
This is a repository copy of Generation of vertical flows by torsional Alfvén pulses in zero-
beta tubes with a transitional layer.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201370/

Version: Published Version

Article:

Scalisi, J. orcid.org/0000-0001-7070-6322, Ruderman, M.S. orcid.org/0000-0003-2324-
8466 and Erdélyi, R. orcid.org/0000-0003-3439-4127 (2023) Generation of vertical flows 
by torsional Alfvén pulses in zero-beta tubes with a transitional layer. The Astrophysical 
Journal, 951 (1). 60. ISSN 0004-637X 

https://doi.org/10.3847/1538-4357/acd9ae

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Generation of Vertical Flows by Torsional Alfvén Pulses in Zero-beta Tubes with a
Transitional Layer

Joseph Scalisi
1

, Michael S. Ruderman
1,2,3

, and Robertus Erdélyi
1,4,5

1
Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3

7RH, UK; robertus@sheffield.ac.uk
2
Space Research Institute (IKI), Russian Academy of Sciences, Moscow, Russia

3
Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow, Russia
4
Department of Astronomy, Eötvös Loránd University, 1/A Pázmány Péter sétány, H-1117, Budapest, Hungary

5
Gyula Bay Zoltán Solar Observatory (GSO), Hungarian Solar Physics Foundation (HSPF), Petőfi tér 3., Gyula, H-5700, Hungary

Received 2023 March 21; revised 2023 May 10; accepted 2023 May 25; published 2023 July 4

Abstract

Spicule activity in the chromosphere is modeled via the perturbation resulting from the propagation of an Alfvén
wave pulse in a magnetic flux tube. Building on previous work, the model is augmented by the inclusion of a finite
transitional layer in which the atmospheric density decreases exponentially. This additional complexity of the
density stratification provides a more physical representation of the solar atmosphere and improves on the existing
model. The wave pulse is introduced at the lower boundary of the flux tube and interacts with the transitional layer,
also being partially reflected. The total mass flux induced by the pulse, and the proportion of this pulse that is
transmitted through the layer, is calculated and examined in the context of spicules and the solar wind using an
example solution. We find that the inclusion of the transitional layer results in more plasma flux being transferred
into the upper solar atmosphere when compared with the case of a discontinuity. We examine how varying the
parameters of this transitional layer affects the ratio of the flux above and below the layer.

Unified Astronomy Thesaurus concepts: Solar atmosphere (1477); Solar physics (1476); Solar chromosphere
(1479); Solar transition region (1532); Solar magnetic fields (1503); Alfven waves (23); Magnetohydrodynamics
(1964); Solar magnetic bright points (1984); Theoretical models (2107); Solar spicules (1525); Plasma jets (1263);
Jets (870)

1. Introduction

Solar jets and spicules are an important part of the solar and
heliospheric system, due to their extreme prevalence on the Sun
and their consequently considerable potential to transfer energy
and mass—which is relevant to the ongoing investigations of
chromospheric and coronal heating and the origin of the mass
flux of the solar wind. In order to refine and improve our
knowledge of the dynamic features of the solar atmosphere, we
must use a variety of methods to consider all components of the
system as well as the interactions between different processes.
Analytical modeling allows us to consider a simpler version of
this complex system—for example, with an initial equilibrium
state—and then introduce perturbations or controlled changes
in order to examine the effect of specific phenomena, without
those features of interest being obscured by other effects. In this
paper, we aim to study spicules and model their potential
ability to affect the solar wind, by focusing on the effect of
torsional Alfvén waves on plasma in a highly magnetic flux
tube in a stratified atmosphere.

The local environment of spicules is inhomogeneous
because they occur throughout the chromosphere (Sterling
2000; Tsiropoula et al. 2012), where varying local conditions
can be expected due to the many dynamic features that
dominate the region. Magnetic bright points (MBPs) are an
example of relatively compact regions with fields on the order
of a kilogauss (Keys et al. 2013) within the photosphere, where

they tend to appear in the intergranular lanes (De Wijn et al.

