
This is a repository copy of Rensets and renaming-based recursion for syntax with
bindings extended version.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201387/

Version: Published Version

Article:

Popescu, A. orcid.org/0000-0001-8747-0619 (2023) Rensets and renaming-based
recursion for syntax with bindings extended version. Journal of Automated Reasoning, 67
(3). 23. ISSN 0168-7433

https://doi.org/10.1007/s10817-023-09672-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Journal of Automated Reasoning (2023) 67:23

https://doi.org/10.1007/s10817-023-09672-4

Rensets and Renaming-Based Recursion for Syntax with
Bindings Extended Version

Andrei Popescu1

Received: 26 February 2023 / Accepted: 31 May 2023
© The Author(s) 2023

Abstract

We introduce renaming-enriched sets (rensets for short), which are algebraic structures

axiomatizing fundamental properties of renaming (also known as variable-for-variable sub-

stitution) on syntax with bindings. Rensets compare favorably in some respects with the

well-known foundation based on nominal sets. In particular, renaming is a more fundamen-

tal operator than the nominal swapping operator and enjoys a simpler, equationally expressed

relationship with the variable-freshness predicate. Together with some natural axioms match-

ing properties of the syntactic constructors, rensets yield a truly minimalistic characterization

of λ-calculus terms as an abstract datatype—one involving an infinite set of unconditional

equations, referring only to the most fundamental term operators: the constructors and renam-

ing. This characterization yields a recursion principle, which (similarly to the case of nominal

sets) can be improved by incorporating Barendregt’s variable convention. When interpreting

syntax in semantic domains, our renaming-based recursor is easier to deploy than the nominal

recursor. Our results have been validated with the proof assistant Isabelle/HOL.

Keywords Syntax with bindings · Renaming · Substitution · Recursion principle

1 Introduction

Formal reasoning about syntax with bindings is necessary for the meta-theory of logics,

calculi and programming languages, and is notoriously error-prone. A great deal of research

has been put into formal frameworks that make the specification of, and the reasoning about

bindings more manageable.

Researchers wishing to formalize work involving syntax with bindings must choose a

paradigm for representing and manipulating syntax—typically a variant of one of the “big

three”: nameful (sometimes called “nominal” reflecting its best known incarnation, nominal

logic [27, 52]), nameless (De Bruijn) [4, 19, 62, 64] and higher-order abstract syntax (HOAS)

[23, 24, 35, 45, 47]. Each paradigm has distinct advantages and drawbacks compared with

B Andrei Popescu
a.popescu@sheffield.ac.uk

1 Department of Computer Science, University of Sheffield, Sheffield, UK

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-023-09672-4&domain=pdf

 23 Page 2 of 27 A. Popescu

each of the others, some discussed at length, e.g., in [1, 13] and [31, §8.5]. And there are also

hybrid approaches, which combine some of the advantages [17, 22, 55, 60].

A significant advantage of the nameful paradigm is that it stays close to the way one infor-

mally defines and manipulates syntax when describing systems in textbooks and research

papers—where the binding variables are explicitly indicated. This can in principle ensure

transparency of the formalization and allows the formalizer to focus on the high-level ideas.

However, it only works if the technical challenge faced by the nameful paradigm is properly

addressed: enabling the seamless definition and manipulation of concepts “up to alpha-

equivalence”, i.e., in such a way that the names of the bound variables are (present but

nevertheless) inconsequential. This is particularly stringent in the case of recursion due

to the binding constructors of terms not being free, hence not being a priori traversable

recursively—in that simply writing some recursive clauses that traverse the constructors is

not a priori guaranteed to produce a correct definition, but needs certain favorable conditions.

The problem has been addressed by researchers in the form of tailored nameful recursors [27,

44, 52, 56, 68, 69], which are theorems that identify such favorable conditions and, based on

them, guarantee the existence of functions that recurse over the non-free constructors.

In this paper, we make a contribution to the nameful paradigm in general, and to nameful

recursion in particular. We introduce rensets, which are algebraic structures axiomatizing

the properties of renaming, also known as variable-for-variable substitution, on terms with

bindings (Sect. 3). Rensets differ from nominal sets (Sect. 2.2), which form the foundation

of nominal logic, by their focus on (not necessarily injective) renaming rather than swapping

(or permutation). Similarly to nominal sets, rensets are pervasive: Not only do variables and

terms form rensets, but also any functor can lift the renset structure; thus, for example, the

set of lists with elements from a renset, as well as the set of rose trees labelled with elements

from a renset, are themselves rensets.

While lacking the pleasant symmetry of swapping, our axiomatization of renaming has its

advantages. The first advantage is that renaming is more fundamental than swapping because,

at an abstract axiomatic level, renaming can define swapping but not vice versa (Sect. 4). The

second advantage is about the ability to define another central operator: the variable freshness

predicate. While the definability of freshness from swapping is a signature trait of nominal

logic, our renaming-based alternative fares even better: In rensets freshness has a simple,

first-order definition (Sect. 3). This contrasts the nominal logic definition, which involves a

second-order statement about (co)finiteness of a set of variables. The third advantage is largely

a consequence of the second: Rensets enriched with constructor-like operators facilitate an

equational characterization of terms with bindings (using an infinite set of unconditional

equations), which does not seem possible for swapping (Sect. 5.1). This produces a recursion

principle (Sects. 5.2 and 5.3) which, like the nominal recursor, caters for Barendregt’s vari-

able convention. We show that many functions on syntax can be defined using this recursion

principle (Sect. 6). These include interpretations of syntax in semantics domains (Sect. 6.1),

where this recursor is easier to apply than the nominal recursor. Our results have been mecha-

nized in the Isabelle/HOL theorem prover [43] (Sect. 7), and will be integrated in an ongoing

extension of Isabelle’s (co)datatype package with binding-aware (co)datatypes [16].

In summary, we argue that our renaming-based axiomatization offers some benefits that

strengthen the arsenal of the nameful paradigm: a simpler representation of freshness, a

minimalistic equational characterization of terms, and a convenient recursion principle.

Here is the structure of the rest of this paper: Sect. 2 provides background on terms

with bindings and on nominal logic. Section 3 introduces rensets and describes their basic

properties. Section 4 establishes a formal connection to nominal sets. Section 5 discusses

renaming-based recursion, and Sect. 6 shows example function definitions using renaming-

123

Rensets and Renaming-Based Recursion for Syntax... Page 3 of 27 23

based recursion. Section 7 discusses our Isabelle formalization. Section 8 discusses related

work.

For the novel results stated in this paper, we give pointers to the corresponding formaliza-

tion in Isabelle—available from the Archive of Formal Proofs [58]. Each time, we indicate

the name of the theory together with names of the relevant lemmas or theorems. More details

on the mechanisms used in the formalization are given in Sect. 7.

This paper is an extension of our IJCAR 2022 conference paper [57].

2 Background

This section recalls the terms of λ-calculus and their basic operators (Sect. 2.1), and aspects

of nominal logic including nominal sets and nominal recursion (Sect. 2.2).

2.1 Terms with Bindings

We work with the paradigmatic syntax of (untyped) λ-calculus. However, we believe our

results can be generalized to syntaxes specified by arbitrary binding signatures such as the

ones in [26, §2], [52, 71] or [16].

Let Var be a countably infinite set of variables, ranged over by x, y, z etc. The set Trm of

λ-terms (or terms for short), ranged over by t, t1, t2 etc., is defined by the following grammar:

t ::= Vr x | Ap t1 t2 | Lm x t

with the proviso that terms are equated (identified) modulo alpha-equivalence (also known

as naming equivalence). Thus, e.g., if x �= z �= y then Lm x (Ap (Vr x) (Vr z)) and

Lm y (Ap (Vr y) (Vr z)) are considered to be the same term. We will often omit Vr when

writing terms, as in, e.g., Lm x x .

What the above specification means is (something equivalent to) the following: One first

defines the set PTrm of pre-terms as freely generated by the grammar

p ::= PVr x | PAp p1 p2 | PLm x p

Then one defines the alpha-equivalence relation ≡ : PTrm → PTrm → Bool inductively,

proves that it is an equivalence, and defines Trm by quotienting PTrm to alpha-equivalence,

i.e., Trm = PTrm/≡. Finally, one proves that the pre-term constructors are compatible with

≡, and defines the term counterpart of these constructors: Vr : Var → Trm, Ap : Trm →

Trm → Trm and Lm : Var → Trm → Trm.

The above constructions are technical, but well-understood, and can be fully automated

for an arbitrary syntax with bindings (not just that of λ-calculus); and tools such as the

Isabelle/Nominal package [71, 72] provide this automation, hiding pre-terms completely

from the end user. In formal and informal presentations alike, one usually prefers to forget

about pre-terms, and work with terms only. This has several advantages, including (1) being

able to formalize concepts at the right abstraction level (since in most applications the naming

of bound variables should be inconsequential) and (2) the renaming operator being well-

behaved. However, there are some difficulties that need to be overcome when working with

terms, and in this paper I focus on one of the major ones: providing recursion principles, i.e.,

mechanisms for defining functions by recursing over terms. This difficulty arises essentially

because, unlike in the case of pre-term constructors, the binding constructor for terms is not

free.

123

 23 Page 4 of 27 A. Popescu

The main characters of our paper will be (generalizations of) some common operations

and relations on Trm, namely:

– the constructors Vr : Var → Trm, Ap : Trm → Trm → Trm and Lm : Var → Trm →

Trm

– (capture-avoiding) renaming, also known as (capture-avoiding) substitution of vari-

ables for variables _[_/_] : Trm → Var → Var → Trm; for example, we have

(Lm x (Ap x y)) [x/y] = Lm x ′ (Ap x ′ x)

– swapping _[_∧_] : Trm → Var → Var → Trm; for example, we have

(Lm x (Ap x y)) [x ∧ y] = Lm y (Ap y x)

– the free-variable operator FV : Trm → Pow(Var) (where Pow(Var) is the powerset of

Var); for example, we have FV(Lm x (Ap y x)) = {y}

– freshness _#_ : Var → Trm → Bool; for example, we have x # (Lm x x); and assuming

x �= y, we have ¬ x # (Lm y x)

The free-variable and freshness operators are of course related: A variable x is fresh for

a term t (i.e., x # t) if and only if it is not free in t (i.e., x /∈ FV(t)). The renaming operator

[/_] : Trm → Var → Var → Trm substitutes (in terms) variables for variables, not terms

for variables.

Swapping of course makes sense not only in terms, but also in variables. Given variables

x, y, z, x[y ∧ z] is defined to be: z if x = y, y if x = z, and x otherwise.

2.2 Background on Nominal Logic

We will employ a formulation of nominal logic [51, 52, 69] that does not require any special

logical foundation, e.g., axiomatic nominal set theory. For simplicity, we prefer the swapping-

based formulation [51, 53] to the equivalent permutation-based formulation.

A pre-nominal set is a pair A = (A, _[_∧_]) where A is a set and _[_∧_] : A → Perm → A

is a function called the swapping operator of A satisfying the following properties for all

a ∈ A and x, x1, x2, y1, y2 ∈ Var:

Identity: a[x ∧ x] = a

Involution: a[x1 ∧ x2][x1 ∧ x2] = a

Compositionality: a[x1 ∧ x2][y1 ∧ y2] = a[y1 ∧ y2][(x1[y1 ∧ y2])∧ (x2[y1 ∧ y2])]

Given a pre-nominal set A = (A, _[_∧_]), an element a ∈ A and a set X ⊆ Var, one

says that a is supported by X if a[x ∧ y] = a holds for all x, y ∈ Var such that x, y /∈ X .

