
Precise Response Time Analysis for Multiple DAG
Tasks with Intra-task Priority Assignment

Nan Chen∗, Shuai Zhao†, Ian Gray∗, Alan Burns∗, Siyuan Ji∗, Wanli Chang‡§
∗ Department of Computer Science, University of York, UK

† Department of Computer Science, Sun Yat-Sen University, China
‡College of Computer Science and Electronic Engineering, Hunan University, China

§Central Software Institute, Huawei Technologies, China

Abstract—In many real-time application domains, there are
execution dependencies, such tasks may be formulated as multiple
Directed Acyclic Graphs (DAGs) and scheduled with intra-task
(i.e., intra-DAG) priority assignment. The worst-case completion
time of a DAG must be bounded and schedulability analysis
must be conducted during the design phase to estimate the
required hardware resources. Typical examples include automo-
tive systems and Ultra-Reliable Low Latency Communications
(URLLC), which is the “to-business” protocol in 5G technologies,
deployed in industrial automation for instance. To bound the
execution time of multiple DAGs, there are two key factors to
analyze: the intra-task interference for a single DAG and the
inter-task interference between DAGs. While extensive efforts
have been invested, the existing methods either still contain a
large degree of pessimism or are even erroneous due to errors
in the derived analysis. In this paper, we first provide an in-
depth analysis of the limitation and defects of the existing
methods. Inspired by these observations, we construct novel
response time analysis for multiple DAG tasks with arbitrary
intra-task priority assignment. Our analysis precisely accounts
for both the intra- and inter-task interference by fully exploring
the node parallelism in each DAG as well as between DAGs.
Extensive experimental results show that the proposed analysis
obtains tighter bounds and improves the system scheduability
by at least 300% compared to state-of-the-art approaches. This
improvement is even larger when the scheduling pressure is
relatively high, up to 100% versus 0% in many cases. This
work notably advances the use of response time analysis in the
industry. Practitioners have to resort to either potentially unsafe
measurement results or significant resource over-provisioning
when precise analysis is unavailable.

I. INTRODUCTION

With emerging real-time application scenarios, such as in
autonomous systems and Ultra-Reliable Low Latency Com-
munications (URLLC) in the industrial automation domain,
complex functionalities are increasingly deployed in multi-
core real-time systems. In these systems, the functionalities
can be delivered in a concurrent fashion, but are subject to
execution dependencies at certain points of execution [1]. To
reflect the complex dependency and parallelism that widely ex-
ist between computations in the system, the Directed Acyclic
Graph (DAG) task model has received much attention in the
real-time systems community [2].

A DAG task contains a set of nodes and directed edges,
in which each node indicates a code segment that must be
executed in a sequential manner and a directed edge con-
necting two nodes indicates their execution dependency [2].

Any two nodes that have no execution dependencies between
each other can be executed in parallel across multiple cores.
Compared to the traditional sporadic task model [3] in which
tasks have no execution dependencies between each other, the
DAG task abstraction provides a more realistic model that
better describes the internal execution relationships within the
system. However, it also imposes new research challenges in
ensuring system schedulability as the traditional bound on
the worst-case completion time of regular task models (e.g.
sporadic and periodic) does not take these existing execution
dependencies within DAGs into account.

Research into the response time analysis of DAGs covers a
wide range of scheduling schemes, including global [4], [5],
fully-partitioned [6], and federated [7]. Focusing on a common
setup, where multiple DAGs are running on a symmetric
multi-core system with a global scheme, extensive research
efforts have been conducted to provide safe and accurate
analytical bounds on the key factor of the completion time
of tasks: task interference. The interference is defined as the
behavior of a task when it runs on a processor and prevents
another ready task from execution [8]. With DAG tasks, the
interference is categorized as either intra-task or inter-task
interference [4]. The intra-task interference indicates the node-
level interference within a DAG task whilst the inter-task
interference means the delay caused by other DAGs.

In general, the existing analysis techniques can be cat-
egorized into two types: the generic bound [4], [9], [10]
and the priority-explicit bound [11]–[14]. For the generic
bound, Melani et al. [4], Fonseca et al. [9] and Serrano
et al. [10] provide analytical bounds for DAG tasks under
various scheduling methods, e.g., preemptive [4] and limited
preemption [10]. Such analysis provides a generic bound
on the intra-task interference for all possible node priority
ordering under any work-conserving schedule [4]. However,
it has been shown in [11] and [13] that this bound can be
pessimistic if the intra-task priority assignment of DAG tasks
is known before the execution of the system.

With the knowledge of the intra-task priorities, He et
al. [11], [12] presented new analysis techniques that only
take the high-priority nodes into account when bounding the
intra-task interference; they obtained more accurate analytical
results when compared to the generic bound. However, the
above analysis still has a large degree of pessimism, especially

when bounding the inter-task interference. This is because the
potential parallelism of the DAGs is not fully considered by
the analysis, in which the workload that is actually executed in
parallel can be accounted for in the interference [13]. Zhao et
al. [13], [14] presented an analysis that attempts to explicitly
compute the parallel workload to obtain a tighter bound on
the intra-task interference. However, as shown in this paper,
such computations have resulted in a highly-complicated and
error-prone analysis due to the complex nature of DAGs, and
are hard to apply in multi-DAG work-conserving systems as
the inter-task interference cannot be computed using the same
approach.

Therefore, with the existing DAG analyzing methods, the
system engineers need to either resort to potentially unsafe
timing bounds or provide resource over-provisioning. This has
imposed a significant barrier to the application of the response
time analysis of DAG tasks in real-world systems.

Main contributions: This paper focuses on periodic DAG
tasks running on a symmetric multi-core systems with a global
limited preemption scheme. The principal contribution of this
paper is a novel priority-explicit response time analysis that
advances the industrial usage of response time analysis for
DAGs in real-world systems. The proposed analysis avoids
the highly complicated computations while producing tighter
upper bounds for DAG tasks by precisely bounding the intra-
task and inter-task interference of a DAG task. To achieve
this, the following detailed contributions are presented in this
paper:

• An in-depth analysis and illustration of the limitations and
defects of the existing response time analysis for DAGs.

• New analysis techniques for a single DAG that fully
explores the node-level parallelism and safely removes
the workload that cannot cause a delay when bounding
the intra-task interference.

• A new analysis method for multi-DAGs that precisely
identifies the nodes of other DAGs that can impose a
delay on the current DAG by computing the inter-task
interference.

Extensive experiments demonstrate that compared to the
state-of-the-art methods in [10] and [12], the constructed
analysis achieves tighter bounds and can improve the system
schedulability by over 300%, and has an even larger advantage
for systems with high schedulability pressure, i.e., can sched-
ule up to 100% of such systems against 0% for the competing
methods.

