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Abstract
The key indicator to assess the performance of a battery management system is the state of charge (SoC). Although var-
ious SoC estimation algorithms have been developed to increase the estimation accuracy, the effect of the current input
measurement error on the SoC estimation has not been adequately considered in these algorithms. The majority of
SoC estimation algorithms are based on noiseless current measurement models in the literature. More realistic battery
models must include the current measurement modelled with the bias noise and the white noise. We present a novel
method for mitigating noise in current input measurements to reduce the SoC estimation error. The proposed algorithm
is validated by computer simulations and battery experiments. The results show that the proposed method reduces the
maximum SoC estimation error from around 11.3% to 0.56% in computer simulations and it is reduced from 1.74% to
1.17% in the battery experiment.
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Introduction

Concerns regarding energy conservation and environ-
mental protection have increased the popularity of elec-
tric vehicles (EVs). Despite their increasing popularity,
their performance still need to be improved. Existing
EVs have a significantly lower driving range compared
to traditional internal combustion engine-based vehi-
cles. Another issue regarding EVs is to miscalculate the
remaining power, leaving passengers stranded. These
are due to the lack of an efficient battery management
system (BMS) that can accurately estimate the remain-
ing power of a battery pack. In this sense, the state of
charge (SoC) is a key parameter to ensure a longer driv-
ing range with reliable remaining power. Optimal SoC
estimation maximises battery energy utilisation, result-
ing in increased driving range. It is also vital to inform
the driver about the current driving range and avoid
the harmful consequences of overcharging or over-
discharging the battery. The majority of investigations
to improve the SoC estimation accuracy primarily focus
on algorithm development with no current measure-
ment error assumption.

The SoC is the ratio of the available battery capacity
to the maximum battery capacity.1 It cannot be directly
measured but can be calculated or estimated using cur-
rent and voltage measurements. There are various types
of SoC estimation algorithms divided into two main
groups: model-free methods and model-based meth-
ods.2 Two most widely used model-free methods are
Coulomb counting (CC) and open circuit voltage
(OCV) measurement methods. The CC method deter-
mines the remaining capacity of a battery by integrat-
ing the current flowing in and out of the battery over
time. However, noisy current measurement is not the
only disadvantage of this method but also the correct
initial SoC guess is required for high accuracy.3 The
OCV measurement method measures the terminal
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voltage when the battery is in a steady state for a suffi-
cient time, for example, 1 h.4 The measured terminal
voltage is assumed to be equal to the OCV and then
converted to the SoC through a look-up table, which is
obtained by laborious laboratory work. This method is
not practical since it requires a long relaxation period
and a look-up table.

State of health (SoH) is another important indicator
in battery systems and it refers to how well a battery is
performing in comparison to its fresh condition. In lit-
erature, there are various approaches to calculating
SoH accurately. In the work by Guo et al.,5 an SoH
estimation algorithm using the SSA-Elman model is
proposed. Battery features and capacity are better cor-
related using this method. In the work by Li et al.,6 an
improved electrochemical impedance spectroscopy
(EIS) method is introduced to estimate SoH. The
improved method increases the equivalent circuit model
(ECM) accuracy and reduces the error in the SoH esti-
mation error. An attention mechanism and bidirec-
tional long short-term memory neural network are
combined in Guo et al.7 for estimating SoH. Three fea-
tures as input of the model are chosen from the incre-
mental capacity curve.

Model-based SoC estimation algorithms require a
battery model to reflect the battery dynamics.
Electrochemical models and ECMs are the two most
common techniques used in battery modelling. In elec-
trochemical models, complex differential equations are
used to describe the electrochemical process taking
place inside the battery.8 The pseudo-two-dimensional
(P2D) model is one of the electrochemical models exist-
ing in the literature. P2D models are based on the por-
ous electrode theory, concentrated solution theory and
kinetic equations.9 Another electrochemical model is
the single-particle model (SPM) which was developed
to simplify the P2D model. In the SPM, it is assumed
that multiple uniform-sized spherical particles form the
electrodes and the current distribution is uniform along
both electrodes.10 The electrochemical models can
explain battery dynamics in terms of the main electro-
chemical reactions occurring inside a battery. However,
their onsite accuracy is low due to their complexity and
numerous parameters to be identified in the models.
They are generally used for the optimisation of the bat-
tery design.11 Unlike the electrochemical models, the
ECMs are frequently used in estimating the SoC due to
the advantages of low computational effort and high
estimation accuracy. The ECM describes the battery
dynamics via basic circuit elements. In the work by
Feng et al.12 and Hossain et al.,13 it is shown that the
Thevenin ECM model with one parallel resistor–
capacitor (RC) branch can accurately represent the bat-
tery dynamics.