An element a ∈ A is called finitely supported if there exists a finite set X ⊆ A such that a is

supported by X . A nominal set is a pre-nominal set A = (A, _[_∧_]) such that every element

of a is finitely supported. If A = (A, _[_∧_]) is a nominal set and a ∈ A, then the smallest

set X ⊆ A such that a is supported by X exists, and is denoted by suppA a and called the

support of a. One calls a variable x fresh for a, written x # a, if x /∈ suppA a.

An alternative, more direct definition of freshness (which is preferred, e.g., by

Isabelle/Nominal [71, 72]) is provided by the following proposition:

Prop 1 [72] For any nominal set A = (A, _[_∧_]) and any x ∈ Var and a ∈ A, it holds that

x # a if and only if the set {y | a[y ∧ x] �= a} is finite.

Given two pre-nominal sets A = (A, _[_∧_]) and B = (B, _[_∧_]), the set F = (A → B)

of functions from A to B becomes a pre-nominal set F = (F, _[_∧_]) by defining f [x ∧ y]

to send each a ∈ A to (f (a[x ∧ y]))[x ∧ y]. F is not a nominal set because not all functions

123

Rensets and Renaming-Based Recursion for Syntax... Page 5 of 27 23

are finitely supported (though of course one obtains a nominal set by restricting to finitely

supported functions).

The set of terms together with their swapping operator, (Trm, _[_∧_]), forms a nominal

set, where the support of a term is precisely its set of free variables. However, the power of

nominal logic resides in the fact that not only the set of terms, but also many other sets can be

organized as nominal sets—including the target domains of many functions one may wish to

define on terms. This gives rise to a convenient mechanism for defining functions recursively

on terms:

Theorem 2 [52] Let A = (A, _[_]) be a nominal set and let VrA : Var → A, ApA : A →

A → A and LmA : Var → A → A be some functions, all supported by a finite set X

of variables and with LmA satisfying the following freshness condition for binders (FCB):

There exists x ∈ Var such that x /∈ X and x # LmA x a for all a ∈ A.

Then there exists a unique function f : Trm → A that is supported by X and such that

the following hold for all x ∈ Var and t1, t2, t ∈ Trm:

(i) f (Vr x) = VrA x

(ii) f (Ap t1 t2) = ApA (f t1) (f t2)

(iii) f (Lm x t) = LmA x (f t) if x /∈ X

A useful feature of nominal recursion is the support for Barendregt’s famous variable

convention [11, p. 26]: “If [the terms] t1, . . . , tn occur in a certain mathematical context

(e.g. definition, proof), then in these terms all bound variables are chosen to be different

from the free variables.” The above recursion principle adheres to this convention by fixing

a finite set X of variables meant to be free in the definition context and guaranteeing that

the bound variables in the definitional clauses are distinct from them. Formally, the target

domain operators VrA, ApA and LmA are supported by X , and the clause for λ-abstraction

is conditioned by the binding variable x being outside of X . (The Barendregt convention is

also present in nominal logic via induction principles [52, 70–72].)

3 Rensets

This section introduces rensets, an alternative to nominal sets that axiomatize renaming rather

than swapping or permutation.

A renaming-enriched set (renset for short) is a pair A = (A, _[_/_]) where A is a set and

[/_] : A → Var → Var → A is an operator such that the following hold for all x, x1, x2,

x3, y, y1, y2 ∈ Var and a ∈ A:

Identity: a[x/x] = a

Idempotence: If x1 �= y then a[x1/y][x2/y] = a[x1/y]

Chaining: If y �= x2 then a[y/x2][x2/x1][x3/x2] = a[y/x2][x3/x1]

Commutativity: If x2 �= y1 �= x1 �= y2 then a[x2/x1][y2/y1] = a[y2/y1][x2/x1]

Let us call A the carrier of A and _[_/_] the renaming operator of A. Similarly to the case

of terms, we think of the elements a ∈ A as some kind of variable-bearing entities and of

a[y/x] as the result of renaming x to y (i.e., substituting x with y) in a. With this intuition,

the above properties are natural: Identity says that renaming a variable to itself has no effect.

Idempotence acknowledges the fact that, after its renaming, a variable y is no longer there,

so renaming it again has no effect. (Note that x2 may be different from x1 in the formulation

of Idempotence, which means that this property is stronger than the operator _[x/y] being

123

 23 Page 6 of 27 A. Popescu

idempotent for all variables x, y.) Chaining says that a chain of renamings x3/x2/x1 has

the same effect as the end-to-end renaming x3/x1 provided there is no interference from x2,

which is ensured by initially renaming x2 to some other variable y. Finally, Commutativity

allows the reordering of any two independent renamings.

Examples (see [58], theory Examples)

(Var, _[_/_]) and (Trm, _[_/_]), the sets of variables and terms with the standard renaming

operator on them, form rensets. Moreover, given any functor F on the category of sets and

a renset A = (A, _[_/_]), let us define the renset F A = (F A, _[_/_]) as follows: for any

k ∈ F A and x, y ∈ Var, k[x/y] = F (_[x/y]) k, where the last occurrence of F refers to

the action of the functor on morphisms.1

This means that one can freely build new rensets from existing ones using container types

(which are particular kinds of functors)—e.g., lists, sets, trees etc.

In what follows, let us fix a renset A = (A, _[_/_]). One can define the notion of freshness

of a variable for an element of a in the style of nominal logic. But the next proposition shows

that simpler formulations are available.

Prop 3 (see [58], theory Rensets, lemmas freshA_iff_ex_vvsubstA_idle and

freshA_iff_all_vvsubstA_idle) The following are equivalent:

(1) The set {y ∈ Var | a[y/x] �= a} is finite.

(2) a[y/x] = a for all y ∈ Var.

(3) a[y/x] = a for some y ∈ Var � {x}.

Let us define the predicate _ #_ : Var → A → Bool as follows: x # a, read x is fresh for

a, if either of Prop. 3’s equivalent properties holds.

Thus, points (1)–(3) above are three alternative formulations of x # a, all referring to the

lack of effect of renaming x to y, expressed as a[y/x] = a: namely that this phenomenon

affects (1) all but a finite number of variables y, (2) all variables y, or (3) some variable

y �= x . The first formulation is the most complex of the three—it is the nominal definition,

but using renaming instead of swapping. The other two formulations do not have counterparts

in nominal logic, essentially because swapping is not as “efficient” as renaming at exposing

freshness. In particular, (3) does not have a nominal counterpart because there is no single-

swapping litmus test for freshness. The closest we can get to property (3) in a nominal set

is the following: x is fresh for a if and only a[y ∧ x] = a holds for some fresh y—but this

needs freshness to explain freshness!

Examples (continued) For the rensets of variables and terms, freshness defined as above

coincides with the expected operators: distinctness in the case of variables and standard

freshness in the case of terms. And applying the definition of freshness to rensets obtained

using finitary container types has similarly intuitive outcomes; for example, the freshness of

a variable x for a list of items [a1, . . . , an] means that x is fresh for each item ai in the list.

Freshness satisfies some intuitive properties, which can be easily proved from its definition

and the renset axioms. In particular, point (2) of the next proposition is the freshness-based

version of the Chaining axiom.

1 This is an instance of a more general phenomenon: For any equational theory E over a signature composed
of unary operations only (like our renset operations _[x/y]), and any functor F , we can lift any E-algebra with
carrier set A to an E-algebra with carrier set F A. (And if the functor preserves products, we can do this for
equational theories over any signatures, not restricted to unary operations only.)

123

Rensets and Renaming-Based Recursion for Syntax... Page 7 of 27 23

Prop 4 (see [58], theory Rensets, lemmas freshA_vsubstA_idle,

vsubstA_chain_freshA and freshA_vsubstA2)

The following hold:

(1) If x # a then a[y/x] = a

(2) x2 # a then a[x2/x1][x3/x2] = a[x3/x1]

(3) If z # a or z = x , and x # a or z �= y, then z # a[y/x]

4 Connection to Nominal Sets

So far we focused on consequences of the purely equational theory of rensets, without making

any assumption about cardinality. But after additionally postulating a nominal-style finite

support property, one can show that rensets give rise to nominal sets—which is what we will

do in this section.

Let us say that a renset A = (A, _[_/_]) has the Finite Support property if, for all a ∈ A,

the set {x ∈ Var | ¬ x # a} is finite.

Let A = (A, _[_/_]) be a renset satisfying Finite Support. Let us define the swapping

operator _[_∧_] : A → Var → Var → A as a[x1 ∧x2] = a[y/x1][x1/x2][x2/y], where y is

a variable that is fresh for all the involved items, namely y /∈ {x1, x2} and y # a. Indeed, this

is how one would define swapping from renaming on terms: using a fresh auxiliary variable

y, and exploiting that such a fresh y exists and that its choice is immaterial for the end result.

The next lemma shows that this style of definition also works abstractly, i.e., all it needs are

the renset axioms plus Finite Support.

Lemma 5 (See [58], theory Rensets, lemma exists_freshA; and theory Rensets_to_Nominal

_Sets, lemma vvsubstA_twoWays)

The following hold for all x1, x2 ∈ Var and a ∈ A:

(1) There exists y ∈ Var such that y /∈ {x1, x2} and y # a.

(2) For all y, y′ ∈ Var such that y /∈ {x1, x2}, y # a, y′ /∈ {x1, x2} and y′# a, a[y/x1][x1/x2]

[x2/y] = a[y′/x1][x1/x2][x2/y′].

And one indeed obtains an operator satisfying the nominal axioms:

Prop 6 (see [58], theory Rensets_to_Nominal_Sets, lemmas swapA_id, swapA_invol,

swapA_cmp, freshA_swapA, and sublocale statement Renset_FinSupp < Nominal_Set)

If (A, _[_/_]) is a renset satisfying Finite Support, then (A, _[_∧_]) is a nominal set. More-

over, (A, _[_/_]) and (A, _[_∧_]) have the same notion of freshness, in that the freshness

operator defined from renaming coincides with that defined from swapping.

The above construction is functorial, as we detail next. Given two nominal sets A =

(A, _[_∧_]) and B = (B, _[_∧_]), a nominal morphism f : A → B is a function f : A → B

with the property that it commutes with swapping, in that (f a)[x ∧ y] = f (a[x ∧ y]) for

all a ∈ A and x, y ∈ Var. Nominal sets and nominal morphisms form a category that we

will denote by Nom. Similarly, let us define a morphism f : A → B between two rensets

A = (A, _[_/_]) and B = (B, _[_]) to be a function f : A → B that commutes with

renaming, yielding the category Ren of rensets. Let us write FRen for the full subcategory

of Ren given by rensets that satisfy Finite Support. Let us define F : FRen → Nom to be an

operator on objects and morphisms that sends each finite-support renset to the above described

nominal set constructed from it, and sends each renset morphism to itself. The reason why

123

 23 Page 8 of 27 A. Popescu

the definition of F on morphisms is correct is the following: Let A = (A, _[_/_]) and B =

(A, _[_/_]) be two finitely supported rensets, let F A = (A, _[_∧_]) and F B = (B, _[_∧_]),

and assume f : A → B is a renset morphism. Then using the definition of freshness we

obtain that, for all x ∈ Var and a ∈ A, x # a implies x # f (a). In turn, using the definition

of _[_ ∧ _], this implies that f commutes with swapping (i.e., it is a nominal morphism).