Paper organization: Section II presents the task and
scheduling models assumed in this paper. Section III describes
the related work on techniques for DAG tasks. Section IV
then provides a disccussion on the limitations of existing
analysis. Motivated by these limitations, Section V constructs
a novel response time analysis for DAG tasks and Section VI
presents experimental results. Finally, Section VII draws some
conclusions.

Fig. 1: A DAG task.

II. SYSTEM MODEL

A. Task model

A real-time DAG task τi is defined by {Ti, Di,Gi =
(Vi, Ei), Pτi}, in which Ti denotes its period (or the minimum
inter-arrival time as the worst-case in a sporadic release
model [3]), Di gives a constrained relative deadline, i.e.,
Di ≤ Ti, and Gi is a graph defining the set of activities
forming the task. The graph is defined as Gi = (Vi, Ei) where
Vi denotes the set of nodes and Ei ⊆ (Vi × Vi) gives the
set of directed edges connecting any two nodes. A node in
DAG τi is denoted as vi,j ∈ Vi, where the index j gives
the node index and index i means it belongs to τi. To ease
presentation, the subscript of the DAG task (i.e., i for τi) is
omitted when we consider a single DAG task. Each task τi and
node vj are assigned an individual priority denoted as Pτi and
Pvj respectively. In this paper, we assume that the larger the
number the higher the priority. Moreover, we assume that if
the priority of τi is larger than τj (i.e. Pτi > Pτj), then all
of the nodes in τi have a higher priority than nodes in τj (i.e.
Pva > Pvb , ∀va ∈ Vi and vb ∈ Vj). The notation W is applied
to represent the total Worst-Case Execution Time (WCET) of
a node or a node list. For example, the WCET of a node vj is
denoted as W (vj) and the total WCET of a DAG τi is denoted
as W (Vi) =

∑
vj∈Vi

W (vj).
If two nodes vj and vk are connected by a directed edge

(i.e., (vj , vk) ∈ E), vk can start executing only if vj finishes
executing. That is, vj is a predecessor of vk, whereas vk is a
successor of vj . The predecessors and successors of node vj
can be formally defined as pre(vj) = {vk ∈ Vi | (vk, vj) ∈ E}
and suc(vj) = {vk ∈ Vi | (vj , vk) ∈ E}, respectively. Nodes
that are either direct or transitive predecessors and successors
of a node vj are termed as its ancestors anc(vj) and descen-
dants des(vj) respectively. A node vj with pred(vj) = ∅ or
succ(vj) = ∅ is referred to as the source vsrc or sink vsink
respectively. As with most of the existing work [11], [12],
[14], we assume a DAG task always starts with one source and
ends with one sink node, otherwise, a dummy node without
utilization is added to the beginning or the end of the DAG.

Based on the DAG task model, we define the features of
a DAG that will be utilized by the response time analysis
constructed in this paper.

Definition 1. (Concurrent nodes) For a pair of nodes vj , vk ∈
Vi, if vj is neither the ancestors of vk (i.e. vj /∈ anc(vk)) nor
the descendants of vk (i.e. vj /∈ des(vk)), it is referred to as
a concurrent node of vk. The set of concurrent nodes of vj is
denoted as C(vj) and is expressed as Equation 1.

C(vj) = {vk|vk ∈ Vi∧
vk /∈ anc(vj) ∧ vk /∈ des(vj) ∧ vk 6= vj}

(1)

Example 1. Taking the DAG task shown in Figure 1 as
an example. The concurrent nodes of v2 within the DAG is
C(v2) = {v3, v4, v5}.

With the definition of concurrent nodes, we also provide the
definition for Interference which is a key factor in the response
time analysis of real-time systems.

Definition 2. (Interference) the amount of time spent executing
high-priority tasks when a low-priority task is runnable [3].

When a low-priority task executes non-preemptively, it can
also prevent a high-priority task from executing; this is referred
to as the low-priority interference in this paper – in other
works, it is also referred to as blocking [13].

With the DAG task model, the Interference can be further
categorized as intra-task and inter-task interference. They can
be defined as follows.

Definition 3. (Intra-task interference) the amount of interfer-
ence incurred by a node from nodes within the same DAG.

Definition 4. (Inter-task interference) the amount of interfer-
ence incurred by a node from nodes from other DAGs.

A complete path within a DAG is defined as follows. As no
partial paths will be used in this paper, we use the term path
directly.

Definition 5. (Path) A path of τi is denoted by λa =
{v0, · · · , vk}, where ∀p ∈ [0, k], (vp, vp+1) ∈ E, v0 = vsrc
and vk = vsink.

For a path λa, W (λa) returns its total workload (i.e.,
length), which is the sum of the WCET of nodes in λa. The
path with the highest workload (W (λa)) within a DAG τi is
defined as the critical path and is denoted as λ∗i .

Example 2. As shown in Figure 1, the DAG task consists
of three paths:λ1 = {v1, v2, v6}, λ2 = {v1, v3, v5, v6} and
λ3 = {v1, v4, v6}, with W (λ1) = 5 + 2 + 6 = 13, W (λ2) =
5 + 3 + 6 + 6 = 20 and W (λ3) = 5 + 6 + 6 = 17, respectively
Therefore, λ2 is the critical path of this DAG task.

Following the single-DAG task model, a multi-DAG system
contains n recurrent DAG tasks Γ = {τ1, ..., τn}, in which
each task τi is assigned a unique priority P (τi). As with [9],
[11], we claim that the DAG tasks in this work are independent
of each other, that is we assume nodes of two different DAGs
do not share any resources and there exists no dependency
between them.

B. System and scheduling model

In this work, we consider a symmetric multi-core system
with m cores and apply a global fixed-priority scheduling
method with the limited preemption scheme [10]. That is, a
late-arriving high-priority node can be blocked by low-priority
nodes that are currently executing, i.e., non-preemptive at the
node level. However, a newly-arrived high-priority DAG task
can preempt an executing low-priority DAG on a core when
the currently executing node has finished, i.e., preemption is
allowed between the execution of two tasks.

For all the DAG tasks that are ready to execute, the
scheduler follows the rule of the highest priority DAG first,
and within a DAG task, it follows the highest priority node
first execution order. That is, task priority is used to select the
next task to execute in the ready queue, whereas node priority
gives the execution order of nodes in the scheduled DAG. We
assume that a higher numeric value indicates a higher priority.
However, we note that the response time analysis constructed
in this paper does not rely on any specific intra-task and inter-
task priority assignment, i.e., it is compatible with any given
priority order at both the DAG and the node level.

III. RELATED WORK

There exists a large body of work on scheduling and
analyzing DAG tasks, which covers a wide range of hardware
settings, scheduling schemes and task models [4], [9]–[11],
[13]–[18]. In this section, we focus on the major existing
analysis for DAG tasks with a global work-conserving sched-
ule in symmetric multi-core systems. In Section IV, an in-
depth analysis is provided to illustrate the major limitations
and defects of the existing analysis.