Adopting a battery model requires model parameter
identification (MPI). The MPI methods are classified
into two main groups: an offline method and online
methods. The offline method is an experimental
method to calculate the model parameters in

laboratories. The hybrid pulse power characterisation
(HPPC) current profile is commonly used in the experi-
ment.14 This method provides fixed parameter estima-
tions. The actual model parameters change as the
battery ages and the operational conditions change.
Therefore, offline method cannot update the para-
meters according to different operational conditions
and battery ageing, resulting in inaccurate SoC esti-
mates. To adopt the parameters to the changes in
operational conditions and battery ageing, online MPI
methods are used. The recursive least squares (RLS)
method is one of the most popular online methods
found in literature.15,16 In the work by Xia et al.,17 a
forgetting factor RLS method is introduced to mini-
mise the influence of old data on the current estimate.
However, the noisy current input measurement deterio-
rates the performance of RLS-based parameter identifi-
cation methods.18 In this case, the adaptive law-based
MPI method can be an alternative. This method guar-
antees the stability of the parametric uncertainties
based on the Lyapunov direct method.19

The Kalman filter (KF) family has been used in
ECM-based SoC estimation algorithms due to its sim-
plicity and powerful estimation ability.20–23 These algo-
rithms first estimate the OCV and then convert it to the
SoC using the nonlinear relationship between the SoC
and the OCV.24,25 In the literature, the majority of
available SoC estimation algorithms do not consider
the input current measurement noise. The development
of a more realistic SoC estimation algorithm requires
taking into account the input noise.

Error is always present in the current measurement,
which is the input of both current counting and
voltage-based correction methods. Thus, the current
measurement error causes SoC error in both meth-
ods.26 The current measurement is corrupted by the
current bias noise and the white noise.27,26 The impact
of these noises is significantly different. The white noise
does not have a significant effect on the SoC estimation
error.28 The extended Kalman filter (EKF) can accu-
rately estimate the SoC based on the current sensor
measurement with the large random white noise.29

However, it is found that the bias noise substantially
increases the error in the SoC estimation.27 In the work
by Liu and He,30 the effect of the bias noise on the SoC
estimation is investigated. The bias noise of6 10A is
injected into the SoC estimation algorithm during the
simulation. It is observed that the SoC estimation error
is out of the tolerable range by 5%, which may cause
overcharging or discharging of the battery in real-time
applications. In the work by Liu et al.,31 it is found that
the bias noise may reach up to 1% in the battery
experiments. It can reach up to 200mA in practice due
to the electromagnetic environment and the tempera-
ture. In the work by Liu et al.,31 the bias noise is
treated as a constant parameter to be estimated with
battery model parameters. The convergence of battery
model parameters to their actual values is not guaran-
teed; therefore, the bias convergence to its actual value
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cannot be guaranteed. Incorrect bias estimation would
lead to erroneous SoC estimation. In the work by Xu
et al.,21 a dual KF algorithm is proposed to filter the
SoC twice to reduce the current measurement error and
battery modelling error. Despite the increased compu-
tational cost, this method cannot provide a certain
mitigation of the bias noise. In the work by Hou et al.,32

the SoC is estimated for portable devices without sensing
the current. The current is an unknown input that is cho-
sen as one of the states. In the work by Chun et al.,33 a
method is also developed to estimate the SoC without
sensing the current measurement. The method only uses
the filtered terminal voltage measurements of each cell in
the battery pack. The current applied to the battery is
estimated using the corresponding filtered terminal vol-
tage measurement. To estimate the load current based
on terminal voltage sensor measurements, it is necessary
to use a high-quality but costly voltage sensor; otherwise,
the current estimate is likely to be less accurate. An
improved fuzzy adaptive KF is designed in Yan et al.34

to estimate the SoC of EVs working under poor sensor
measurements. The system noise and the measurement
noise are assumed to be zero-mean white noise, and the
proposed method only updates their statistical proper-
ties. However, the current sensor is also corrupted by the
bias noise and it is neglected.

In literature, different noise modelling strategies
have been considered. In the work by Wang et al.,35 a
method is proposed to calculate the error probabilities,
which characterises the estimation reliability and diag-
nosis accuracy stochastically. To investigate sensor
measurements, data missing phenomenon is considered
to address the estimation error in Chen et al.36 In the
work by Kitanidis,37 the uncertainty in the system
input is modelled as a stochastic process with a mean
value that is not known and varies in time. In the work
by Shu et al.,38 the corrupted measurements are charac-
terised as a Bernoulli-distributed random sequence. In
the work by Lu et al.,39 it is shown that the states and
unknown system inputs can be estimated by an
extended Double-Model adaptive estimation approach.
The unknown time-varying input is modelled as a ran-
dom walk. Then, the system and measurement models
are updated based on the unknown input model.
Finally, the estimation algorithm is updated based on
the new system and measurement models. In this work,
we modelled the current sensor as a summation of the
true current, the bias noise treated as random walk and
the zero-mean white noise. To the best of the authors’
knowledge, our work is the first direct attempt to con-
sider two stochastic noises in the current measurement
in the SoC estimation.

