUR@ZIF-SF-PDA nanoparticles, as it provided a relatively
small particle size and a homogenous size distribution with a small compromise on CUR
encapsulation efficiency (44%) and loading efficiency (8.32%).
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Unlike CUR, instead of total flow rate, the encapsulation/loading efficiency of zinc ions
was more related to SF intermediate protection layer. Hydrolysis-induced degradation and
unwanted etching during unprotected PDA coating leads to low storage of zinc ions during
the synthesis of CUR@ZIF-SF-PDA nanoparticles [35,37]. Figure 5b and Supplementary
Figure S3b illustrate the effect of SF coating on the encapsulation/loading of zinc ions.
The absence of the SF protection layer resulted in a large loss of zinc ions (80%) from
CUR@ZIF-PDA nanoparticles after PDA coating. This loss could be reduced to 42% and
21% by building SF intermediate layers with various concentrations of SF at 0.75 and
1.1 mg/mL, respectively. Therefore, SF with the ability to tailor the etching reaction between
ZIF-8 core and PDA coating could provide physical protection and accurate control of the
encapsulation/loading of zinc ions.

3.3.2. Release of CUR and Zinc Ions

To evaluate the CUR release profile of synthesised nanoparticles, the concentrations
of released CUR from CUR@ZIF-8, CUR@ZIF-SF, and CUR@ZIF-SF-PDA nanoparticles
were measured at pH 7.4 (Figure 5c). The concentration of SF was fixed at 0.75 mg/mL
as its outstanding store and release ability for zinc ions, which will be discussed later. All
nanoparticles showed a similar release pattern, in which most of CUR had been released
during the first 24 h and followed by a sustained release to 96 h. CUR@ZIF exhibited the
highest CUR release at 54%, but, on the contrary, only 18% of CUR was released from
CUR@ZIF-SF, which means SF films suppressed the CUR release in the normal physiological
environment (pH 7.4). Interestingly, PDA coating resulted in an increase in CUR release
from 18% to 42%. This suggested that the collapse of the ZIF-8 framework caused by an
etching reaction with PDA films resulted in further release of the CUR encapsulated inside
the ZIF-8 core. Figure 5d illustrates the cumulative CUR release curves of CUR@ZIF-SF-
PDA nanoparticles at various pH conditions. A higher CUR release (66%) was obtained
at pH 5 compared with 51% and 42% of CUR released at pH 6.5 and pH 7.4, respectively.
The reason for this could be that the degradation of the ZIF-8 framework is more likely to
happen under acidic conditions caused by the protonation of 2-MI, leading to the breakage
of coordination between 2-MI and zinc ions [81].
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Not only CUR, but also the cumulative release of zinc ions, was related to the SF
intermediate layer (Figure 5e). Under a physiological environment (pH 7.4), CUR@ZIF
nanoparticles showed a minimal release of zinc ions (only 8%) because of no self-etching
and acidity-induced release. While after PDA coating, the zinc ions release of CUR@ZIF-
PDA was accelerated to 62%, demonstrating the etching reaction between PDA and ZIF-8
was the main driving force of zinc ion release. To further control the release of zinc ions,
0.75 mg/mL and 1.1 mg/mL of SF as an intermediate protection layer was investigated.
The result demonstrated that the zinc ions were released in an SF-dependent manner.
Specifically, the larger the amount of SF, the more easily it suppressed the release of zinc
ions. Interestingly, although CUR@ZIF-SF-PDA nanoparticles with 0.75 mg/mL of SF
coating released fewer zinc ions in terms of percentage of loaded zinc ions than CUR@ZIF-
PDA nanoparticles, the total amount of released zinc ions from CUR@ZIF-SF-PDA were
still larger than that from CUR@ZIF-PDA, as more zinc ions had been previously stored in
CUR@ZIF-SF-PDA nanoparticles (under SF layer protection) compared with CUR@ZIF-
PDA nanoparticles (without SF layer protection). In addition, instead of releasing most zinc
ions within the first 24 h, 0.75 mg/mL of SF coating allowed a more sustained release until
96 h compared with other conditions. As shown in Figure 5f, designed CUR@ZIF-SF-PDA
nanoparticles (SF: 0.75 mg/mL) also exhibited a pH-responsive release of zinc ions with a
maximum release at 78% in an acidic environment (pH 5). Thus, the designed CUR@ZIF-
SF-PDA nanoparticles can be used as promising and efficient pH-responsive nanocarriers
for CUR and zinc ions in the acidic tumour microenvironment.