2009). Magnetic forces dominate inside MBPs, and they can be

modeled as thin magnetic flux tubes (Cranmer & van

Ballegooijen 2005). Torsional Alfvén waves are known to

occur in many small-scale solar phenomena including spicules

and MBPs (De Pontieu et al. 2012), and the relationship

between these features is a subject of ongoing investigation;

MBPs have been observed to act as anchor points for spicules,

and to exhibit oscillations that are funnelled higher into the

atmosphere through spicules (Jess et al. 2012). We have

investigated the effects of torsional waves on spicules in our

previous works (Scalisi et al. 2021a, 2021b). However, while

torsional waves are likely to influence the generation and early

evolution of spicules, the vertical stratification of the atmos-

phere from the footpoints of spicules up to their maximum

height (around 5–10 Mm) is also likely to affect their later

evolution and decline.

Despite being relatively thin when compared to the extent of

the corona or the scale of the solar interior, the chromosphere

and transition region form an area of the solar atmosphere over

which extreme changes occur, e.g., in density (Makita 2003).

Plasma density is generally thought to decrease almost

exponentially with height, ranging from the order of

10−4kg m−3 at the level of the photosphere (Roberts 2019)

up to around 10−11kg m−3 in the transition region (Priest 2014).

Models of the solar atmosphere as a whole have been able to

take this into account (Ferraro & Plumpton 1958; Vernazza

et al. 1981); however, more research is needed to determine

how this density variation affects the evolution of spicules and

their effect on the outer solar atmosphere.
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In our recent publications (Scalisi et al. 2021a, 2021b), an

analytical model was developed to study the evolution of

spicules from their formation to their decline, and to consider

the role of torsional Alfvén waves in connection with MBPs

and spicules. In this regard, here we continue our efforts to

build a model that can take into account the inhomogeneous

nature of the chromosphere, i.e., the variation in the properties

of the atmospheric plasma that occurs as the height above the

photosphere increases. Whereas Scalisi et al. (2021b) involved

a discontinuity from which Alfvén waves were reflected, we

now include a more realistic continuous density profile that

may give significantly different results, which we intend to

investigate. Hence, in this article we aim to study how the

vertical mass flux resulting from a torsional perturbation is

transferred from the chromosphere to the corona, and how this

depends on the thickness of a transitional layer. This layer is

intended to represent the fact that the most extreme variation of

plasma density in the solar atmosphere occurs over a relatively

thin region of the upper chromosphere. We are interested in

how the stratification of the atmosphere affects the plasma flux

into the outer atmosphere, i.e., the difference between the

perturbation below and above the transitional layer. In the next

section, we describe the equilibrium state and present the

governing equations of the model.

2. Model

In this analytical model, beginning with the ideal MHD

equations and following on from the method of Scalisi et al.

(2021a), we consider a magnetic flux tube that acts as a

waveguide for an Alfvén wave pulse. In this context, the

vertical background magnetic field is assumed to be strong

enough that magnetic forces dominate throughout the tube and

thus the plasma beta is much less than unity (Jess et al. 2023).

We therefore use the zero-beta approximation and neglect the

plasma pressure in comparison with the magnetic forces. The

perturbation in the magnetic field generates vertical plasma

motion via the ponderomotive Lorentz force.
The structure of the atmosphere is modeled as a three-

layered system, with the initial pulse generated in the lower

region with constant plasma density, passing through an

intermediary transitional layer in which the density decreases

exponentially, and finally propagating into another region with

low constant density.

2.1. Model Specification

We consider the plasma motion inside a vertical semi-infinite

magnetic tube of radius r0. We use cylindrical coordinates r, θ,

z with the z-axis vertical. The equilibrium magnetic field is in

the z-direction and has a constant magnitude B0. We consider

the tube boundary to be rigid and disregard the interaction of

plasma motion inside the tube with the plasma surrounding it.