The organisation of the article is as follows: section
‘Adaptive battery model identification’ introduces the
battery modelling and online MPI method, section
‘Current bias mitigation’ explains the bias noise estima-
tion method; section ‘SoC estimation’ presents the SoC
estimation method along with the modification of the

standard KF algorithm; section ‘Simulations and
results’ presents the computer simulation and experi-
mental results; finally, the conclusion and the future
work are presented in section ‘Conclusion and future
work’.

Adaptive battery model identification

Equivalent circuit battery modelling

An accurate SoC estimation algorithm can be devel-
oped based on a battery model, which is required for
the safe and efficient operation of the battery. The
ECM-based battery models have been used to replicate
the battery dynamic behaviour.40 There are several
ECMs found in the literature. Although Thevenin-
based ECMs do not demand comprehensive knowledge
regarding battery electrochemistry, they accurately
reflect the battery dynamics.41,42 The first-order
Thevenin model is revealing superiority over other
ECMs due to its simplicity but accuracy in representing
the battery dynamics.43–45,46 Figure 1 shows the ECM
used in this work. The ECM has an ideal OCV source
(Voc), an ohmic resistance (R0) and an RC branch con-
sisting of a polarisation resistor Rp and a polarisation
capacitor Cp. The energy loss during charging or dis-
charging the battery is caused by R0. The RC branch
mimics the polarisation characteristic of the battery
during or after the charging/discharging cycles. The
load current and the terminal voltage signals are
denoted by I and Vt, respectively. Ia is the current flow-
ing over Rp, whereas Ib is the current flowing over Cp.
The battery reaches the equilibrium state in a sufficient
enough time, for example, 1 h after the load is removed
from the battery. In the equilibrium state, Vt is equal
to Voc. Herein, the load current has a positive sign at
discharge and a negative sign at charge. Based on the
Kirchhoff’s law and Ohm’s law, the first-order
Thevenin ECM can be expressed as follows

dVp

dt
=

I

Cp
� Vp

RpCp
ð1aÞ

Figure 1. SoC–OCV nonlinear relationship and equivalent
circuit model of Li-ion battery.
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Vt =Voc � IR0 � Vp ð1bÞ

where t is the time, d=dt is the derivative, Vp is the vol-
tage across the RC branch. In equation (1), R0, Rp and
Cp are the model parameters to be identified.
Furthermore, the identification of the nonlinear SoC–
OCV relationship is also necessary for the SoC estima-
tion. This relationship can be acquired through a bat-
tery SoC drop test.

Online MPI

An online MPI method improves the real-time perfor-
mance of SoC estimation algorithms. In this work, the
adaptive law-based MPI method is adopted to estimate
the model parameters in real time. The adaptive law
calculates the current estimate of the parameters by
adding the previous estimate of the parameters and the
correction term. The correction term is calculated based
on a difference between the calculated output signal
and the measured output signal. Therefore, the model
parameter uncertainty is overcome by parameter updat-
ing and correction.

Discrete-time expressions of equations (1a) and (1b)
are of the form

Vp, k+1 =aVp, k +(1� a)RpIk ð2aÞ

Vt, k =Voc, k � R0Ik � Vp, k ð2bÞ

where ( � )k represents the kth sample of ( � ), a= e�Dt=t,
Dt is the sampling time and t is the time constant, that
is, t =RpCp. Rewrite equation (2b) for step k+1

Vt, k+1 =Voc, k+1 � R0Ik+1 � Vp, k+1 ð3Þ

Substitute equation (2a) into equation (3)

Vt, k+1 =Voc, k+1 � R0Ik+1 � aVp, k � (1� a)RpIk

ð4Þ

Rearrange equation (2b) and substitute into equation
(4)

Vt, k+1 =aVt, k � R0Ik+1 + aR0 � 1� að ÞRp

� �
Ik

+Voc, k+1 � aVoc, k

ð5Þ

Define DVt, k+1 =Vt, k+1 � Vt, k and substitute into
equation (5) for sampling time k and k� 1

DVt, k+1 =aDVt, k � R0DIk+1 + gDIk

+DVoc, k+1 � aDVoc, k

ð6Þ

where D( � )k+1 = ( � )k+1 � ( � )k and g =aR0 � (1� a)

Rp. Voc varies slowly in comparison with Vt, when the

sampling frequency is high enough,47 that is, DVoc ’ 0.
Equation (6) can be approximated as follows

DVt, k+1 =aDVt, k � R0DIk+1 + gDIk ð7Þ

Equation (7) can be written in the LPM as follows

yk+1 = uT
k+1fk+1 ð8Þ

where the unknown model parameters vector is given
by

uk+1 = a �R0 g½ �T ð9Þ

and the measured input vector is given by

fk+1 = DVt, k DIk+1 DIk½ �T ð10Þ

The terminal voltage difference is calculated from two
measurement samples. The measurement equation for
the parameter estimation is as follows

~yk+1 =DVt, k+1 +DvVt, k+1 ð11Þ

where (~�) is the measurement of ( � ) and DvVt, k+1 rep-
resents the measurement noise. Note that unadorned
symbols represent the true values.