A. Generic DAG analysis under work-conserving schedules

The majority of existing methods on DAG scheduling
assume a work-conserving scheduling scheme [4]. For this
schedule, Graham [19] proposes the classic generic bound for
the traditional tasks, in which the interference of a task is
computed by the average value of the total workload of other
tasks on all processors.

Based on the classic bound, Melani et al. [4] construct an
analysis to compute the worst-case makespan of DAG tasks
under a preemptive scheduling scheme. This analysis takes
the priorities of the DAG tasks as an input but assumes no
knowledge of the intra-node priority of each DAG. Under this
analysis, two key factors of the worst-case makespan of a DAG
task are identified: the intra-task and inter-task interference,
in which they are computed using a similar approach to that
in [19]. We note that the analysis is constructed for conditional
DAGs, i.e., a DAG task can contain conditional edges that may
not be active during execution, but is fully compatible with
the unconditional ones. Later on, this analysis is improved by
Fonseca et al. [9] using a finer-grained approach for computing
the inter-task interference caused by carry-in and carry-out
DAGs. Following a similar approach, Serrano et al. [10]
construct a generic analysis for DAG tasks for the limited

preemption scheme, where a blocking factor imposed by the
low-priority nodes and DAGs is introduced in the analysis.

As described in Seciton I, the generic bound is useful
when an exact node execution order is not known before the
system execution. However, if such information is obtained,
this bound can become significantly pessimistic due to the
over-calculated interference (see in Limitations I and II in
Section IV) [13].

B. DAG analysis with explicit intra-task priority

With an explicit intra-node priority ordering, He et al. [11]
present a new response time analysis for DAG tasks under
the preemptive scheme. This analysis computes the makespan
of a DAG task by 1) examining the worst-case finish time
of each path and 2) only taking the concurrent nodes with
a higher priority as the intra-task interference. By doing
so, it provides a tighter bound on makespan and dominates
the generic bound in [4]. In [12], an improved analysis is
constructed which can be applied to any node ordering rules
along with a new intra-task priority assignment that further
increases the schedulability of the system. However, as the
same with the traditional bound [4], both the intra-task and
inter-task interference in [11] and [12] are computed using the
average value of the interfering workload on all processors.
This approach contains a certain degree of pessimism as it
does not explicitly consider the parallel workload that cannot
cause a delay to the current DAG task (see Limitations II and
III). In particular, such pessimism can become significant when
accounting for the inter-task interference, and hence, greatly
undermines system schedulability.

In [13], [14], Zhao et al. presented a new response time
analysis of a DAG task under the limited preemption scheme.
By examining the internal structure of the DAG and the
node ordering, this analysis explicitly accounts for the parallel
workload that is executed with the longest path of the DAG,
and subtracts such workload when accounting for the intra-task
interference. From the results, this analysis provides a tighter
bound than [11] due to the awareness of the parallel workload
in a DAG. However, the analysis approaches adopted in [13]
have led to over-complicated and error-prone computations
due to the highly-complex nature of a DAG task (see Lemma
3 in Section IV). In addition, this analysis does not support
multi-DAGs under the work-conserving schedule as the inter-
task interference cannot be computed using the same approach.

IV. LIMITATIONS OF STATE-OF-THE-ART

The first classical response time analysis of DAG scheduling
under the preemptive approach is provided in [4]. Later on,
the analysis is further extended to the limited preemption
schedule with the inclusion of interference from low-priority
nodes in [10]. In this paper, we focus on systems with limited
preemption, we first briefly introduce the classical bound for
limited preemption scheduling scheme in [10] and present its
limitations. Then, we will analyze the limitations that have

been alleviated by the state-of-the-art methods and ones that
can still be improved.

Ri = Makespan︸ ︷︷ ︸
part 1

+ Interference︸ ︷︷ ︸
part 2

(2)

Ri = W (λ∗i) +
(W (Vi)−W (λ∗i)

)︸ ︷︷ ︸mpart 1 +

⌊
I loi + Ihii

m

⌋
︸ ︷︷ ︸

part 2

(3)

As shown in Equation 2, the worst-case response time
analysis of [10] can be divided into two parts: 1) the worst-
case makespan of a DAG, and 2) the inter-task interference
suffered from other DAG tasks. As shown in Equation 3,
the first part calculates the worst-case makespan of a DAG
task τi. The W (λ∗i) term is the sum of the WCET of the
nodes in the critical path. The analysis includes the principle
that all nodes apart from the critical path can provide cer-
tain intra-task interference. Therefore, the amount of intra-
task interference incurred by the critical path is denoted as
1
m (W (Vi)−W (λ∗i)), in which W (Vi) gives the total workload
of τi and W (Vi)−W (λ∗i) represents the amount of workload
of a DAG apart from the critical section. The workload after
subtraction is then divided by the number of cores in the
system m to work out the upper bound of the interference
delay.

Then, the second part calculates the inter-task interference
of τi, in which Ihii is the workload of the interference imposed
by high-priority tasks, which is the sum of the WCETs of all
high-priority nodes that are released during the execution of
τi. As for I loi , it contains the workload of the interference
from low-priority tasks due to limited preemption scheduling.
To bound I loi , Lemma 1 and 2 are constructed in [20].

Lemma 1. For a DAG task, the first node can suffer a delay
from at most m (total core number) nodes with lower priorities
[20].

Lemma 2. For a DAG task, nodes apart from the first node
can suffer the interference delay from at most m − 1 nodes
with lower priorities [20].

According to Lemma 1 and 2, the classical bound then
assumes the first node (resp. every node apart from the first
node) can suffer delay from m (resp. m − 1) largest low-
priority nodes that can execute in parallel [10]. The largest m
(and m−1) nodes among the DAG tasks with lower priorities
that can execute in parallel are denoted as δmi (and δm−1

i). As
shown in Equation 4, I loi is equal to the total workload of δmi
(incurred by the first node) plus ||Vi||−1 times the workload of
δm−1
i (incurred by rest of the nodes), where ||Vi|| represents

the size of the nodes in τi

I loi = W (δmi) + (||Vi||−1) ∗W (δm−1
i); (4)

An example of the calculation of the classical bound [10]
is presented below.

Example 3. We first calculate the worst-case makespan of τ1
shown in Figure 2, which is the first part of Equation 3. The

Fig. 2: Three DAG tasks with different priorities.

critical path of τ1 is λ∗1 = {v1, v2, v5}. The total workload of
the λ∗1 is W (λ∗1) = 1+10+2 = 13. The total workload of τ1 is
W (V1) = 1+10+1+1+2 = 15. For a dual-core system, the
interference of λ∗1 can be calculated as 15−13

m = 15−13
2 = 1.

The worst-case makespan is equal to R1 = W (λ∗1) + 1 =
13 + 1 = 14.