The tube consists of three regions with different plasma

densities inside them. The transitional layer is defined by

L� z� L+ ℓ, i.e., it begins at some height L above the base of

the chromosphere and has a vertical extent or thickness of ℓ.

We assume that the density ρ(z) in the transitional layer

decreases exponentially, hence the equilibrium plasma density

is given by

⎧
⎨
⎩

( ) (( ) ) ( )r
r
r
r

= - < < +
+
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
z

z L

L z H L z L ℓ
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, 0 ,

exp , ,

, .

10

1

1

2

Here, H is the scale height in the transitional layer, and ρ1 and

ρ2 are constants related by ρ2= ρ1e
− ℓ/H. The plasma motion is

described by the ideal magnetohydrodynamic (MHD)

equations for cold plasmas:

( · ) ( ) ( )
m r

¶
¶

+  =  ´ ´
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V V B B
t

1
, 2

0

( ) ( )
¶
¶
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B

V B
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where V= (Vr, Vθ, Vz) is the plasma velocity, B= (Br, Bθ, Bz)

the magnetic field, ρ the plasma density, and μ0 the magnetic

permeability of free space. The Alfvén speed, vA, is defined by

( ) ( )( )

m r
= = -v

B
v z v e, , 4A A A

z L H2 0
2

0 0

1
2

where vA1= vA(L) is the (constant) Alfvén speed below the

transitional layer and H is the scale height. It follows that

vA2= vA1e
ℓ/2H is the Alfvén speed above the transitional layer.

Below, we consider the motion with small dimensionless
amplitude ò= 1 and we look for a solution to the problem in
the form of expansions

   
( )

= + + = + + +V V V B e B BB..., ...,

5

z1
2

2 0 1
2

2

where ez is the unit vector in the z-direction. We impose the

boundary condition at the tube base

 
( ) ( ) ( )= = - =q qB F t r V

v

B
F t r z, , , at 0, 6

A1

0

where F(t, r) is a function that defines a localized finite-

duration pulse inside the flux tube. This will drive a torsional

Alfvén wave propagating upward in the first-order approx-

imation; we will then investigate the effect that this has on the

second-order quantities.

2.2. First-order Approximation

In the first-order approximation, we collect the terms of the
order of ò and then look for the solution of obtained equations
in the form of torsional wave. In this wave, only Vθ1 and Bθ1

are nonzero, while other components of the velocity and
magnetic field perturbation are zero. The torsional velocity and
magnetic perturbations Vθ1 and Bθ1 are therefore related by the
first-order equation of motion,

( )
¶
¶

-
¶
¶

=q qV

t

v

B

B

z
0, 7A1

2

0

1

as well as the first-order induction equation,

( )
¶
¶

=
¶
¶

q qB

t

V

z
B . 8

1 1
0

2
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Combining Equations (7) and (8), the first-order velocity
perturbation is then defined by the equation

( ) ( )
¶
¶
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The solution for the velocity below and above the
transitional layer is given by
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A similar solution for the magnetic field is
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2.2.1. Fourier Transform

To find a solution for Equation (9) in the transitional layer,
we introduce the Fourier transform with respect to time,
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Applying this transform to Equation (9) and using Equation (4)

yields
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This equation is valid for L� z� L+ ℓ. Using the variable

substitution,
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so that
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then by substituting in (14) and (15), we reduce Equation (13)

to the Bessel equation
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The general solution to this equation for q̂V 1 is

ˆ ( ) ( ) ( ) ( ) ( )w w= +qV C J u C Y u , 171 1 0 2 0

where J0(u) and Y0(u) are Bessel functions of the first and

second type and the zeroth order.
After applying the Fourier transform to the induction

Equation (8), we obtain
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Using the relations