uk is simultaneously estimated using the online para-
meter estimation method based on the adaptive law
given as follows48

ek+1 = ~yk+1 � ûT
kfk+1 ð12aÞ

ûk+1 = ûk +GDtek+1fk+1 ð12bÞ

where (̂�) is the estimate of ( � ), and G is the positive-
definite adaptive gain matrix. After ûk is calculated, the
model parameters R̂0, R̂p and Ĉp can be reversely calcu-
lated by

R̂0 = � û
(2)
k+1 ð13aÞ

R̂p =
û
(3)
k+1 + û

(1)
k+1R̂0

1� û
(1)
k+1

ð13bÞ

Ĉp =
�DtR̂p

log û
(1)
k+1

ð13cÞ

where ( � )(i) for i=1, 2, 3 is the ith element of ( � ).

Test rig design

Figure 2 shows a schematic diagram of the test rig
designed to run three DC motors powered by a com-
pletely new lithium polymer (LiPo) battery whose
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capacity is 1Ah. The battery has two serially connected
LiPo cells, which makes the battery’s upper cut-off vol-
tage 8.4V and lower cut-off voltage 6.4V.
CompactRIO is the microprocessor used in the test rig.
A graphical user interface is designed on LabVIEW
software to control the speed of DC motors. During
the battery test, I and Vt are measured through the NI
9505 and NI 9215 devices every 0.01 s. We used a com-
mercial battery charger to charge the battery in a con-
stant current constant voltage (CCCV) mode. It can
also be used to discharge the battery with a constant
current. To prevent possible electrode damage due to
overcharging the battery, the upper cut-off voltage is
set to 8.4V. When the terminal voltage drops to 6.4V,
the battery is considered completely discharged. The
operating temperature remains constant at 25�C6 3�C.
Three DC motors discharge the battery with a constant
current of 1.3A when the speed is set to 50 r/min (revo-
lution per minute). The speed remains constant at 50 r/
min during the battery experiment. The experimental
conditions are summarised in Table 1.

SoC–OCV nonlinear relationship

All ECM-based SoC estimation algorithms require the
nonlinear SoC–OCV relationship to convert the esti-
mated OCV to an SoC estimate. This relationship can
be obtained by a battery SoC drop test.49 First, the bat-
tery is fully charged under a CCCV regime until it
reaches the higher cut-off voltage given by the battery
manufacturer. At this point, the battery is assumed to
be fully charged. A fully charged battery is discharged
by 5% SoC intervals until the SoC decreases to 80%.
Then, the discharge interval is increased to 10% and
the battery is discharged until its SoC drops to 20%.
Then, the discharge interval is decreased to 5% and the

battery is fully discharged. The smaller SoC discharge
interval is used at low and high SoC regions to observe
the nonlinearity better. The sampling time of the bat-
tery SoC drop test is 0.01 s and the experiment is
repeated five times. Finally, the average values are cal-
culated based on the collected data. A battery SoC
drop test was performed on the LiPo battery and the
result is given in Table 2.

The OCV–SoC nonlinear relationship is modelled by
the following nonlinear expression50

Voc= a log (z)+ be(z)
3

+ c ð14Þ

where a, b and c are the constant coefficients, z is equal
to SoC [%] divided by 100 and it is in the range of
½d, 1�, where d is an arbitrary small positive number.
The SoC below d is considered zero. The experimental
data are curve-fitted to Cho et al.14 to calculate a, b
and c. Conversely, a real-time estimation algorithm can
be used to update the coefficients.50

Current bias mitigation

In battery-powered systems, the current sensor output
is the current measurement which is corrupted by two
different types of stochastic noise27

~Ik = Ik +bk + vi, k ð15Þ

where ~Ik is the current measurement, and Ik is the true
current, bk is the bias noise and vi, k is the zero-mean
white noise whose variance is ri. bk is a random walk
and modelled as follows39

bk =bk�1 +Dbk ð16Þ

where Dbk is the variation in b from sampling time
k� 1 to sampling time k.

In battery systems, the second measurable signal is
~Vt. Note that, measured ~Vt is a function of true states,
including Voc, Ia and true input current I. However,
estimated V̂t is a function of estimated states, including
V̂oc, Îa and the measured current input ~I. Considering
the battery states converge to their actual values, the
difference between the measured ~Vt and the estimated

Table 1. The operational conditions in the experiment.

Battery condition Fresh battery

Operating temperature 25�C 6 3�C
Upper cut-off voltage 8.4 V
Lower cut-off voltage 6.4 V
Discharge current 1.3 A

Figure 2. The schematic diagram of experimental setup.

Table 2. The SoC–OCV relationship obtained by a battery
SoC drop test.