3.4. In Vitro Cellular Uptake Analysis

To investigate the intracellular uptake and localization of the designed nanoparticles,
MDA-MB-231 human breast cancer cells and AD-293 human embryonic kidney cells were
treated with free CUR, CUR@ZIF, CUR@ZIF-SF, and CUR@ZIF-SF-PDA nanoparticles for
24 h. The concentration of CUR (50 µg/mL) was set at the same level for each treatment. The
cellular uptake of CUR was visualized through confocal microscopy (Figure 6). Green, blue,
and red colours represented auto-fluorescent CUR, DAPI-dyed nucleus, and DiD-dyed
cytoskeleton, respectively. Due to poor water solubility, hydrophobic CUR suffers from low
absorption and poor bioavailability [82]. As presented in Figure 6a, a weak fluorescence
of CUR was noticed from free CUR treatment with MDA-MB-231 cells, suggesting poor
cellular uptake efficiency. On the contrary, the cells treated with CUR-loaded nanoparticles
clearly demonstrated a significant increase in green fluorescence, indicating an enhanced
uptake of CUR by MDA-MB-231 cells. Specifically, the fluorescence signal of CUR from
CUR@ZIF-SF treatment was slightly weaker than that of CUR@ZIF and CUR@ZIF-SF-
PDA treatments, which was consistent with our earlier drug release study that SF coating
could partly prevent the release of CUR. A further PDA coating could overcome this by
increasing the release ability of the system. Furthermore, the CUR fluorescence signal
obtained from free CUR treatment was only observed in the cell cytoskeleton, which was
in agreement with the previous study that CUR as a lipophilic drug was more likely to
be passively diffused and accumulated in the cell membrane [83]. In contrast, the CUR
signals of the designed nanocarriers were distributed in both cytoplasm and nucleus of the
cells. This is likely a result of an active transport method (endocytosis), during which the
nanoparticles and loaded CUR were transported by enclosing them in vesicles grabbed
from the cytoplasmic membrane [84]. To investigate the differential impact of the designed
nanoparticles on healthy cells compared to cancer cells, AD-293 human embryonic kidney
cells were treated with the same nanoparticles as shown in Figure 6b. The uptake efficiency
of CUR in AD-293 cells was found to be significantly lower than that in MDA-MB-231 cells,
indicating a reduced cellular uptake efficiency of the desired nanoparticles in healthy cells.
Consequently, a sustained and targeted release of CUR was performed, specifically within
the breast cancer cells, facilitating the transfer of CUR to the cell nucleus, indicating an
improved cellular uptake efficiency in breast cancer cells.
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of (a) MDA-MB-231 human breast cancer cells and (b) AD-293 human embryonic kidney cells

treated with CUR, CUR@ZIF, CUR@ZIF-SF, and CUR@ZIF-SF-PDA nanoparticles for 24 h. Of note,
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3.5. Biocompatibility and In Vitro Cytotoxicity Analysis

CUR is a natural compound extracted from curcuma longa, which has proven effective
anti-inflammatory and anti-cancer properties [85]. Zinc ion is a crucial mineral nutrient,