( ) ( ) ( ) ( ) ( )¢ = - ¢ = -J u J u Y u Y u, , 190 1 0 1

where J1(u) and Y1(u) are Bessel functions of the first and

second type and the first order, and the prime indicates the

derivative, we obtain from Equations (17) and (18):
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Applying the Fourier transform to Equations (10) and (11),
we obtain
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We note that ˆqB 1 and q̂V 1 are functions of z that depend on ω and

r as parameters.
The magnetic field and velocity must be continuous at the

boundaries of the transitional layer. This condition results in
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We impose the boundary condition

( ) ( )= =qB F t r z, at 0. 251

Using Equation (7) and the definitions of Bθ1 and Vθ1, we

obtain the relations
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The same relations are valid for the Fourier transforms of the
velocity and magnetic field. Then, we transform the third and
fourth equations in Equation (23) to
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We need to be able to write Vθ1t in terms of Vθ1i in order to
find the mass–flux ratio when we solve the second-order
approximation for VZ2. We obtain by adding Equation (27) and
the first equation in Equation (23):
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Subtracting Equation (28) from the second equation in

Equation (23), we obtain
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It follows from Equations (29) and (30) that
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Eliminating C1 and C2 from (28) and using the identity
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Equation (35) is then the Fourier-transformed first-order

azimuthal velocity perturbation and is the solution to

Equation (13). We do not give the expression for ˆ ( )wqV r1 ,

because it is not used below.

2.2.2. Inverse Fourier Transforms

Now, let us calculate the inverse Fourier transforms. In order
to make analytical progress, we first assume that F(t, r)= 0 for
t� 0 and t� τ. This means that there is no perturbation before
an initial time t= 0 and that the driver of the pulse is active
only for a finite duration τ, after which there is again no
perturbation in the first-order quantities. The leading edge of
torsional Alfvén wave driven by the perturbation at z= 0
arrives at the lower boundary of the transitional layer at
t= L/vA1. Before it arrives at this lower boundary, it has the
form of a pulse of length τvA1. We assume that this length is
much larger than the thickness of the transitional layer and
introduce the small parameter δ= ℓ/τvA1.

The main contribution in ˆ ( )wF r, , which is the Fourier
transform of the function defined in Equation (6), comes from

|ω| smaller than or on the order of 2π/τ, while ∣ ˆ ( )∣ wF r, 1
for |ω|? 2π/τ, so that it is enough to consider the Fourier
transform only for |ω| 2π/τ. Because ( )=ℓ H v v2 ln A A2 1 ,
we have H ℓ, i.e., the scale height is on the order of, or less
than, the thickness of the transitional layer. This enables us to
obtain the following estimates:
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Because |u2|< |u1|, it follows that |u2| δ. Below, in all

expressions, we only keep terms on the order of unity, δ, and

δ2, and neglect terms of higher orders with respect to δ. Now,

we use the relations (Abramowitz & Stegun 1965, ref. 9.1)
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where γ is the Euler constant. Using these relations, we obtain
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Using Equation (39) and the identity
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and taking only the first three terms (up to the order of δ2), we

obtain from Equation (35):
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Now, we can calculate the inverse Fourier transforms:
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where the prime indicates the derivative. Thus, we have an

approximate solution for the first-order Equation (9).

2.3. Second-order Approximation

Now, we consider the second-order quantities in the MHD
equations, which depend on the solutions we have found for the
first-order quantities. This will introduce a vertical perturbation
of the plasma due to the ponderomotive Lorentz force.
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In the second-order approximation, we collect the terms on
the order of ò

2 in the z-component in Equation (2). This yields

( )
( ) ( )

m r
¶
¶

= -
¶
¶ q

V

t z z
B

1

2
. 45

Z2

0 0

1
2

The torsional Alfvén wave arrives at the transitional layer at

t= L/vA1. Before that time, there is no reflected wave in the

region z< L, i.e., Vθ1=Vθ1i. Hence, for t< L/vA1 we obtain using
Equations (8), (26), and (45) that, below the transitional layer,