SoC [%]/100 Voc ½V� 0 0.05 0.1 0.15
6.5703 7.2301 7.3689 7.4079

SoC [%]/100 Voc ½V� 0.2 0.3 0.4 0.5
7.4603 7.5421 7.5691 7.6404

SoC [%]/100 Voc ½V� 0.6 0.7 0.8 0.85
7.7319 7.8731 8.0020 8.1301

SoC [%]/100 Voc ½V� 0.9 0.95 1
8.2202 8.3078 8.3813
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V̂t must be caused by the current sensor measurement
error. Therefore, one sampling time step difference of
( ~Vt � V̂t) provides the required information to calcu-
late b in real time. The measurement model of the ter-
minal voltage is given by

~Vt, k =Voc, k � IkR0 � Ia, kRp + vVt, k ð17Þ

Rewrite equation (17) for the previous sampling time

~Vt, k�1 =Voc, k�1 � Ik�1R0 � Ia, k�1Rp + vVt, k�1 ð18Þ

Note that vVt, k is independent of vVt, k�1. Subtract equa-
tion (18) from equation (17)

D ~Vt, k =DVoc, k � DIkR0 � DIa, kRp +DvVt, k ð19Þ

where D( � )k =( � )k � ( � )k�1 and DvVt, k = vVt, k � vVt, k�1.
To calculate the one-step difference of the measurement
residual, the estimate of DVt is required. First, the esti-
mate of Vt, k is calculated according to the noisy current
input measurement as follows

V̂t, k = V̂oc, k � ~IkR̂0 � Îa, kR̂p ð20Þ

Similarly, the estimate of Vt at sampling time k� 1 can
be written as follows

V̂t, k�1 = V̂oc, k�1 � ~Ik�1R̂0 � Îa, k�1R̂p ð21Þ

Subtract equation (21) from equation (20)

DV̂t, k =DV̂oc, k � D~IkR̂0 � DÎa, kR̂p ð22Þ

In equation (22), to calculate the difference of OCV
at two sampling points, we could use the estimated
SoC at two sampling points and convert them to the
corresponding OCV using the SoC–OCV relationship.
However, two estimated SoC could have inconsistent
values to charging (increasing SoC) or discharging
(decreasing SoC) of the battery. Instead, first, the previ-
ous value of SoC is calculated using the following CC
equation

ẑk�1 = zk +
~Ik � b̂k

� �
Dt

Qmax
ð23Þ

where Qmax is the maximum available capacity and zk
is substituted by the estimated zk from the KF. Then,
the calculated ẑk�1 is transformed into the estimated
V̂oc, k�1 through the SoC–OCV relationship. The esti-
mated OCV difference is calculated by subtracting
V̂oc, k�1 from V̂oc, k, that is, DV̂oc, k = V̂oc, k � V̂oc, k�1.

The one sampling step difference of the measurement
residual can be calculated by subtracting equation (22)
from equation (19) as follows

D DVt, k½ �=D ~Vt, k � DV̂t, k

=DVoc, k � DIkR0 � DIa, kRp +DvVt, k

� DV̂oc, k � D~IkR̂0 � DÎa, kR̂p

= DVoc, k � DV̂oc, k

� �
+ DIk � D~Ik
� �

R̂0

+ DIa, k � DÎa, k
� �

R̂p +DvVt, k

= � DbkR̂0 � Dvi, kR̂0 +DvVt, k

ð24Þ

The difference Dbk can be calculated as follows

Dbk = � D DVt, k½ �
R̂0

+ es, k ð25Þ

where es, k=DvVt, k=R̂0 � Dvi, k is a zero-mean white
noise. Directly substituting Dbk into equation (21)
would amplify undesired noises in the estimated b val-
ues. Thus, the standard KF is designed for estimating
bk and provided in Algorithm 1. Details of the algo-
rithm are presented in the next section.

SoC estimation

The SoC propagation equation is given by

zk+1 = zk �
ÎkDt

Qmax
+wz, k ð26Þ

where wz, k is a zero-mean Gaussian white noise. The
current Ia is propagated as follows

Ia, k+1 =aIa, k +(1� a)Îk +wIa, k ð27Þ

where wIa, k is a white noise with zero mean. Note that
wz, k is independent of wIa, k. The measurement equation

Algorithm 1 SoC estimation algorithm based on NiKF

1: Initialise: x̂�0 , P�0 , b̂�0 , p�b, 0, u0

2: while 0 \ z \ 1 do
3: Calculate the model parameter using (12) & (13)
4: Update b̂�k and p�b, k
5: Kb, k = p�b, k(p

�
b, k + rb)�1

6: b̂k = b̂�k + Kb, kDbk

7: pb, k = (1� Kb, k)p
�
b, k

8: Calculate Îk =~Ik � b̂k

9: Propagate b̂k and pb, k:
10 b̂�k + 1 = b̂k

11: p�b, k + 1 = pb, k + qb

12: Update x̂�k and P�k
13: Kk = (P�k CT)(CP�k CT + R + Dri, kD

T)�1

14: x̂k = x̂�k + Kk½yk � (Cx̂�k + D̂Ik)�
15: Pk = (I� KkC)P�k (I� KkC)T + KkDri, kD