Indeed, for some y such that y /∈ {x1, x2} and y # a, meaning that also y # f (a), we have that

f (a[x1 ∧ x2]) = f (a[y/x1][x1/x2][x2/y]) = f (a)[y/x1][x1/x2][x2/y] = f (a)[x1 ∧ x2].

One may ask whether it is also possible to make the trip back: from nominal sets to rensets.

The answer is negative, at least if one wants to retain the same notion of freshness, i.e., have

the freshness predicate defined in the nominal set be identical to the one defined in the

resulting renset. This can be inferred from the fact that swapping preserves the cardinality

of the support, whereas renaming must be allowed to change it since it might perform a

non-injective renaming. The next example captures this idea:

Counterexample We will exhibit a nominal set A = (A, _[_∧_]), with freshness predicate

$ (defined from _[_/_] in nominal style as recalled in Section 2.2), such that there exists no

operation _[_/_] on A satisfying the following two properties: (1) (A, _[_/_]) is a renset with

freshness predicate # (defined from _[_/_]), and (2) $ = #. Namely, let A = (A, _[_∧_]) be a

nominal set such that all elements of A have their support consisting of exactly two variables,

x and y (with x �= y). (For example, A can be the set of all terms with exactly these two free

variables—this is indeed a nominal subset of the term nominal set because it is closed under

swapping.) Assume for a contradiction that _[_/_] is an operation on A such that (1) and

(2) hold. Then, by the definition of A, a[y/x] needs to have exactly two variables z that are

non-fresh variables (i.e., such that not z $ a[y/x], or equivalently not z # a[y/x]). But this is

impossible, since by Prop. 4(3), all the variables different from y (including x) must be fresh

for a[y/x]. In particular, A is not in the image of the functor F : FRen → Nom, which is

therefore not surjective on objects.

Thus, at an abstract algebraic level renaming can define swapping, but not the other

way around. This is not too surprising, since swapping is fundamentally bijective whereas

renaming is not; but it further validates our axioms for renaming, highlighting their ability

to define a well-behaved swapping.

5 Recursion Based on Rensets

Prop. 3 shows that, in rensets, renaming can define freshness using only equality and universal

or existential quantification over variables—without needing any cardinality condition like in

the case of swapping. We show next that this forms the basis of a characterization of terms as

the initial algebra of an equational theory (Sect. 5.1) and an expressive recursion principle—

which we first describe in its simpler iterative form (Sect. 5.2), then as full-fledged primitive

recursion (Sect. 5.3).

5.1 Equational Characterization of the Term Datatype

Rensets contain elements that are “term-like” in as much as there is a renaming operator on

them satisfying familiar properties of renaming on terms. This similarity with terms can be

strengthened by enriching rensets with operators having arities that match those of the term

constructors.

123

Rensets and Renaming-Based Recursion for Syntax... Page 9 of 27 23

A constructor-enriched renset (CE renset for short) is a tuple A = (A, _[_/_],

VrA,ApA, LmA) where:

– (A, _[_/_]) is a renset

– VrA : Var → A, ApA : A → A → A and LmA : Var → A → A are functions

such that the following hold for all a, a1, a2 ∈ A and x, y, z ∈ Var:

(S1) (VrA x)[y/z] = VrA(x[y/z])

(S2) (ApA a1 a2)[y/z] = ApA(a1[y/z]) (a2[y/z])

(S3) if x /∈ {y, z} then (LmA x a)[y/z] = LmA x (a[y/z])

(S4) (LmA x a)[y/x] = LmA x a

(S5) if z �= y then LmA x (a[z/y]) = LmA y (a[z/y][y/x])

Let us call VrA,ApA, LmA the constructors of A. (S1)–(S3) express the constructors’ com-

mutation with renaming (with capture-avoidance provisions in the case of (S3)), (S4) the lack

of effect of renaming a bound variable, and (S5) the possibility to rename a bound variable

without changing the abstracted item (where the inner renaming of z �= y for y ensures the

freshness of the “new name” y, hence its lack of interference with the other names in the

“term-like” entity where the renaming takes place). All these are well-known to hold for

terms:

Example (see [58], theory Examples)

Terms with renaming and the constructors, (Trm, _[_/_],Vr,Ap, Lm), form a CE renset which

will be denoted by Trm.

As it turns out, the CE renset axioms capture exactly the term structure Trm, via

initiality. The notion of CE renset morphism f : A → B between two CE rensets

A = (A, _[_/_],VrA,ApA, LmA) and B = (B, _[_/_],VrB,ApB, LmB) is the expected one:

a function f : A → B that is a renset morphism and also commutes with the constructors.

Let us write RenCE for the category of CE rensets and morphisms.

Theorem 7 (See [58], theory FRBCE_Rensets, theorems f_Vr, f_Ap, f_Lm, f_subst and

f_unique; see also lemmas F_total and F_main in connection with the proof idea)

Trm is the initial CE renset, i.e., initial object in RenCE.

Proof idea. Let A = (A, _[_/_],VrA,ApA, LmA) be a CE renset. Instead of directly going

after a function f : Trm → A, one first inductively defines a relation R : Trm → A → Bool,

with inductive clauses reflecting the desired properties concerning the commutation with the

constructors, e.g., R t a

R (Lm x t) (LmA x a)
. It suffices to prove that R is total and functional and

preserves renaming, since that allows one to define a constructor- and renaming-preserving

function (a morphism) f by taking f t to be the unique a with R t a.

Proving that R is total is easy by standard induction on terms. Proving the other two

properties, namely functionality and preservation of renaming, is more elaborate and requires

their simultaneous proof together with a third property: that R preserves freshness. The

simultaneous three-property proof follows by a form of “renaming-based induction” on terms:

Given a predicate ϕ : Trm → Bool, to show ∀t ∈ Trm. ϕ t it suffices to show the following:

(1) ∀x ∈ Var. ϕ (Vr x), (2) ∀t1, t2 ∈ Trm. ϕ t1 & ϕ t2 → ϕ (Ap t1 t2), and (3) ∀x ∈ Var, t ∈

Trm. (∀s ∈ Trm. Con_[_/_] t s → ϕ s) → ϕ (Lm x t), where Con_[_/_] t s means that t is

connected to s by a chain of renamings.

Roughly speaking, R turns out to be functional because the λ-abstraction operator on the

“term-like” inhabitants of A is, thanks to the axioms of CE renset, at least as non-injective

as (i.e., identifies at least as many items as) the λ-abstraction operator on terms. ⊓⊔

123

 23 Page 10 of 27 A. Popescu

Theorem 7 is the central result of this paper, from both practical and theoretical perspec-

tives. Practically, it enables a useful form of recursion on terms (as we will discuss in the

following sections). Theoretically, this is a characterization of terms as the initial algebra

of an equational theory that only uses the most fundamental term operations, namely the

constructors and renaming. The equational theory consists of the axioms of CE rensets [i.e.,

those of rensets plus (S1)–(S5)], which are an infinite set of unconditional equations—for

example, axiom (S5) gives one equation for each pair of distinct variables y, z.

It is instructive to compare this characterization with the one offered by nominal logic,

namely by Theorem 2. To do this, one first needs a lemma:

Lemma 8 [53] Let f : A → B be a function between two nominal sets A = (A, _[_∧_])

and B = (B, _[_∧_]) and X a set of variables. Then f is supported by X if and only if

f (a[x ∧ y]) = (f a)[x ∧ y] for all x, y ∈ Var � X .

Now Theorem 2 (with the variable avoidance set X taken to be ∅) can be rephrased as an

initiality statement, as we describe below.

Let us define a constructor-enriched nominal set (CE nominal set) to be any tuple A =

(A, _[_∧_],VrA,ApA, LmA) where (A, _[_∧_]) is a nominal set and VrA : Var → A,

ApA : A → A → A, LmA : Var → A → A are operators on A such that the following

properties hold for all a, a1, a2 ∈ A and x, y, z ∈ Var:

(N1) (VrA x)[y ∧ z] = VrA(x[y ∧ z])

(N2) (ApA a1 a2)[y ∧ z] = ApA(a1[y ∧ z]) (a2[y ∧ z])

(N3) (LmA x a)[y ∧ z] = LmA (x[y ∧ z]) (a[y ∧ z])

(N4) x # Lm x a, i.e., {y ∈ Var | (Lm x a)[y ∧ x] �= Lm x a} is finite.

The notion of CE nominal morphism is defined as the expected extension of that of nominal

morphism: a function that commutes with swapping and the constructors. Let NomCE be the

category of CE nominal sets morphisms.

Theorem 9 ([52], rephrased) (Trm, _[_ ∧ _],Vr,Ap, Lm) is the initial CE

nominal set, i.e., the initial object in NomCE.

The above theorem indeed corresponds exactly to Theorem 2 with X = ∅:

– the conditions (N1)–(N3) in the definition of CE nominal sets correspond (via Lemma 8)

to the constructors being supported by ∅

– (N4) is the freshness condition for binders

– initiality, i.e., the existence of a unique morphism, is the same as the existence of the

unique function f : Trm → A stipulated in Theorem 2: commutation with the construc-

tors is the Theorem 2 conditions (i)–(iii), and commutation with swapping means (via

Lemma 8) f being supported by ∅.

Unlike the renaming-based characterization of terms (Theorem 7), the nominal logic

characterization (Theorem 9) is not purely equational. This is due to a combination of two

factors: (1) two of the axioms ((N4) and the Finite Support condition) referring to freshness

and (2) the impossibility of expressing freshness equationally from swapping. We conjecture

that the nominal characterization is not expressible purely equationally. By contrast, while

the freshness idea is implicit in the CE renset axioms, the freshness predicate itself is absent

from Theorem 7.

123

Rensets and Renaming-Based Recursion for Syntax... Page 11 of 27 23

5.2 Barendregt-Enhanced Recursion Principle

While Theorem 7 already gives a recursion principle, it is possible to improve it by incorpo-

rating Barendregt’s variable convention (in the style of Theorem 2):

Theorem 10 (See [58], theory FRBCE_Rensets, theorems f_Vr, f_Ap, f_Lm, f_subst and

f_unique)

Let X be a finite set, (A, _[_/_]) a renset and VrA : Var → A, ApA : A → A → A and

LmA : Var → A → A some functions that satisfy the clauses (S1)–(S5) from the definition

of CE renset, but only under the assumption that x, y, z /∈ X .

Then there exists a unique function f : Trm → A such that the following hold:

(i) f (Vr x) = VrA x

(ii) f (Ap t1 t2) = ApA (f t1) (f t2)

(iii) f (Lm x t) = LmA x (f t) if x /∈ X

(iv) f (t[y/z]) = (f t)[y/z] if y, z /∈ X

Proof idea. The constructions in the proof of Theorem 7 can be adapted to avoid clashing

with the finite set of variables X . For example, the clause for λ-abstraction in the inductive

definition of the relation R becomes x /∈X R t a

R (Lm x t) (LmA x a)
and preservation of renaming and

freshness are also formulated to avoid X . Totality is still ensured thanks to the possibility

of renaming bound variables—in terms and inhabitants of A alike [via the modified axiom

(S5)]. ⊓⊔

The above theorem says that if the structure A is assumed to be “almost” a CE renset, save

for additional restrictions involving the avoidance of X , then there exists a unique “almost”

CE renset morphism—satisfying the CE renset morphism conditions restricted so that the

bound and renaming-participating variables avoid X . It is the renaming-based counterpart of

the nominal Theorem 2.