( ) ( )
¶
¶

=
¶
¶ q

V

t v t
V

1

2
. 46

Z i

A
i

2

1
1
2

Because there are no perturbations for t� 0, it follows from

this equation that for t< L/vA1 there is only the initial wave, so
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In the region above the transitional layer, there is only transmitted

wave, as defined in Equation (10). So, again using Equations (8),

(26), and (45) but considering the region z> L+ ℓ, we have
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Because there are no perturbations for t� 0, we obtain from

Equation (48) using Equation (44):
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Here, Θ= t− T− z/vA2. Now, we calculate the total mass flux

through the tube cross section below and above the transitional

layer. We assume that the function F(t, r) is factorized and can

be written as F(t, r)=Φ(t)Ψ(r). It is convenient to calculate the

incoming mass flux at z= 0, which is then given by

( ) ( )ò òpr=
t

M r dr V t dt2 , 50i

r

Z i1
0 0

2

0

where r0 is the tube radius. Using Equations (6) and (47), we

transform this expression to
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The total mass flux through any tube cross section above the

transitional layer is the same at any z> L+ ℓ. It follows from

Equation (49) that VZ2t is different from zero only for

0<Θ< τ, **that is for T+ z/vA2< t< τ+ T+ z/vA2. Hence,
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Although z is present in this expression, the result will be the

same for any z> L+ ℓ. Using Equation (49) and the integration

variable substitution, we obtain
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Using integration by parts and Equation (40), we transform this

expression to
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Substituting this expression in Equation (52) and using

Equation (6) yields
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where we changed the integration variable from Θ to t. We note

that H is proportional to ℓ such that ( )a=ℓ H 2 ln is fixed

when vA1 and vA2 are given, where α= vA2/vA1. Thus, we see

that the term proportional to the thickness of the transitional

layer squared (ℓ
2, or equivalently H2

) in the square brackets in

Equation (55) gives the correction to Mt related to the

substitution of the discontinuity by the smooth transitional

layer, and because α> 1, it follows that this correction is

always positive. We recover the total mass flux due to the

transmitted wave in the case of a discontinuity by taking ℓ= 0

(or equivalently H= 0).
To give an example, we take

⎛⎝ ⎞⎠( ) ( )
p
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t
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2

, 0 , 56

where A is a constant and Φ(t) is otherwise zero. This

represents the driver of the wave, which is active for a finite

duration τ, creating a wave pulse. Then we obtain
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Using these results, we find that the ratio of the second term in

the square brackets in Equation (55) to the first one is
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This ratio represents the proportion of the transmitted mass that

is due to the effect of the transitional layer, compared to the

case of the discontinuity. It is maximized at around α= 5.082,

when it is approximately equal to ( )t d=ℓ v0.447 0.447A1
2 2.

Because we have δ= 1, the additional transmitted mass due to

the effect of the transitional layer must be much less than

44.7% of the total transmitted mass, for any feasible value of α.

If, in addition, we take δ= 1/3 as an example satisfying the

thin-layer requirement, then we obtain that the ratio of two

terms is 0.0497. Hence, in this case, the transmitted flux is

greater by approximately 5% than in the case of discontinuity

(illustrated in Figure 1). This is encouraging because it suggests

that the actual density-stratified solar atmosphere would most

likely allow for some spicular material to pass through the

chromosphere as a result of torsional Alfvén waves.
We can also find the ratio R of the relative mass flux, i.e., the

ratio of the mass of plasma that moves due to the transmitted
wave through a given surface z> L+ ℓ above the transitional
layer, as a proportion of the plasma that moves due to the initial
wave through a surface z< L:
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Notably, this is similar to the mass–flux ratio found in Scalisi

et al. (2021b) (Equation (32) in that paper) but with an extra

term proportional to ℓ2, hence it is clear that the inclusion of the

transitional layer has had a quantifiable effect on the model.