Then, we calculate the inter-task interference. For simplicity,
assuming τ2 and τ3 will only release once during the execution
of τ1. Task τ3 has higher priority than τ1, i.e Pτ3 = 3 > Pτ1 =
2, hence Ihi1 = W (V3) = 1 + 4 + 4 + 2 + 2 = 13. Task τ2 has
lower priority than τ1, We have δ2

1 = {v7, v8} and δ1
1 = {v7},

then W (δ2
1) = 4 + 4 = 8 and W (δ1

1) = 4, the size of τ1 the
||V1||= 5. Finally, I lo1 = 8 + (5 − 1) ∗ 4 = 24. According to
Equation 3, we have R1 = 14 + b 13+24

2 c = 32

Based on the description provided above, we can see that the
classical bound for systems with limited preemptions proposed
in [10] is rather pessimistic. The main limitations of the
classical bound can be concluded as follows.

Limitation I: The analysis neglects the parallelism feature
between nodes and results in a pessimistic calculation of the
worst-case response time.

For example, for the analysis of a single DAG, the classical
bound assumes all the nodes apart from the critical path will
interfere with the critical path. However, some nodes execute
in parallel without delaying the execution of the critical path.
Moreover, when accounting for the inter-task interference, it
also assumes all nodes with a higher priority will interfere with
the DAG. For a system with sufficient cores available, DAG
tasks can also execute in parallel without interfering with each
other.

Limitation II: When calculating the inter-task low-priority
inference, each node apart from the source node is assumed
to incur a low-priority interference from δm−1

i , which is
pessimistic.

According to Lemma 2, each node apart from the source
node will suffer interference from at most m− 1 low-priority
nodes. However, each low-priority node can only delay a high-
priority node once during one release [3]. Thus, assuming
nodes in δm−1

i can interfere with all nodes apart from the
first node will result in repetitive calculations of interference.

He et al. [12] alleviates Limitation I of the classical bound
by introducing priorities to nodes within a DAG. They consider
systems with a preemptive scheduler. With a given intra-task

priority assignment, only nodes with higher priority need to
be considered as the interference workload. Therefore, the
resulting intra-task interference can be reduced. As shown in
the Equation 5, W (λj) calculates the workload of the path
λj . The factor I(λi) denotes the set of nodes that have a
higher priority than the nodes in path λi. Term W (I(λi))
then calculates the interference workload of the path. Finally,
maxλj∈τi{} iterates through all paths in τi and finds out the
maximum bound on the DAG makespan. In this analysis, the
intra-task interference is reduced by assuming an intra-task
priority assignment under the preemptive scheme. However,
the parallelism between nodes is not fully exploited. For exam-
ple, the analysis assumes that all nodes with a higher priority
contribute intra-task interference when computing the worst-
case makespan. Yet, when there are sufficient cores in the
system, nodes will execute in parallel and do not suffer from
any interference. Hence, the analysis of the DAG makespan
can be improved with respect to limitation I. Moreover, as it
focuses on preemptive scheduling, it does not contribute to
Limitation II.

Ri = max
λj∈τi

{
W (λj) +

W (I(λj))

m

}
︸ ︷︷ ︸

part 1

+

⌊
1

m
Ihii

⌋
︸ ︷︷ ︸

part 2

(5)

Later, Zhao et al. [14] proposed a response time bound
under the limited preemption scheme which aims to eliminate
unnecessary interference by exploring the parallelism of the
execution of nodes. The analysis produces the worst-case
makespan by computing the worst-case finish time of each
node. According to Equations 3, 4, and 10 in [14], the key
concept of calculating the worst-case finish time of each
node can be summarized as Equation 6. In this analysis, the
worst-case finish time of a node vj is denoted as F (vj),
which is computed by determining: 1) the WCET of (vj),
2) the predecessor node with the latest worst-case finish time,
i.e. maxvk∈pre(vj){F (vk)}, and 3) the intra-task interference

incurred by vj (denoted as
W (C(vi)\

⋃
vk∈anc(vj)

Ivk)

m).

F (vj) = W (vj)+ max
vk∈pre(vj)

{F (vk)}

+
⌈W (C(vj) \

⋃
vk∈anc(vj) Ivk)

m

⌉ (6)

We note that the calculation of the intra-task interference
utilizes C(vj) to exclude all the interference that has been

Fig. 3: An example of a DAG.

t0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 4: The simulation graph of the DAG in Figure 3.

accounted for when computing the worst-case finish of the
ancestors of vj , in which function W () returns the workload
of the interference that is left. However, this analysis may not
be safe due to Lemma 3.

Lemma 3. The calculation of the worst-case finish time shown
in Equation 6 is not necessarily the worst-case finish time.

Proof. An example of a DAG task is shown in Figure 3.
Assuming the DAG executes in a dual-core system. To ease
the presentation, the scheduling scheme is assumed to be
preemptive which will not affect our claim. We now compute
the worst-case finish time of each node and the makespan of
the DAG using the analysis in [14].

According to Equation 6, we can have F (v1) = W (v1) = 1
as it has no predecessors and concurrent nodes. As for v2, the
concurrent nodes are C(v2) = {v3, v5, v6}. These concurrent
nodes have a higher priority than v2 and the only ancestor
node of v2 (i.e., v1) does not incur any inference. Accordingly,
F (v2) = W (v2) + F (v1) + (W (v3)+W (v5)+W (v6))

2 = 3 + 1 +
(10+3+3)

2 = 12 based on Equation 6. As for v3, we have
F (v3) = W (v3) + F (v1) = 10 + 1 = 11, in which C(v3) =
{v2} with Pv2 < Pv3 . Similarly, F (v4) = W (v4) + F (v2) =
3 + 12 = 15, in which C(v4) = {v5, v6}, pre(v4) = {v2, v3},
and maxvk∈pre(v4){F (vk)} = F (v2) = 12.

However, as shown in Figure 4, v5 and v6 will delay the
execution of v4, which results in a finish time of 17. However,
such a delay is not accounted for in the analysis. Therefore,
this analysis does not produce the worst-case finish time of
the DAG.

It is worth noting that, the analysis in [14] is very compli-
cated and is impossible to thoroughly explain in this section.

Here we only extract its main concept to validate our claim.
As for the analysis of multi-DAGs, this analysis does not sup-
port work-conserving scheduling as the inter-task interference
cannot be computed using the same analytical approach as for
the intra-task interference. Therefore, as the bound in [14] may
not be safe, Limitations I and II are still open to be resolved,
which motivates our work in the following section.

V. RESPONSE TIME ANALYSIS

As described in Section IV, the existing bounds calculate the
makespan of a single DAG by computing the worst-case finish
time of each path, and then account for the worst-case response
time in multi-DAGs by adding the inter-task interference upon
the DAG makespan, which can result in a pessimistic bound.
In this section, we construct a finer-grained response time
analysis that bounds the worst-case makespan of a DAG as
well as its worst-case response time in multi-DAGs by fully
exploring the potential parallelism of each node in the system.