Pharmaceutics 2023, 15, 1811 18 of 25

which plays an important role in the function of enzymes, gene expression, and signal
transduction, while an excess of zinc ions leads to cell cytotoxicity by inducing ROS
production [86]. ZIF-8 related nanoparticle as the container of zinc ions has proven excellent
biocompatibility in various cell lines [75,87–89]. In this study, the therapeutic efficiency of
the designed system was improved by accurate control of the release properties of zinc ions
and CUR through the microfluidic-assisted preparation method. The potential therapeutic
efficiency of ZIF-8, CUR@ZIF, CUR@ZIF-SF, CUR@ZIF-SF-PDA nanoparticles, and free
CUR was measured by the MTT assay following treatments of MDA-MB-231, SK-BR-3, and
MCF-7 breast cancer cells. These cell lines are derived from different breast cancer subtypes
(MDA-MB-231: Claudin-low, SK-BR-3: HER2, and MCF-7: Lumical A). AD-293 human
embryonic kidney cells (non-cancer cells) were employed to identify the biocompatibility
of designed nanoparticles. Figure 7a–l illustrates the change in cell viability after 24,
48, and 72 h of incubation. It can be observed that all treatments exhibited increased
cytotoxicity with increased concentration and incubation time. There is only a slight
decrease in cell viability after 48 h, as most of the CUR and zinc ions were released within
the first two days (Section 3.3.2). During the treatment of MDA-MB-231 cells, for pure ZIF-8
nanoparticles, the cellular viability was maintained over 73% even at a high concentration
of 200 µg/mL after 72 h, indicating pure ZIF-8 nanoparticles had great biocompatibility due
to their capability to hold zinc ions and presented low cytotoxicity. CUR@ZIF nanoparticles
showed significantly higher cytotoxicity compared with free CUR, considering the low
cytotoxicity of pure ZIF-8, and this difference could be due to the enhanced delivery of CUR
through endocytosis of the designed nanocarriers. Consistent with previous results, SF
coating (CUR@ZIF-SF) blocked the delivery of some CUR and zinc ions leading to higher
cell viability compared with CUR@ZIF, but it still maintained higher cytotoxicity than free
CUR. In the case of CUR@ZIF-SF-PDA nanoparticles, PDA coating did not differ compared
with CUR@ZIF in the first 24 h, while after 48 h, the cytotoxicity of CUR@ZIF-SF-PDA
nanoparticles (viability was 5.4% at 200 µg/mL) was increased to almost three-fold greater
than that of CUR@ZIF nanoparticles (viability was 15.8% at 200 µg/mL). It is expected
that PDA coating-induced self-etching reaction resulted in a sustained release of zinc ions
inside MDA-MB-231 cells for 72 h, thus allowing a continuous killing of cancer cells. This
sustained-release behaviour is crucial for an efficient drug delivery system in which the
initial therapeutic dose could be reduced and maintained at the same level [90]. In addition,
results indicated the designed nanoparticles induced cytotoxicity on SK-BR-3, and MCF-7
breast cancer cells showed a similar trend compared with MDA-MB-231 breast cancer cells.
The cytotoxic effects of CUR, and CUR-loaded nanoparticles on MCF-7 cells, were slightly
weaker than those on MDA-MB-231 and SK-BR-3 cells, which were in line with previous
research that MDA-MB-231 and SK-BR-3 cells were more sensitive to CUR than MCF-7
cells [91]. A study of the differential susceptibilities of MDA-MB-231 and MCF-7 cells to
the CUR’s cytotoxic effects found that the PI3K/Akt-SKP2-Cip/Kips was a crucial pathway
modulated by CUR in response to high sensitivity in MDA-MB-231 cells and low sensitivity
in MCF-7 cells [92]. Low cytotoxicity on non-cancer cells is an important consideration in
drug delivery applications. During the treatment of AD-293 human embryonic kidney cells,
most of the cells were alive during the 72 h culture period. The inhibitory concentration
(IC50) of CUR@ZIF-SF-PDA nanoparticles to kill AD-293 cells remained over 200 µg/mL,
even after 72 h of treatment, which was much higher than that of MDA-MB-231, SK-
BR-3, and MCF-7 cells at 47 µg/mL, 34 µg/mL, and 49 µg/mL, respectively. Overall,
results indicated that the designed nanoparticles had good biocompatibility, with very low
cytotoxicity on the non-cancer cells, and showed excellent anti-cancer activity on various
breast cancer cell lines.



Pharmaceutics 2023, 15, 1811 19 of 25Pharmaceutics 2023, 15, x FOR PEER REVIEW 21 of 27 
 

 

 
Figure 7. In vitro cytotoxicity analysis of different concentrations of ZIF-8, CUR@ZIF, CUR@ZIF-SF, 
CUR@ZIF-SF-PDA nanoparticles, and free CUR on (a–c) MDA-MB-231, (d–f) SK-BR-3, and (g–i) 
MCF-7 human breast cancer cells and (j–l) AD-293 human embryonic kidney cells after 24, 48, and 
72 h of incubation. (* p < 0.03, ** p < 0.002, *** p <0.0002, **** p <0.0001). 

3.6. Cell Cycle Analysis 
The cell cycle plays an important role in the regulation of the cell growth process. 

DNA damage may cause cell cycle arrest and induce cell death through apoptosis [93]. 
Figure 8a–c depicts the cell cycle stage of negative control, 100 µg/mL of ZIF-8, CUR@ZIF, 
CUR@ZIF-SF, CUR@ZIF-SF-PDA, and free CUR treated MCF-7, SK-BR-3 breast cancer 
cells, and AD-293 human embryonic kidney cells. It can be observed that, for MCF-7 and 
SK-BR-3 breast cancer cells, CUR and CUR-loaded nanoparticles have recorded increased 
cell populations in the G2/M phase, accompanied by decreased cell populations in the G1 
phase compared with the negative control group. The degree of up-regulation of the G2/M 
phase was in line with the degree of CUR and zinc ion release described in Section 3.3.2. 
Among them, desired CUR@ZIF-SF-PDA nanoparticles with the highest release level of 
CUR and zinc ions remarkably upregulated the G2/M cell cycle phase of MCF-7 and SK-

Figure 7. In vitro cytotoxicity analysis of different concentrations of ZIF-8, CUR@ZIF, CUR@ZIF-SF,

CUR@ZIF-SF-PDA nanoparticles, and free CUR on (a–c) MDA-MB-231, (d–f) SK-BR-3, and (g–i)

MCF-7 human breast cancer cells and (j–l) AD-293 human embryonic kidney cells after 24, 48, and 72

h of incubation. (* p < 0.03, ** p < 0.002, *** p <0.0002, **** p <0.0001).