The ratio R is shown in Figure 1. We now explore how the

mass–flux ratio changes due to the extra term introduced as a

result of considering a transitional layer sandwiched between

the chromosphere and the low corona, in the next section.

3. Discussion

The result from this model depends on how we specify vA1,
τ, H, and α. However, we are particularly interested in how the
ratio changes depending on the thickness of the transitional
layer ℓ while the other variables remain constant (although we
can consider various discrete cases). Therefore, we will have
different values for the scale height ( )a=H l 2 ln when we
vary ℓ, while considering a particular value of α. Because we
will consider various cases, it may be helpful to explore
physical constraints for the values of our parameters.
In strongly magnetic regions of the lower solar atmosphere

inside a flux tube, the Alfvén speed would be on the order of
10 km s−1, with some estimates suggesting values between
7.7 km s−1

(Roberts 2019) and 22 km s−1
(Jess et al. 2009).

Taking the latter value and using Equation (4), this corresponds
to an estimate for the density ρ1 in the lower layer of the model
of around 1.64× 10−8 g cm−3, with a kilogauss-strength
background magnetic field. Higher in the atmosphere, the
Alfvén speed increases by at least an order of magnitude
(Vernazza et al. 1973), with estimates of 1000 km s−1 or more
in the corona (Tomczyk et al. 2007; van Ballegooijen et al.
2011). However, our model is not intended to encompass the
corona but rather the regions below it. Okamoto & De Pontieu
(2011) suggest values for the Alfvén speed of around 556
km s−1 at the extreme end of the range of spicule heights (15″,
or around 10.9 Mm); using this value for the Alfvén speed in
the upper layer, the corresponding density ρ2 can be estimated
at around 2.57× 10−11 g cm−3, again with a kilogauss-strength
background magnetic field for the purposes of this model.
Comparing the 556 km s−1 estimate and the 22 km s−1 estimate
gives α≈ 25. However, Okamoto & De Pontieu (2011) also
suggest a higher Alfvén speed at the surface, with their
equivalent Alfvén speed ratio given as 3.39. Informed by these
sources, we will consider values for α on the order of around
10, or equivalently a density ratio of around ρ1/ρ2= 100.
These estimates may be rather imprecise due to the highly
variable nature of the solar atmosphere, especially in the
vicinity of relatively small and dynamic features like spicules,
hence the need to consider a range of values for these
parameters. This range should give results that are compatible

Figure 1. A plot of the mass–flux ratio R against α, showing the effect of
varying δ and thus the thickness of the transitional layer. Here, we consider
multiple values of δ in the range 0 < δ < 1. It should be noted that δ = 1 is
included as an extreme case for the sake of comparison, but the model requires
a thin layer, i.e., δ= 1. The one percent transmission threshold is shown as a
cyan line that intersects with the δ = 0 curve of the ratio at α = 6.717 (blue
dotted line) and with the δ = 1 curve of the ratio at α = 7.638 (orange dotted
line). Also shown is the proportion of transmitted mass that is due to the effect
of the transitional layer, λ (green dotted–dashed curve) for δ = 1/3, with the
maximum indicated at α = 5.082 (green dotted line).

Figure 2. Plots of the mass–flux ratio R against the thickness of the transitional
layer ℓ/vA1τ (scaled by the length of the pulse), illustrating the effect of varying
α. Here, we consider multiple values of α in the range 5 < α < 25. The 1%
transmission threshold is shown as a cyan line, and the line ℓ = vA1τ as an
orange line (we note that ℓ > vA1τ is beyond the scope of the model).
Highlighted in red are the values of α = 6.717 and α = 7.638.
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with the estimated ratio of the mass flux of the solar wind
versus that of spicules (1%).