In regards to the relative expressiveness of these two recursion principles (Theorems 10

and 2), it seems difficult to find an example that is definable by one but not by the other.

In particular, our principle can seamlessly define standard nominal examples [52, 53] such

as the length of a term, the counting of λ-abstractions or of the free-variables occurrences,

and term-for-variable substitution—Sect. 6.3 gives details. However, as we will discuss in

Sect. 6.1, we found an important class of examples where our renaming-based principle is

significantly easier to deploy: that of interpreting syntax in semantic domains.

5.3 Full-Fledged Primitive Recursion

Theorem 10 restricts the recursive behavior to iteration, which allows the value of the defined

function f on a term t to depend on the value of f on the components of t . For example, if t has

the form Ap t1 t2, then f t can depend on f t1 and f t2. This can routinely be extended to full

primitive recursion, which additionally allows the dependence on the components themselves

(not necessarily through f), e.g., on t1 and t2. Most recursors for syntax with bindings

(including those we list later in Fig. 3) admit full primitive recursion enhancements. Our

Theorem 10 is no exception—here is its enhancement, where we highlighted the additions:

A full-recursion constructor-enriched renset (FRCE renset for short) is a tuple A =

(A, _[_/_],VrA,ApA, LmA) where:

– (A, _[_/_]) is a renset

123

 23 Page 12 of 27 A. Popescu

– VrA : Var → A, ApA : Trm → A → Trm → A → A, LmA : Var → Trm → A →

A are operators on A with arities matching those of the term constructors

such that the following properties hold for all x, y, z ∈ Var � X , t, t1, t2 ∈ Trm and

a, a1, a2 ∈ Trm:

(RS1) (VrA x)[y/z] = VrA(x[y/z])

(RS2) (ApA t1 a1 t1 a2)[y/z] = ApA (t1[y/z]) (a1[y/z]) (t2[y/z]) (a2[y/z])

(RS3) if x /∈ {y, z} then (LmAx t a)[y/z] = LmAx (t[y/z]) (a[y/z])

(RS4) (LmAx t a)[y/x] = LmA x t a

(RS5) if z �= y then LmAx (t[z/y]) (a[z/y]) = LmAy (t[z/y][y/x]) (a[z/y][y/x])

Theorem 11 (See [58], theory FRBCE_Rensets, theorems f_Vr, f_Ap, f_Lm, f_subst and

f_unique)

Let X be a finite set and A = (A, _[_/_],VrA,ApA, LmA) be a FRCE renset. Then there

exists a unique function f : Trm → A such that the following hold:

(i) f (Vr x) = VrA x

(ii) f (Ap t1 t2) = ApA t1 (f t1) t2 (f t2)

(iii) f (Lm x t) = LmA x t (f t) if x /∈ X

(iv) f (t[y/z]) = (f t)[y/z] if y, z /∈ X

6 Example Functions Definable with the Renaming-Based Recursor

In this section, we show how to deploy our renaming-based recursor in function definitions.

We start with a detailed discussion of semantic interpretation (Sect. 6.1), arguing that in this

case renaming-based recursion fares better than the state-of-the-art nominal logic solution.

Then we show other examples from the literature: some that fall under the semantic inter-

pretation pattern (Sect. 6.2), and others that do not (Sect. 6.3). We believe that this varied list

of examples evidences the wide versatility of renaming-based recursion.

6.1 Semantic Interpretation

Semantic interpretations, also known as denotations (or denotational semantics), are pervasive

in the meta-theory of logics and λ-calculi, for example when interpreting first-order logic

(FOL) formulas in FOL models, or untyped or simply-typed λ-calculus or higher-order logic

terms in specific models (such as full-frame or Henkin models). In what follows, we will

focus on λ-terms and Henkin models, but the ideas discussed apply broadly to any kind of

statically scoped interpretation of terms or formulas involving binders.

Let D be a set and ap : D → D → D and lm : (D → D) → D be operators

modeling semantic notions of application and abstraction. An environment will be a function

ξ : Var → D. Given x, y ∈ Var and d, e ∈ D, let us write ξ 〈x := d〉 for ξ updated with

value d for x (i.e., acting like ξ on all variables except for x where it returns d); and let us

write ξ 〈x := d, y := e〉 instead of ξ 〈x := d〉〈y := e〉.

Say one wants to interpret λ-terms in the semantic domain D in the context of environ-

ments, i.e., define the function sem : Trm → (Var → D) → D that maps syntactic to

semantic constructs; e.g., one would like to have:

– sem (Lm x (Ap x x)) ξ = lm(d �→ ap d d) (regardless of ξ)

123

Rensets and Renaming-Based Recursion for Syntax... Page 13 of 27 23

– sem (Lm x (Ap x y)) ξ = lm(d �→ ap d (ξ y)) (assuming x �= y)

where we use d �→ . . . to describe functions in D → D, e.g., d �→ ap d d is the function

sending every d ∈ D to ap d d .

The definition should therefore naturally go recursively by the clauses:

(1) sem (Vr x) ξ = ξ x (2) sem (Ap t1 t2) ξ = ap (sem t1 ξ) (sem t2 ξ)

(3) sem (Lm x t) ξ = lm (d �→ sem t (ξ 〈x := d〉))

Of course, since Trm is not a free datatype, these clauses do not work out of the box,

i.e., do not form a definition (yet)—this is where binding-aware recursion principles such as

Theorems 10 and 2 could step in. We will next try them both.

The three clauses above already determine constructor operations VrI , ApI and LmI on

the set of interpretations, I = (Var → D) → D, namely:

– VrI : Var → I by VrI x i ξ = ξ x

– ApI : I → I → I by ApI i1 i2 ξ = ap (i1 ξ) (i2 ξ)

– LmI : Var → I → I by LmI x i ξ = lm (d �→ i (ξ 〈x := d〉))

To apply the renaming-based recursion principle from Theorem 10, one must further

define a renaming operator on I . Since the only chance to successfully apply this principle

is if sem commutes with renaming, the definition should be inspired by the question: How

can sem(t[y/x]) be determined from sem t , y and x? The answer is:

(4) sem (t[y/x]) ξ = (sem t) (ξ 〈x := ξ y〉),

yielding an operator [_/_]I : I → Var → Var → I defined by i [y/x]I ξ = i (ξ 〈x := ξ y〉).

It is not difficult to verify that I = (I , [_/_]I ,VrI ,ApI , LmI) is a CE renset—for exam-

ple, Isabelle’s automatic methods discharge all the goals. This means Theorem 10 (or, since

here one doesn’t need Barendregt’s variable convention, already Theorem 7) is applicable,

and gives us a unique function sem that commutes with the constructors, i.e., satisfies clauses

(1)–(3) (which are instances of the clauses (i)–(iii) from Theorem 10), and additionally com-

mutes with renaming, i.e., satisfies clause (4) (which is an instances of the clause (iv) from

Theorem 10). (See [58], theory Examples.)

On the other hand, to apply nominal recursion for defining sem, one must identify a

swapping operator on I . Similarly to the case of renaming, this identification process is

guided by the goal of determining sem(t[x ∧ y]) from sem t , x and y, leading to (4′)

sem (t[x ∧ y]) ξ = sem t (ξ 〈x := ξ y, y := ξ x〉), which yields the definition of [_∧ _]I

by i [x ∧ y]I ξ = i (ξ 〈x := ξ y, y := ξ x〉). However, as pointed out by Pitts [52, §6.3] (in

the slightly different context of interpreting simply-typed λ-calculus), the nominal recursor

(Theorem 2) does not directly apply (hence neither does our reformulation based on CE

nominal sets, Theorem 9). This is because, in our terminology, the structure I = (I , [_ ∧

_]I ,VrI ,ApI , LmI) is not a CE nominal set. The problematic condition is FCB (the freshness

condition for binders), requiring that x #I (LmI x i) holds for all i ∈ I . Expanding the

definition of #I (the nominal definition of freshness from swapping, recalled in Sect. 2.2)

and the definitions of [_∧_]I and LmI , one can see that x #I (LmI x i) means the following:

lm (d �→ i (ξ 〈x := ξ y, y := ξ x〉〈x := d〉)) = lm (d �→ i (ξ 〈x := d〉)), i.e., lm (d �→

i (ξ 〈x := d, y := ξ x〉) = lm (d �→ i (ξ 〈x := d〉)), holds for all but a finite number of

variables y.

The only chance for the above to be true is if i , when applied to an environment, ignores

the value of y in that environment for all but a finite number of variables y; in other words,

i only analyzes the value of a finite number of variables in that environment—but this is not

123

 23 Page 14 of 27 A. Popescu

guaranteed to hold for arbitrary elements i ∈ I . To repair this, Pitts engages in a form of

induction–recursion [21], carving out from I a smaller domain that is still large enough to

interpret all terms, then proving that both FCB and the other axioms hold for this restricted

domain. It all works out in the end, but the technicalities are quite involved.

Although FCB is not required by the renaming-based principle, note incidentally that this

condition would actually be true (and immediate to check) if working with freshness defined

not from swapping but from renaming. Indeed, the renaming-based version of x #I (LmI x i)

says that lm (d �→ i (ξ 〈x := ξ y〉〈x := d〉)) = lm (d �→ i (ξ 〈x := d〉)) holds for all y (or at

least for some y �= x)—which is immediate since ξ 〈x := ξ y〉〈x := d〉 = ξ 〈x := d〉. This

further illustrates the idea that semantic domains ‘favor’ renaming over swapping.

In conclusion, for interpreting syntax in semantic domains, our renaming-based recursor

is trivial to apply, whereas the nominal recursor requires some fairly involved additional

definitions and proofs.

6.2 Two Instances of the Semantic Interpretation Pattern

For the next two examples, taken from the literature on HOAS and nominal logic, we deploy

the semantic interpretation solution discussed in Sect. 6.1. Indeed, the notion of semantic

domain can be chosen flexibly, to also cover certain purely syntactic operators as well. (For

the formalization of these two examples, see [58], theory Examples.)

6.2.1 Number of Bound Variables

Consider the task of defining an operator cbv : Trm → N that counts the number of bound

variables occurring in a term. In his book [53], Pitts defines it following the approach of

Schürmann et al. [63] as cbv t = cbvs t (x �→ 0), where the auxiliary function cbvs :

Trm → (Var → N) → N operates according the following recursive clauses:

(1) cbvs (Vr x) ξ = ξ x

(2) cbvs (Ap t1 t2) ξ = (cbvs t1 ξ) + (cbvs t2 ξ)

(3) cbvs (Lm x t) ξ = cbvs t (ξ 〈x := 1〉)

Thus, this situation is seen as a particular case of semantic interpretation. (The same compli-

cations as with semantic interpretation arise with deploying the nominal recursor, and Pitts

deploys a similar workaround.)

6.2.2 Eta-Reducibility Checking

When illustrating his parametric HOAS approach, Chlipala defines a function canEta :

Term → Bool that checks whether a term can eta expand (i.e., is an eta-redex) [18, Fig.