TKT
k + KkRKT

k
16: Propagate x̂k and Pk:
17: x̂�k + 1 = Ax̂k + B̂Ik
18: P�k + 1 = APkA

T + Bri, kB
T + Q

19: Repeat
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is given in equation (17), where Voc is a nonlinear func-
tion of z. The SoC estimation algorithm has linear state
propagation equations (26) and (27) and nonlinear
measurement equation (17). Consider the following
generic model for a battery system

xk+1 =Axk +Buk +wx, k ð28aÞ

yk = h(xk)+Duk + vy, k ð28bÞ

where h( � ) is a nonlinear function

xk = Ia, k zk½ �T, yk = ~Vt, k, uk = Îk

A =
âk 0
0 1

� �
, B=

1� âk
�Dt
Qmax

� �
, wx, k =

wIa, k

wz, k

� �

C = ∂yk
∂x

��
x= x̂k

, D= � R̂0, vy, k = vVt, k

ð29Þ

xk is the state vector, yk is the measurement vector and
uk is the input. wx, k and vy, k are the process and mea-
surement zero-mean white noises with known covar-
iance matrices Q and R, respectively. They are
independent of each other and assumed to be station-
ary over time.

In practice, it is expected that the standard KF’s per-
formance degrades due to the noisy input current mea-
surement. Therefore, standard KF algorithm given in
Kasdin51 is reconstructed by considering the input cur-
rent measurement model given in equation (15). Note
that u in equations (28a) and (28b) is replaced by Îk in
battery systems.

We are to derive the standard KF based on the gen-
eric model of the battery system. The derivation of the
noisy input Kalman filter (NiKF) starts with updating
the priori prediction of the state vector as follows

x̂k = x̂�k +Kk(yk � ŷk) ð30Þ

where ( � )� implies the priori prediction of ( � ), Kk is the
Kalman gain and the (yk � ŷk) is the measurement resi-
dual. The derivation of the update part starts with defin-
ing the posterior state estimation error given as follows

ek = xk � x̂k

= xk � x̂�k � Kk(Cxk +DIk + vy, k � Cx̂�k �DÎk)

= xk � x̂�k � Kk½Cxk +D (~Ik � bk � vi, k)

+ vy, k � Cx̂�k �D(~Ik � b̂k)�
=(I� KkC)e

�
k � Kkvy, k +KkDvi, k

+KkD(b̂k � bk)

ð31Þ

where KkD(b̂k � bk) term is neglected by assuming
limt!‘ b̂! b. The approximation of equation (31) is
given by

ek =(I� KkC)e
�
k � Kkvy, k +KkDvi, k ð32Þ

The posterior state estimation error covariance
matrix is as follows

Pk =E½ekeTk �
=E½((I� KkC)e

�
k +KkDvi, k � Kkvy, k)

((I� KkC)e
�
k +KkDvi, k � Kkvy, k)

T�
=(I� KkC)P

�
k (I� KkC)

T

+KkDri, kD
TKT

k +KkRK
T
k

ð33Þ

where E½�� represents the expectation operator and ri, k
is the variance of vi, k. Note that vy, k, vi, k and e�k are
independent of each other.

The Kalman gain matrix is derived by minimising
the trace of Pk. The trace of Pk is the sum of the mean
squared errors. Expand equation (33) as follows

Pk =P�k � KkCP
�
k � P�k C

TKT
k

+Kk CP�k C
T +Dri, kD

T + vy, k
� �

KT
k

ð34Þ

Taking the trace of equation (34) gives

trace½Pk�=trace P�k
� �

� 23 trace KkCP
�
k

� �
+trace Kk CP�k C

T +Dri, kD
T +R

� �
KT

k

� � ð35Þ

Differentiate equation (35) with respect to Kk

d trace Pk½ �
dKk

= � 2 CP�k
� �T

+2Kk CP�k C
T +Dri, kD

T +R
� � ð36Þ

Equalising equation (36) to zero and solving for Kk

yield

Kk = P�k C
T

� �
CP�k C

T +R+Dri, kD
T

� ��1 ð37Þ

The state is propagated as follows

xk+1 =Axk +BIk ð38Þ

The posterior error covariance matrix is propagated as
follows

e�k+1 = xk+1 � x̂�k+1

=Axk +BIk +wx, k � Ax̂�k � BÎk

=Axk +B ~Ik � bk � vi, k
� �

+wx, k�1

� Ax̂�k � B ~Ik � b̂k

� �
=A xk � x̂�k

� �
+wx, k � Bvi, k � B b̂k � bk

� �
ð39Þ
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where ( � )�k represents the priori prediction of ( � )k. In
equation (39), B(b̂k � bk) term is neglected since
limt!‘ b̂! b in most practical cases. The final expres-
sion of the priori state prediction error is given as
follows

e�k+1 =Aek +wx, k � Bvi, k ð40Þ

The prior covariance matrix is expressed as follows

P�k+1 =E e�k+1e
�
k+1

T
� �

=E Aek +wx, k � Bvi, kð Þ Aek +wx, k � Bvi, kð ÞT
h i

=APkA
T +Bri, kB

T +Q

ð41Þ

Note that ek, wx, k and vi, k are independent of each
other. The NiKF is summarised in Algorithm 1.