The ratio R strictly increases proportional to ℓ2. This suggests
that a wider transitional layer, in this case a more gentle
gradient between the lower and upper regions in the model,
results in stronger transmission of the wave. It should be noted
that, if we take the limit as ℓ→ 0, then the ratio depends only
on α. Hence, this limit—equivalent to the case of the density
discontinuity—gives the minimum value of the ratio for any
particular value of α. This minimum ratio coincides with the
result of Scalisi et al. (2021b); in particular, we find the
minimum ratio matches the 1% estimate at α≈ 6.717, just as in
the example given in our previous paper. In fact, for α< 6.717,
the 1% threshold is exceeded for all ℓ. For α> 7.638, the
threshold is not reached for 0< ℓ< vA1τ. The minimum value
of the ratio is on the order of α−3 and so tends toward zero as
α→∞. Increasing the value of α not only reduces this
minimum value but also means that the ratio increases more
slowly as ℓ increases, as illustrated in Figure 2. Hence, we find
that less of the mass would be transmitted above an arbitrarily
thin transitional layer with a higher value of α, and also that
increasing the width of the transitional layer has less effect with
a higher value of α than it would with a lower value. This is,
again, because the gradient in the transitional layer is more
severe if there is a greater difference between the plasma
density in the lower and upper regions.

It is worth noting that we also assumed earlier in our
calculations (see Section 2.2.2) that the transitional layer was
thin compared to the length of the pulse. An effect of this
stipulation is that the travel time for the pulse to cross the
transitional layer is negligible. As a result, we should focus on
the results for the range ℓ< vA1τ in order to avoid loss of
accuracy of the model. We are able to specify how the pulse is
driven via the boundary conditions; in Scalisi et al. (2021a), we
suggested that a pulse driven for around 150 s could reach a
maximum vertical extent matching the height of spicules, and
this is within the range of the average period of torsional
Alfvén waves in MBPs (where our hypothetical wave driver is
located) given by Jess et al. (2023). So, for example, if
τ= 150 s, along with an estimate of vA1= 10 km s−1, we could
consider ℓ< 1500 km. However, this may not be considered
“thin” in comparison to the height of the chromosphere, so we
may want to consider shorter pulses. These pulses would still
propagate at the Alfvén speed, reaching the height of observed
spicules within a few minutes, but would themselves be shorter
in length than spicules. It is unclear whether the pulse needs to
be driven continuously during the spicule’s “rising” phase. If
the driver is, for example, related to a photospheric or
chromospheric swirl (Liu et al. 2019a, 2019b), then it is likely
that the duration would be shorter than the lifespan of a spicule,
because these features are observed to have average lifetimes of
under 30 s—although this is only slightly less than the lifespan

(a) (b)

(c)

Figure 3. Plots of the mass–flux ratio R against the thickness of the transitional layer ℓ, illustrating the effect of varying pulse duration. Each curve represents a pulse
with a different discrete value of the pulse duration τ between t = 1smin and t = 150max s, all with constant vA1 = 10 km s−1. Here, ℓ is only shown between 0 and the
maximum length of any of the pulses within the chosen range, i.e., t =v 1500A1 max km. According to our assumption of a thin transitional layer, the range of ℓ
encompassed by the model is represented below and to the left of where the orange line intersects with each curve, at distinct values of vA1τ. The cyan line represents
the 1% transmission threshold R = 0.01. We consider different values of α: (a) α = 6.717, (b) α = 7.638, and (c) α = 10.
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of certain kinds of jets such as Type II spicules or RBEs
(Kuridze et al. 2015). Again, it is useful to consider a range of
possible values.

For a particular value of α, if the pulse duration τ is reduced
then the mass–flux ratio increases faster as ℓ increases, i.e., a
thinner transitional layer is required to reach the same ratio of
transmitted mass. Regardless of the pulse duration, we find the
same value of the ratio for a given α is always reached at
ℓ= vA1τ, the upper limit of the range of ℓ that we consider valid
for this model. This maximum value of the ratio varies with α
in a similar way to the minimum value (at ℓ= 0), i.e., on the
order of α−3, and it reaches 1% at α≈ 7.638.