A. Worst-case makespan of a single periodic DAG

To analyze the worst-case makespan of a DAG task, we
aim to identify the worst-case finish time of each node and
then identify the node that finishes the latest in the DAG task.
Equation 7 presents the worst-case makespan of a single DAG
task, denoted as R1. Notation F (vj) defines the worst-case
finish time of node vj and maxvj∈V {Fvj} calculates the node
that has the largest finishing time in the DAG.

R = max
vj∈V
{F (vj)} (7)

Then for a given node vj , its worst-case finish time is
computed as the sum of its worst-case starting time S(vj)
and its WCET W (vj), as shown in Equation 8.

Fvj = Svj +W (vj) (8)

For a node vj , it is allowed to start its execution if all of its
predecessors have finished their executions. In addition, when
vj is eligible to execute, it can incur the intra-task interference
imposed from the concurrent nodes with a higher priority in
the DAG task. Equation 9 bounds the worst-case starting time
of vj , in which Ivj gives the nodes that can cause an intra-task
interference on node vj . This equation iterates through each
predecessor node vk ∈ pre(vj), and computes the worst-case
finish time of vk and the associated intra-task interference that
vj can incur, and hence, derives a safe bound [11].

Svj = max
vk∈pre(vj)

{
F (vk) +

⌈W (Ivj \ Ivk)

m

⌉}
(9)

In addition, for the computation of the intra-task interfer-
ence, we exclude the interference (i.e. Ivj \ Ivk) that has
been accounted for in F (vk) to avoid repetitive calculations.
The term W (Ivj \ Ivk) represents the total workload that
could interfere vj , and the final intra-task interference of vj

1The index of the DAG task is committed in the single DAG case for the
ease of presentation.

is given by dW (Ivj \Ivk)

m e. Below we present details on the
identification of nodes in Ivj .

Under the limited preemptive scheduling scheme with a de-
fined priority assignment policy, a node vj will not necessarily
be delayed by all of its concurrent nodes C(vj). To bound the
amount of delay suffered by vj from C(vj), we first identify
the nodes that can never delay vj .

Lemma 4. For a pair of concurrent nodes vk and vj with
Pvk < Pvj , if vk is eligible to execute (i.e., all of its
predecessors have finish executing) at the same time as or
later than vj , vk and its descendants will not impose a delay
to vj .

Proof. If vk is eligible to execute at the same time as or later
than vj , because P (vk) < P (vj), once a core is available the
scheduler will select vj to execute first. Therefore, vk and its
descendants (des(vk)) will not delay vj .

Lemma 5. For a node vj , nodes in the same DAG that are
eligible to execute at the same time with or later than vj are
computed by η(vj), as shown in Equation 10.

η(vj) =

{
vk|vk ∈ V ∧ pre(vj) ⊆ pre(vk) ∧ vj 6= vk

}
(10)

Proof. For a node vk ∈ V and vj 6= vk , the predecessors of vk
(pre(vk)) containing all the predecessors of vj (pre(vj)) can
be expressed as pre(vj) ⊆ pre(vk). Hence, the predecessors of
vk can finish later than or at the same time as the predecessors
of vj . Finally, we can deduce that vk is eligible to execute at
the same time with or later than vj

Based on Lemma 4 and 5, the set of nodes that cannot
impose any delay to the node vj (denoted as Iremovevj) can
be identified in Equation 11. This equation iterates over all
the nodes in the DAG and appends vk and its descendants
(des(vk)) in Iremovevj , if the following conditions are satisfied:
1) the priority of vk is smaller than vj (Pvk < Pvj); and
2) vk ∈ η(vj) or any of its ancestors belongs to η(vj) (i.e.,
anc(vk) ∩ η(vj) 6= ∅).

Iremovevj =
⋃
vk∈V

vk ∪ des(vk), if Pvk < Pvj∧

(vk ∈ η(vj)

∨anc(vk) ∩ η(vj) 6= ∅)
∅, otherwise.

(11)

Theorem 1. Equation 11 bounds the task set that will never
delay the execution of a task.

Proof. For a node vk with priority Pvk < Pvj that satisfies
vk ∈ η(vj), it cannot impose any delay to node vj according
to Lemma 4 and 5. Moreover, if any ancestors of vk belong
to η(vj) (i.e. anc(vk)∩η(vj) 6= ∅), the ancestor is eligible
to execute at the same time as or later than vj according to
Lemma 5. Accordingly, vk is eligible to execute at the same
time as or later than vj , hence, vk cannot impose any delay
to node vj according to Lemma 4.

Fig. 5: An example of the interference-free execution.

Based on Theorem 1, Equation 12 bounds the set of nodes
that can potentially cause intra-task interference with a node
vj , denoted as Ipotentialvj . As shown in the equation, Ipotentialvj
is computed by excluding the nodes that cannot interfere with
vj from the concurrent node of vj (i.e. C(vj) \ Iremovevj).

Ipotentialvj = C(vj) \ Iremovevj (12)

Lemma 6. For a node vj , if the interfering nodes in Ipotentialvj
cannot occupy all m cores in the system, then vj will not suffer
from the intra-task interference.

Proof. Assuming all nodes in Ipotentialvj execute on m − 1
cores of a system, when vj arrives, it will directly execute on
the idle core without being delayed.

Example 4. As shown in Figure 5, the set of nodes that can
potentially interfere with vj is Ipotentialvj = {v1, v2, v3, v4}.
Due the dependencies of nodes in Ipotentialvj , they can occupy
at most two cores, therefore vj can execute on the core
available directly without incurring any interference delay.

Let path(Ipotentialvj) denote a function that computes the
largest number of cores that Ipotentialvj can occupy. Based on
Lemma 6, Ivj can be computed by Equation 13. As shown in
this equation, when path(Ipotentialvj) < m (i.e., the potential
interfering nodes cannot take all m cores), vj does not incur
any intra-task interference, and hence, Ivj can be directly set
to empty. Otherwise, vj can incur a certain amount of intra-
task interference from Ipotentialvj . As shown in Equation 13,
under this case, the nodes that cause this interference can be
categorized into the following three groups.

1) Ihivj : the high-priority nodes in Ipotentialvj ,
2) I lomaxvj : the m− 1 largest nodes among the low-priority

nodes in Ipotentialvj , and
3) I loprevj : the ancestor nodes of I lomaxvj among the low-

priority nodes in Ipotentialvj .

Ivj =

{
∅, if path(Ipotential

vj) < m

Ihivj ∪ I
lomax
vj ∪ Iloprevj , otherwise

(13)

Fig. 6: An example of a DAG task.