3]. canEta is defined as follows:

canEta t =

⎧

⎨

⎩

true , ifthas the formLm x (Ap s x)

and canEta′ s (⊤〈x := false〉) = true

false , otherwise

where ⊤ is the environment sending all variables to true and canEta′ : Term → (Var →

Bool) → Bool is such that canEta′ t ξ checks whether the variables that are assigned false in

the environments are fresh for the term t . Chlipala defines ‘canEta’ using parametric HOAS,

123

Rensets and Renaming-Based Recursion for Syntax... Page 15 of 27 23

which seems to essentially equivalent to the semantic domain interpretation pattern. In this

case, the definitional clauses for canEta′, translated into our formalism, are the following:

(1) canEta′ (Vr x) ξ = ξ x

(2) canEta′ (Ap t1 t2) ξ = (canEta′ t1 ξ) & (canEta′ t2 ξ)

(3) canEta′ (Lm x t) ξ = canEta′ t (ξ 〈x := true〉)

canEta can of course be alternatively defined by other means, e.g., using the free-variable

operator.

6.3 Other Examples

Next we show a few other examples, purely syntactic in nature. For each of them, we will

not indicate the required CE renset or BCE renset. Rather, we show the clauses describing

the behavior of the defined function with respect to the constructors and renaming—from

these, the corresponding structure on the target domain can be easily inferred, like we did in

Sect. 6.1. In each case, the verification of the necessary properties to deploy our Theorem 10

is trivial. (See [58], theory Examples.)

The length of a term [52, Example 4.2], length : Term → N.

– length (Vr x) = 1

– length (Ap t1 t2) = max (length t1, length t2) + 1

– length (Lm x t) = length t + 1

– length (t [x/y]) = length t

Counting λ-abstractions [53, Example 8.18], clam : Term → N.

– clam (Vr x) = 0

– clam (Ap t1 t2) = clam t1 + clam t2
– clam (Lm x t) = clam t + 1

– clam (t [x/y]) = clam t

Counting the number of free occurrences of a variable, cfv : Term → Var → N.

– cfv (Vr y) x = (if x = y then 1 else 0)

– cfv (Ap t1 t2) x = cfv t1 x + cfv t2 x

– cfv (Lm y t) x = (if x = y then 0 else cfv t x)

– cfv (t[z/y]) x =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cfv t x , if x /∈ {y, z}

cfv t x + cfv t y , if x = z �= y

0 , if x = y �= z

cfv t y , if x = y = z

Term-for-variable substitution [53, Example 8.18], _[[_ /_]] : Trm → Trm → Var → Trm.

– (Vr y) [[s/x]] =

{

s , if x = y

Vr y , otherwise
– (Ap t1 t2) [[s/x]] = Ap (t1 [[s/x]]) (t2 [[s/x]])

– (Lm y t) [[s/x]] = Lm y (t [[s/x]]) if y /∈ {x} ∪ FV s

– t [y/z] [[s/x]] = t [[s/x]] [y/z] if y, z /∈ {x} ∪ FV s

(So here one applies the recursion principle with the Barendregt parameter X taken to be

{x} ∪ FV s.)

123

 23 Page 16 of 27 A. Popescu

Defining (capture-avoiding) parallel substitution, _[[_]] : Trm → (Var →fin Trm) →

Var → Trm, where Var →fin Trm is the set of functions ρ : Var → Trm having supp ρ

finite (where supp ρ consists of all variables x such that ρ x �= Vr s), is similar:

– (Vr y) [[ρ]] = ρ y

– (Ap t1 t2) [[ρ]] = Ap (t1 [[ρ]]) (t2 [[ρ]])

– (Lm y t) [[ρ]] = Lm y (t [[ρ]]) if y /∈ supp ρ

– t [y/z] [[ρ]] = t [[ρ]] [y/z] if y, z /∈ supp ρ and y, z /∈ FV (ρ x) for all x ∈ Var.

(So here one applies the recursion principle with the Barendregt parameter X taken to be

supp ρ ∪ {FV (ρ x) | x ∈ supp ρ}.)

7 Isabelle Formalization

Our Isabelle formalization of this paper’s results is available from the Archive of Formal

Proofs [58]. Next we will describe the overall structure of this formalization, after briefly

recalling the locale modularization mechanism—which has been instrumental in the formal-

ization.

7.1 Primer on Isabelle’s Locales

The formalization makes heavy use of locales [9, 40], which are an elegant mechanism for

managing structures and assumptions in Isabelle. A locale fixes some types, constants and

assumptions. One can perform definitions and prove theorems inside a locale, and everything

happens relative to the entities fixed in that locale. Viewed from outside the locale, all these

definitions and theorems are (1) polymorphic in that locale’s fixed types, (2) universally

quantified over that locale’s constants, and (3) conditioned by that locale’s assumptions. A

locale can extend other locales (thus inheriting all their types, constants and assumptions).

A locale can be interpreted at the top level (of an Isabelle theory) by providing concrete

types and constants for that locale’s fixed types and constants, and verifying the locale’s

assumptions; after a successful interpretation, all the definitions performed and theorems

proved in a locale are automatically instantiated for these concrete types and constants. A

locale L1 can also be interpreted relative to another locale L2 by establishing a sublocale

relationship L1 < L2. This amounts to showing that the entities of L1 can provide an

interpretation for those of L2; i.e., assuming the fixed types, constants and assumptions of

L1, one identifies some types and constants that instantiate those of L2, and verifies the

assumptions of L2.

As can be seen from the above description, locales are useful for developing the mathemat-

ics of algebraic structures, such as groups, rings, fields etc. Then (top-level) interpretations

provide particular examples of such structures, e.g., interpreting the ring locale into the par-

ticular ring of integers. Moreover, sublocale relationships are useful for showing the inclusion

between two types of structures, e.g., fields are particular kinds of rings, or more generally

to show that one type of structure induces another type of structure.

7.2 Overview of the Formalization

The Isabelle/HOL formalization of this paper’s results and examples has the theory struc-

ture shown in Fig. 1, where the theories have self-explanatory names. It consists of 2000

123

Rensets and Renaming-Based Recursion for Syntax... Page 17 of 27 23

Fig. 1 The Isabelle theories

LOC in total, of which 900 LOC are dedicated to preliminary results on syntax (theory

Lambda_Terms), 900 to the results leading to the theorems on comparison with nominal sets

and recursion principles, and 200 LOC on examples (theory Examples).

Locales have been instrumental in keeping our development structured and concise. We

have introduced the following locales:

– Renset, which fixes the type A and the renaming operator _[_/_] and assumes the renset

axioms.

– Renset_FinSupp, which includes Renset and adds the finite support assumption.

– Renset_Morphism, which includes two copies of Renset_FinSupp, say with fixed types

A and B, and fixes a function f : A → B assumed to be a renset morphism.

– Pre_Nominal_Set, which fixes the type A and the swapping operator _[_∧_] and assumes

the pre-nominal set axioms.

– Nominal_Set extends Pre_Nominal_Set with the Finite Support axiom, obtaining the

nominal set axioms.

– Nominal_Morphism, which is similar to Renset_Morphism, but for expressing nominal

set morphisms on top of two copies of Nominal_Set.

– CE_Renset, which includes Renset and adds the additional constructor operators and

assumptions of CE rensets.

– BCE_Renset (read “Barendregt CE renset”), which includes Renset and adds a set of

variables X and the additional constructor operators and assumptions of “CE rensets up

to the avoidance of X”, i.e., the assumptions of Theorem 10.

– FRBCE_Renset (read “full-recursion Barendregt CE renset”), which includes Renset and

adds the constants and assumptions from Theorem 11 (the extension of Theorem 10 to

full-fledged recursion described in Sect. 5.3).

123

 23 Page 18 of 27 A. Popescu

Fig. 2 The Isabelle locale Renset

– Sem_Int and Local_Functor, which are locales used for two of our examples (discussed

below).

For example, Fig. 2 show the Isabelle locale Renset which axiomatizes rensets. It fixes

a type ’A (modelled as a type variable) and a renaming (variable-for-variable substitution)

operator on it called vsubstA (which in this paper is denoted by _[_/_]), and assumes the

renset properties (two of which are also declared as simplification rules for reasoning, via

the “simp” attribute). All the facts described in Sect. 3 are proved in the Renset locale.

The connection between rensets satisfying Finite Support and nominal sets described in

Sect. 4 is worked out inside the locales Renset and Renset_Morphism (namely, the swapping

operator is defined, its properties are inferred from the renset axioms, etc.) and finalized in

the form of the sublocale relationships Renset < Nominal_Set and Renset_Morphism <

Nominal_Morphism.

The initiality/recursion principle for rensets from Sect. 5 is proved in the most general

locale, FRBCE_Renset, which features both the Barendregt and the full-fledged recursion

enhancement. In other words, we prove the most general theorem Theorem 11. Then Theo-

rems 10 and 7, which are particular cases, are obtained along the sublocale relationships:

CE_Renset < BCE_Renset < FRBCE_Renset

(Strictly speaking, we don’t need the less general locales CE_Renset and BCE_Renset, but we

kept them in this archive for better documenting the results reported in the main paper.)

The examples of rensets from Sect. 3 and of recursive definitions from Sect. 6 are mostly

formalized as interpretations of the relevant locales, for example, Renset and CE_Renset are

instantiated to the type of terms and its standard operators. There are two exceptions to this

rule. The first is the example of constructing a renset from a functor and another renset,

which is handled via a sublocale relationship: Local_Functor + Renset < Renset, where

the lefthand side is a locale that puts together the assumptions of an operator F acting as a

functor on functions A → A and of A with a renaming operator being a renset.2 The other is

the semantic interpretation example discussed in Sect. 6.1, which is itself abstract (in that it

works with unspecified operators ap and lm) and therefore is formalized via a locale Sem_Int

which fixes these operators and a sublocale relationship Sem_Int < CE_Renset. For all the

examples defined with our recursor, the recursion theorem’s assumptions are discharged

2 We call F a “local functor” because functoriality is only assumed with respect to functions on A; taking
this weaker assumption allows me to model the example using a locale where we fix the type F A along with
A; thus bypassing the problem of locales not allowing to be parameterized by type constructors.

123

Rensets and Renaming-Based Recursion for Syntax... Page 19 of 27 23

automatically by Isabelle with the help of the internal automation (auto, and friends) or the

external automation (Sledgehammer [46]). This brings some experimental evidence for the

ease of deploying the recursor.

8 Conclusion and RelatedWork

This paper introduced and studied rensets, contributing (1) theoretically, minimalistic equa-

tional characterizations of the datatype of terms with bindings and (2) practically, an addition

to the formal arsenal for manipulating syntax with bindings. It is part of a longstanding line

of work by ourselves and collaborators on exploring convenient definition and reasoning

principles for bindings [31, 34, 56, 59, 60], and will be incorporated into the ongoing imple-

mentation of a new Isabelle definitional package for binding-aware datatypes [16].

8.1 Initial Model Characterizations of the Terms Datatype

Our results provide a truly elementary characterization of terms with bindings, as an “ordi-

nary” datatype specified by the fundamental operations only (the constructors plus renaming)

and some equations (those defining CE rensets). As far as specification simplicity goes, this

is “the next best thing” after a completely free datatype such as those of natural numbers or

lists.

Figure 3 shows previous characterizations from the literature, in which terms with bindings

are identified as an initial model (or algebra) of some kind. For each of these, we indicate (1)

the employed reasoning paradigm, (2) whether the initiality/recursion theorem features an

extension with Barendregt’s variable convention, (3) the underlying category (from where

the carriers of the models are taken), (4) the operations and relations on terms to which the

models must provide counterparts and (5) the properties required on the models.