The effect of varying τ is illustrated in Figure 3, for three
discrete values of α representing different cases. In case (a), for
α= 6.717, the 1% transmission threshold (cyan line) is met at
ℓ= 0 regardless of the pulse duration, and at ℓ= vA1τ (orange
line), the ratio is always just under 1.5%. In case (b), for
α= 7.638, the 1% threshold is always met at ℓ= vA1τ
regardless of the pulse duration (cyan and orange lines are
superimposed at the same value of R= 0.01). In case (c), we
consider α> 7.638, taking α= 10 as an example; here, the
ratio at ℓ= vA1τ is less than 0.5% regardless of the pulse
duration, hence the mass flux present above the transitional
layer in the higher solar atmosphere would be even less than
1% of the initial flux (for all values of ℓ< vA1τ satisfying our
assumptions). This is acceptable in a physical context, because
the 1% threshold refers to the total mass flux of spicules versus
that of the solar wind, and spicules are of course not the only
potential source of the solar wind. Therefore, 1% could be
considered as the upper limit for the proportion of spicule
material that may contribute to the solar wind. It follows that
(c) is likely to be the most realistic of the three given cases.
This is in line with the estimated values of the Alfvén speeds
discussed earlier in this section.

There are some caveats concerning the physical interpreta-
tion of the results. First, although the model is not intended to
include the corona, in reality the transitional layer does not end
at a region of constant plasma density and the Alfvén speed
may continue to increase with height above the photosphere.
Therefore, it is likely that even less mass flux from the
perturbations we describe will be present higher up in the
atmosphere, and in the solar wind. However, it is true that the
greatest change in density by far in the solar atmosphere occurs
over a small length scale in the transition region, such that the
corona can be modeled with constant Alfvén speed for the
purposes of this work. Second, it is difficult to predict with this
model what will happen to the plasma that has already been
lifted. It is possible that a spicule’s later trajectory would be
influenced by both gravity and the effect of waves being
repeatedly reflected, because many jets’ trajectories are not
purely ballistic (De Pontieu et al. 2007; Loboda & Bogachev
2017) and the plasma is likely to be affected by the waves in a
different way at the top of the spicule compared to the at the
base (Okamoto & De Pontieu 2011). Hence, the inclusion of
gravity would be a useful addition to the model. Finally, the
analysis presented here does not explicitly consider the
variation of the background magnetic field with height,
although—because the magnetic field strength is proportional
to the Alfvén speed—it is taken into account by the current
model and the effect of this variation can be inferred. However,
tube expansion higher in the atmosphere will occur with the
decreasing magnetic field strength inside the flux tube and may

affect our estimates. A more thorough analysis of this effect
could be the subject of a future study, building on the
framework of the model presented here.

4. Conclusion

The model presented here is a useful diagnostic tool for
investigating the compatibility of our ideas, allowing us to
explore the processes occurring in the lower solar atmosphere,
and providing some insight into the scale of the influence that
spicules can have on the solar atmosphere beyond the
chromosphere. We used our model to investigate whether
mass flux would still be generated in the solar atmosphere
above a transitional layer, due to a transmitted Alfvén wave.
The results suggest that there would be flux present in that
region on the order of 1% of the flux due to the initial pulse,
and that in comparison to the case of a discontinuity, there is a
slight increase.
In addition, the model suggests several things about spicules.

Primarily, we suggest that the generation of jet-like motion can
be driven or influenced by magnetic perturbations in the form
of torsional Alfvén waves originating in strongly magnetic
photospheric regions. We also find that these waves are
restricted in the extent that they are able to propagate out into
the atmosphere, putting a limit on the maximum height to
which jets may be driven by them and suggesting that almost
all of the mass lifted by this process will remain in the lower
solar atmosphere rather than being ejected into the corona, as
expected. However, despite that limit, some material from the
jets may be carried higher into the atmosphere by the
transmitted portion of the waves that were present during the
formation of the jets, although only a small amount may
eventually contribute to the solar wind.
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