3.6. Cell Cycle Analysis

The cell cycle plays an important role in the regulation of the cell growth process.
DNA damage may cause cell cycle arrest and induce cell death through apoptosis [93].
Figure 8a–c depicts the cell cycle stage of negative control, 100 µg/mL of ZIF-8, CUR@ZIF,
CUR@ZIF-SF, CUR@ZIF-SF-PDA, and free CUR treated MCF-7, SK-BR-3 breast cancer
cells, and AD-293 human embryonic kidney cells. It can be observed that, for MCF-7 and
SK-BR-3 breast cancer cells, CUR and CUR-loaded nanoparticles have recorded increased
cell populations in the G2/M phase, accompanied by decreased cell populations in the
G1 phase compared with the negative control group. The degree of up-regulation of
the G2/M phase was in line with the degree of CUR and zinc ion release described in
Section 3.3.2. Among them, desired CUR@ZIF-SF-PDA nanoparticles with the highest
release level of CUR and zinc ions remarkably upregulated the G2/M cell cycle phase of
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MCF-7 and SK-BR-3 cells by around 96% and 134%, respectively, compared with control
cells (Figure 8d,e). The results indicated that the inhibitory effect of desired CUR@ZIF-SF-
PDA nanoparticles on the proliferation of MCF-7 and SK-BR-3 cells was correlated with
DNA damage-induced G2/M phase arrest. This observation is in line with previous reports
that CUR and its derivates demonstrated anti-cancer activity by increasing G2/M cell cycle
arrest in various breast cancer cell lines, including T47D and MDA-MB-231 cells [94–96]. On
the other hand, CUR and CUR-loaded nanoparticles treatments showed less effect on the
cell cycle distribution of AD-293 human embryonic kidney cells (Figure 8f) compared with
MCF-7 and SK-BR-3 breast cancer cells (Figure 8d,e), suggesting that desired nanoparticles
induced less DNA damage on non-cancer cells than that on breast cancer cells in line with
the MTT data above.
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4. Conclusions

In summary, our new core-shell CUR@ZIF-SF-PDA nanoparticles with controlled
release property of CUR and zinc ions have been developed successfully. For the first
time, microfluidic rapid mixing was used to precisely control the proportion of each
component of ZIF-8, CUR, SF, and PDA in a hybrid nanoplatform to improve the anti-
cancer performance. The desired nanoparticles showed a high degree of modifiability
on particle size, zeta potential, and drug release behaviour by simply regulating the
microfluidic total flow rate and flow rate ratio. SF as an intermediate layer successfully
kept ZIF-8 intact during PDA coating and controlled the release of zinc ions induced by
the self-etching reaction between ZIF-8 and PDA. The pH-dependent release behaviour
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further improved the targeted delivery to cancer cells with an acidic microenvironment.
In vitro cellular uptake and cytotoxicity results confirmed the cellular internalization and
anticancer properties of our designer CUR@ZIF-SF-PDA nanoparticles in various breast
cancer cells, owing to their sustained release profile and G2/M phase cell cycle arrest. High
biocompatibility allowed low cytotoxicity on non-cancer cells. In the meantime, our data
support other studies, which have used nanoparticles for targeting MDA-MB-231 breast
cancer cells, including polyethyleneimine (PEI)-modified polylactide (PLA) nanoparticles
and poly(cyclohexene phthalate)(CHO/PA) nanoparticles, and these provide a strong
rationale for using nanomedicines to treat aggressive breast cancers, such as triple-negative
breast cancers (TNBC) [97,98]. Future studies will assess the in vivo efficacy of designed
CUR@ZIF-SF-PDA nanoparticles. While this study specifically investigates the anticancer
properties of zinc ions and curcumin, it should be noted that these could be substituted
with other drugs for cancer treatment. Therefore, this microfluidic-assisted self-etching
drug delivery system provides a great opportunity for producing designer nanomedicines
with potential anti-cancer properties.
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and CUR@ZIF nanoparticles prepared by traditional magnetic stirrer mixing method. CUR@ZIF-

SF/PDA particles prepared by traditional magnetic stirrer mixing method were not displayed here

as a severe aggregation happened after SF/PDA coating, resulting in millimeter-sized particles;

Figure S3: The loading efficiency of (a) CUR and (b) zinc ions with various parameters (total flow

rates and SF concentrations); Figure S4: The stability of CUR@ZIF-SF-PDA nanoparticles for 5 days

of storage at −20 ◦C.
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