While some of these results enjoy elegant mathematical properties of intrinsic value,

our main interest is in the recursors they enable, specifically in the ease of deploying these

recursors. That is, we are interested in how easy it is in principle to organize the target domain

as a model of the requested type, hence obtain the desired morphism, i.e., get the recursive

definition done. By this measure, elementary approaches relying on standard FOL-like models

whose carriers are sets rather than pre-sheaves have an advantage. Also, it seems intuitive that

a recursor is easier to apply if there are fewer operators, and fewer and structurally simpler

properties required on its models—although empirical evidence of successfully deploying the

recursor in practice should complement the simplicity assessment, to ensure that simplicity

is not sponsored by lack of expressiveness.

The first column in the upper half of Fig. 3’s table contains an influential representative of

the nameless paradigm: the result obtained independently by Fiore et al. [26] and Hofmann

[36] characterizing terms as initial in the category of algebras over the pre-sheaf topos SetF,

where F is the category of finite ordinals and functions between them. The operators required

by algebras are the constructors, as well as the free-variable operator (implicitly as part of

the separation on levels) and the injective renamings (as part of the functorial structure). The

algebra’s carrier is required to be a functor and the constructors to be natural transformations.

There are several variations of this approach, e.g., [5, 15, 36], some implemented in proof

assistants, e.g., [3, 4, 39].

The other columns (in both the upper half and lower half of the figure) refer to initiality

results that are more closely related to ours. They take place within the nameful paradigm,

123

 23 Page 20 of 27 A. Popescu

Fig. 3 Initial model characterizations of the datatype of terms with bindings “ctors” = “constructors”, “perm” =
“permutation”, “fresh” = “the freshness predicate”, “fresh-def" = “clause for defining the freshness predicate”,
“fin-supp” = “Finite Support”

and they all rely on elementary models (with set carriers). Pitts’s already discussed nominal

recursor [52] (based on previous work by Gabbay and Pitts [27]) employs the constructors and

permutation (or swapping), and requires that its models satisfy some Horn clauses for con-

structors, permutation and freshness, together with the second-order properties that (1) define

freshness from swapping and (2) express Finite Support. Urban et al.’s version [68, 69] imple-

mented in Isabelle/Nominal is an improvement of Pitts’s in that it removes the Finite Support

requirement from the models—which is practically significant because it enables non-finitely

supported target domains for recursion. Norrish’s result [44] is explicitly inspired by nomi-

nal logic, but renounces the definability of the free-variable operator from swapping—with

the price of taking both swapping and free-variables as primitives. Our previous work with

Gunter and Gheri takes as primitives either term-for-variable substitution and freshness [59]

or swapping and freshness [31], and requires properties expressed by different Horn clauses

(and does not explore a Barendregt dimension, like Pitts, Urban et al. and Norrish do). Our

previous focus on term-for-variable substitution [59] (as opposed to renaming, i.e., variable-

for-variable substitution) impairs expressiveness—for example, the depth of a term is not

definable using a recursor based on term-for-variable substitution because we cannot say how

term-for-variable substitution affects the depth of a term based on its depth and that of the sub-

stitutee alone. Our results based on rensets keep freshness out of the primitive operators base

(like nominal logic does), and provide unconditionally equational characterizations using

123

Rensets and Renaming-Based Recursion for Syntax... Page 21 of 27 23

only constructors and renaming.3 The key to achieving this minimality is the simple expres-

sion of freshness from renaming in our axiomatization of rensets. In future work, we plan a

systematic formal comparison of the relative expressiveness of all these nameful recursors.

8.2 Recursors in Other Paradigms

Figure 3 focuses on nameful recursors, while considering only the Fiore et al./Hofmann

recursor for the sake of a rough comparison with the nameless approach. We should stress

that such a comparison is necessarily rough, since the nameless recursors do not give the

same “payload” as the nameful ones. This is because of the handling of bound variables. In

the nameless paradigm, the λ-constructor does not explicitly take a variable as an input, as

in Lm x t , i.e., does not have type Var → Trm → Trm. Instead, the bindings are indicated

through nameless pointers to positions in a term. So the nameless λ-constructor, let’s call

it NLm, takes only a term, as in NLm t , i.e., has type Trm → Trm or a scope-safe (poly-

morphic or dependently-typed) variation of this, e.g.,
∏

n∈F
Trmn → Trmn+1 [26, 36] or

∏

α∈Type Trmα → Trmα+unit [5, 15]. The λ-constructor is of course matched by operators in

the considered models, which appears in the clauses of the functions f defined recursively

on terms: Instead of a clause of the form f (Lm x t) = 〈expression depending onxand f t〉

from the nameful paradigm, in the nameless paradigm one gets a clause of the form

f (NLm t) = 〈 expression depending on f t〉. A nameless recursor is usually easier to

prove correct and easier to apply because the nameless constructor NLm is free—whereas

a nameful recursor must wrestle with the non-freeness of Lm, handled by verifying certain

properties of the target models. However, once the definition is done, having nameful clauses

pays off by allowing “textbook-style” proofs that stay close to the informal presentation of a

calculus or logic, whereas with the nameless definition some additional index shifting bureau-

cracy is necessary. (See [13] for a detailed discussion.) Hybrid nameless/nominal solutions

have also been proposed, notably the locally named [42, 55] and locally nameless [7, 17]

representations.

A comparison of nameful recursion with HOAS recursion is also generally difficult, since

major HOAS frameworks such as Abella [8], Beluga [49] or Twelf [48] are developed within

non-standard logical foundations, allowing a λ-constructor of type (Trm → Trm) → Trm,

which is not amenable to typical well-foundedness based recursion but requires some custom

solutions (e.g., [25, 63]). However, the weak HOAS variant [20, 34] employs a constructor of

the formWHLm : (Var → Trm) → Trmwhich is recursable, and in fact yields a free datatype,

let us call it WHTrm—one generated by WHVr : Var → WHTrm, WHAp : WHTrm →

WHTrm → WHTrm and WHLm. WHTrm contains (natural encodings of) all terms but also

additional entities referred to as “exotic terms”. Partly because of the exotic terms, this free

datatype by itself is not very helpful for recursively defining useful functions on terms.

But the situation is dramatically improved if one employs a variant of weak HOAS called

parametric HOAS (PHOAS) [18], i.e., takes Var not as a fixed type but as a type parameter

(type variable) and works with
∏

Var∈Type TrmVar; this enables many useful definitions by

choosing a suitable type Var (usually large enough to make the necessary distinctions) and

then performing standard recursion. The functions definable in the style of PHOAS seem to be

exactly those definable via the semantic domain interpretation pattern (Sect. 6.1): Choosing

3 One could say that De Bruijn representations achieve an even higher level of “purity”, namely absolute
freeness as opposed to freeness modulo an equational theory—but for a different binding constructor, and
with the price of either dealing with dangling references or moving away from the category of sets; see also
Sect. 8.2.

123

 23 Page 22 of 27 A. Popescu

the instantiation of Var to a type T corresponds to employing environments in Var → T . (Our

Sect. 6.3 illustrates this by showing the semantic-domain version of a PHOAS example.)

As a hybrid nameful/HOAS approach we can count Gordon and Melham’s characteriza-

tion of the datatype of terms [33], which employs the nameful constructors but formulates

recursion treating Lm as if recursing in the weak-HOAS datatype WHTrm. Norrish’s recursor

[44] (a participant in Fig. 3) has been inferred from Gordon and Melham’s one. Weak-HOAS

recursion also has interesting connections with nameless recursion: In presheaf toposes such

as those employed by Fiore et al. [26], Hofmann [36] and Ambler et al. [6], for any object

T the function space Var ⇒ T is isomorphic to the De Bruijn level shifting transformation

applied to T ; this effectively equates the weak-HOAS and nameless recursors. A final cross-

paradigm note: In themselves, nominal sets are not confined to the nameful paradigm; their

category is equivalent [27] to the Schanuel topos [38], which is attractive for pursuing the

nameless approach.

8.3 Axiomatizations of Renaming

In his study of name-passing process calculi, Staton [65] considers an enrichment of nominal

sets with renaming (in addition to swapping) and axiomatizes renaming with the help of the

nominal (swapping-defined) freshness predicate. He shows that the resulted category is equiv-

alent to the non-injective renaming counterpart of the Schanuel topos (i.e., the subcategory

of SetF consisting of functors that preserve pullbacks of monos). Gabbay and Hofmann [28]

provide an elementary characterization of the above category, in terms of nominal renaming

sets, which are sets equipped with a multiple-variable-renaming action satisfying identity and

composition laws, and a form of Finite Support (FS). Nominal renaming sets are very related

to rensets satisfying FS. Indeed, any nominal renaming set forms a FS-satisfying renset when

restricted to single-variable renaming; and conversely, any FS-satisfying renset gives rise to

a nominal renaming set. (This relationship, which we conjectured in the conference version

of this paper [57], was proved recently by Pitts [50], see below.) This correspondence seems

similar to the one between the permutation-based and swapping-based alternative axioma-

tizations of nominal sets—in that the two express the same concept up to an isomorphism

of categories. In their paper, Gabbay and Hofmann do not study renaming-based recur-

sion, beyond noting the availability of a recursor stemming from the functor-category view

(which, as we discussed above, enables nameless recursion with a weak-HOAS flavor). Pitts

[54] introduces nominal sets with 01-substitution structure, which axiomatize substitution of

one of two possible constants for variables on top of the nominal axiomatization, and proves

that they form a category that is equivalent with that of cubical sets [14], hence relevant for

the univalent foundations [37].

In recent work [50], Pitts introduces locally nameless sets, an algebraic axiomatization

of syntax under the locally nameless representation, and characterizes the locally nameless

recursor [17] using initiality in a functor category (similarly to recursors in the nameless

setting [26, 36]). He also proves that the category of locally nameless sets is equivalent to

that of finitely supported rensets and to the aforementioned categories considered by Staton

[65] and Gabbay and Hofmann [28]. On the way to his results, Pitts gives an alternative

axiomatization of finitely supported rensets, using instead of the Chaining axiom a simpler

(unconditional) axiom: t[x2/x1][x3/x2] = t[x3/x2][x3/x1].

123

Rensets and Renaming-Based Recursion for Syntax... Page 23 of 27 23

8.4 Early Insight into Renaming and Substitution

In the context of formalizing pure type systems [10, 12], McKinna and Pollack [41, 42]

emphasize closure under renamings as instrumental in reasoning modulo alpha. In follow-up

work, Goguen and McKinna [32] also reduce closure under substitution to closure under

renamings. Stoughton [66] proposes defining parallel substitution on pre-terms by primitive

recursion; in this approach, bound-variable captures are avoided by performing renamings

not on the pre-term but on the substitution function (similarly to how semantic interpretation

proceeds using environments).

8.5 OtherWork

Sun [67] develops universal algebra for first-order languages with bindings (generalizing

work by Aczel [2]) and proves a completeness theorem. Gabbay and Mathijssen [29] axiom-

atize term-for-variable substitution in nominal logic and use it to develop an extension of

first-order logic that internalizes some meta-level concepts [30]. In joint work with Popescu

and Roşu [61], we develop first-order logic and prove completeness on top of a generic syntax

with axiomatized free-variables and substitution.