Simulations and results

The first random noise corrupting the current measure-
ment is the random walk bias b. The difference between
bk and bk�1 is an independent random increment which
follows the Gaussian distribution. Its mean and var-
iance are given as follows

E bk � bk�1½ �=0 ð42aÞ

E bk � bk�1½ � bk � bk�1½ �T
n o

=s2
bDt ð42bÞ

where sb is a positive constant. The random increment
is expressed by

Dbk =hkDt ð43Þ

where hk is a random number generated from the
Gaussian distribution. Equation (42a) must be satis-
fied, therefore

E Dbk½ �=E hkDt½ �=E hk½ �Dt=0 ð44Þ

The mean value of hk must be zero, that is, E½hk�=0.
The variance of hk must satisfy the property of random
increment given in equation (42a)

E hkDthT
kDt

� �
=E hkhT

k

� �
(Dt)2 =s2

bDt ð45Þ

Hence, the variance of hk can be calculated by

E hkhT
k

� �
=

s2
b

Dt
ð46Þ

The second noise corrupting the current measure-
ment is the white noise which is a typical sensor noise

whose mean is zero and distribution is Gaussian or
normal

E vi, k½ �=0 ð47aÞ

E vi, kv
T
i, k

h i
=s2

vi
ð47bÞ

It is assumed that the hk is not correlated with the white
noise vi, k.

The simulated battery has the capacity of 0.85Ah. It
is fully discharged under two different dynamic load-
ings shown at the bottom of Figures 7 and 8. During
the process, the bias noise and the white noise are added
to the current input in every 0.01 s. The true battery
model parameters are chosen similar to ones in equa-
tion52 and set to

R0 Rp Cp½ �= 0:3O 0:1O 10F½ � ð48Þ

For the simulation purposes, the initial b is randomly
generated within the sample space whose lower bound
is 0 and higher bound is 250mA, sb is equal to 10�3

and the initial pb is set to 10�3. Db is calculated using
equation (43). True b is then calculated in every calcu-
lation step by adding Db to the previous b.

The initial state Ia is set to 0, whereas the initial esti-
mate z is randomly drawn from the uniform distribu-
tion in [0,1]. The initial priori error covariance matrix
is set to P�1 = ½10�3 0; 0 10�3�. The coefficients of the
nonlinear SoC–OCV relation are as follows:
a=0:2032, b=0:3783 and c=7:401. The small-
positive scalar delta is set to d=0:003. The available
voltage sensors can measure ~Vt with the error of 1–
2mV.27 Therefore, we assume the 63sV =61:5mV,
and the standard deviation in Vt, sV, is calculated to
be sV =0:05 mV. We also tested the algorithm with
larger sV values, such as sV =1 and sV =10 mV. In
comparison with the current bias noise, the white noise
in the current measurement does not have a significant
effect on the SoC estimation.27 Therefore, the standard
deviation in vi, si, is set to the same values as sV. Q is
set to ½10�3 0; 0 10�3�.

Figures 3 and 4 show that the online parameter esti-
mation algorithm successfully calculates the model
parameters under two different dynamic loadings. In
both cases, R0 converges to its true value fast.
However, Rp and Cp show more tiny fluctuations
depending on the current input profile. This is expected
because Rp and Cp define the response of the battery to
the dynamic loading. However, these fluctuations do
not have a significant effect on the SoC estimation
error. Furthermore, Cp and Rp have the opposite reac-
tion to keep the time constant of the battery constant.
From MPI results, it can be concluded that the adap-
tive law-based parameter identification method can
successfully estimate the model parameters under the
noisy current input measurement.
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Calculated parameters are then fed to the SoC esti-
mation algorithm. The estimation of b and the current
measurement are shown in Figures 5 and 6. Although
the actual current bias does not change so drastically in
EV applications,31 an extreme case is generated to test
the performance of the algorithm. The maximum true
bias reaches 120mA in the dynamic stress test (DST)
simulation, whereas it is around 250mA in the HPPC
test. In both scenarios, the algorithm accurately esti-
mated b. b converges fast and minimises the effect of
the initial error.

The results show that the proposed algorithm can
estimate b with reasonable accuracy without depending
on the current input profile. Once the estimated b is
available, the bias measurement is corrected by sub-
tracting b̂ from ~I.

Figures 7 and 8 show the SoC estimation under the
measured current input and the corrected current input
along with the current input estimations. The mean
absolute error (MAE), root mean square error (RMSE)
and maximum percentage error (MAXE) of the SoC
estimation are used to quantify the performance of the
proposed algorithm. The MAXE in SoC estimation is
reduced from around 11.3% to 0.56% under the HPPC
cycle. It is decreased from 7.2% to 0.78% under the
DST cycle. The battery experiment is also conducted to
validate the proposed algorithm.