Equation 14 provides the computation for Ihivj , which takes
all the high-priority nodes in Ipotentialvj into account. In the
worst case, when vj arrives, all nodes in Ihivj have just started
executing, therefore, Ihivj is included in Ivj .

Ihivj =

{
vk|vk ∈ Ipotential

vj ∧ Pvk > Pvj

}
(14)

Under the global limited preemption scheme, nodes in a
DAG task can suffer a delay from at most m− 1 low-priority
nodes2. This is because before the node arrives, one core will
be taken up by its predecessor and the rest m − 1 cores can
be taken by the concurrent low-priority tasks. Proofs of the
above statements on the low-priority intra-task inference can
be found in Lemmas 4.2 and 4.3 in [20]. Therefore, the low-
priority nodes in Ipotentialvj that can cause a delay to vj can
be computed by Equations 15 and 16, in which I lovj returns all
the low-priority nodes in Ipotentialvj and I lomaxvj identifies the
m− 1 nodes in I lovj that can cause the maximum delay.

I lovj =

{
vk|vk ∈ Ipotentialvj ∧ Pvk < Pvj

}
(15)

I lomaxvj =
m−1
max{I lovj} (16)

Example 5. As shown in the Figure 6, the concurrent nodes
of v1 is C(v1) = {v3, v4}. As the priority of v1 (Pv1 = 3)
is higher than the priorities of v3 (Pv3 = 1) and v4 (Pv4 =
2), we have I lov1 = {v3, v4}. For a system with two cores,
the maximum number of low-priority tasks that node v1 can
execute concurrently with is 1 and given that W (v3) < W (v4),
the intra-task interference of low-priority nodes is I lomaxv1 =
{v4} in this example.

According to Example 5, C(v1) = {v3, v4} and I lomaxv1 =
{v4}, C(v2) = {v4} and I lomaxv2 = {v4}. In the present
instance, v4 will only be counted as interference of v1 and
not for v2, since v1 is the predecessor of v2 and Equation 9
excludes repeated interference from being counted more than
once. However, there may exist a situation that v3 delays v1
and v4 delays v2, as this situation still meets the constraint
that each node within a DAG can suffer delay from at most
m− 1 low-priority node mentioned above. We can assume v3
will interfere with v1 as well to derive a safe upper bound for
the intra-task interference. Such nodes are denoted as I loprevj

2In a multi-DAG scenario, the source node may experience interference
from up to m low-priority nodes, while the remaining nodes may experience
interference from up to m− 1 low-priority nodes [10], [20].

and are bounded in Equation 17. The I loprevj iterates through
nodes in I lomaxvj denoted as vp, and identifies each node that
belongs to I lovj but is not in I lomaxvj (i.e., vk ∈ (I lovj \ I

lomax
vj)),

and is an ancestor of vp (i.e., vk ∈ anc(vp)).

Iloprevj =
⋃

vp∈Ilomax
vj

{vk|vk ∈ (Ilovj \ I
lomax
vj)

∧vk ∈ anc(vp) ∧ vk ∈ V }
(17)

Sustainability: We claim that the above analysis of the
worst-case makespan for a single DAG task is sustainable [21],
i.e., when a node executes less than its WCET, the makespan
will not exceed the computed worst-case bound. In the con-
structed analysis, the worst-case makespan is obtained by
finding the worst-case finish time of each node in a DAG.
According to the Equations 8 and 9, the worst-case finish time
of each node consists of three factors: 1) the finish time of the
predecessor, 2) the associated intra-task interference, and 3)
the WCET of the node.

Lemma 7. The constructed analysis is sustainable if the intra-
task interference is not increased when the predecessors of a
node vj execute less than their WCETs.

Proof. We focus on one factor at a time to prove this lemma.
First, if vj itself executes less than its WCET, it can only
result in a smaller Fvj . Second, without considering the intra-
task interference, given that the predecessors of vj execute less
than their WCETs, then F (vj) can only demonstrate a mono-
tonically non-increasing trend. Therefore, any sustainability
issue in the constructed analysis could only occur when the
predecessors of vj execute less than their WCET but have
caused an increased intra-task interference.

Theorem 2. The constructed worst-case response time anal-
ysis is sustainable.

Proof. Following Lemma 7, we focus on proving that for
a node vj , its intra-task interference will not increase when
its predecessor nodes execute less than their WCETs. First,
the set of concurrent nodes of vj will remain the same
regardless of the actual execution time vj takes, which is
derived purely based on execution dependency. Then, the list
Iremovevj cannot be affected as the nodes are accounted for
based on the structural characteristics of the DAG instead of
the execution time of the nodes (Theorem 1). This precludes
Ipotentialvj from being affected (Equation 12). To this end, we
proved that the list Ipotentialvj cannot be affected by a lower
execution time of nodes in a DAG. Based on Equation 13,
the intra-task interference is determined by Ihivj , I lomaxvj , and
I lowprevj . However, as shown in Equations 14, 16, and 17,
these factors are computed based on the priorities and the
WCETs of the nodes, which provide the maximum possible
bound. Therefore, any node with a lower execution time will
not increase the intra-task interference of vj , and hence, the
theorem follows.

B. Response time for multi-DAG systems

In this section, we extend the analysis from a single DAG
to a multi-DAG system, in which there exists a set of recurrent
DAG tasks Γ = {τ1, τ2, ..., τn}. The worst-case response
time of τi is denoted as Ri. To calculate Ri, the goal is
to determine the worst-case finish time of each node in τi
(i.e. F (vi,j),∀vi,j ∈ Vi) which follows the same principle as
Section V-A. The only difference is that each node will incur
interference not only from nodes within the same DAG but
also from other DAGs, i.e., inter-task interference. To compute
this interference, the identification of the concurrent nodes (see
Equation 1) is updated to include nodes from other DAG tasks,
denoted as C∗(vi,j) for the multi-DAG case in Equation 18.

C∗(vi,j) = C(vi,j) ∪
⋃
τk∈Γ

{⌈
Ri
Tk

⌉
∗ Vk

∣∣∣∣vi,j /∈ Vk} (18)

As shown in this equation, the set of concurrent nodes of vi,j
in a multi-DAG system contains 1) the concurrent nodes from
the same DAG (i.e. C(vi,j) in Equation 1 and the nodes from
other DAGs, which is denoted as

⋃
τk∈Γ{d

Ri

Tk
e∗Vk|vi,j /∈ Vk}.

Notation dRi

Tk
e provides the number of releases of τk during

Ri and Vk represents all nodes in τk. The multi-DAG analysis
follows the same process as the single-DAG analysis described
in Section V-A but includes extra inter-task interference im-
posed by other DAG tasks. The key principle is still to work
out the worst-case execution scenario of each node within a
DAG.