8.6 RenamingVersus Swapping and Nominal Logic, Final Round

We believe that our work complements rather than competes with nominal logic. Our

results do not challenge the swapping-based approach to defining syntax (defining the alpha-

equivalence on pre-terms and quotienting to obtain terms) recommended by nominal logic,

which is more elegant than a renaming-based alternative; but our easier-to-apply recursor

can be a useful addition even on top of the nominal substratum. Moreover, some of our con-

structions are explicitly inspired by the nominal ones. For example, We started by adapting

the nominal idea of defining freshness from swapping before noticing that renaming enables

a simpler formulation. Our formal treatment of Barendregt’s variable convention also origi-

nates from nominal logic—as it turns out, this idea works equally well in our setting. In fact,

We came to believe that the possibility of a Barendregt enhancement is largely orthogonal

to the particularities of a binding-aware recursor. In future work, we plan to investigate this,

i.e., seek general conditions under which an initiality principle (such as Theorems 9 and 7)

is amenable to a Barendregt enhancement (such as Theorems 2 and 10, respectively).

Acknowledgements I am grateful to the anonymous IJCAR and JAR reviewers, and to Andy Pitts and James
McKinna, for their insightful comments and suggestions, and for pointing out relevant results and related
work, and to Dmitriy Traytel for suggesting the short name “renset”.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

 23 Page 24 of 27 A. Popescu

References

1. Abel, A., Allais, G., Hameer, A., Pientka, B., Momigliano, A., Schäfer, S., Stark, K.: POPLMark reloaded:
mechanizing proofs by logical relations. J. Funct. Program. 29, e19 (2019). https://doi.org/10.1017/
S0956796819000170

2. Aczel, P.: Frege structures and notations in propositions, truth and set. In: The Kleene Symposium, pp.
31–59. North Holland (1980)

3. Allais, G., Atkey, R., Chapman, J., McBride, C., McKinna, J.: A type and scope safe universe of syntaxes
with binding: their semantics and proofs. In: Proceedings of ACM Programming Languages 2(Interna-
tional Conference on Functional Programming (ICFP)), 2018, pp. 90:1–90:30 (2018). https://doi.org/10.
1145/3236785

4. Allais, G., Chapman, J., McBride, C., McKinna, J.: Type-and-scope safe programs and their proofs. In:
Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs
and Proofs, CPP 2017, Paris, France, 16–17 January 2017. pp. 195–207. ACM (2017). https://doi.org/10.
1145/3018610.3018613

5. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized inductive types. In:
Flum, J., Rodríguez-Artalejo, M. (eds.) Computer Science Logic (CSL) 1999. LNCS, vol. 1683, pp.
453–468 (1999). https://doi.org/10.1007/3-540-48168-0_32

6. Ambler, S.J., Crole, R.L., Momigliano, A.: A definitional approach to primitivexs recursion over higher
order abstract syntax. In: Eighth ACM SIGPLAN International Conference on Functional Programming,
Workshop on Mechanized Reasoning About Languages with Variable Binding, MERLIN 2003, Uppsala,
Sweden, August 2003. ACM (2003). https://doi.org/10.1145/976571.976572

7. Aydemir, B.E., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal metatheory.
In: Necula, G.C., Wadler, P. (eds.) Principles of Programming Languages (POPL) 2008, pp. 3–15. ACM
(2008). https://doi.org/10.1145/1328438.1328443

8. Baelde, D., Chaudhuri, K., Gacek, A., Miller, D., Nadathur, G., Tiu, A., Wang, Y.: Abella: a system for
reasoning about relational specifications. J. Formaliz. Reason. 7(2), 1–89 (2014). https://doi.org/10.6092/
issn.1972-5787/4650

9. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Reason. 52(2), 123–153
(2014). https://doi.org/10.1007/s10817-013-9284-7

10. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types. Perspectives in Logic. Cam-
bridge University Press (2013). http://www.cambridge.org/de/academic/subjects/mathematics/logic-
categories-and-sets/lambda-calculus-types

11. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, Studies in Logic, vol. 40. Elsevier,
Amsterdam (1984)

12. Berardi, S.: Towards a Mathematical Analysis of the Coquand–Huet Calculus of Constructions and the
Other Systems in Barendregt’s Cube. Technical Report. CMU-CS-88-131. CMU, Department of Com-
puter Science and Universita di Torino, Dipartimento Matematica (1988)

13. Berghofer, S., Urban, C.: A head-to-head comparison of de Bruijn indices and names. Electron. Notes
Theor. Comput. Sci. 174(5), 53–67 (2007). https://doi.org/10.1016/j.entcs.2007.01.018

14. Bezem, M., Coquand, T., Huber, S.: A model of type theory in cubical sets. In: Matthes, R., Schubert,
A. (eds.) 19th International Conference on Types for Proofs and Programs, TYPES 2013, 22–26 April
2013, Toulouse, France. LIPIcs, vol. 26, pp. 107–128. Schloss Dagstuhl-Leibniz-Zentrum für Informatik
(2013). https://doi.org/10.4230/LIPIcs.TYPES.2013.107

15. Bird, R.S., Paterson, R.: De Bruijn notation as a nested datatype. J. Funct. Program. 9(1), 77–91 (1999).
https://doi.org/10.1017/S0956796899003366

16. Blanchette, J.C., Gheri, L., Popescu, A., Traytel, D.: Bindings as bounded natural functors. In: Proceed-
ings of ACM Programming Languages 3(POPL), 2019, pp. 22:1–22:34 (2019). https://doi.org/10.1145/
3290335

17. Charguéraud, A.: The locally nameless representation. J. Autom. Reason. 49(3), 363–408 (2012). https://
doi.org/10.1007/s10817-011-9225-2

18. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics. In: Hook, J., Thiemann,
P. (eds.) International Conference on Functional Programming (ICFP), 2008, pp. 143–156. ACM (2008).
https://doi.org/10.1145/1411204.1411226

19. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manip-
ulation, with application to the Church–Rosser theorem. Indag. Math 75(5), 381–392 (1972). https://doi.
org/10.1016/1385-7258(72)90034-0

20. Despeyroux, J., Felty, A.P., Hirschowitz, A.: Higher-order abstract syntax in Coq. In: Dezani-Ciancaglini,
M., Plotkin, G.D. (eds.) Typed Lambda Calculi and Applications (TLCA) 1995, LNCS, vol. 902, pp. 124–
138. Springer (1995). https://doi.org/10.1007/BFb0014049

123

https://doi.org/10.1017/S0956796819000170
https://doi.org/10.1017/S0956796819000170
https://doi.org/10.1145/3236785
https://doi.org/10.1145/3236785
https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1145/976571.976572
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.1007/s10817-013-9284-7
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
https://doi.org/10.1016/j.entcs.2007.01.018
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1145/3290335
https://doi.org/10.1145/3290335
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/BFb0014049

Rensets and Renaming-Based Recursion for Syntax... Page 25 of 27 23

21. Dybjer, P.: A general formulation of simultaneous inductive–recursive definitions in type theory. J. Symb.
Log. 65(2), 525–549 (2000). https://doi.org/10.2307/2586554

22. Felty, A.P., Momigliano, A.: Hybrid: a definitional two-level approach to reasoning with higher-order
abstract syntax. J. Autom. Reason. 48(1), 43–105 (2012). https://doi.org/10.1007/s10817-010-9194-x

23. Felty, A.P., Momigliano, A., Pientka, B.: The next 700 challenge problems for reasoning with higher-order
abstract syntax representations—Part 2—a survey. J. Autom. Reason. 55(4), 307–372 (2015). https://doi.
org/10.1007/s10817-015-9327-3

24. Felty, A.P., Momigliano, A., Pientka, B.: An open challenge problem repository for systems supporting
binders. In: Cervesato, I., Chaudhuri, K. (eds.) Proceedings Tenth International Workshop on Logical
Frameworks and Meta Languages: Theory and Practice, LFMTP 2015, Berlin, Germany, 1 August 2015.
EPTCS, vol. 185, pp. 18–32 (2015). https://doi.org/10.4204/EPTCS.185.2

25. Ferreira, F., Pientka, B.: Programs using syntax with first-class binders. In: Yang, H. (ed.) Programming
Languages and Systems—26th European Symposium on Programming, ESOP 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, 22–29
April 2017. Proceedings. Lecture Notes in Computer Science, vol. 10201, pp. 504–529. Springer (2017).
https://doi.org/10.1007/978-3-662-54434-1_19

26. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: Logic in Computer Science
(LICS), 1999, pp. 193–202. IEEE Computer Society (1999). https://doi.org/10.1109/LICS.1999.782615

27. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax involving binders. In: Logic in Computer
Science (LICS), 1999, pp. 214–224. IEEE Computer Society (1999). https://doi.org/10.1109/LICS.1999.
782617

28. Gabbay, M.J., Hofmann, M.: Nominal renaming sets. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
Logic for Programming, Artificial Intelligence, and Reasoning, 15th International Conference, LPAR
2008, Doha, Qatar, 22–27 November 2008. Proceedings. Lecture Notes in Computer Science, vol. 5330,
pp. 158–173. Springer (2008)

29. Gabbay, M.J., Mathijssen, A.: Capture-avoiding substitution as a nominal algebra. Form. Asp. Comput.
20(4–5), 451–479 (2008). https://doi.org/10.1007/s00165-007-0056-1

30. Gabbay, M.J., Mathijssen, A.: One-and-a-halfth-order logic. J. Log. Comput. 18(4), 521–562 (2008).
https://doi.org/10.1093/logcom/exm064

31. Gheri, L., Popescu, A.: A formalized general theory of syntax with bindings: extended version. J. Autom.
Reason. 64(4), 641–675 (2020). https://doi.org/10.1007/s10817-019-09522-2

32. Goguen, H., McKinna, J.: Candidates for Substitution. Technical Report. ECS-LFCS-97-358. University
of Edinburgh, School of Informatics (1997). https://www.lfcs.inf.ed.ac.uk/reports/97/ECS-LFCS-97-
358/

33. Gordon, A.D., Melham, T.F.: Five axioms of alpha-conversion. In: von Wright, J., Grundy, J., Harrison,
J. (eds.) Theorem Proving in Higher Order Logics, 9th International Conference, TPHOLs’96, Turku,
Finland, 26–30 August 1996, Proceedings. Lecture Notes in Computer Science, vol. 1125, pp. 173–190.
Springer (1996). https://doi.org/10.1007/BFb0105404

34. Gunter, E.L., Osborn, C.J., Popescu, A.: Theory support for weak higher order abstract syntax in
Isabelle/HOL. In: Cheney, J., Felty, A.P. (eds.) Logical Frameworks and Meta-languages: Theory and
Practice (LFMTP), 2009, pp. 12–20. ACM (2009). https://doi.org/10.1145/1577824.1577827

35. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. In: Logic in Computer Science
(LICS), 1987, pp. 194–204. IEEE Computer Society (1987). https://doi.org/10.1145/138027.138060

36. Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: Logic in Computer Science (LICS),
1999, pp. 204–213. IEEE Computer Society (1999). https://doi.org/10.1109/LICS.1999.782616

37. Institute for Advanced Study: The Univalent Foundations Program: Homotopy Type Theory. Univalent
Foundations of Mathematics. Institute for Advanced Study (2013). https://homotopytypetheory.org/book

38. Johnstone, P.T.: Quotients of decidable objects in a topos. Math. Proc. Camb. Philos. Soc. 93, 409–419
(1983). https://doi.org/10.1017/S0305004100060734