Figure 9 demonstrates b and SoC estimation results
under different noises in terms of the standard deviation
in vV and vi. The results show that an increase in the
standard deviation in vV and vi increases the fluctua-
tions in the b estimation. However, this increase does
not have a significant effect on the estimated SoC val-
ues. It can be concluded that the proposed algorithm

Figure 3. ECM battery parameter estimation under DST cycle.

Figure 4. ECM battery parameter estimation under HPPC cycle.

Figure 5. Bias estimation results under DST cycle.

Figure 6. Bias estimation results under HPPC cycle.
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can remove the SoC error due to the current bias noise
when the Vt measurement has different noise variance
values.

Figure 10 shows the parameter estimation based on
the battery experimental data. The parameters con-
verge to their values fast. R0 shows a stable value
around 0:18O until the battery is fully discharged. In
comparison with R0, Rp value increases dramatically at
the end of the battery test. This is due to an increase in
the residuals of the electrochemical reaction that takes

place inside the battery. Cp shows the opposite trend
compared to Rp because of the battery’s time constant.
Figure 11 shows the SoC estimation result along with
the beta estimation and corrected current measure-
ment. The current drift is calculated at around 20mA.
However, it insignificantly changes around this magni-
tude due to the nonlinear relationship of the SoC–OCV
curve. The current drift estimation result is similar to
the one in Liu et al.31 The MAXE in SoC estimation is
reduced from 1.74% to 1.12% in the battery

Figure 8. SoC and I estimation results under HPPC cycle: (i)
SoC estimation results and (ii) current measurement correction
result. Figure 10. Parameter estimation results by experiment.

Figure 7. SoC and I estimation results under DST cycle: (i)
SoC estimation results and (ii) current measurement correction
result.

Figure 9. b and SoC estimation results with different white
noise standard deviations in ~Vt and ~I: (i–ii) b and SoC estimation
results with sV = 0:0005 and si = 0:0005, (iii–iv) b and SoC
estimation results with sV = 0:001 and si = 0:001, (v–vi) b and
SoC estimation results with sV = 0:01 and si = 0:01.
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experiment. Table 3 summarises MAE, RMSE and
MAXE in SoC estimation for computer simulations
and battery experiment. These results show that the
proposed algorithm can successfully mitigate the input
current measurement error. This significantly reduces
the error in the SoC estimation. Results based on the
experimental data validate the capability of the algo-
rithm to adapt to real-world applications.

Conclusion and future work

The corrupted current sensor measurements, varia-
tions in the operational conditions and battery depre-
dation are inevitable in battery-powered applications.
Unlike the majority of the SoC estimation algorithms
in the literature, the current measurement is corrupted
by two stochastic noises in practice. This deteriorates
the SoC estimation accuracy, resulting in shorter bat-
tery pack life or passenger safety risks due to over-
charging/overdischarging. This study proposes an
online SoC estimation algorithm that mitigates the
input current measurement noise. The method signifi-
cantly reduces the SoC estimation error and increases
the reliability of the BMS. The battery model para-
meters are estimated online using an adaptive law-
based parameter estimation algorithm. The input cur-
rent measurement is modelled by considering the fol-
lowing two noises: the zero-mean white noise vi with a
known variance and the random walk bias noise b.
Moreover, the standard KF is modified according to

the input current measurement model. The current
input measurement is used in the state propagation
and update equations. Hence, more accurate current
input measurement leads to more reliable SoC estima-
tion. The proposed algorithm accurately estimates the
bias noise in the input current and corrects the input
current measurement. The proposed algorithm is
assessed by computer simulations and battery experi-
ment. It is found that the proposed algorithm signifi-
cantly mitigates the current measurement error source
in SoC estimation and increases the SoC estimation
accuracy. The current work presents an engineering
practice and a theoretical framework for estimating
the SoC based on noisy input current measurements.
In conclusion, our work provides a more realistic
understanding of the battery SoC estimation problem
taking place in practice.

The future work will investigate the accuracy of b

estimation based on the difference between the calcu-
lated SoC–OCV model and the true SoC–OCV model
by further computational simulations and battery
experiments. The further battery experiments will be
conducted in terms of the longer time duration to
observe a larger current bias noise. Then, the perfor-
mance of the proposed algorithm will be assessed based
on this experimental data.
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Figure 11. SoC estimation results by experiment.

Table 3. Summary of SoC estimation errors according to
measured current and estimated current.

Error in z With est. I With meas. I

RMSE in DST 0.000441 0.028
RMSE in HPPC 0.000271 0.0524
RMSE in experiment 0.00374 0.00547
MAE in DST 0.0000901 0.021
MAE in HPPC 0.0000747 0.0433
MAE in experiment 0.00692 0.00947
MAXE in DST 0.78% 72%
MAXE in HPPC 0.56% 11.3%
MAXE in experiment 1.12% 1.74%

RMSE: root mean square error; DST: dynamic stress test; HPPC: hybrid

pulse power characterisation; MAE: mean absolute error; MAXE:

maximum percentage error.
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