Instead of assuming that each node incurs a fixed amount of
interference as mentioned in Section IV. The proposed analysis
takes into account the actual worst-case execution scenario to
count inter-task interference. The resulting analysis leads to a
reduction in unnecessary interference and facilitates the full
exploration of the parallelism between nodes. This allows our
analysis to alleviate Limitation I and II summarized in Section
IV.

VI. EVALUATION

In this section, we compare the tightness of the analytical
bounds between the proposed and the state-of-the-art methods.
The evaluation focuses on comparing the worst-case comple-
tion of a single DAG (i.e., the makespan) and the overall
system schedulability of multi-DAG systems.

Experimental Setup. Each DAG task in the evaluation is
generated using two structural parameters: the length indicat-
ing the number of node layers required during generation, and
the parallelism defining the number of nodes to be generated
in a layer. Starting from a single source node, nodes in a
DAG task are generated layer by layer given the length and
the parallelism settings, where the node generation is finished
by adding a single sink node. Each newly-generated node has
a probability of 50% to be connected to existing ones. Finally,
nodes without any predecessor (or successor) are directly
connected to the source (or the sink) node.

For a single recurrent DAG task τi, its period Ti is randomly
determined within the range of 1000 to 2000 milliseconds,

2 4 6 8 10 12

Core

0

0.2

0.4

0.6

0.8

1

m
a
k
e
s
p
a
n

He2021 Ours Serrano2016

Fig. 7: The makespan of a single DAG with a varied number
of cores, Parallelism = 8 and Length = 7.

and its deadline is set equal to the period. The utilization of
τi is set to Ui = 0.5. As for the experiments for multi-DAG
systems, each system contains eight DAGs that are generated
as described above. The total utilization of the system is deter-
mined by 8 times a basic utilization value for each task, e.g.
8×0.5 = 4. The actual utilization of each DAG τi is computed
using the UUnifast Algorithm [22]. When each DAG task is
generated with a utilization, the total WCET of each DAG
task τi is calculated by W (τi) = Ui×Ti. The WCET of each
node (i.e., W (vi) for a node vi) is then randomly distributed
by W (τi), where we enforce W (vi) ≥ 0. In addition, the
intra-task priority assignment in [12] is applied for nodes in
the DAG. The deadline Monotonic Priority Ordering is used
to assign the DAG-level priorities.

For each system setting in one experiment, 1000 trials are
generated for evaluation and the makespan results for single
DAGs are normalized against the maximum value observed in
the experiment (where applied). Each DAG is analyzed using
the following competing methods.
• The state-of-the-art generic bound for the limited preemp-

tion scheme in [10] (denoted as Serrano2016).
• The state-of-the-art priority-explicit bound proposed

in [12] with the blocking terms in [10] applied (i.e.,
I lovj and I loprevj in Equation 16 and 17) for use under the
limited preemption scheme3 (denoted as He2021).

• The response time analysis constructed in this paper
(denoted as ours).

A. Evaluation of the makespan for a single DAG

Figures 7 to 9 present the worst-case makespan of a single
DAG with a varied number of cores, the degree of parallelism
and length, respectively. From Figure 7, we can observe that
the proposed analysis demonstrates a constant lower bound
on the makespan compared to other methods. For instance,
the proposed analysis outperforms He2021 and Serrano2016
by an average of 8.8% and 8.47% under 6 cores, respectively.
The reason for this observation is that the proposed analysis
explicitly considers the parallel execution of nodes in a DAG

3We note that this modification is necessary for the application on a limited
preemption scheduler and the modified analysis is still the state-of-the-art
analysis with explicit priorities under the target scheduling scheme.

TABLE I: The Comparison of the worst-case makespan calculated by the proposed method and He2021.

Our � He2021 Our ≺ He2021

m=2 m=4 m=6 m=8 m=10 m=12 m=2 m=4 m=6 m=8 m=10 m=12
number N= 981 N=995 N=991 N=992 N=1000 N= 1000 N=5 N=5 N=9 N=8 N=0 N=0
avg. 7.21 9.17 8.88 9.24 8.04 6.75 0.06 1.65 1.52 1.86 0 0
max. 21.64 27.68 26.47 22.14 23.91 18.22 0.3 3.4 2.44 3.84 0 0

TABLE II: The Comparison of the worst-case makespan calculated by the proposed method and Serrano2016.

Our � Serrano2016 Our ≺ Serrano2016

m=2 m=4 m=6 m=8 m=10 m=12 m=2 m=4 m=6 m=8 m=10 m=12
number N= 1000 N=987 N=980 N=991 N=1000 N= 1000 N=0 N=13 N=20 N=9 N=0 N=0
avg. 13.68 9.11 8.47 8.94 7.91 6.69 0 1.3 1.92 1.77 0 0
max. 28.29 26.75 22.01 20.56 19.28 16.87 0 3.06 5.21 3.84 0 0

and only takes ones that can cause a delay, and hence, leads
to lower intra-task interference.

Similar observations are also obtained in Figures 8 and 9,
in which the proposed analysis is constantly better than the
competing methods in terms of achieving tighter bounds on the
makespan. From these figures, a notable observation is that the
proposed analysis performs better when the length of the DAG
is relatively low, e.g., with a length less than seven in Figure
9. This is because with a shorter length, fewer layers of nodes
are generated so that less nodes will be included in Ipotentialvj .
According to Equation 13, if nodes in Ipotentialvj cannot take
up all the cores, vj can start execution without incurring any
interference. However, in the state-of-the-art methods, such
workload is still accounted for when bounding the intra-task
interference, and hence, results in a longer makespan.

In addition, to provide a more detailed comparison of the
evaluated methods, Tables I and II show the number of cases in
which our method demonstrates an improvement over the other
methods, and the percentage of improvement in such cases, for
our versus He2021 and our versus Serrano2016, respectively.
From the tables, we can observe that the proposed analysis
outperforms other schemes across all settings, and obtains
an improvement of up to 9.24% and 13.68% on average,
compared to He2021 and Serrano2016 respectively. However,
we also observed that there exist cases where He2021 or
Serrano2016 can produce a lower makespan bound. This
is because in order to provide a safe bound, the I loprevj in
Equation 13 is introduced in our analysis to avoid over-
optimistic computations when bounding the delay from low-
priority nodes. However, such situations rarely occur and the
proposed analysis demonstrates a significant advantage over
the competing analysis in almost all cases.

B. Evaluation of system schedulability for multi-DAG systems

Figures 10 and 11 present the schedulability of the evaluated
methods in multi-DAG systems, with a varied number of cores
and utilization per core. In the multi-DAG case, the proposed
analysis demonstrates the most pronounced advantages, in
which the schedulability of other methods drops quickly and
schedules few systems when either the number of cores is
lower than 14 or the utilization is higher than 0.2. In contrast,

6 8 10 12 14 16

Parallelism

0.2

0.4

0.6

0.8

1

m
a
k
e
s
p
a
n

He2021 Ours Serrano2016

Fig. 8: The makespan of a single DAG with varied degree of
parallelism, Core = 6 and Length = 7.