39. Kaiser, J., Schäfer, S., Stark, K.: Binder aware recursion over well-scoped de Bruijn syntax. In: Andron-
ick, J., Felty, A.P. (eds.) Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, Los Angeles, CA, USA, 8–9 January 2018. pp. 293–306. ACM (2018).
https://doi.org/10.1145/3167098

40. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales—a sectioning concept for Isabelle. In: Bertot, Y.,
Dowek, G., Hirschowitz, A., Paulin-Mohring, C., Théry, L. (eds.) Theorem Proving in Higher Order
Logics, 12th International Conference, TPHOLs’99, Nice, France, September 1999, Proceedings. Lecture
Notes in Computer Science, vol. 1690, pp. 149–166. Springer (1999). https://doi.org/10.1007/3-540-
48256-3_11

41. McKinna, J., Pollack, R.: Pure type systems formalized. In: Bezem, M., Groote, J.F. (eds.) Typed Lambda
Calculi and Applications, International Conference on Typed Lambda Calculi and Applications, TLCA

123

https://doi.org/10.2307/2586554
https://doi.org/10.1007/s10817-010-9194-x
https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.4204/EPTCS.185.2
https://doi.org/10.1007/978-3-662-54434-1_19
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.1999.782617
https://doi.org/10.1109/LICS.1999.782617
https://doi.org/10.1007/s00165-007-0056-1
https://doi.org/10.1093/logcom/exm064
https://doi.org/10.1007/s10817-019-09522-2
https://www.lfcs.inf.ed.ac.uk/reports/97/ECS-LFCS-97-358/
https://www.lfcs.inf.ed.ac.uk/reports/97/ECS-LFCS-97-358/
https://doi.org/10.1007/BFb0105404
https://doi.org/10.1145/1577824.1577827
https://doi.org/10.1145/138027.138060
https://doi.org/10.1109/LICS.1999.782616
https://homotopytypetheory.org/book
https://doi.org/10.1017/S0305004100060734
https://doi.org/10.1145/3167098
https://doi.org/10.1007/3-540-48256-3_11
https://doi.org/10.1007/3-540-48256-3_11

 23 Page 26 of 27 A. Popescu

’93, Utrecht, The Netherlands, 16–18 March 1993, Proceedings. Lecture Notes in Computer Science, vol.
664, pp. 289–305. Springer (1993). https://doi.org/10.1007/BFb0037113

42. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. J. Autom. Reason. 23(3–4),
373–409 (1999)

43. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. LNCS,
vol. 2283. Springer, Berlin (2002)

44. Norrish, M.: Recursive function definition for types with binders. In: Slind, K., Bunker, A., Gopalakrish-
nan, G. (eds.) Theorem Proving in Higher Order Logics (TPHOLs), 2004, LNCS, vol. 3223, pp. 241–256.
Springer (2004). https://doi.org/10.1007/978-3-540-30142-4_18

45. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reason. 5(3), 363–397 (1989).
https://doi.org/10.1007/BF00248324

46. Paulson, L.C., Blanchette, J.C.: Three years of experience with sledgehammer, a practical link between
automatic and interactive theorem provers. In: Sutcliffe, G., Schulz, S., Ternovska, E. (eds.) The 8th
International Workshop on the Implementation of Logics, IWIL 2010, Yogyakarta, Indonesia, 9 October
2011. EPiC Series in Computing, vol. 2, pp. 1–11. EasyChair (2010). https://doi.org/10.29007/36dt

47. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Wexelblat, R.L. (ed.) Programming Language
Design and Implementation (PLDI), 1988, pp. 199–208. ACM (1988). https://doi.org/10.1145/53990.
54010

48. Pfenning, F., Schürmann, C.: System description: Twelf—a meta-logical framework for deductive sys-
tems. In: Ganzinger, H. (ed.) Conference on Automated Deduction (CADE), 1999, LNCS, vol. 1632, pp.
202–206. Springer (1999). https://doi.org/10.1007/3-540-48660-7_14

49. Pientka, B.: Beluga: programming with dependent types, contextual data, and contexts. In: Blume, M.,
Kobayashi, N., Vidal, G. (eds.) Functional and Logic Programming (FLOPS), 2010, LNCS, vol. 6009,
pp. 1–12. Springer (2010). https://doi.org/10.1007/978-3-642-12251-4_1

50. Pitts, A.: Locally nameless sets. In: Proceedings of ACM Programming Languages 7(POPL), 2023 (2023)
51. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186(2), 165–193

(2003). https://doi.org/10.1016/S0890-5401(03)00138-X
52. Pitts, A.M.: Alpha-structural recursion and induction. J. ACM 53(3), 459–506 (2006). https://doi.org/10.

1145/1147954.1147961
53. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical

Computer Science, Cambridge University Press, Cambridge (2013)
54. Pitts, A.M.: Nominal presentation of cubical sets models of type theory. In: Herbelin, H., Letouzey, P.,

Sozeau, M. (eds.) 20th International Conference on Types for Proofs and Programs (TYPES 2014).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 39, pp. 202–220. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl (2015). http://drops.dagstuhl.de/opus/volltexte/2015/5498

55. Pollack, R., Sato, M., Ricciotti, W.: A canonical locally named representation of binding. J. Autom.
Reason. 49(2), 185–207 (2012)

56. Popescu, A.: Contributions to the theory of syntax with bindings and to process algebra. PhD Thesis,
University of Illinois at Urbana-Champaign (2010). https://www.andreipopescu.uk/pdf/thesisUIUC.pdf

57. Popescu, A.: Rensets and renaming-based recursion for syntax with bindings. In: Blanchette, J., Kovacs,
L., Pattinson, D. (eds.) International Joint Conference on Automated Reasoning (IJCAR), 2022. Lecture
Notes in Computer Science, vol. 13385, pp. 618–639. Springer (2022)

58. Popescu, A.: Renaming-enriched sets (rensets) and renaming-based recursion. In: Archives of Formal
Proofs 2023 (2023). https://www.isa-afp.org/entries/Rensets.html

59. Popescu, A., Gunter, E.L.: Recursion principles for syntax with bindings and substitution. In: Chakravarty,
M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding of the 16th ACM SIGPLAN international conference on
Functional Programming, ICFP 2011, Tokyo, Japan, 19–21 September 2011, pp. 346–358. ACM (2011).
https://doi.org/10.1145/2034773.2034819

60. Popescu, A., Gunter, E.L., Osborn, C.J.: Strong normalization for system F by HOAS on top of FOAS.
In: Logic in Computer Science (LICS), 2010, pp. 31–40. IEEE Computer Society (2010). https://doi.org/
10.1109/LICS.2010.48

61. Popescu, A., Roşu, G.: Term-generic logic. Theor. Comput. Sci. 577, 1–24 (2015)
62. Schäfer, S., Tebbi, T., Smolka, G.: Autosubst: reasoning with de Bruijn terms and parallel substitutions.

In: Urban, C., Zhang, X. (eds.) Interactive Theorem Proving (ITP), 2015, LNCS, vol. 9236, pp. 359–374.
Springer (2015). https://doi.org/10.1007/978-3-319-22102-1_24

63. Schürmann, C., Despeyroux, J., Pfenning, F.: Primitive recursion for higher-order abstract syntax. Theor.
Comput. Sci. 266(1–2), 1–57 (2001). https://doi.org/10.1016/S0304-3975(00)00418-7

64. Stark, K.: Mechanising syntax with binders in Coq. PhD Thesis, Saarland University, Saarbrücken (2020).
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28822

123

https://doi.org/10.1007/BFb0037113
https://doi.org/10.1007/978-3-540-30142-4_18
https://doi.org/10.1007/BF00248324
https://doi.org/10.29007/36dt
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/53990.54010
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/978-3-642-12251-4_1
https://doi.org/10.1016/S0890-5401(03)00138-X
https://doi.org/10.1145/1147954.1147961
https://doi.org/10.1145/1147954.1147961
http://drops.dagstuhl.de/opus/volltexte/2015/5498
https://www.andreipopescu.uk/pdf/thesisUIUC.pdf
https://www.isa-afp.org/entries/Rensets.html
https://doi.org/10.1145/2034773.2034819
https://doi.org/10.1109/LICS.2010.48
https://doi.org/10.1109/LICS.2010.48
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1016/S0304-3975(00)00418-7
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28822

Rensets and Renaming-Based Recursion for Syntax... Page 27 of 27 23

65. Staton, S.: Name-Passing Process Calculi: Operational Models and Structural Operational Semantics.
Technical Report. UCAM-CL-TR-688. University of Cambridge, Computer Laboratory (2007). https://
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf

66. Stoughton, A.: Substitution revisited. Theor. Comput. Sci. 59, 317–325 (1988). https://doi.org/10.1016/
0304-3975(88)90149-1

67. Sun, Y.: An algebraic generalization of Frege structures—binding algebras. Theor. Comput. Sci. 211(1–2),
189–232 (1999)

68. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356 (2008). https://doi.
org/10.1007/s10817-008-9097-2

69. Urban, C., Berghofer, S.: A recursion combinator for nominal datatypes implemented in Isabelle/HOL.
In: Furbach, U., Shankar, N. (eds.) International Joint Conference on Automated Reasoning (IJCAR),
2006, LNCS, vol. 4130, pp. 498–512. Springer (2006). https://doi.org/10.1007/11814771_41

70. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s variable convention in rule inductions. In: Pfenning, F.
(ed.) Conference on Automated Deduction (CADE), 2007, LNCS, vol. 4603, pp. 35–50. Springer (2007).
https://doi.org/10.1007/978-3-540-73595-3_4

71. Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in Nominal Isabelle. Log. Methods
Comput. Sci. (2012). https://doi.org/10.2168/LMCS-8(2:14)2012

72. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) Conference on
Automated Deduction (CADE), 2005. LNCS, vol. 3632, pp. 38–53. Springer (2005). https://doi.org/10.
1007/11532231_4

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf
https://doi.org/10.1016/0304-3975(88)90149-1
https://doi.org/10.1016/0304-3975(88)90149-1
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1007/11814771_41
https://doi.org/10.1007/978-3-540-73595-3_4
https://doi.org/10.2168/LMCS-8(2:14)2012
https://doi.org/10.1007/11532231_4
https://doi.org/10.1007/11532231_4

	Rensets and Renaming-Based Recursion for Syntax with Bindings Extended Version
	Abstract
	1 Introduction
	2 Background
	2.1 Terms with Bindings
	2.2 Background on Nominal Logic

	3 Rensets
	4 Connection to Nominal Sets
	5 Recursion Based on Rensets
	5.1 Equational Characterization of the Term Datatype
	5.2 Barendregt-Enhanced Recursion Principle
	5.3 Full-Fledged Primitive Recursion

	6 Example Functions Definable with the Renaming-Based Recursor
	6.1 Semantic Interpretation
	6.2 Two Instances of the Semantic Interpretation Pattern
	6.2.1 Number of Bound Variables
	6.2.2 Eta-Reducibility Checking

	6.3 Other Examples

	7 Isabelle Formalization
	7.1 Primer on Isabelle's Locales
	7.2 Overview of the Formalization

	8 Conclusion and Related Work
	8.1 Initial Model Characterizations of the Terms Datatype
	8.2 Recursors in Other Paradigms
	8.3 Axiomatizations of Renaming
	8.4 Early Insight into Renaming and Substitution
	8.5 Other Work
	8.6 Renaming Versus Swapping and Nominal Logic, Final Round

	Acknowledgements
	References