3 5 7 9 11 13

Length

0

0.2

0.4

0.6

0.8

1

m
a
k
e
s
p
a
n

He2021 Ours Serrano2016

Fig. 9: The makespan of a single DAG with varied length,
Core = 6, and Parallelism = 12.

the proposed analysis can still schedule up to 100% of the
systems in majority cases (e.g., under 12 cores in Figure 10
and with a utilization per core of 0.5 in Figure 11). This
observation is obtained due to a combinational effort on
reducing the bound of both the intra-task and inter-task inter-
ference in the proposed analysis. Especially, when computing
the inter-task interference, the proposed analysis reduces the
pessimism when accounting for the number of nodes that
contribute to inter-task interference by fully exploring the
execution parallelism between nodes. However, as for He2021
and Serreno2016, the total workload of the interfering DAGs
is used when computing the inter-task interference, along
with repetitive computations when bounding the low-priority
interference (i.e., Limitation II discussed in Section IV). More
specifically, in the single-DAG analysis, we focus on calculat-
ing the worst-case scenario of nodes instead of paths which

1214161820222426283032

Core

0

500

1000

S
c
h
e
d
u
la

b
le

 S
y
s
te

m
s

Ours

He2021

Serreno2016

Fig. 10: The system schedulability for multi-DAGs under a
varied number of cores, Parallelism = 6, and Length = 6.

0.2 0.3 0.4 0.5 0.6 0.7
Util

0

500

1000

S
c
h

e
d

u
la

b
le

 S
y
s
te

m
s

Ours

He2021

Serreno2016

Fig. 11: The system schedulability for multi-DAGs under
varied utilization per core, Core = 4, Parallelism = 6, and
Length = 6.

allow a finer-grained interference analysis. The key factor for
better schedulability is the removal of unnecessary interference
delay that we summarized in Equation 11 and the condition
that judges whether interference will occur in Equation 13.
Moreover, in the multi-DAG analysis, we continue to analyze
the worst-case execution scenario of each node and treat other
DAGs as concurrent nodes as shown in Equation 18 which
precisely captures the inter-task interference.

We also observed that He2021 and Serreno2016 have almost
the same schedulibility in Figures 10 and 11. The reason is that
the work in [12] provides a bound for single-DAG preemptive
scheduling which can have an obvious advantage over generic
bound because only high-priority nodes are accounted as in-
terference. However, we introduce non-preemptive (our focus)
features to He2021 which includes low-priority interference,
and the advantage becomes trivial. Moreover, He2021 inherits
the analysis of Serreno2016 in multi-DAG, hence their overall
difference is negligible with a non-preemptive scheduling
scheme.

VII. CONCLUDING REMARKS

This paper studies the response time analysis of DAG
tasks under a global limited preemption scheme. An in-
depth analysis is first proposed to show the limitations and
defects of the existing analyzing methods. Inspired by the
discussion, a new response time analysis for a single DAG
task and multi-DAG systems is constructed, which precisely
accounts for the intra-task and inter-task interference by fully
exploring the parallelism between nodes. Experimental results
have demonstrated the tightness of the constructed analysis
over the state-of-the-art methods. In future work, we aim to
extend the constructed analysis to support other scheduling

methods (e.g., fully-partitioned and federated) and heteroge-
neous architectures.

ACKNOWLEDGMENT

This research was funded in part by Innovate UK HICLASS
project (113213). EPSRC Research Data Management: No
new primary data was created during this study.

REFERENCES

[1] M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware
generation of single-rate DAGs from multi-rate task sets,” in Real-Time
and Embedded Technology and Applications Symposium, 2020.

[2] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in Real-Time Systems Symposium, 2012.

[3] A. Burns and A. J. Wellings, Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX, 2001.

[4] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional dag tasks in
multiprocessor systems,” in IEEE Euromicro Conference on Real-Time
Systems, 2015.

[5] J. C. Fonseca, V. Nélis, G. Raravi, and L. M. Pinho, “A multi-DAG
model for real-time parallel applications with conditional execution,” in
Annual ACM Symposium on Applied Computing, 2015.

[6] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho, “Response time anal-
ysis of sporadic DAG tasks under partitioned scheduling,” in Symposium
on Industrial Embedded Systems, 2016.

[7] S. Baruah, “The federated scheduling of systems of conditional sporadic
DAG tasks,” in International Conference on Embedded Software, 2015.

[8] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM computing surveys (CSUR), 2011.

[9] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis
of sporadic DAG tasks for global FP scheduling,” in International
Conference on Real-Time Networks and Systems, 2017.

[10] M. A. Serrano, A. Melani, M. Bertogna, and E. Quiñones, “Response-
time analysis of DAG tasks under fixed priority scheduling with limited
preemptions,” in Design, Automation & Test in Europe Conference &
Exhibition, 2016.

[11] Q. He, N. Guan, Z. Guo et al., “Intra-task priority assignment in real-
time scheduling of dag tasks on multi-cores,” IEEE Transactions on
Parallel and Distributed Systems, 2019.

[12] Q. He, M. Lv, and N. Guan, “Response time bounds for dag tasks with
arbitrary intra-task priority assignment,” in 33rd Euromicro Conference
on Real-Time Systems (ECRTS 2021), 2021.

[13] S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang, “Dag scheduling
and analysis on multiprocessor systems: Exploitation of parallelism and
dependency,” in IEEE Real-Time Systems Symposium, 2020.

[14] S. Zhao, X. Dai, and I. Bate, “Dag scheduling and analysis on multi-core
systems by modelling parallelism and dependency,” IEEE Transactions
on Parallel and Distributed Systems, 2022.

[15] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling
of parallel real-time tasks on multiprocessors,” in Real-Time Systems
Symposium, 2017.

[16] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Partitioned fixed-
priority scheduling of parallel tasks without preemptions,” in IEEE Real-
Time Systems Symposium, 2018.

[17] M. Hatami, “Semi-partitioned scheduling hard real-time periodic dags
in multicores,” in The Proceeding of First Work-in-Progress Session of
2018 CSI International Symposium on Real-Time and Embedded Systems
and Technologies, 2018.

[18] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in
Euromicro Conference on Real-Time Systems, 2014.

[19] R. L. Graham, “Bounds on multiprocessing timing anomalies,” Journal
on Applied Mathematics, 1969.

[20] A. Thekkilakattil, R. I. Davis, R. Dobrin, S. Punnekkat, and M. Bertogna,
“Multiprocessor fixed priority scheduling with limited preemptions,” in
International Conference on Real Time and Networks Systems, 2015.

[21] A. Burns and S. K. Baruah, “Sustainability in real-time scheduling.”
Journal of Computing Science and Engineering, 2008.

[22] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, 2005.

